forked from abseil/abseil-cpp
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathzipf_distribution_test.cc
423 lines (372 loc) · 13.9 KB
/
zipf_distribution_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/zipf_distribution.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <random>
#include <string>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/log/log.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_replace.h"
#include "absl/strings/strip.h"
namespace {
using ::absl::random_internal::kChiSquared;
using ::testing::ElementsAre;
template <typename IntType>
class ZipfDistributionTypedTest : public ::testing::Test {};
using IntTypes = ::testing::Types<int, int8_t, int16_t, int32_t, int64_t,
uint8_t, uint16_t, uint32_t, uint64_t>;
TYPED_TEST_SUITE(ZipfDistributionTypedTest, IntTypes);
TYPED_TEST(ZipfDistributionTypedTest, SerializeTest) {
using param_type = typename absl::zipf_distribution<TypeParam>::param_type;
constexpr int kCount = 1000;
absl::InsecureBitGen gen;
for (const auto& param : {
param_type(),
param_type(32),
param_type(100, 3, 2),
param_type(std::numeric_limits<TypeParam>::max(), 4, 3),
param_type(std::numeric_limits<TypeParam>::max() / 2),
}) {
// Validate parameters.
const auto k = param.k();
const auto q = param.q();
const auto v = param.v();
absl::zipf_distribution<TypeParam> before(k, q, v);
EXPECT_EQ(before.k(), param.k());
EXPECT_EQ(before.q(), param.q());
EXPECT_EQ(before.v(), param.v());
{
absl::zipf_distribution<TypeParam> via_param(param);
EXPECT_EQ(via_param, before);
}
// Validate stream serialization.
std::stringstream ss;
ss << before;
absl::zipf_distribution<TypeParam> after(4, 5.5, 4.4);
EXPECT_NE(before.k(), after.k());
EXPECT_NE(before.q(), after.q());
EXPECT_NE(before.v(), after.v());
EXPECT_NE(before.param(), after.param());
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before.k(), after.k());
EXPECT_EQ(before.q(), after.q());
EXPECT_EQ(before.v(), after.v());
EXPECT_EQ(before.param(), after.param());
EXPECT_EQ(before, after);
// Smoke test.
auto sample_min = after.max();
auto sample_max = after.min();
for (int i = 0; i < kCount; i++) {
auto sample = after(gen);
EXPECT_GE(sample, after.min());
EXPECT_LE(sample, after.max());
if (sample > sample_max) sample_max = sample;
if (sample < sample_min) sample_min = sample;
}
LOG(INFO) << "Range: " << sample_min << ", " << sample_max;
}
}
class ZipfModel {
public:
ZipfModel(size_t k, double q, double v) : k_(k), q_(q), v_(v) {}
double mean() const { return mean_; }
// For the other moments of the Zipf distribution, see, for example,
// http://mathworld.wolfram.com/ZipfDistribution.html
// PMF(k) = (1 / k^s) / H(N,s)
// Returns the probability that any single invocation returns k.
double PMF(size_t i) { return i >= hnq_.size() ? 0.0 : hnq_[i] / sum_hnq_; }
// CDF = H(k, s) / H(N,s)
double CDF(size_t i) {
if (i >= hnq_.size()) {
return 1.0;
}
auto it = std::begin(hnq_);
double h = 0.0;
for (const auto end = it; it != end; it++) {
h += *it;
}
return h / sum_hnq_;
}
// The InverseCDF returns the k values which bound p on the upper and lower
// bound. Since there is no closed-form solution, this is implemented as a
// bisction of the cdf.
std::pair<size_t, size_t> InverseCDF(double p) {
size_t min = 0;
size_t max = hnq_.size();
while (max > min + 1) {
size_t target = (max + min) >> 1;
double x = CDF(target);
if (x > p) {
max = target;
} else {
min = target;
}
}
return {min, max};
}
// Compute the probability totals, which are based on the generalized harmonic
// number, H(N,s).
// H(N,s) == SUM(k=1..N, 1 / k^s)
//
// In the limit, H(N,s) == zetac(s) + 1.
//
// NOTE: The mean of a zipf distribution could be computed here as well.
// Mean := H(N, s-1) / H(N,s).
// Given the parameter v = 1, this gives the following function:
// (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
//
void Init() {
if (!hnq_.empty()) {
return;
}
hnq_.clear();
hnq_.reserve(std::min(k_, size_t{1000}));
sum_hnq_ = 0;
double qm1 = q_ - 1.0;
double sum_hnq_m1 = 0;
for (size_t i = 0; i < k_; i++) {
// Partial n-th generalized harmonic number
const double x = v_ + i;
// H(n, q-1)
const double hnqm1 =
(q_ == 2.0) ? (1.0 / x)
: (q_ == 3.0) ? (1.0 / (x * x)) : std::pow(x, -qm1);
sum_hnq_m1 += hnqm1;
// H(n, q)
const double hnq =
(q_ == 2.0) ? (1.0 / (x * x))
: (q_ == 3.0) ? (1.0 / (x * x * x)) : std::pow(x, -q_);
sum_hnq_ += hnq;
hnq_.push_back(hnq);
if (i > 1000 && hnq <= 1e-10) {
// The harmonic number is too small.
break;
}
}
assert(sum_hnq_ > 0);
mean_ = sum_hnq_m1 / sum_hnq_;
}
private:
const size_t k_;
const double q_;
const double v_;
double mean_;
std::vector<double> hnq_;
double sum_hnq_;
};
using zipf_u64 = absl::zipf_distribution<uint64_t>;
class ZipfTest : public testing::TestWithParam<zipf_u64::param_type>,
public ZipfModel {
public:
ZipfTest() : ZipfModel(GetParam().k(), GetParam().q(), GetParam().v()) {}
// We use a fixed bit generator for distribution accuracy tests. This allows
// these tests to be deterministic, while still testing the qualify of the
// implementation.
absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
};
TEST_P(ZipfTest, ChiSquaredTest) {
const auto& param = GetParam();
Init();
size_t trials = 10000;
// Find the split-points for the buckets.
std::vector<size_t> points;
std::vector<double> expected;
{
double last_cdf = 0.0;
double min_p = 1.0;
for (double p = 0.01; p < 1.0; p += 0.01) {
auto x = InverseCDF(p);
if (points.empty() || points.back() < x.second) {
const double p = CDF(x.second);
points.push_back(x.second);
double q = p - last_cdf;
expected.push_back(q);
last_cdf = p;
if (q < min_p) {
min_p = q;
}
}
}
if (last_cdf < 0.999) {
points.push_back(std::numeric_limits<size_t>::max());
double q = 1.0 - last_cdf;
expected.push_back(q);
if (q < min_p) {
min_p = q;
}
} else {
points.back() = std::numeric_limits<size_t>::max();
expected.back() += (1.0 - last_cdf);
}
// The Chi-Squared score is not completely scale-invariant; it works best
// when the small values are in the small digits.
trials = static_cast<size_t>(8.0 / min_p);
}
ASSERT_GT(points.size(), 0);
// Generate n variates and fill the counts vector with the count of their
// occurrences.
std::vector<int64_t> buckets(points.size(), 0);
double avg = 0;
{
zipf_u64 dis(param);
for (size_t i = 0; i < trials; i++) {
uint64_t x = dis(rng_);
ASSERT_LE(x, dis.max());
ASSERT_GE(x, dis.min());
avg += static_cast<double>(x);
auto it = std::upper_bound(std::begin(points), std::end(points),
static_cast<size_t>(x));
buckets[std::distance(std::begin(points), it)]++;
}
avg = avg / static_cast<double>(trials);
}
// Validate the output using the Chi-Squared test.
for (auto& e : expected) {
e *= trials;
}
// The null-hypothesis is that the distribution is a poisson distribution with
// the provided mean (not estimated from the data).
const int dof = static_cast<int>(expected.size()) - 1;
// NOTE: This test runs about 15x per invocation, so a value of 0.9995 is
// approximately correct for a test suite failure rate of 1 in 100. In
// practice we see failures slightly higher than that.
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.9999);
const double chi_square = absl::random_internal::ChiSquare(
std::begin(buckets), std::end(buckets), std::begin(expected),
std::end(expected));
const double p_actual =
absl::random_internal::ChiSquarePValue(chi_square, dof);
// Log if the chi_squared value is above the threshold.
if (chi_square > threshold) {
LOG(INFO) << "values";
for (size_t i = 0; i < expected.size(); i++) {
LOG(INFO) << points[i] << ": " << buckets[i] << " vs. E=" << expected[i];
}
LOG(INFO) << "trials " << trials;
LOG(INFO) << "mean " << avg << " vs. expected " << mean();
LOG(INFO) << kChiSquared << "(data, " << dof << ") = " << chi_square << " ("
<< p_actual << ")";
LOG(INFO) << kChiSquared << " @ 0.9995 = " << threshold;
FAIL() << kChiSquared << " value of " << chi_square
<< " is above the threshold.";
}
}
std::vector<zipf_u64::param_type> GenParams() {
using param = zipf_u64::param_type;
const auto k = param().k();
const auto q = param().q();
const auto v = param().v();
const uint64_t k2 = 1 << 10;
return std::vector<zipf_u64::param_type>{
// Default
param(k, q, v),
// vary K
param(4, q, v), param(1 << 4, q, v), param(k2, q, v),
// vary V
param(k2, q, 0.5), param(k2, q, 1.5), param(k2, q, 2.5), param(k2, q, 10),
// vary Q
param(k2, 1.5, v), param(k2, 3, v), param(k2, 5, v), param(k2, 10, v),
// Vary V & Q
param(k2, 1.5, 0.5), param(k2, 3, 1.5), param(k, 10, 10)};
}
std::string ParamName(
const ::testing::TestParamInfo<zipf_u64::param_type>& info) {
const auto& p = info.param;
std::string name = absl::StrCat("k_", p.k(), "__q_", absl::SixDigits(p.q()),
"__v_", absl::SixDigits(p.v()));
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
}
INSTANTIATE_TEST_SUITE_P(All, ZipfTest, ::testing::ValuesIn(GenParams()),
ParamName);
// NOTE: absl::zipf_distribution is not guaranteed to be stable.
TEST(ZipfDistributionTest, StabilityTest) {
// absl::zipf_distribution stability relies on
// absl::uniform_real_distribution, std::log, std::exp, std::log1p
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
std::vector<int> output(10);
{
absl::zipf_distribution<int32_t> dist;
std::generate(std::begin(output), std::end(output),
[&] { return dist(urbg); });
EXPECT_THAT(output, ElementsAre(10031, 0, 0, 3, 6, 0, 7, 47, 0, 0));
}
urbg.reset();
{
absl::zipf_distribution<int32_t> dist(std::numeric_limits<int32_t>::max(),
3.3);
std::generate(std::begin(output), std::end(output),
[&] { return dist(urbg); });
EXPECT_THAT(output, ElementsAre(44, 0, 0, 0, 0, 1, 0, 1, 3, 0));
}
}
TEST(ZipfDistributionTest, AlgorithmBounds) {
absl::zipf_distribution<int32_t> dist;
// Small values from absl::uniform_real_distribution map to larger Zipf
// distribution values.
const std::pair<uint64_t, int32_t> kInputs[] = {
{0xffffffffffffffff, 0x0}, {0x7fffffffffffffff, 0x0},
{0x3ffffffffffffffb, 0x1}, {0x1ffffffffffffffd, 0x4},
{0xffffffffffffffe, 0x9}, {0x7ffffffffffffff, 0x12},
{0x3ffffffffffffff, 0x25}, {0x1ffffffffffffff, 0x4c},
{0xffffffffffffff, 0x99}, {0x7fffffffffffff, 0x132},
{0x3fffffffffffff, 0x265}, {0x1fffffffffffff, 0x4cc},
{0xfffffffffffff, 0x999}, {0x7ffffffffffff, 0x1332},
{0x3ffffffffffff, 0x2665}, {0x1ffffffffffff, 0x4ccc},
{0xffffffffffff, 0x9998}, {0x7fffffffffff, 0x1332f},
{0x3fffffffffff, 0x2665a}, {0x1fffffffffff, 0x4cc9e},
{0xfffffffffff, 0x998e0}, {0x7ffffffffff, 0x133051},
{0x3ffffffffff, 0x265ae4}, {0x1ffffffffff, 0x4c9ed3},
{0xffffffffff, 0x98e223}, {0x7fffffffff, 0x13058c4},
{0x3fffffffff, 0x25b178e}, {0x1fffffffff, 0x4a062b2},
{0xfffffffff, 0x8ee23b8}, {0x7ffffffff, 0x10b21642},
{0x3ffffffff, 0x1d89d89d}, {0x1ffffffff, 0x2fffffff},
{0xffffffff, 0x45d1745d}, {0x7fffffff, 0x5a5a5a5a},
{0x3fffffff, 0x69ee5846}, {0x1fffffff, 0x73ecade3},
{0xfffffff, 0x79a9d260}, {0x7ffffff, 0x7cc0532b},
{0x3ffffff, 0x7e5ad146}, {0x1ffffff, 0x7f2c0bec},
{0xffffff, 0x7f95adef}, {0x7fffff, 0x7fcac0da},
{0x3fffff, 0x7fe55ae2}, {0x1fffff, 0x7ff2ac0e},
{0xfffff, 0x7ff955ae}, {0x7ffff, 0x7ffcaac1},
{0x3ffff, 0x7ffe555b}, {0x1ffff, 0x7fff2aac},
{0xffff, 0x7fff9556}, {0x7fff, 0x7fffcaab},
{0x3fff, 0x7fffe555}, {0x1fff, 0x7ffff2ab},
{0xfff, 0x7ffff955}, {0x7ff, 0x7ffffcab},
{0x3ff, 0x7ffffe55}, {0x1ff, 0x7fffff2b},
{0xff, 0x7fffff95}, {0x7f, 0x7fffffcb},
{0x3f, 0x7fffffe5}, {0x1f, 0x7ffffff3},
{0xf, 0x7ffffff9}, {0x7, 0x7ffffffd},
{0x3, 0x7ffffffe}, {0x1, 0x7fffffff},
};
for (const auto& instance : kInputs) {
absl::random_internal::sequence_urbg urbg({instance.first});
EXPECT_EQ(instance.second, dist(urbg));
}
}
} // namespace