forked from abseil/abseil-cpp
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathlog_uniform_int_distribution_test.cc
277 lines (238 loc) · 9.56 KB
/
log_uniform_int_distribution_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/log_uniform_int_distribution.h"
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <random>
#include <sstream>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/log/log.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_replace.h"
#include "absl/strings/strip.h"
namespace {
template <typename IntType>
class LogUniformIntDistributionTypeTest : public ::testing::Test {};
using IntTypes = ::testing::Types<int8_t, int16_t, int32_t, int64_t, //
uint8_t, uint16_t, uint32_t, uint64_t>;
TYPED_TEST_SUITE(LogUniformIntDistributionTypeTest, IntTypes);
TYPED_TEST(LogUniformIntDistributionTypeTest, SerializeTest) {
using param_type =
typename absl::log_uniform_int_distribution<TypeParam>::param_type;
using Limits = std::numeric_limits<TypeParam>;
constexpr int kCount = 1000;
absl::InsecureBitGen gen;
for (const auto& param : {
param_type(0, 1), //
param_type(0, 2), //
param_type(0, 2, 10), //
param_type(9, 32, 4), //
param_type(1, 101, 10), //
param_type(1, Limits::max() / 2), //
param_type(0, Limits::max() - 1), //
param_type(0, Limits::max(), 2), //
param_type(0, Limits::max(), 10), //
param_type(Limits::min(), 0), //
param_type(Limits::lowest(), Limits::max()), //
param_type(Limits::min(), Limits::max()), //
}) {
// Validate parameters.
const auto min = param.min();
const auto max = param.max();
const auto base = param.base();
absl::log_uniform_int_distribution<TypeParam> before(min, max, base);
EXPECT_EQ(before.min(), param.min());
EXPECT_EQ(before.max(), param.max());
EXPECT_EQ(before.base(), param.base());
{
absl::log_uniform_int_distribution<TypeParam> via_param(param);
EXPECT_EQ(via_param, before);
}
// Validate stream serialization.
std::stringstream ss;
ss << before;
absl::log_uniform_int_distribution<TypeParam> after(3, 6, 17);
EXPECT_NE(before.max(), after.max());
EXPECT_NE(before.base(), after.base());
EXPECT_NE(before.param(), after.param());
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before.min(), after.min());
EXPECT_EQ(before.max(), after.max());
EXPECT_EQ(before.base(), after.base());
EXPECT_EQ(before.param(), after.param());
EXPECT_EQ(before, after);
// Smoke test.
auto sample_min = after.max();
auto sample_max = after.min();
for (int i = 0; i < kCount; i++) {
auto sample = after(gen);
EXPECT_GE(sample, after.min());
EXPECT_LE(sample, after.max());
if (sample > sample_max) sample_max = sample;
if (sample < sample_min) sample_min = sample;
}
LOG(INFO) << "Range: " << sample_min << ", " << sample_max;
}
}
using log_uniform_i32 = absl::log_uniform_int_distribution<int32_t>;
class LogUniformIntChiSquaredTest
: public testing::TestWithParam<log_uniform_i32::param_type> {
public:
// The ChiSquaredTestImpl provides a chi-squared goodness of fit test for
// data generated by the log-uniform-int distribution.
double ChiSquaredTestImpl();
// We use a fixed bit generator for distribution accuracy tests. This allows
// these tests to be deterministic, while still testing the qualify of the
// implementation.
absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
};
double LogUniformIntChiSquaredTest::ChiSquaredTestImpl() {
using absl::random_internal::kChiSquared;
const auto& param = GetParam();
// Check the distribution of L=log(log_uniform_int_distribution, base),
// expecting that L is roughly uniformly distributed, that is:
//
// P[L=0] ~= P[L=1] ~= ... ~= P[L=log(max)]
//
// For a total of X entries, each bucket should contain some number of samples
// in the interval [X/k - a, X/k + a].
//
// Where `a` is approximately sqrt(X/k). This is validated by bucketing
// according to the log function and using a chi-squared test for uniformity.
const bool is_2 = (param.base() == 2);
const double base_log = 1.0 / std::log(param.base());
const auto bucket_index = [base_log, is_2, ¶m](int32_t x) {
uint64_t y = static_cast<uint64_t>(x) - param.min();
return (y == 0) ? 0
: is_2 ? static_cast<int>(1 + std::log2(y))
: static_cast<int>(1 + std::log(y) * base_log);
};
const int max_bucket = bucket_index(param.max()); // inclusive
const size_t trials = 15 + (max_bucket + 1) * 10;
log_uniform_i32 dist(param);
std::vector<int64_t> buckets(max_bucket + 1);
for (size_t i = 0; i < trials; ++i) {
const auto sample = dist(rng_);
// Check the bounds.
ABSL_ASSERT(sample <= dist.max());
ABSL_ASSERT(sample >= dist.min());
// Convert the output of the generator to one of num_bucket buckets.
int bucket = bucket_index(sample);
ABSL_ASSERT(bucket <= max_bucket);
++buckets[bucket];
}
// The null-hypothesis is that the distribution is uniform with respect to
// log-uniform-int bucketization.
const int dof = buckets.size() - 1;
const double expected = trials / static_cast<double>(buckets.size());
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
double chi_square = absl::random_internal::ChiSquareWithExpected(
std::begin(buckets), std::end(buckets), expected);
const double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
if (chi_square > threshold) {
LOG(INFO) << "values";
for (size_t i = 0; i < buckets.size(); i++) {
LOG(INFO) << i << ": " << buckets[i];
}
LOG(INFO) << "trials=" << trials << "\n"
<< kChiSquared << "(data, " << dof << ") = " << chi_square << " ("
<< p << ")\n"
<< kChiSquared << " @ 0.98 = " << threshold;
}
return p;
}
TEST_P(LogUniformIntChiSquaredTest, MultiTest) {
const int kTrials = 5;
int failures = 0;
for (int i = 0; i < kTrials; i++) {
double p_value = ChiSquaredTestImpl();
if (p_value < 0.005) {
failures++;
}
}
// There is a 0.10% chance of producing at least one failure, so raise the
// failure threshold high enough to allow for a flake rate < 10,000.
EXPECT_LE(failures, 4);
}
// Generate the parameters for the test.
std::vector<log_uniform_i32::param_type> GenParams() {
using Param = log_uniform_i32::param_type;
using Limits = std::numeric_limits<int32_t>;
return std::vector<Param>{
Param{0, 1, 2},
Param{1, 1, 2},
Param{0, 2, 2},
Param{0, 3, 2},
Param{0, 4, 2},
Param{0, 9, 10},
Param{0, 10, 10},
Param{0, 11, 10},
Param{1, 10, 10},
Param{0, (1 << 8) - 1, 2},
Param{0, (1 << 8), 2},
Param{0, (1 << 30) - 1, 2},
Param{-1000, 1000, 10},
Param{0, Limits::max(), 2},
Param{0, Limits::max(), 3},
Param{0, Limits::max(), 10},
Param{Limits::min(), 0},
Param{Limits::min(), Limits::max(), 2},
};
}
std::string ParamName(
const ::testing::TestParamInfo<log_uniform_i32::param_type>& info) {
const auto& p = info.param;
std::string name =
absl::StrCat("min_", p.min(), "__max_", p.max(), "__base_", p.base());
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
}
INSTANTIATE_TEST_SUITE_P(All, LogUniformIntChiSquaredTest,
::testing::ValuesIn(GenParams()), ParamName);
// NOTE: absl::log_uniform_int_distribution is not guaranteed to be stable.
TEST(LogUniformIntDistributionTest, StabilityTest) {
using testing::ElementsAre;
// absl::uniform_int_distribution stability relies on
// absl::random_internal::LeadingSetBit, std::log, std::pow.
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
std::vector<int> output(6);
{
absl::log_uniform_int_distribution<int32_t> dist(0, 256);
std::generate(std::begin(output), std::end(output),
[&] { return dist(urbg); });
EXPECT_THAT(output, ElementsAre(256, 66, 4, 6, 57, 103));
}
urbg.reset();
{
absl::log_uniform_int_distribution<int32_t> dist(0, 256, 10);
std::generate(std::begin(output), std::end(output),
[&] { return dist(urbg); });
EXPECT_THAT(output, ElementsAre(8, 4, 0, 0, 0, 69));
}
}
} // namespace