-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathtrain_adaptation.py
executable file
·494 lines (373 loc) · 17.9 KB
/
train_adaptation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# Copyright (C) 2022 ByteDance Inc.
# All rights reserved.
# Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
# The software is made available under Creative Commons BY-NC-SA 4.0 license
# by ByteDance Inc. You can use, redistribute, and adapt it
# for non-commercial purposes, as long as you (a) give appropriate credit
# by citing our paper, (b) indicate any changes that you've made,
# and (c) distribute any derivative works under the same license.
# THE AUTHORS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE.
# IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
# DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
# OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import argparse
import math
import random
import os
import sys
import time
import numpy as np
import torch
from torch import nn, autograd, optim
from torch.nn import functional as F
from torch.utils import data
from torchvision import transforms, utils
from torch.utils.tensorboard import SummaryWriter
from models import make_model, DualBranchDiscriminator
from utils.dataset import MultiResolutionDataset
from utils.distributed import (
get_rank,
synchronize,
reduce_loss_dict,
reduce_sum,
get_world_size,
)
from visualize.utils import color_map
import random
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(1 - decay, par2[k].data)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def d_logistic_loss(real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def d_r1_loss(real_pred, real_img):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred):
loss = F.softplus(-fake_pred).mean()
return loss
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(
fake_img.shape[2] * fake_img.shape[3]
)
grad, = autograd.grad(
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True
)
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_mean.detach(), path_lengths
def make_noise(batch, latent_dim, n_noise, device):
if n_noise == 1:
return torch.randn(batch, latent_dim, device=device)
noises = torch.randn(n_noise, batch, latent_dim, device=device).unbind(0)
return noises
def mixing_noise(batch, latent_dim, prob, device):
if prob > 0 and random.random() < prob:
return make_noise(batch, latent_dim, 2, device)
else:
return [make_noise(batch, latent_dim, 1, device)]
def color_segmap(sample_seg, color_map):
sample_seg = torch.argmax(sample_seg, dim=1)
sample_mask = torch.zeros((sample_seg.shape[0], sample_seg.shape[1], sample_seg.shape[2], 3), dtype=torch.float)
for key in color_map:
sample_mask[sample_seg==key] = torch.tensor(color_map[key], dtype=torch.float)
sample_mask = sample_mask.permute(0,3,1,2)
return sample_mask
def save_sample_image(folder, name, sample_img, global_step, writer=None, **kwargs):
n_sample = len(sample_img)
utils.save_image(
sample_img,
os.path.join(ckpt_dir, f'{folder}/{name}_{str(global_step).zfill(6)}.jpeg'),
nrow=int(math.ceil(n_sample ** 0.5)),
**kwargs
)
if writer is not None:
writer.add_image(name, utils.make_grid(
sample_img,
nrow=int(math.ceil(n_sample ** 0.5)),
**kwargs
), global_step)
def train(args, ckpt_dir, loader, generator, discriminator, g_optim, d_optim, g_ema, device, writer):
loader = sample_data(loader)
pbar = range(args.iter)
mean_path_length = 0
d_loss_val = 0
r1_img_loss = torch.tensor(0.0, device=device)
r1_seg_loss = torch.tensor(0.0, device=device)
g_loss_val = 0
path_loss = torch.tensor(0.0, device=device)
path_lengths = torch.tensor(0.0, device=device)
mean_path_length_avg = 0
loss_dict = {}
if args.distributed:
g_module = generator.module
d_module = discriminator.module
else:
g_module = generator
d_module = discriminator
accum = 0.5 ** (32 / (10 * 1000))
sample_z = torch.randn(args.n_sample, args.latent, device=device)
print("Start Training Iterations...")
for idx in pbar:
tic = time.time()
i = idx + args.start_iter
if i > args.iter:
print('Done!')
break
real_img = next(loader)
real_img = real_img.to(device)
### Train Discriminator ###
requires_grad(generator, False)
requires_grad(discriminator, True)
noise = mixing_noise(args.batch, args.latent, args.mixing, device)
fake_img, fake_seg = generator(noise)
fake_pred = discriminator(fake_img)
real_pred = discriminator(real_img)
d_loss = d_logistic_loss(real_pred, fake_pred)
loss_dict['d'] = d_loss
loss_dict['real_score'] = real_pred.mean()
loss_dict['fake_score'] = fake_pred.mean()
discriminator.zero_grad()
d_loss.backward()
d_optim.step()
d_regularize = i % args.d_reg_every == 0
if d_regularize:
real_img.requires_grad = True
real_pred = discriminator(real_img)
r1_loss = d_r1_loss(real_pred, real_img)
discriminator.zero_grad()
(args.r1 / 2 * r1_loss * args.d_reg_every + 0 * real_pred[0]).backward()
d_optim.step()
loss_dict['r1'] = r1_img_loss
### Train Generator ###
requires_grad(generator, True)
requires_grad(discriminator, False)
noise = mixing_noise(args.batch, args.latent, args.mixing, device)
fake_img, fake_seg, fake_seg_coarse, _, _ = generator(noise, return_all=True)
fake_pred = discriminator(fake_img)
g_loss = g_nonsaturating_loss(fake_pred)
# segmentation mask loss
fake_seg_downsample = F.adaptive_avg_pool2d(fake_seg, fake_seg_coarse.shape[2:4])
mask_loss = torch.square(fake_seg_coarse - fake_seg_downsample).mean()
loss_dict['g'] = g_loss
loss_dict['mask'] = mask_loss
generator.zero_grad()
(g_loss + args.lambda_mask * mask_loss).backward()
g_optim.step()
g_regularize = args.path_regularize > 0 and i % args.g_reg_every == 0
if g_regularize:
path_batch_size = max(1, args.batch // args.path_batch_shrink)
with torch.no_grad():
noise = mixing_noise(
path_batch_size, args.latent, args.mixing, device
)
noise = [g_module.style(n) for n in noise]
latents = g_module.mix_styles(noise).clone()
latents.requires_grad = True
fake_img, fake_seg = generator([latents], input_is_latent=True)
path_loss, mean_path_length, path_lengths = g_path_regularize(
fake_img, latents, mean_path_length
)
generator.zero_grad()
weighted_path_loss = args.path_regularize * args.g_reg_every * path_loss
if args.path_batch_shrink:
weighted_path_loss += 0 * fake_img[0, 0, 0, 0] + 0 * fake_seg[0, 0, 0, 0]
weighted_path_loss.backward()
g_optim.step()
mean_path_length_avg = (
reduce_sum(mean_path_length).item() / get_world_size()
)
loss_dict['path'] = path_loss
loss_dict['path_length'] = path_lengths.mean()
if args.freeze_local:
accumulate(g_ema.style, g_module.style, accum)
accumulate(g_ema.render_net, g_module.render_net, accum)
else:
accumulate(g_ema, g_module, accum)
### Summarize Information ###
loss_reduced = reduce_loss_dict(loss_dict)
d_loss_val = loss_reduced['d'].mean().item()
g_loss_val = loss_reduced['g'].mean().item()
r1_val = loss_reduced['r1'].mean().item()
path_loss_val = loss_reduced['path'].mean().item()
real_score_val = loss_reduced['real_score'].mean().item()
fake_score_val = loss_reduced['fake_score'].mean().item()
path_length_val = loss_reduced['path_length'].mean().item()
mask_loss_val = loss_reduced['mask'].mean().item()
batch_time = time.time() - tic
if get_rank() == 0:
if i% 100 == 0:
print(
f"[{i:06d}] d: {d_loss_val:.4f}; g: {g_loss_val:.4f}; "
f"real: {real_score_val:.4f}; fake: {fake_score_val:.4f}; "
f"r1: {r1_val:.4f}; "
f"path: {path_loss_val:.4f}; mean path: {mean_path_length_avg:.4f}; "
f"mask: {mask_loss_val:.4f}; time: {batch_time:.2f}"
)
# write to tensorboard
if writer is not None:
writer.add_scalar('scores/real_score', real_score_val, global_step=i)
writer.add_scalar('scores/fake_score', fake_score_val, global_step=i)
writer.add_scalar('r1/img', r1_val, global_step=i)
writer.add_scalar('path/path_loss', path_loss_val, global_step=i)
writer.add_scalar('path/path_length', path_length_val, global_step=i)
writer.add_scalar('loss/d', d_loss_val, global_step=i)
writer.add_scalar('loss/g', g_loss_val, global_step=i)
writer.add_scalar('loss/mask', mask_loss_val, global_step=i)
if i % args.viz_every == 0:
with torch.no_grad():
g_ema.eval()
sample_img, sample_seg, sample_seg_coarse, depths, _ = g_ema([sample_z], return_all=True)
sample_img = sample_img.detach().cpu()
sample_mask = color_segmap(sample_seg.detach().cpu(), color_map)
sample_mask_coarse = color_segmap(sample_seg_coarse.detach().cpu(), color_map)
os.makedirs(os.path.join(ckpt_dir, 'sample'), exist_ok=True)
save_sample_image("sample", "img", sample_img, i, writer, normalize=True, value_range=(-1,1))
save_sample_image("sample", "mask", sample_mask, i, writer, normalize=True, value_range=(0,255))
save_sample_image("sample", "mask_coarse", sample_mask_coarse, i, writer, normalize=True, value_range=(0,255))
if i % args.save_every == 0 and i > args.start_iter:
os.makedirs(os.path.join(ckpt_dir, 'ckpt'), exist_ok=True)
torch.save(
{
'g': g_module.state_dict(),
'd': d_module.state_dict(),
'g_ema': g_ema.state_dict(),
"g_optim": g_optim.state_dict(),
"d_optim": d_optim.state_dict(),
'args': args,
},
os.path.join(ckpt_dir, f'ckpt/{str(i).zfill(6)}.pt'),
)
if __name__ == '__main__':
device = 'cuda'
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--checkpoint_dir', type=str, default='./checkpoint/domain_adaptation')
parser.add_argument('--ckpt', type=str, default=None)
parser.add_argument('--freeze_local', action="store_true")
parser.add_argument('--iter', type=int, default=2001)
parser.add_argument('--batch', type=int, default=4)
parser.add_argument('--n_sample', type=int, default=16)
parser.add_argument('--size', type=int, default=256)
parser.add_argument('--r1', type=float, default=10)
parser.add_argument('--path_regularize', type=float, default=0.5)
parser.add_argument('--path_batch_shrink', type=int, default=2)
parser.add_argument('--d_reg_every', type=int, default=16)
parser.add_argument('--g_reg_every', type=int, default=4)
parser.add_argument('--viz_every', type=int, default=100)
parser.add_argument('--save_every', type=int, default=200)
parser.add_argument('--mixing', type=float, default=0.3)
parser.add_argument('--lr', type=float, default=0.002)
parser.add_argument('--channel_multiplier', type=int, default=2)
parser.add_argument('--seg_dim', type=int, default=13)
parser.add_argument('--aug', action='store_true', help='augmentation')
# Semantic StyleGAN
parser.add_argument('--local_layers', type=int, default=10, help="number of layers in local generators")
parser.add_argument('--base_layers', type=int, default=2, help="number of layers with shared coarse structure code")
parser.add_argument('--depth_layers', type=int, default=6, help="number of layers before outputing pseudo-depth map")
parser.add_argument('--local_channel', type=int, default=64, help="number of channels in local generators")
parser.add_argument('--coarse_channel', type=int, default=512, help="number of channels in coarse feature map")
parser.add_argument('--coarse_size', type=int, default=64, help="size of the coarse feature map and segmentation mask")
parser.add_argument('--min_feat_size', type=int, default=16, help="size of downsampled feature map")
parser.add_argument('--residual_refine', action="store_true", help="whether to use residual to refine the coarse mask")
parser.add_argument('--detach_texture', action="store_true", help="whether to detach between depth layers and texture layers")
parser.add_argument('--transparent_dims', nargs="+", default=(10,12), type=int, help="the indices of transparent classes")
parser.add_argument('--lambda_mask', type=float, default=0.0, help="weight of the mask regularization loss")
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
# build checkpoint dir
ckpt_dir = args.checkpoint_dir
os.makedirs(args.checkpoint_dir, exist_ok=True)
writer = SummaryWriter(log_dir=ckpt_dir)
n_gpu = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
args.n_gpu = n_gpu
args.distributed = n_gpu > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
synchronize()
args.latent = 512
args.n_mlp = 8
args.start_iter = 0
generator = make_model(args, verbose=(args.local_rank==0)).to(device)
discriminator = DualBranchDiscriminator(
args.size, args.size, img_dim=3, seg_dim=args.seg_dim, channel_multiplier=args.channel_multiplier
).to(device)
g_ema = make_model(args, verbose=(args.local_rank==0)).to(device)
g_ema.eval()
accumulate(g_ema, generator, 0)
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
g_optim = optim.Adam(
generator.parameters(),
lr=args.lr * g_reg_ratio,
betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
)
d_optim = optim.Adam(
discriminator.parameters(),
lr=args.lr * d_reg_ratio,
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
)
if args.ckpt is not None:
print('load model:', args.ckpt)
ckpt = torch.load(args.ckpt, map_location='cpu')
generator.load_state_dict(ckpt['g'])
discriminator.load_state_dict(ckpt['d'])
g_ema.load_state_dict(ckpt['g_ema'])
if args.distributed:
find_unused_parameters = True
generator = nn.parallel.DistributedDataParallel(
generator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters,
)
discriminator = nn.parallel.DistributedDataParallel(
discriminator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters,
)
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5), inplace=True)
])
dataset = MultiResolutionDataset(args.dataset, transform, args.size)
print("Loading train dataloader with size ", len(dataset))
loader = data.DataLoader(
dataset,
batch_size=args.batch,
sampler=data_sampler(dataset, shuffle=True, distributed=args.distributed),
num_workers=args.num_workers//2,
drop_last=True,
)
torch.backends.cudnn.benchmark = True
print("Start Training...")
train(args, ckpt_dir, loader, generator, discriminator, g_optim, d_optim, g_ema, device, writer)