forked from abseil/abseil-cpp
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdistributions.h
452 lines (411 loc) · 18.2 KB
/
distributions.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: distributions.h
// -----------------------------------------------------------------------------
//
// This header defines functions representing distributions, which you use in
// combination with an Abseil random bit generator to produce random values
// according to the rules of that distribution.
//
// The Abseil random library defines the following distributions within this
// file:
//
// * `absl::Uniform` for uniform (constant) distributions having constant
// probability
// * `absl::Bernoulli` for discrete distributions having exactly two outcomes
// * `absl::Beta` for continuous distributions parameterized through two
// free parameters
// * `absl::Exponential` for discrete distributions of events occurring
// continuously and independently at a constant average rate
// * `absl::Gaussian` (also known as "normal distributions") for continuous
// distributions using an associated quadratic function
// * `absl::LogUniform` for discrete distributions where the log to the given
// base of all values is uniform
// * `absl::Poisson` for discrete probability distributions that express the
// probability of a given number of events occurring within a fixed interval
// * `absl::Zipf` for discrete probability distributions commonly used for
// modelling of rare events
//
// Prefer use of these distribution function classes over manual construction of
// your own distribution classes, as it allows library maintainers greater
// flexibility to change the underlying implementation in the future.
#ifndef ABSL_RANDOM_DISTRIBUTIONS_H_
#define ABSL_RANDOM_DISTRIBUTIONS_H_
#include <algorithm>
#include <cmath>
#include <limits>
#include <random>
#include <type_traits>
#include "absl/base/internal/inline_variable.h"
#include "absl/random/bernoulli_distribution.h"
#include "absl/random/beta_distribution.h"
#include "absl/random/exponential_distribution.h"
#include "absl/random/gaussian_distribution.h"
#include "absl/random/internal/distribution_caller.h" // IWYU pragma: export
#include "absl/random/internal/uniform_helper.h" // IWYU pragma: export
#include "absl/random/log_uniform_int_distribution.h"
#include "absl/random/poisson_distribution.h"
#include "absl/random/uniform_int_distribution.h"
#include "absl/random/uniform_real_distribution.h"
#include "absl/random/zipf_distribution.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosedClosed,
{});
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosed, {});
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedOpenTag, IntervalClosedOpen, {});
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpenOpen, {});
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpen, {});
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenClosedTag, IntervalOpenClosed, {});
// -----------------------------------------------------------------------------
// absl::Uniform<T>(tag, bitgen, lo, hi)
// -----------------------------------------------------------------------------
//
// `absl::Uniform()` produces random values of type `T` uniformly distributed in
// a defined interval {lo, hi}. The interval `tag` defines the type of interval
// which should be one of the following possible values:
//
// * `absl::IntervalOpenOpen`
// * `absl::IntervalOpenClosed`
// * `absl::IntervalClosedOpen`
// * `absl::IntervalClosedClosed`
//
// where "open" refers to an exclusive value (excluded) from the output, while
// "closed" refers to an inclusive value (included) from the output.
//
// In the absence of an explicit return type `T`, `absl::Uniform()` will deduce
// the return type based on the provided endpoint arguments {A lo, B hi}.
// Given these endpoints, one of {A, B} will be chosen as the return type, if
// a type can be implicitly converted into the other in a lossless way. The
// lack of any such implicit conversion between {A, B} will produce a
// compile-time error
//
// See https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
//
// Example:
//
// absl::BitGen bitgen;
//
// // Produce a random float value between 0.0 and 1.0, inclusive
// auto x = absl::Uniform(absl::IntervalClosedClosed, bitgen, 0.0f, 1.0f);
//
// // The most common interval of `absl::IntervalClosedOpen` is available by
// // default:
//
// auto x = absl::Uniform(bitgen, 0.0f, 1.0f);
//
// // Return-types are typically inferred from the arguments, however callers
// // can optionally provide an explicit return-type to the template.
//
// auto x = absl::Uniform<float>(bitgen, 0, 1);
//
template <typename R = void, typename TagType, typename URBG>
typename absl::enable_if_t<!std::is_same<R, void>::value, R> //
Uniform(TagType tag,
URBG&& urbg, // NOLINT(runtime/references)
R lo, R hi) {
using gen_t = absl::decay_t<URBG>;
using distribution_t = random_internal::UniformDistributionWrapper<R>;
auto a = random_internal::uniform_lower_bound(tag, lo, hi);
auto b = random_internal::uniform_upper_bound(tag, lo, hi);
if (!random_internal::is_uniform_range_valid(a, b)) return lo;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg, tag, lo, hi);
}
// absl::Uniform<T>(bitgen, lo, hi)
//
// Overload of `Uniform()` using the default closed-open interval of [lo, hi),
// and returning values of type `T`
template <typename R = void, typename URBG>
typename absl::enable_if_t<!std::is_same<R, void>::value, R> //
Uniform(URBG&& urbg, // NOLINT(runtime/references)
R lo, R hi) {
using gen_t = absl::decay_t<URBG>;
using distribution_t = random_internal::UniformDistributionWrapper<R>;
constexpr auto tag = absl::IntervalClosedOpen;
auto a = random_internal::uniform_lower_bound(tag, lo, hi);
auto b = random_internal::uniform_upper_bound(tag, lo, hi);
if (!random_internal::is_uniform_range_valid(a, b)) return lo;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg, lo, hi);
}
// absl::Uniform(tag, bitgen, lo, hi)
//
// Overload of `Uniform()` using different (but compatible) lo, hi types. Note
// that a compile-error will result if the return type cannot be deduced
// correctly from the passed types.
template <typename R = void, typename TagType, typename URBG, typename A,
typename B>
typename absl::enable_if_t<std::is_same<R, void>::value,
random_internal::uniform_inferred_return_t<A, B>>
Uniform(TagType tag,
URBG&& urbg, // NOLINT(runtime/references)
A lo, B hi) {
using gen_t = absl::decay_t<URBG>;
using return_t = typename random_internal::uniform_inferred_return_t<A, B>;
using distribution_t = random_internal::UniformDistributionWrapper<return_t>;
auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi);
auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi);
if (!random_internal::is_uniform_range_valid(a, b)) return lo;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg, tag, static_cast<return_t>(lo),
static_cast<return_t>(hi));
}
// absl::Uniform(bitgen, lo, hi)
//
// Overload of `Uniform()` using different (but compatible) lo, hi types and the
// default closed-open interval of [lo, hi). Note that a compile-error will
// result if the return type cannot be deduced correctly from the passed types.
template <typename R = void, typename URBG, typename A, typename B>
typename absl::enable_if_t<std::is_same<R, void>::value,
random_internal::uniform_inferred_return_t<A, B>>
Uniform(URBG&& urbg, // NOLINT(runtime/references)
A lo, B hi) {
using gen_t = absl::decay_t<URBG>;
using return_t = typename random_internal::uniform_inferred_return_t<A, B>;
using distribution_t = random_internal::UniformDistributionWrapper<return_t>;
constexpr auto tag = absl::IntervalClosedOpen;
auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi);
auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi);
if (!random_internal::is_uniform_range_valid(a, b)) return lo;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg, static_cast<return_t>(lo),
static_cast<return_t>(hi));
}
// absl::Uniform<unsigned T>(bitgen)
//
// Overload of Uniform() using the minimum and maximum values of a given type
// `T` (which must be unsigned), returning a value of type `unsigned T`
template <typename R, typename URBG>
typename absl::enable_if_t<!std::is_signed<R>::value, R> //
Uniform(URBG&& urbg) { // NOLINT(runtime/references)
using gen_t = absl::decay_t<URBG>;
using distribution_t = random_internal::UniformDistributionWrapper<R>;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg);
}
// -----------------------------------------------------------------------------
// absl::Bernoulli(bitgen, p)
// -----------------------------------------------------------------------------
//
// `absl::Bernoulli` produces a random boolean value, with probability `p`
// (where 0.0 <= p <= 1.0) equaling `true`.
//
// Prefer `absl::Bernoulli` to produce boolean values over other alternatives
// such as comparing an `absl::Uniform()` value to a specific output.
//
// See https://en.wikipedia.org/wiki/Bernoulli_distribution
//
// Example:
//
// absl::BitGen bitgen;
// ...
// if (absl::Bernoulli(bitgen, 1.0/3721.0)) {
// std::cout << "Asteroid field navigation successful.";
// }
//
template <typename URBG>
bool Bernoulli(URBG&& urbg, // NOLINT(runtime/references)
double p) {
using gen_t = absl::decay_t<URBG>;
using distribution_t = absl::bernoulli_distribution;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg, p);
}
// -----------------------------------------------------------------------------
// absl::Beta<T>(bitgen, alpha, beta)
// -----------------------------------------------------------------------------
//
// `absl::Beta` produces a floating point number distributed in the closed
// interval [0,1] and parameterized by two values `alpha` and `beta` as per a
// Beta distribution. `T` must be a floating point type, but may be inferred
// from the types of `alpha` and `beta`.
//
// See https://en.wikipedia.org/wiki/Beta_distribution.
//
// Example:
//
// absl::BitGen bitgen;
// ...
// double sample = absl::Beta(bitgen, 3.0, 2.0);
//
template <typename RealType, typename URBG>
RealType Beta(URBG&& urbg, // NOLINT(runtime/references)
RealType alpha, RealType beta) {
static_assert(
std::is_floating_point<RealType>::value,
"Template-argument 'RealType' must be a floating-point type, in "
"absl::Beta<RealType, URBG>(...)");
using gen_t = absl::decay_t<URBG>;
using distribution_t = typename absl::beta_distribution<RealType>;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg, alpha, beta);
}
// -----------------------------------------------------------------------------
// absl::Exponential<T>(bitgen, lambda = 1)
// -----------------------------------------------------------------------------
//
// `absl::Exponential` produces a floating point number representing the
// distance (time) between two consecutive events in a point process of events
// occurring continuously and independently at a constant average rate. `T` must
// be a floating point type, but may be inferred from the type of `lambda`.
//
// See https://en.wikipedia.org/wiki/Exponential_distribution.
//
// Example:
//
// absl::BitGen bitgen;
// ...
// double call_length = absl::Exponential(bitgen, 7.0);
//
template <typename RealType, typename URBG>
RealType Exponential(URBG&& urbg, // NOLINT(runtime/references)
RealType lambda = 1) {
static_assert(
std::is_floating_point<RealType>::value,
"Template-argument 'RealType' must be a floating-point type, in "
"absl::Exponential<RealType, URBG>(...)");
using gen_t = absl::decay_t<URBG>;
using distribution_t = typename absl::exponential_distribution<RealType>;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg, lambda);
}
// -----------------------------------------------------------------------------
// absl::Gaussian<T>(bitgen, mean = 0, stddev = 1)
// -----------------------------------------------------------------------------
//
// `absl::Gaussian` produces a floating point number selected from the Gaussian
// (ie. "Normal") distribution. `T` must be a floating point type, but may be
// inferred from the types of `mean` and `stddev`.
//
// See https://en.wikipedia.org/wiki/Normal_distribution
//
// Example:
//
// absl::BitGen bitgen;
// ...
// double giraffe_height = absl::Gaussian(bitgen, 16.3, 3.3);
//
template <typename RealType, typename URBG>
RealType Gaussian(URBG&& urbg, // NOLINT(runtime/references)
RealType mean = 0, RealType stddev = 1) {
static_assert(
std::is_floating_point<RealType>::value,
"Template-argument 'RealType' must be a floating-point type, in "
"absl::Gaussian<RealType, URBG>(...)");
using gen_t = absl::decay_t<URBG>;
using distribution_t = typename absl::gaussian_distribution<RealType>;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg, mean, stddev);
}
// -----------------------------------------------------------------------------
// absl::LogUniform<T>(bitgen, lo, hi, base = 2)
// -----------------------------------------------------------------------------
//
// `absl::LogUniform` produces random values distributed where the log to a
// given base of all values is uniform in a closed interval [lo, hi]. `T` must
// be an integral type, but may be inferred from the types of `lo` and `hi`.
//
// I.e., `LogUniform(0, n, b)` is uniformly distributed across buckets
// [0], [1, b-1], [b, b^2-1] .. [b^(k-1), (b^k)-1] .. [b^floor(log(n, b)), n]
// and is uniformly distributed within each bucket.
//
// The resulting probability density is inversely related to bucket size, though
// values in the final bucket may be more likely than previous values. (In the
// extreme case where n = b^i the final value will be tied with zero as the most
// probable result.
//
// If `lo` is nonzero then this distribution is shifted to the desired interval,
// so LogUniform(lo, hi, b) is equivalent to LogUniform(0, hi-lo, b)+lo.
//
// See https://en.wikipedia.org/wiki/Reciprocal_distribution
//
// Example:
//
// absl::BitGen bitgen;
// ...
// int v = absl::LogUniform(bitgen, 0, 1000);
//
template <typename IntType, typename URBG>
IntType LogUniform(URBG&& urbg, // NOLINT(runtime/references)
IntType lo, IntType hi, IntType base = 2) {
static_assert(random_internal::IsIntegral<IntType>::value,
"Template-argument 'IntType' must be an integral type, in "
"absl::LogUniform<IntType, URBG>(...)");
using gen_t = absl::decay_t<URBG>;
using distribution_t = typename absl::log_uniform_int_distribution<IntType>;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg, lo, hi, base);
}
// -----------------------------------------------------------------------------
// absl::Poisson<T>(bitgen, mean = 1)
// -----------------------------------------------------------------------------
//
// `absl::Poisson` produces discrete probabilities for a given number of events
// occurring within a fixed interval within the closed interval [0, max]. `T`
// must be an integral type.
//
// See https://en.wikipedia.org/wiki/Poisson_distribution
//
// Example:
//
// absl::BitGen bitgen;
// ...
// int requests_per_minute = absl::Poisson<int>(bitgen, 3.2);
//
template <typename IntType, typename URBG>
IntType Poisson(URBG&& urbg, // NOLINT(runtime/references)
double mean = 1.0) {
static_assert(random_internal::IsIntegral<IntType>::value,
"Template-argument 'IntType' must be an integral type, in "
"absl::Poisson<IntType, URBG>(...)");
using gen_t = absl::decay_t<URBG>;
using distribution_t = typename absl::poisson_distribution<IntType>;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg, mean);
}
// -----------------------------------------------------------------------------
// absl::Zipf<T>(bitgen, hi = max, q = 2, v = 1)
// -----------------------------------------------------------------------------
//
// `absl::Zipf` produces discrete probabilities commonly used for modelling of
// rare events over the closed interval [0, hi]. The parameters `v` and `q`
// determine the skew of the distribution. `T` must be an integral type, but
// may be inferred from the type of `hi`.
//
// See http://mathworld.wolfram.com/ZipfDistribution.html
//
// Example:
//
// absl::BitGen bitgen;
// ...
// int term_rank = absl::Zipf<int>(bitgen);
//
template <typename IntType, typename URBG>
IntType Zipf(URBG&& urbg, // NOLINT(runtime/references)
IntType hi = (std::numeric_limits<IntType>::max)(), double q = 2.0,
double v = 1.0) {
static_assert(random_internal::IsIntegral<IntType>::value,
"Template-argument 'IntType' must be an integral type, in "
"absl::Zipf<IntType, URBG>(...)");
using gen_t = absl::decay_t<URBG>;
using distribution_t = typename absl::zipf_distribution<IntType>;
return random_internal::DistributionCaller<gen_t>::template Call<
distribution_t>(&urbg, hi, q, v);
}
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_RANDOM_DISTRIBUTIONS_H_