-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
226 lines (171 loc) · 8.16 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import division
from __future__ import print_function
import time
import numpy as np
import scipy.sparse as sp
import networkx as nx
import tensorflow.compat.v1 as tf
from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score
import random
#
# flags = tf.app.flags
# FLAGS = flags.FLAGS
def construct_self_feed_dict(emb, train_drug_miRNA_matrix, positive_mask, negative_mask, placeholders):
"""Construct feed dictionary."""
feed_dict = dict()
feed_dict.update({placeholders['emb']: emb})
feed_dict.update({placeholders['adj_label']: train_drug_miRNA_matrix})
feed_dict.update({placeholders['positive_mask']: positive_mask})
feed_dict.update({placeholders['negative_mask']: negative_mask})
return feed_dict
def construct_attention_feed_dict(emb, train_drug_miRNA_matrix, positive_mask, negative_mask, placeholders):
"""Construct feed dictionary."""
feed_dict = dict()
feed_dict.update({placeholders['emb'][i]: emb[i] for i in range(len(emb))})
feed_dict.update({placeholders['adj_label']: train_drug_miRNA_matrix})
feed_dict.update({placeholders['positive_mask']: positive_mask})
feed_dict.update({placeholders['negative_mask']: negative_mask})
return feed_dict
def constructNet(miRNA_dis_matrix):
miRNA_matrix = np.mat(np.zeros((miRNA_dis_matrix.shape[0], miRNA_dis_matrix.shape[0]), dtype=np.int8))
dis_matrix = np.mat(np.zeros((miRNA_dis_matrix.shape[1], miRNA_dis_matrix.shape[1]), dtype=np.int8))
mat1 = np.hstack((miRNA_matrix, miRNA_dis_matrix))
mat2 = np.hstack((miRNA_dis_matrix.T, dis_matrix))
return np.vstack((mat1, mat2))
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def normalize_features(feat):
degree = np.asarray(feat.sum(1)).flatten()
# set zeros to inf to avoid dividing by zero
degree[degree == 0.] = np.inf
degree_inv = 1. / degree
degree_inv_mat = sp.diags([degree_inv], [0])
feat_norm = degree_inv_mat.dot(feat)
return feat_norm
def matrix_normalize(similarity_matrix):
similarity_matrix[np.isnan(similarity_matrix)] = 0
if similarity_matrix.shape[0] == similarity_matrix.shape[1]:
for i in range(similarity_matrix.shape[0]):
similarity_matrix[i, i] = 0
for i in range(200):
D = np.diag(np.array(np.sum(similarity_matrix, axis=1)).flatten()) # 求得每一行的sum,再使其对角化
D = np.linalg.pinv(np.sqrt(D)) # 开方,再取伪逆矩阵
similarity_matrix = D * similarity_matrix * D
else:
for i in range(similarity_matrix.shape[0]):
if np.sum(similarity_matrix[i], axis=1) == 0:
similarity_matrix[i] = similarity_matrix[i]
else:
similarity_matrix[i] = similarity_matrix[i] / np.sum(similarity_matrix[i], axis=1)
return similarity_matrix
def masked_bilinearsigmoid_cross_entropy(preds, labels, mask, negative_mask):
"""Softmax cross-entropy loss with masking."""
loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=preds, labels=labels)
mask += negative_mask
mask = tf.cast(mask, dtype=tf.float32)
# mask /= tf.reduce_mean(mask)
mask = tf.reshape(mask, shape=[79924])
loss *= mask
return tf.reduce_mean(loss)
def gcn_masked_softmax_cross_entropy(preds, labels, positive_mask, negative_mask, pos_weight):
"""Softmax cross-entropy loss with masking."""
loss = tf.nn.weighted_cross_entropy_with_logits(targets=labels, logits=preds, pos_weight=pos_weight)
# preds = tf.cast(preds, tf.float32)
# labels = tf.cast(labels, tf.float32)
# loss = tf.square(preds - labels)
positive_mask += negative_mask
# print(mask)
mask = tf.cast(positive_mask, dtype=tf.float32)
# mask /= tf.reduce_mean(mask)
mask = tf.reshape(mask, shape=[79924])
loss *= mask
return tf.reduce_mean(loss)
def generate_mask(train_drug_miRNA_matrix, N):
num = 0
mask = np.zeros(train_drug_miRNA_matrix.shape)
while (num < 10 * N):
a = random.randint(0, 105)
b = random.randint(0, 753)
if train_drug_miRNA_matrix[a, b] != 1 and mask[a, b] != 1:
mask[a, b] = 1
num += 1
mask = np.reshape(mask, [-1, 1])
return mask
def load_data(train_arr, test_arr):
"""Load data."""
labels = np.loadtxt("drug-miRNA.txt")
logits_test = sp.csr_matrix((labels[test_arr, 2], (labels[test_arr, 0] - 1, labels[test_arr, 1] - 1)),
shape=(106, 754)).toarray()
logits_test = logits_test.reshape([-1, 1])
# logits_test = np.hstack((logits_test,1-logits_test))
logits_train = sp.csr_matrix((labels[train_arr, 2], (labels[train_arr, 0] - 1, labels[train_arr, 1] - 1)),
shape=(106, 754)).toarray()
logits_train = logits_train.reshape([-1, 1])
# logits_temp_train = logits_train
#
# train_list = []
# train_list.append(logits_temp_train)
train_mask = np.array(logits_train[:, 0], dtype=np.bool).reshape([-1, 1])
test_mask = np.array(logits_test[:, 0], dtype=np.bool).reshape([-1, 1])
# train_mask = np.array(logits_train[:, 0]).reshape([-1, 1])
# test_mask = np.array(logits_test[:, 0]).reshape([-1, 1])
M = sp.csr_matrix((labels[train_arr, 2], (labels[train_arr, 0] - 1, labels[train_arr, 1] - 1)),
shape=(106, 754)).toarray()
return logits_train, logits_test, train_mask, test_mask, labels
def weight_variable_glorot(input_dim, output_dim, name=""):
init_range = np.sqrt(6.0 / (input_dim + output_dim))
initial = tf.random_uniform(
[input_dim, output_dim], minval=-init_range,
maxval=init_range, dtype=tf.float32)
return tf.Variable(initial, name=name)
def dropout_sparse(x, keep_prob, num_nonzero_elems):
noise_shape = [num_nonzero_elems]
random_tensor = keep_prob
random_tensor += tf.random_uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
pre_out = tf.sparse_retain(x, dropout_mask)
return pre_out * (1. / keep_prob)
def sparse_to_tuple(sparse_mx):
if not sp.isspmatrix_coo(sparse_mx):
sparse_mx = sparse_mx.tocoo()
coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose()
values = sparse_mx.data
shape = sparse_mx.shape
return coords, values, shape
def preprocess_graph(adj):
adj = sp.coo_matrix(adj)
adj_ = adj + sp.eye(adj.shape[0])
rowsum = np.array(adj_.sum(1))
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
return sparse_to_tuple(adj_normalized)
def construct_feed_dict(adj_norm, adj_label, features, positive_mask, negative_mask, placeholders):
feed_dict = dict()
feed_dict.update({placeholders['features']: features})
feed_dict.update({placeholders['adj_norm']: adj_norm})
feed_dict.update({placeholders['adj_label']: adj_label})
feed_dict.update({placeholders['positive_mask']: positive_mask})
feed_dict.update({placeholders['negative_mask']: negative_mask})
return feed_dict
def masked_cross_entropy(preds, labels, label_mask, test_mask):
"""Accuracy with masking."""
preds = tf.cast(preds, tf.float32)
labels = tf.cast(labels, tf.float32)
error = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=preds)
# pos_weight = 1
# error = tf.nn.weighted_cross_entropy_with_logits(logits=preds, targets=labels, pos_weight=pos_weight)
label_mask += test_mask
mask = tf.cast(label_mask, dtype=tf.float32)
mask = tf.reshape(mask, shape=[79924])
error *= mask
return tf.sqrt(tf.reduce_mean(error))
def masked_accuracy(preds, labels, label_mask, test_mask):
preds = tf.cast(preds, tf.float32)
labels = tf.cast(labels, tf.float32)
error = tf.square(preds - labels)
label_mask += test_mask
mask = tf.cast(test_mask, dtype=tf.float32)
mask = tf.reshape(mask, shape=[79924])
error *= mask
return tf.sqrt(tf.reduce_mean(error))