diff --git a/scrna/cellassign_tutorial.ipynb b/scrna/cellassign_tutorial.ipynb index a1d359b..8970bd9 100644 --- a/scrna/cellassign_tutorial.ipynb +++ b/scrna/cellassign_tutorial.ipynb @@ -52,13 +52,28 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-30T15:42:31.345118Z", + "iopub.status.busy": "2024-09-30T15:42:31.345013Z", + "iopub.status.idle": "2024-09-30T15:42:32.460778Z", + "shell.execute_reply": "2024-09-30T15:42:32.460380Z" + } + }, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.\u001b[0m\u001b[33m\r\n", + "\u001b[0m" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/scvi_colab/_core.py:41: UserWarning: \n", + "/usr/local/lib/python3.12/site-packages/scvi_colab/_core.py:41: UserWarning: \n", " Not currently in Google Colab environment.\n", "\n", " Please run with `run_outside_colab=True` to override.\n", @@ -83,17 +98,45 @@ "colab": { "base_uri": "https://localhost:8080/" }, + "execution": { + "iopub.execute_input": "2024-09-30T15:42:32.461953Z", + "iopub.status.busy": "2024-09-30T15:42:32.461848Z", + "iopub.status.idle": "2024-09-30T15:42:41.508045Z", + "shell.execute_reply": "2024-09-30T15:42:41.507690Z" + }, "id": "Rh0ZgljQ9wvX", "outputId": "8c2b6741-b225-4565-fabb-514aa0b83a26" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.12/site-packages/leidenalg/VertexPartition.py:388: SyntaxWarning: invalid escape sequence '\\m'\n", + " \"\"\" Implements modularity. This quality function is well-defined only for positive edge weights.\n", + "/usr/local/lib/python3.12/site-packages/leidenalg/VertexPartition.py:761: SyntaxWarning: invalid escape sequence '\\m'\n", + " \"\"\" Implements Reichardt and Bornholdt's Potts model with a configuration null model.\n", + "/usr/local/lib/python3.12/site-packages/leidenalg/Optimiser.py:7: SyntaxWarning: invalid escape sequence '\\g'\n", + " \"\"\" Class for doing community detection using the Leiden algorithm.\n", + "/usr/local/lib/python3.12/site-packages/leidenalg/Optimiser.py:305: SyntaxWarning: invalid escape sequence '\\s'\n", + " \"\"\" Optimise the given partitions simultaneously.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.12/site-packages/pyro/ops/stats.py:514: SyntaxWarning: invalid escape sequence '\\g'\n", + " \"\"\"\n" + ] + } + ], "source": [ "import os\n", "import tempfile\n", "\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", - "import numpy as np\n", "import scanpy as sc\n", "import scvi\n", "import seaborn as sns\n", @@ -104,7 +147,14 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-30T15:42:41.510708Z", + "iopub.status.busy": "2024-09-30T15:42:41.510118Z", + "iopub.status.idle": "2024-09-30T15:42:41.514089Z", + "shell.execute_reply": "2024-09-30T15:42:41.513887Z" + } + }, "outputs": [ { "name": "stderr", @@ -138,7 +188,14 @@ { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-30T15:42:41.514946Z", + "iopub.status.busy": "2024-09-30T15:42:41.514858Z", + "iopub.status.idle": "2024-09-30T15:42:41.527211Z", + "shell.execute_reply": "2024-09-30T15:42:41.527005Z" + } + }, "outputs": [], "source": [ "sc.set_figure_params(figsize=(6, 6), frameon=False)\n", @@ -164,7 +221,14 @@ { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-30T15:42:41.528164Z", + "iopub.status.busy": "2024-09-30T15:42:41.528074Z", + "iopub.status.idle": "2024-09-30T15:42:41.529796Z", + "shell.execute_reply": "2024-09-30T15:42:41.529596Z" + } + }, "outputs": [], "source": [ "sce_follicular_path = os.path.join(save_dir.name, \"sce_follicular.h5ad\")\n", @@ -176,7 +240,14 @@ { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-30T15:42:41.530730Z", + "iopub.status.busy": "2024-09-30T15:42:41.530552Z", + "iopub.status.idle": "2024-09-30T15:43:03.153418Z", + "shell.execute_reply": "2024-09-30T15:43:03.153056Z" + } + }, "outputs": [ { "data": { @@ -190,10 +261,10 @@ } ], "source": [ - "os.system(\"wget -q https://ndownloader.figshare.com/files/27458798 -O \"+sce_follicular_path)\n", - "os.system(\"wget -q https://ndownloader.figshare.com/files/27458822 -O \"+sce_hgsc_path)\n", - "os.system(\"wget -q https://ndownloader.figshare.com/files/27458828 -O \"+hgsc_celltype_path)\n", - "os.system(\"wget -q https://ndownloader.figshare.com/files/27458831 -O \"+fl_celltype_path)" + "os.system(\"wget -q https://ndownloader.figshare.com/files/27458798 -O \" + sce_follicular_path)\n", + "os.system(\"wget -q https://ndownloader.figshare.com/files/27458822 -O \" + sce_hgsc_path)\n", + "os.system(\"wget -q https://ndownloader.figshare.com/files/27458828 -O \" + hgsc_celltype_path)\n", + "os.system(\"wget -q https://ndownloader.figshare.com/files/27458831 -O \" + fl_celltype_path)" ] }, { @@ -214,6 +285,12 @@ "colab": { "base_uri": "https://localhost:8080/" }, + "execution": { + "iopub.execute_input": "2024-09-30T15:43:03.154609Z", + "iopub.status.busy": "2024-09-30T15:43:03.154498Z", + "iopub.status.idle": "2024-09-30T15:43:03.926538Z", + "shell.execute_reply": "2024-09-30T15:43:03.926230Z" + }, "id": "3xrmMAG_zJ1P", "outputId": "bf64ed1d-7be8-4037-f93c-b0ad4294214b" }, @@ -222,9 +299,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/anndata/_core/anndata.py:1818: UserWarning: Observation names are not unique. To make them unique, call `.obs_names_make_unique`.\n", + "/usr/local/lib/python3.12/site-packages/anndata/_core/anndata.py:1754: UserWarning: Observation names are not unique. To make them unique, call `.obs_names_make_unique`.\n", " utils.warn_names_duplicates(\"obs\")\n", - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/anndata/_core/anndata.py:1820: UserWarning: Variable names are not unique. To make them unique, call `.var_names_make_unique`.\n", + "/usr/local/lib/python3.12/site-packages/anndata/_core/anndata.py:1756: UserWarning: Variable names are not unique. To make them unique, call `.var_names_make_unique`.\n", " utils.warn_names_duplicates(\"var\")\n" ] }, @@ -278,6 +355,12 @@ "cell_type": "code", "execution_count": 8, "metadata": { + "execution": { + "iopub.execute_input": "2024-09-30T15:43:03.927519Z", + "iopub.status.busy": "2024-09-30T15:43:03.927409Z", + "iopub.status.idle": "2024-09-30T15:43:03.985630Z", + "shell.execute_reply": "2024-09-30T15:43:03.985255Z" + }, "id": "ZsSsCSZnCH9q" }, "outputs": [], @@ -311,6 +394,12 @@ "colab": { "base_uri": "https://localhost:8080/" }, + "execution": { + "iopub.execute_input": "2024-09-30T15:43:03.987455Z", + "iopub.status.busy": "2024-09-30T15:43:03.987347Z", + "iopub.status.idle": "2024-09-30T15:43:03.990455Z", + "shell.execute_reply": "2024-09-30T15:43:03.990214Z" + }, "id": "jyKPEGuK8vRv", "outputId": "d54c79cc-f326-4235-d351-cf4357c49082" }, @@ -326,6 +415,12 @@ "colab": { "base_uri": "https://localhost:8080/" }, + "execution": { + "iopub.execute_input": "2024-09-30T15:43:03.991397Z", + "iopub.status.busy": "2024-09-30T15:43:03.991299Z", + "iopub.status.idle": "2024-09-30T15:43:22.218111Z", + "shell.execute_reply": "2024-09-30T15:43:22.217837Z" + }, "id": "GoOSCv3w-1kz", "outputId": "1f9cb6fe-bf60-48dc-be5d-1964ebf3a064" }, @@ -334,15841 +429,668 @@ "name": "stderr", "output_type": "stream", "text": [ - "GPU available: True (cuda), used: True\n", - "TPU available: False, using: 0 TPU cores\n", - "IPU available: False, using: 0 IPUs\n", - "HPU available: False, using: 0 HPUs\n", - "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=63` in the `DataLoader` to improve performance.\n", - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/lightning/pytorch/loops/fit_loop.py:293: The number of training batches (9) is smaller than the logging interval Trainer(log_every_n_steps=10). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n", - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=63` in the `DataLoader` to improve performance.\n" + "GPU available: True (cuda), used: True\n" ] }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "01d6b1d6bbed4b0dae23b0f4f0a46f98", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Training: 0%| | 0/400 [00:00" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 8/400: 2%|▏ | 8/400 [00:00<00:27, 14.29it/s, v_num=1, train_loss_step=64.5, train_loss_epoch=63.8]" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAANQCAYAAADud2TnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABibAAAYmwFJdYOUAACP9ElEQVR4nOzdeXhU5f3+8fvMZGaSSQIJIQmryhY3cAMFFFEsldqqrWKrtWAVFf1WsLhbta21v9a1aivaQt2wLrR1qeJSF0REBRdALYjsyh5CFrJPZjm/P0ImM9mXM5nt/bouL2fmLPPJJ0PIzfOc5ximaZoCAAAAgCRhi3YBAAAAANCTCEEAAAAAkgohCAAAAEBSIQQBAAAASCqEIAAAAABJhRAEAAAAIKkQggAAAAAkFUIQAAAAgKRCCAIAAACQVAhBAAAAAJIKIQgAAABAUiEEAQAAAEgqhCAAAAAASYUQBAAAACCpEIIAAAAAJBVCEAAAAICkkhKJk7799tv617/+pTVr1qiiokLZ2dk67rjjNH36dI0ZM6bNY1euXKkFCxZo1apVKisrU05OjsaNG6fLLrtMI0aMiES5AAAAAJKIYZqmadXJfD6fbrzxRr322muSJLvdroyMDFVUVCgQCMgwDM2ZM0dXXnlli8c/+eSTuvvuu4P7NhwrSU6nU/fdd5+mTJliVbkAAAAAkpCl0+EeeOABvfbaa7Lb7br++uv16aef6pNPPtGKFSt02WWXyTRNPfDAA3rrrbeaHbt8+XLdddddCgQCOv/887V8+XJ99tlnWrp0qSZPnqy6ujrdcMMN2rp1q5UlAwAAAEgylo0ElZSU6JRTTlFdXZ1mzJihm266qdk+1157rV577TUNGjRIb7/9tmy2xgw2depUrVmzRieffLIeffTRsOPq6uo0depUbdiwQd///vf1wAMPWFEyAAAAgCRk2UjQihUrVFdXJ0maMWNGi/tceumlkqQdO3bo008/Db6+ZcsWrVmzRpJ0xRVXNDvO6XQGz7l48WJVVVVZVTYAAACAJGNZCNq5c6ckKTMzU7m5uS3uM3ToUBmGIUn68MMPg68vX75ckpSenq7jjjuuxWMnTpwoSfJ4PFq5cqVVZQMAAABIMpavDhcIBNrc1jD7buPGjcHXN2/eLEkaNmyY7HZ7i8fm5OSoT58+Kikp0aZNm4KhKBJM01QgYNl6EZ1iGApOE6zvV1TKSDj01Xr01Hr0NDLoq/XoqfXoaWTQV+vFQk9tNiM4sNJVloWggQMHSpKqqqq0a9cuDRgwoNk+ocFn7969zR7n5+e3+R75+fkqKSlRUVGRFSW3yjAM2e3da6wVQq+ZgnXoq/XoqfXoaWTQV+vRU+vR08igr9aL555aVvm4cePkcDgkSX/7299a3Cf09crKyuDj6upqSVJqamqb79GwnWuCAAAAAHSVZSNBffr00YUXXqgFCxbon//8p9LT0/Wzn/1M+fn52rFjh+bPn68lS5bI4XDI6/XGdHL0+wMqK6uOynvbbIays9MlSaWlVVGblpdo6Kv16Kn16Glk0Ffr0VPr0dPIoK/Wi4WeZmW5Zbd3L0tYek3Q9ddfr127duntt9/W448/rscffzxs+6RJk2S32/XOO++od+/ewdfdbrckqba2ts3zN2xPT0+3suwWxcIfkkAgetcmJTL6aj16aj16Ghn01Xr01Hr0NDLoq/XiuaeWhiCn06mHHnpIixcv1iuvvKINGzaorq5OgwcP1tlnn61zzz1X06dPlyQdcsghwePy8vIkSYWFhW2ev2F7a6vPAQAAAEB7LF8dzjAMTZ48WZMnT262zefz6euvv5YkHXPMMcHXhw0bJql+lTi/39/iCnHFxcUqKSmRJA0fPtzqsgEAAAAkiR69MOe9995TRUWFXC6Xvve97wVfHz9+vKT6BQ9Wr17d4rHLli2TJLlcLo0ePTryxQIAAABISD0WgkpLS3XPPfdIkn76058qKysruG3o0KEaOXKkJGn+/PnNjvV6vcHriyZPntwj1wQBAAAASEyWhqDly5fr0Ucf1datW+Xz+SRJHo9Hb7/9ti644AJ9++23Kigo0Jw5c5ode/3118swDC1dulS33367ysrKJNVfB3Tttddq/fr1crlcmj17tpUlAwAAAEgyll4TtHv3bt1777269957ZbPZlJmZqYqKCgUCAUnSscceq0ceeURpaWnNjh0/frxuuukm3X333Xruuee0cOFCZWZmqry8XFL9ogv33nuvhgwZYmXJAAAAkiTTNGWaAZlmz692ZZqGvF6vJMnv98Xtiluxhr5az4qeGoYhw7DJMAyry+swS0PQ6NGjdfHFF+uzzz7Trl27VFFRoZycHB155JE688wzdeaZZ7b5xV5yySUaNWqUFixYoNWrV6usrEz9+vXT2LFjdfnll2vEiBFWlgsAACCPp0Y1NVXyeGpkmoGo1VFcXL8wlM/nj1oNiYi+Ws+KnhqGTS5XmtLS0uVyNR8giTTDjMY/d8Q4vz+gkpKqqLy3zWYoJydDklRcXMm/WFiEvlqPnlqPnkYGfbVeIvW0qqpCFRUl0S7jgIZ/KI7ffsYm+mo9a3uamdlH6emZHd6/T5/02LpZKgAAQLzweGqCAcjhcMntzpTD4YzaFJ2UlPpf6ny+6I1GJSL6ar3u9tQ0TXm9daqurpDX61FFRYlSUlJ6dESIEAQAAJJSTU39rA+Hw6U+ffKjen2CpOC/bEdzSl4ioq/Ws6KnKSkOpaa6VVJSKK/Xo5qaqh4NQT16nyAAAIBYYJqmPJ4aSZLbnRn1AAQkI8Mw5HbXT62tvyav56YsEoIAAEDSqV8Frv5fsR0OZ5SrAZKXw+GSFP5nsicQggAAQNIJ/RdnRoGA6An988dIEAAAAABECCEIAAAAQFIhBAEAAABIKoQgAAAAAEmFEAQAABCnZs2aqQkTxuixx+Y12zZhwhhNmDBGq1Z9FoXKYt9jj83ThAljNGvWzGbb2upre3bv3hXs/e7du6wotVP+8IfbNWHCGP3hD7f3+HvHE26WCgAAAMS43bt36fXXF0mSLr30iihXE/8YCQIAAABC5Of300EHHaysrKxolxK0e/cuPfHE3/XEE39vc7+cnL466KCDlZPTt4cqi0+MBAEAAAAhfv3rO6JdQpddeeUsXXnlrGiXEfMYCQIAAACQVBgJAgAAiBHbtm3Ts8/+Q5999qmKigpls9k1cOAgTZx4qn7ykwuVkZHRpfMWFe3VE0/8XStWfKSyslJlZWVrwoSJuuSSmcrOzm71uMLCPXruuaf18ccfae/eQtntKRo0aJAmTpykn/zkp3K707v6pUqSnnlmgf7614c0cOAg/fOf/2l1vz17duvHPz5bpmlq/vwndcQRIyVJtbW1ev/997RixYfavHmT9u3bq+rqamVlZWvkyKM0depPNGbMmE7XNWvWTH3++SpdcsnlLV5/U11dpaeeekJLlryjoqK9yszspeOOG6OLL75MTqez1fMGAgGtXPmpPvhgqb76aq2KivaqrKxU6enpGj78UH3ve9/XlCnfl80WPk5x3nlnac+e3cHnEyaEf02hdf7hD7frjTde1RlnnKlbb729WQ2maeqdd97U668v0oYNX6uqqkq9e2dp1Kijdd555+uYY45rsfaGGm655bf63vfO0NNPP6U333xdu3fvVlpaqo466hjNmDFTI0Yc2urXH0sIQQAAADHglVf+o3vu+aN8Pp8kKTU1VV5vnTZt2qBNmzbojTde04MPPqyBAwd16ry7du3Qb397i0pLS5SWlibDMLR3b6FefPHfWrp0iR5++O8aNGhws+M+/XSFbrnlRtXUVEuS0tLc8vl82rBhvTZsWK/XXntF998/V4MHH9Tlr3ny5Cn629/maufOHVqz5n8aOXJUi/u9/fZ/ZZqmBg8+KBiAJOndd9/WH//4O0mSzWZTenqGDMOmoqK9WrLkHb333mJdddXVmjbt512usamSkmLNnn2Fvv32G0mSw+FQbW2N3n77v/rgg/d10023tnpsYeEeXXPNVcHnbne6XC6X9u/fr5UrP9HKlZ9o6dJ39Yc/3Cu73R7cLysrW1VVVaqoKJck9emTE3betDR3h2r3eDy6/fZbtGzZUkmS3W6X252ukpJivffeYr333mJNn36JrrjiqlbPUV1dpSuumKF1676S0+mUYRjav3+/li1bqk8//Vh/+cvfwr5HsYoQBAAAEGXLl3+gO+/8vZxOl37+80t11lnnqG/fvvL5fFq3bq3+/Oc/6euvv9Itt9ygJ554ptlIQVvmzn1QvXtn6fe/v0vHHHOcTNPUJ5+s0J133qF9+4r061/fpL///SmlpDT+Wrh79y7deutNqqmpVkHBobrxxlt12GFHKBAI6OOPl+uee/6g3bt36Ve/uk6PPfYPuVypXfq68/P76ZhjjtPq1Sv19ttvtBqC3nrrDUnS6aefEfZ6ZmamLrxwuiZOnKQRIw6Vy+WSaZoqLNyjf/7zWf3738/pkUce0nHHjVFBweFdqrGpP/zhd/r222+Unp6uG264Raee+h2lpKRo48b1uvPO3+u+++5s9Vi73a7TTz9DkydP0ciRR6lXr16SpIqKCr311uv6298e1gcfvK9//es5/fSn04LHPfroU1q16jNdffWVkqRXXnmzS7X/9a9/0bJlS2Wz2XT55b/Q1Kk/DoagRx/9m1555SX94x9P6KCDDtYZZ5zZ4jkee2y+MjIy9OCDc3XsscfLMAz9739f6He/u0179xbqwQfv0/z5T3apvp7ENUExyDRNeX2BaJcBAABU//dyUVmNdhZVdvi/orIamabZofP7/X498MC9Mk1Tv/nN73TJJZerb9/6lb1SUlI0atTRuv/+h5ST01ebN2/UsmXvdar+ujqv/vSnh4LTnAzD0Nix43X33Q/IZrNp48YNWrLknbBjnnrqCVVXVyknJ0cPPviIDjvsCEn1oy3jx5+ke+/9s+x2u775Zqtef/3VTtXT1JQp9cFm8eK3g6NgoTZu3KCtW7dIah6CTj75VP3iF7/UyJFHyeVyBb++fv3665e/vE4/+MHZCgQCevHFf3erxgZffPG5Pv74I0nSbbf9TpMnTwmGxxEjDtX9988NC5NN5eXl6ze/+b1OPHFCMABJ9WFu6tTzdd11N0mSZfWGKizco5deel6SdNllV2r69IuD0xn79MnRjTfeqtNO+64kaf78R1r8XkhSXZ1Hf/nLIxo37kTZ7XbZbDYdffSxuvrqayVJX321Rnv27LG8fqsxEhRjfP6Afj3vI32xcZ/OGHeQfnzq8GiXBABA0gqYpv7y/Jf6cnNxp489aliOrj7vKNkMo839Pv98lXbt2ql+/frrO9/5rnwt/ENor169NW7ciXrttVf0yScrdMopp3W4jtNOm9zidLdDDz1M48adpI8+WqZ3331H3/3u9yTVh7733lssSZo69Xz16tW72bHDh4/QqaeepsWL39Y777ypc845r8P1NHXqqZN1//33qKysVJ9+ukLjx08I294wCnTkkaM6PRXwpJMm6rXXXtEXX3ze5fpCNfTlkEOG6uSTT222PSsrSz/84VQtWPBYl85/0kkTJUm7d+/Uvn1F6ts3t8u1NrV06bvy+/1KT0/X+ef/rMV9Lr30Cr377tsqKtqrL75YrdGjj2+2z6mnfqfFKZATJpwiwzBkmqa2bt2kfv36WVZ7JBCCYsy2wgp9sXGfJOmtT7br7BOHyOW0t3MUAACIhMpqb5cCkCR9ublYldVe9Upv/UJ5Sfrf/76QJBUX79P3v//dVvdruDansLBz/8p+7LGjW9123HGj9dFHy7Rhw9fB13bt2hm89mTMmBNaPXbMmLFavPhtrV+/rlP1NJWRkaETT5yg9957V2+99d+wEBQIBPTOO/VTv5qOAjXYt2+fXnjhn/rss4+1fft2VVdXKRAINNmnqFs1Nmj4Wtvu6Zg2Q5DH49Grr/5H77//nrZu3aLy8v0tjrpYHYIaah816ujgqFlTBx98iHJz81RUtFfr169rMQQdfvgRLR6bkpKi7Ow+KikpVkVFhWV1RwohKMb4/Y1D5/6AqWqPjxAEAECUZLgdOmpYTpdHgjLcjnb3Ky6uP7fX61VJSfvvU1tb26k6cnPz2t1WWloafC30cUeOra2tVU1NjdLS0jpVV6jTT/++3nvvXX3wwdKwc33++SoVFe2V3W7Xd75zerPjvvzyc91wwy9VVVUVfK1hsQHDMOT1elVRUa6ampou1xaqrKy+N7m5rYeTtraVlBTr6qv/T998syX4msvlUkZGZvA6r4bPgFU1NygtLTtQX+vf04btRUV7wz4HodpaEbBhZbzWptLFEkJQjGkaeGrrfJJaTusAACCybIahX553lPbtr1Wd19/h45wOu3KzOhYKAoH6844Zc4Lmzv1bi9PhEt348ScpM7OXKirKtWzZe8FRn4apcGPHjldWVlbYMT6fT7/73W2qqqpSQcFhuuKKqzRq1NFyuxtXSvvss080Z84veuiraN9f/nK/vvlmi7KysnTVVXM0btyJys7uE9zu9/t1yiljJanD15ShawhBMSa1SQjydOIHLgAAsJ5hGB0ONF3RsNxxZ6e5dVRbU8GKivZKUti9gkIfFxXtbXXkoOHY1NTUbo0CSfXLTE+a9B298spLevPNN3T66Weorq4ueA1OS1Ph1q79nwoL98hut+vuu+9vsc6SkpJu1dVUVla2tm37tp2etrzN5/Pp/fffkyTNmXODJk+e0myf0lJr6w2VnZ0lqfH71pqWPhOJiNXhYozT0SQE1RGCAABIZCNHHiVJ2r59m7Zt+9by83/++apWt61evVKSVFBwWPC1AQMGKjOzfuWylSs/bfXYzz77WJKCK8d115Qp3w+et7S0RB99tEyVlZVyu9N18smnNNu/sLBQUv1iBK0FtYYarXLoofXLbHekp02VlZWqrs4jSSooaPmGop9+2nq9ocuid2WU6NBD679Pa9Z8KY/H0+I+3377TTAEWfV9jVWEoBjDSBAAAMll9Ojj1a9ff0nSAw/cJ7+/9b/7fT6fqqurO3X+xYvf0s6dO5q9vnHjeq1YUb/c83e+07ggg2EYmjTpO5Kk55//Z4sXuW/atFHvvfeuJGny5ObX6nTFUUcdo379+svv92vx4rf01lv/lSSdcsqkFu9DlJGRIal+tKelEZTNmzcFF1WwSkNftmzZrA8+eL/Z9vLy/frPf15o8Vi32y3jwEqBmzdvara9urpaTz31eKvvnZ7eeC1OVxYeOOWUSbLb7aqsrNS///1ci/s89tg8SfVLeR911DGdfo94QgiKMU1HgmoZCQIAIKGlpKTouutuks1m0/LlH+raa2dpzZovgyucBQIBbd26Rf/4x5P66U/P1caNGzp1fofDoeuuuzq4TLRpmvr00xW66aZr5ff7NWJEgU499Tthx1x00Qy53ekqLt6na665SuvXfx2sZfnyD3XDDb+U3+/XIYcM0RlnnNX9Jqg+fDUs0/3KKy9pxYoPJUmnn/69FvcfNepopaWlHbi/0q+0Y8d2SfVBcenSd3XNNVd1e5peU0cddYzGjj1RkvT//t9vtHjx28HQunHjBl177Wz5fN4Wj3W704Ojfg899IBWr14ZHNFZt26tfvnL/1N5+f5W33vw4IOD9yB6/fVXOl17fn4/nXPOjyVJf//7X/Xss08FA3VpaYnuuecPevfdtyVJl1/+f23e7ygRJPZXF4dshiGX0x6cBsd0OAAAEt/48RN0++3/T3/4wx1aufJTrVz5qZxOp9LS0lRVVRW22lY7tx1qZtasOZo37xFdddVlwdDQsMJcTk5f3XHHXc1+4e3Xr7/+8Ie7dcstN+rrr7/SpZdOk9udLr/fF5xK1a9ff915559aXW65K04//Qz94x9PaMuWzcH6Ro9ueZnuzMxMXXnlbD3wwD1avXqlLrjgHLnd6fJ66+T1etWvX3/NnDlHd9zxa8vqk6Rbb/2tZs++Qt9++41++9tfyel0yuFwqKqqSmlpbt144y363e9ua/HYq6++VrNnX6G9ews1e/YVcjpdstttqqmpkcvl0l13/UnXXDOrxWNTU1N1+uln6PXXF2nu3Af12GPz1Lt3liTpJz/5qX7ykwvbrf3//m+29uzZpQ8+eF+PPPIXzZv3sNzudFVWVgQD2fTpl+iMM87sWnPiCCEoBqU5UxpDENPhAABICqef/j0dc8xx+te/Furjjz/Srl07VVlZqfT0DA0aNFijRh2tU06Z1OlpSgMGDNLjjz+tJ574u1as+EilpSXKy8vXSSdN1IwZl4etThbq+OPH6emn/6XnnvuHVqxYrr17C2W32zViRIFOOeU0/fjHFyg9PcOCr7zRkCFDVVBwqDZsWC9Jmjx5Sti1ME1NnfoT5efn67nnntaGDV/L7/epf/8BmjDhFE2bdrE2bercqFlH9OmTo7//fYGeeuoJLVnyjvbuLVRqaqrGj5+giy++rM1QePjhR2r+/Cf1+OPztXr1SlVXVyszM0unnHKafvazn2vIkKFtvvd1192svLx8vffeu9q1a6f27NktqePT41wul+688096++039frrr2jDhvWqrq5Snz59NGrU0Zo69fw274GUSAyT9fea8fsDKimpan/HCLDZDN08b7n2FNcPT049Zah+MP6QqNSSSGw2Qzk59T+oi4srFQjwse8uemo9ehoZ9NV6idBTv9+noqKdkqTc3IGy26P/78IpKfW/7CfjEtmRRF+tZ2VPu/JnsU+fdNnt3buqh2uCYlCqs/GbzzVBAAAAgLUIQTEodIU4psMBAAAA1iIExaBUV+NIEAsjAAAAANaK/gRYNJMWGoIYCQIAAHHgsssu0t69hR3ePy8vX48++lQEKwJaRwiKQa7Q6XCMBAEAgDhQVlaqkpLiDu/vdDojWA3QNkJQDEpzMhIEAADiy/PPL4p2CUCHcU1QDAq9JojV4QAAAABrEYJiEKvDAQAAAJFDCIpBqUyHAwAAACKGEBSD0lwsjAAAQCQZhhF8bJpmFCsBklvon7/QP5eRRgiKQS5GggAAiCjDsMkw6n8N8nrrolwNkLy8Xo+k8D+TPYEQFINCR4J8flM+fyCK1QAAkHgMw5DLlSZJqq6uYDQIiALTNFVdXSlJcrnSenQkiCWyY1DoNUFS/WhQip28CgCAldLS0lVbWyWv16OSkkK53RlyOFw9+otYqIZ/Bffzj5+Woq/W625PTdOU1+tRdXVlcCQoLS3dsvo6ghAUg5qFoDq/0lMdUaoGAIDE5HKlKTOzjyoqSuT1erR/vyfKFTWEL0alrEVfrWdtTzMz+wRHZnsKISgGpYZMh5O4LggAgEhJT89USkqKamqq5PHUyDSjN1qQklL/r+s+H3/vW4m+Ws+KnhqGTS5XmtLS0ns8AEmEoJiU5gr/tnDDVAAAIsflSpPLlSbTNGWagahcH2SzGcrOrp8OVFpapUCAUQsr0FfrWdFTwzAOLIQQnamnEiEoJrmc4SNBdYwEAQAQcfW/mNnb3zECbDZDDkf91He7PUWGwS/rVqCv1kuUnnK1fQxKczISBAAAAEQKISgGOR12hY4Ock0QAAAAYB1CUAyy2Qy5HI3D8R5GggAAAADLEIJiVGrI4gi1jAQBAAAAliEExajQ64IYCQIAAACsQwiKUaErxHFNEAAAAGAdQlCMCr1XECNBAAAAgHUIQTEqNWQkiGuCAAAAAOsQgmJUKiNBAAAAQEQQgmJUKtcEAQAAABFBCIpRjAQBAAAAkUEIilGpTu4TBAAAAEQCIShGpYVMh6sjBAEAAACWIQTFqNDpcLVMhwMAAAAsQwiKUWELIxCCAAAAAMsQgmJU2MIITIcDAAAALEMIilGhCyP4A6Z8/kAUqwEAAAASByEoRqW57GHPuS4IAAAAsAYhKEaFjgRJrBAHAAAAWIUQFKNCrwmSGAkCAAAArEIIilGhq8NJLI4AAAAAWIUQFKOaTodjmWwAAADAGoSgGJXadGEERoIAAAAASxCCYpTLYZcR8pyRIAAAAMAahKAYZRiGXCHXBXFNEAAAAGANQlAMczlCQhAjQQAAAIAlCEExLHSFOK4JAgAAAKxBCIphzpCRIG6WCgAAAFiDEBTDwkaCmA4HAAAAWIIQFMPCFkYgBAEAAACWIATFsLCFEZgOBwAAAFiCEBTDUlkiGwAAALAcISiGhY4EcU0QAAAAYA1CUAzjmiAAAADAeilWn9A0Tb3++ut66aWXtG7dOu3fv18Oh0ODBg3S+PHjNX36dA0ePLjV45csWaJnnnlGa9euVWVlpfLy8jRx4kTNnDlT/fv3t7rcmJbKNUEAAACA5SwNQR6PR7Nnz9bSpUuDr6Wnp8vj8WjDhg3asGGD/vnPf+r+++/Xd77znWbH//GPf9SCBQskSTabTW63Wzt27NCzzz6rRYsWad68eRo9erSVJcc0l7Px20MIAgAAAKxh6XS4v/3tb8EANHv2bK1YsUKrVq3Sl19+qX/84x8aMWKEamtrdcMNN6ikpCTs2BdeeCEYgGbNmqXPPvtMK1eu1BtvvKFjjz1WFRUVuuqqq1RWVmZlyTHN5Wj89nBNEAAAAGANS0PQyy+/LEk655xzNGvWLGVnZ0uS7Ha7TjjhBD3yyCOSpKqqKn3wwQfB47xerx588EFJ0vnnn6/Zs2crPT1dkjR06FDNmzdPubm5Ki0t1aOPPmplyTEtdCSozuuXaZpRrAYAAABIDJaGoKKiIknSyJEjW9x+0EEHKSsrS5JUXV0dfH358uXau3evJOmKK65odlzv3r11wQUXSJIWLVqUNGEgdIlsf8CUz58cXzcAAAAQSZaGoEGDBkmS1qxZ0+L2bdu2BaezHXnkkcHXV6xYIUkaPny4Bg4c2OKxEydOlCTt2bNHW7ZssarkmBa6RLbEdUEAAACAFSxdGOH888/XnXfeqZdeekmDBg3Sz372M2VnZ8vv92vlypW64447JEk//OEPNWrUqOBxmzdvliSNGDGi1XOHbtu0aZOGDRtmZenN2GxGRM/fkfdNc4V/e7y+QNTqinehfaOH1qCn1qOnkUFfrUdPrUdPI4O+Wi9RemppCJo+fbp2796tBQsW6KGHHtJDDz2kjIwM1dbWyufzafDgwbrpppt08cUXhx3XMBUuPz+/1XOnpaWpV69eKi8vD067ixS73aacnIyIvkdH5PUNryHV7YyJuuJddnZ6tEtIOPTUevQ0Muir9eip9ehpZNBX68VzTy2dDme323XTTTfp9ttvl8vlkiRVVlbK5/NJkmpra1VeXh583qDh+qDU1NQ2z9+wvaqqysqyY1bozVIlVogDAAAArGDpSFBxcbFmzZqlVatW6Qc/+IFmzJihIUOGqLy8XCtWrNCf/vQn/fWvf9WqVav0+OOPKyXF8nu1WsLvD6isrLr9HSPAZjOCqdpTUxe2bW9RhXLSHdEoK+6F9rW0tEqBAItMdBc9tR49jQz6aj16aj16Ghn01Xqx0NOsLLfs9u6N5ViaQm688UatWrVKP/rRj3T33XcHX09PT9c555yjUaNG6ZxzztHHH3+s559/Prjim9vtllQ/UtSWhu0Ny2dHUiz8IXGmhH9zazz+mKgr3gUCJn20GD21Hj2NDPpqPXpqPXoaGfTVevHcU8umw23evDl4758ZM2a0uM/w4cN16qmnSpLefvvt4Ot5eXmSpMLCwlbPX1NTo/LycklSbm6uFSXHPEeKTaGXm9V6fa3uCwAAAKBjLAtBmzZtCj4+6KCDWt3v4IMPliTt3Lkz+FrDSm8bN25s9bjQbcOHD+9ynfHEMIyw64LqvIEoVgMAAAAkBstCkM3WeKpdu3a1ul9xcbEkKSOjcZWz8ePHS6ofTWrt2Pfff1+S1K9fPw0dOrTb9caL0BDEwggAAABA91kWgg4//PDg4+eee67FfYqKioLT4I455pjg6+PGjVNeXp5M09T8+fObHVdeXq6FCxdKks4++2wZRvyuSd5ZqY7QEMR0OAAAAKC7LAtBgwYN0imnnCJJevrpp3XnnXcGr/HxeDx6//33NW3aNFVUVMjhcOjCCy8MHutwODRnzhxJ0sKFCzV37tzgstlbt27VlVdeqaKiImVnZ+vSSy+1quS4EDoS5GEkCAAAAOg2S1eHu/POO3XJJZdo/fr1evLJJ/Xkk0/K7XartrZWgUD99SxOp1N33nlnsyltU6dO1ddff62nnnpKDz30kB555BG53W5VVFRIqp8+9/DDDysrK8vKkmNeqrPxW8R0OAAAAKD7LA1BOTk5ev755/X888/rzTff1Pr161VRUSGXy6UBAwZo/PjxmjZtmoYMGdLi8bfeeqtOPPFEPfPMM1qzZo2qqqo0cOBATZw4UTNnztSAAQOsLDcupDqZDgcAAABYyfK7lTqdTl144YVh0906Y9KkSZo0aZLFVcWvVBZGAAAAACxl2TVBiAymwwEAAADWIgTFOKbDAQAAANYiBMU4psMBAAAA1iIExTimwwEAAADWIgTFuFQX0+EAAAAAKxGCYlzT6XCmaUaxGgAAACD+EYJiXOh0ONOU6ryBKFYDAAAAxD9CUIxLCxkJkpgSBwAAAHQXISjGhY4ESSyOAAAAAHQXISjGpTYbCSIEAQAAAN1BCIpxzUMQ0+EAAACA7iAExbim0+FqGAkCAAAAuoUQFOOcDpsMo/E5I0EAAABA9xCCYpxhGM3uFQQAAACg6whBcSB0SlythxAEAAAAdAchKA6EjwQxHQ4AAADoDkJQHGA6HAAAAGAdQlAcCJsORwgCAAAAuoUQFAeYDgcAAABYhxAUB5gOBwAAAFiHEBQHmA4HAAAAWIcQFAeYDgcAAABYhxAUB5gOBwAAAFiHEBQHmA4HAAAAWIcQFAeYDgcAAABYhxAUB1JdjSNBdd6AAgEzitUAAAAA8Y0QFAdCR4IkpsQBAAAA3UEIigPNQxBT4gAAAICuIgTFgdCFESRGggAAAIDuIATFAabDAQAAANYhBMUBpsMBAAAA1iEExQGmwwEAAADWIQTFAUeKTXabEXzOSBAAAADQdYSgOBF+w1RGggAAAICuIgTFidApcYQgAAAAoOsIQXEifCSI6XAAAABAVxGC4kRYCPIwEgQAAAB0FSEoTnBNEAAAAGANQlCcCL8miOlwAAAAQFcRguIEI0EAAACANQhBcYLV4QAAAABrEILiRKqL1eEAAAAAKxCC4gTT4QAAAABrEILiBNPhAAAAAGsQguIEN0sFAAAArEEIihOhIcjnN+XzB6JYDQAAABC/CEFxInQ6nMSUOAAAAKCrCEFxInQkSJJqPUyJAwAAALqCEBQnmoUgRoIAAACALiEExQmmwwEAAADWIATFidCbpUqsEAcAAAB0FSEoTjAdDgAAALAGIShO2G02OVIav101jAQBAAAAXUIIiiPhN0xlJAgAAADoCkJQHCEEAQAAAN1HCIojoSvEsTACAAAA0DWEoDjCSBAAAADQfYSgOBI2EuQhBAEAAABdQQiKI6EjQR4vIQgAAADoCkJQHAmfDsc1QQAAAEBXEILiSPjCCIwEAQAAAF1BCIojLIwAAAAAdB8hKI6kupgOBwAAAHQXISiOsDocAAAA0H2EoDjSdDqcaZpRrAYAAACIT4SgOBIaggKmKa8vEMVqAAAAgPhECIojodPhJBZHAAAAALqCEBRHQkeCJBZHAAAAALqCEBRHmocgRoIAAACAziIExRGmwwEAAADdRwiKI0yHAwAAALqPEBRHXEyHAwAAALqNEBRHbIYRFoQIQQAAAEDnEYLiTNgNUz1MhwMAAAA6ixAUZ0IXR2AkCAAAAOg8QlCcSWU6HAAAANAthKA4kxYWgpgOBwAAAHQWISjOMB0OAAAA6B5CUJxhOhwAAADQPYSgOJPKdDgAAACgWwhBcSZ0OlwNI0EAAABAp6W0v0vHHHrooR3ed/bs2Zo1a1aL21auXKkFCxZo1apVKisrU05OjsaNG6fLLrtMI0aMsKrcuMV0OAAAAKB7LAtBffv2bXN7TU2NqqqqJEkjR45scZ8nn3xSd999twKBgAzDUEZGhvbs2aP//Oc/ev3113XfffdpypQpVpUcl5gOBwAAAHSPZSHoww8/bHP7jTfeqJdfflm5ubk6+eSTm21fvny57rrrLpmmqfPPP1/XXHONsrOztWfPHv3+97/XO++8oxtuuEEFBQUaMmSIVWXHHRcjQQAAAEC39Mg1QZWVlXrrrbckST/84Q9lt9ub7XPffffJNE2dfPLJuuOOO5SdnS1J6tevnx544AEVFBTI4/HoL3/5S0+UHLNCrwny1PkVMM0oVgMAAADEnx4JQW+88YZqamokSeeee26z7Vu2bNGaNWskSVdccUWz7U6nUzNmzJAkLV68ODitLhmFToeT6oMQAAAAgI6zbDpcW1544QVJ0rHHHqthw4Y12758+XJJUnp6uo477rgWzzFx4kRJksfj0cqVK4PPI8VmMyJ6/o68b0s1uFPDv2V1voDS06JTazxpr6/oPHpqPXoaGfTVevTUevQ0Muir9RKlpxEPQVu2bNHq1aslSVOnTm1xn82bN0uShg0b1uJUOUnKyclRnz59VFJSok2bNkU0BNntNuXkZETs/B2VnZ3e7LX8mvDFEFLdzpioNZ601Fd0Dz21Hj2NDPpqPXpqPXoaGfTVevHc04hPh3vxxRclSWlpaTrjjDNa3Gfv3r2SpPz8/DbP1bC9qKjIwgrjS1qTkaAaDyvEAQAAAJ0R0ZEgv9+vl19+WZI0ZcoUZWS0PGJRXV0tSUpNTW3zfA3bI31NkN8fUFlZdUTfozU2mxFM1aWlVQoEwhc+qK3yhD0v3FuhPm5Hj9UXr9rrKzqPnlqPnkYGfbUePbUePY0M+mq9WOhpVpZbdnv3xnIiGoI++OCD4ChPSwsixLJY+EMSCJjN6nA6wqcLVnt8MVFrPGmpr+geemo9ehoZ9NV69NR69DQy6Kv14rmnEZ0O17AgwuDBg3XCCSe0up/b7ZYk1dbWtnm+hu3p6fE7/7C7nCk2GSHXoHGvIAAAAKBzIhaCSktL9e6770qSzjnnHBlG66tH5OXlSZIKCwvbPGfD9tzcXIuqjD+GYYTdK4gQBAAAAHROxELQokWL5PV6ZbPZ2p0K17Bs9ubNm+X3t/xLfXFxsUpKSiRJw4cPt7bYOBN6r6DaOhZGAAAAADojYiGoYVW48ePHq3///m3uO378eEn1Cx40LKfd1LJlyyRJLpdLo0ePtrDS+BMWgjyMBAEAAACdEZEQtG7dOq1bt05S6/cGCjV06FCNHDlSkjR//vxm271erx5//HFJ0uTJk5P6miBJTIcDAAAAuiEiIahhQYTevXtr8uTJHTrm+uuvl2EYWrp0qW6//XaVlZVJqr8O6Nprr9X69evlcrk0e/bsSJQcV5gOBwAAAHSd5Utk19XVadGiRZKkH/zgB3K5XB06bvz48brpppt0991367nnntPChQuVmZmp8vJySZLT6dS9996rIUOGWF1y3AkPQYwEAQAAAJ1heQhasmRJcBSns/cGuuSSSzRq1CgtWLBAq1evVllZmfr166exY8fq8ssv14gRI6wuNy4xHQ4AAADoOstD0JQpU7R+/fouHz9mzBiNGTPGwooST6qL6XAAAABAV0X0ZqmIDKbDAQAAAF1HCIpD4dPhGAkCAAAAOoMQFIcYCQIAAAC6jhAUhwhBAAAAQNcRguJQWsh0OK8vIH8gEMVqAAAAgPhCCIpDoSNBEqNBAAAAQGcQguJQ6MIIklTrIQQBAAAAHUUIikPNR4JYIQ4AAADoKEJQHGI6HAAAANB1hKA4lOpqMh2OEAQAAAB0GCEoDjEdDgAAAOg6QlAcSrHblGI3gs8ZCQIAAAA6jhAUp0JXiCMEAQAAAB1HCIpToVPimA4HAAAAdBwhKE6FhyBGggAAAICOIgTFqbDpcNwsFQAAAOgwQlCcYjocAAAA0DWEoDjFdDgAAACgawhBcSp8dThGggAAAICOIgTFKUaCAAAAgK4hBMWpVBchCAAAAOgKQlCcYjocAAAA0DWEoDjFdDgAAACgawhBcappCDJNM4rVAAAAAPGDEBSnQqfD+QOmfP5AFKsBAAAA4gchKE6FjgRJUg1T4gAAAIAOIQTFqdCRIInrggAAAICOIgTFqaYjQbUeVogDAAAAOoIQFKeahiCPl5EgAAAAoCMIQXGK6XAAAABA1xCC4pTLGf6t8xCCAAAAgA4hBMUpu82mFLsRfM50OAAAAKBjCEFxzOVovC6ojhAEAAAAdAghKI45Q0KQx8vNUgEAAICOIATFMScjQQAAAECnEYLimCul8dvn8RGCAAAAgI4gBMUxZ8i9gurqmA4HAAAAdAQhKI4xEgQAAAB0HiEojnFNEAAAANB5hKA4Fr5ENtPhAAAAgI4gBMWx8CWyGQkCAAAAOoIQFMecjsZvH9PhAAAAgI4hBMUxFzdLBQAAADqNEBTHWBgBAAAA6DxCUBwLGwliiWwAAACgQwhBcYxrggAAAIDOIwTFMZbIBgAAADqPEBTHnCmNIcgfMOXzE4QAAACA9hCC4pjLGf7tY0ocAAAA0D5CUBwLHQmSWCYbAAAA6AhCUBwLvSZIYiQIAAAA6AhCUBwLXR1OkjyEIAAAAKBdhKA41nwkiOlwAAAAQHsIQXHM6Wh6TRAjQQAAAEB7CEFxjGuCAAAAgM4jBMWxFLshw2h8zkgQAAAA0D5CUBwzDCNsNKjOxzVBAAAAQHsIQXEu9LogTx0jQQAAAEB7CEFxzhWyTHadjxAEAAAAtIcQFOdCp8NxTRAAAADQPkJQnAudDsd9ggAAAID2EYLiHCNBAAAAQOcQguKcMyXkmiBCEAAAANAuQlCcczlDR4KYDgcAAAC0hxAU55wpodcEMRIEAAAAtIcQFOe4JggAAADoHEJQnHOG3ieI6XAAAABAuwhBcY6RIAAAAKBzCEFxLuw+QT5CEAAAANAeQlCcc4VMh/PUEYIAAACA9hCC4lz4SBDXBAEAAADtIQTFudBrgry+gAIBM4rVAAAAALGPEBTnHCnh30Ivo0EAAABAmwhBcc7ZJASxOAIAAADQNkJQnAu9JkjiXkEAAABAewhBca7pdDhGggAAAIC2EYLiXNORIK4JAgAAANpGCIpzza8JIgQBAAAAbSEExbnm1wQxHQ4AAABoCyEozjW/JoiRIAAAAKAtKZE6cXFxsZ566iktXbpUO3bskNfrVd++fXX44YfrtNNO07nnntvicUuWLNEzzzyjtWvXqrKyUnl5eZo4caJmzpyp/v37R6rcuMV9ggAAAIDOiUgIWrx4sW6++WaVl5dLklwul1JSUrRjxw7t2LFD69evbzEE/fGPf9SCBQskSTabTW63Wzt27NCzzz6rRYsWad68eRo9enQkSo5bNsOQI8UWDD9MhwMAAADaZnkI+uijj/TLX/5SXq9XP/zhD3X55ZdrxIgRkqTy8nKtXr1an3/+ebPjXnjhhWAAmjVrlmbMmKH09HRt2bJFt9xyi1avXq2rrrpK//3vf5WVlWV12XHNGRqCGAkCAAAA2mTpNUFVVVW65ZZb5PV6ddlll+mee+4JBiBJ6tWrl0455RT98pe/DDvO6/XqwQcflCSdf/75mj17ttLT0yVJQ4cO1bx585Sbm6vS0lI9+uijVpacEEKnxHkZCQIAAADaZGkIeumll7R7927l5+c3CzptWb58ufbu3StJuuKKK5pt7927ty644AJJ0qJFi2SapjUFJwhnSuMKcR5GggAAAIA2WRqCXnnlFUnSlClT5HQ6O3zcihUrJEnDhw/XwIEDW9xn4sSJkqQ9e/Zoy5Yt3aw0sTgdISNBPkaCAAAAgLZYdk2Qx+PRV199JUk68sgjtWXLFj3yyCNavny59u/fr9zcXI0dO1aXXXaZhg8fHnbs5s2bJSls6lxTods2bdqkYcOGWVV6i2w2I6Ln78j7drSG0HsFeX1m1GqPZV3pK9pGT61HTyODvlqPnlqPnkYGfbVeovTUshC0c+dOeb1eSdLWrVt1++23q6amRi6XSy6XS7t27dJLL72k1157Tffcc4/OOOOM4LENU+Hy8/NbPX9aWpp69eql8vJyFRUVWVV2i+x2m3JyMiL6Hh2RnZ3eof3caY7gY1uM1B7LOtpXdBw9tR49jQz6aj16aj16Ghn01Xrx3FPLpsM1LIctSfPnz1dGRobmz5+vzz//XCtXrtTLL7+skSNHqq6uTjfffLO+/fbb4P7V1dWSpNTU1Dbfo2F7VVWVVWUnBFfISJCHhREAAACANlk2EhQIBMIe33XXXZowYULwtcMOO0x//etfNWXKFFVXV+vJJ5/Ub3/7W6ve3lJ+f0BlZdVReW+bzQim6tLSKgUCHVgEImShiMoqj4qLKyNVXtzqUl/RJnpqPXoaGfTVevTUevQ0Muir9WKhp1lZbtnt3RvLsSwENSxpLdUvcBAagBrk5eXpzDPP1L/+9S999NFHwdfdbrckqba2ts33aNge+l6REgt/SAIBs0N1hC6R7anzx0TtsayjfUXH0VPr0dPIoK/Wo6fWo6eRQV+tF889tWw6XF5eXvDx0KFDW92vYduePXuaHVtYWNjqcTU1NcEpd7m5ud2qNdGELpHNzVIBAACAtlkWgrKzszsVTgyjcTWJhpXeNm7c2Or+oduari6X7JyhN0slBAEAAABtsvQ+QSeeeKIktXkfn4ZtofcDGj9+vKT6pbJ37drV4nHvv/++JKlfv35tjjQlI0fIfYLquE8QAAAA0CZLQ9A555wjqf4+PsuWLWu2fe/evXr11VclSaecckrw9XHjxikvL0+maWr+/PnNjisvL9fChQslSWeffXbYKBKaTIfzMhIEAAAAtMXSEDR+/HhNnDhRkvSrX/1KS5cuDa4a9/XXX+sXv/iFqqurlZWVpYsvvjh4nMPh0Jw5cyRJCxcu1Ny5c4PLZm/dulVXXnmlioqKlJ2drUsvvdTKkhOC0xE6HY6RIAAAAKAtlq0O1+C+++7TxRdfrK+++kozZ85UamqqUlJSVFlZv2xz7969NXfu3LCFFCRp6tSp+vrrr/XUU0/poYce0iOPPCK3262KigpJUkZGhh5++GFlZWVZXXLcY2EEAAAAoOMsD0G9e/fWP//5Tz3zzDN69dVXtXXrVnm9Xh1yyCE65ZRTdOmllyo/P7/FY2+99VadeOKJeuaZZ7RmzRpVVVVp4MCBmjhxombOnKkBAwZYXW5CCF0im+lwAAAAQNssD0GS5HQ6dckll+iSSy7p9LGTJk3SpEmTIlBV4nI2WRjBNE2umwIAAABaYek1QYiO0Olwpin54/SmVQAAAEBPIAQlgND7BElSnZfFEQAAAIDWEIISgKNpCGJxBAAAAKBVhKAE4HTYw54TggAAAIDWEYISANPhAAAAgI4jBCUAR5ORIC8jQQAAAECrCEEJwMVIEAAAANBhhKAE4EjhmiAAAACgowhBCSD0ZqmSVOclBAEAAACtIQQlALvNkM0wgs+9PqbDAQAAAK0hBCUAwzDkCBkNYjocAAAA0DpCUIIIXSabhREAAACA1hGCEkRoCGKJbAAAAKB1hKAE4Qy5VxDT4QAAAIDWEYIShIPpcAAAAECHEIIShDOFkSAAAACgIwhBCSL0XkEskQ0AAAC0jhCUIMJGgrhZKgAAANAqQlCCCLsmiOlwAAAAQKsIQQkidDocCyMAAAAArSMEJQiWyAYAAAA6hhCUIFxh1wQxEgQAAAC0hhCUIEKnw3kIQQAAAECrCEEJImw6HKvDAQAAAK0iBCUIZ9jqcIwEAQAAAK0hBCUIFyNBAAAAQIcQghJE+HQ4v0zTjGI1AAAAQOwiBCWI0IURTEk+P6NBAAAAQEsIQQkidCRIkjxMiQMAAABaRAhKEKH3CZK4VxAAAADQGkJQggidDidxryAAAACgNYSgBNF0OhwrxAEAAAAtIwQlCFfTEMS9ggAAAIAWEYISRNPpcIwEAQAAAC0jBCUIJwsjAAAAAB1CCEoQKXZDhtH43MN0OAAAAKBFhKAEYRhG2OIITIcDAAAAWkYISiCulMZvJ0tkAwAAAC0jBCWQ8JEgQhAAAADQEkJQAmE6HAAAANA+QlACcYUsk819ggAAAICWEYISSOgy2YwEAQAAAC0jBCUQrgkCAAAA2kcISiBOB6vDAQAAAO0hBCWQsOlwPqbDAQAAAC0hBCWQsIURGAkCAAAAWkQISiCh1wR5WBgBAAAAaBEhKIE4WSIbAAAAaBchKIG4WB0OAAAAaBchKIFwnyAAAACgfYSgBMJ0OAAAAKB9hKAEErYwQl1ApmlGsRoAAAAgNhGCEkjodLiAacofIAQBAAAATRGCEkjofYIkFkcAAAAAWkIISiCh0+Ek7hUEAAAAtIQQlEBcTUIQiyMAAAAAzRGCEoiz2XQ4RoIAAACApghBCSR0YQSJa4IAAACAlhCCEkjTkSAPIQgAAABohhCUQJoujMB0OAAAAKA5QlACcaQ0uSaIhREAAACAZghBCcRmGHKGBCGmwwEAAADNEYISTOiUOKbDAQAAAM0RghJMqrMxBNXW+aJYCQAAABCbCEEJxhUWgpgOBwAAADRFCEowqYQgAAAAoE2EoAST6kwJPmY6HAAAANAcISjBhI4EeRgJAgAAAJohBCUYpsMBAAAAbSMEJZhUR+h0OEIQAAAA0BQhKMGkulgiGwAAAGgLISjBMB0OAAAAaBshKMGErw5HCAIAAACaIgQlGJeDkSAAAACgLYSgBBM6Hc7nD8jnD0SxGgAAACD2EIISTOjCCJLk8TIaBAAAAIQiBCWY0GuCJKnWQwgCAAAAQhGCEkzodDiJZbIBAACApghBCSbV0TQEMRIEAAAAhCIEJZhUV5PpcIQgAAAAIExK+7t03Isvvqhf/epX7e63fPly9enTp8VtS5Ys0TPPPKO1a9eqsrJSeXl5mjhxombOnKn+/ftbWW5Caj4djhAEAAAAhLI0BDWw2WythpyG7S354x//qAULFgT3cbvd2rFjh5599lktWrRI8+bN0+jRoyNRcsJIsduUYjfk85uSuCYIAAAAaCoiIah///569913O3XMCy+8EAxAs2bN0owZM5Senq4tW7bolltu0erVq3XVVVfpv//9r7KysiJQdeJwOezy+evDDyNBAAAAQLiYuCbI6/XqwQcflCSdf/75mj17ttLT0yVJQ4cO1bx585Sbm6vS0lI9+uijUaw0PoQuk81IEAAAABAuJkLQ8uXLtXfvXknSFVdc0Wx77969dcEFF0iSFi1aJNM0e7S+eBN6w1RulgoAAACEi4kQtGLFCknS8OHDNXDgwBb3mThxoiRpz5492rJlS4/VFo9CF0fgZqkAAABAuIhcE1RSUqJzzjlHW7dulSTl5+frhBNO0LRp03TooYc223/z5s2SpBEjRrR6ztBtmzZt0rBhwyyuOpzNZkT0/B15367WEDodzuP1R+1riSVW9BXh6Kn16Glk0Ffr0VPr0dPIoK/WS5SeRiQE1dTUaN26derVq5eqq6v1zTff6JtvvtELL7yg6667TpdeemnY/g1T4fLz81s9Z1pamnr16qXy8nIVFRVFouwgu92mnJyMiL5HR2Rnp3fpuF4ZruDjgIyY+FpiSVf7itbRU+vR08igr9ajp9ajp5FBX60Xzz21NATl5eVp9uzZOv3003XIIYfI6XTK6/Vq5cqVuv/++/XFF1/onnvuUV5ens4666zgcdXV1ZKk1NTUNs+fmpqq8vJyVVVVWVl2wkkLuWFqDQsjAAAAAGEsDUETJkzQhAkTwl5zOBwaN26cnn76aU2fPl2ff/657rvvPv3gBz9o9X5B0eb3B1RWVh2V97bZjGCqLi2tUiDQ+UUgjJCFIyoqPSourrSsvnhlRV8Rjp5aj55GBn21Hj21Hj2NDPpqvVjoaVaWW3Z793JERKbDtcTpdGrOnDm6+OKLtWfPHn311VcaOXKkJMntdkuSamtr2zxHw/aG5bMjKRb+kAQCZpfqCF0Yocbjj4mvJZZ0ta9oHT21Hj2NDPpqPXpqPXoaGfTVevHc0x4dijn66KODj7dv3x58nJeXJ0kqLCxs9diamhqVl5dLknJzcyNUYWJwOUJWh2M6HAAAABAmJuajNaz0tnHjxlb3Cd02fPjwiNcUz0JHgrhPEAAAABCuR0PQF198EXw8aNCg4OPx48dLql8qe9euXS0e+/7770uS+vXrp6FDh0awyvgXukR2bR0hCAAAAAhlWQgyzbbnA3q9Xv35z3+WVL8U9pFHHhncNm7cOOXl5ck0Tc2fP7/ZseXl5Vq4cKEk6eyzz5ZhxO+a5D0hdCTI6wvIHwhEsRoAAAAgtlgWgnbu3Kkf//jH+te//qUdO3YEX/f5fPrkk080ffp0rV69WpJ0/fXXh60M53A4NGfOHEnSwoULNXfu3OCy2Vu3btWVV16poqIiZWdnN7vHEJoLDUESo0EAAABAKEtXh/vyyy/15ZdfSpJcLpfcbrcqKyvl9Xol1Yed66+/XmeffXazY6dOnaqvv/5aTz31lB566CE98sgjcrvdqqiokCRlZGTo4YcfVlZWlpUlJ6TQ6XCSVOvxKz3VEaVqAAAAgNhiWQjq27evbrvtNq1evVrr1q1TSUmJKioqlJqaquHDh2vs2LG64IILNGTIkFbPceutt+rEE0/UM888ozVr1qiqqkoDBw7UxIkTNXPmTA0YMMCqchNaWmr4t7Xa41NOlGoBAAAAYo1lISg1NVXTp0/X9OnTu3WeSZMmadKkSRZVlZzSm4agWm+UKgEAAABiT0wskQ1ruV1NQxD3CgIAAAAaEIISkNNhV4q98VtbRQgCAAAAgghBCSp0ShzT4QAAAIBGhKAE5Q4JQYwEAQAAAI0IQQkqNARVewhBAAAAQANCUIIKvS8Q0+EAAACARoSgBMV0OAAAAKBlhKAEle4KHQkiBAEAAAANCEEJKi1sJIjpcAAAAEADQlCCSmdhBAAAAKBFhKAEFbY6HNPhAAAAgCBCUIIKXR3O6wvI6/NHsRoAAAAgdhCCEpTblRL2nBXiAAAAgHqEoAQVOh1OIgQBAAAADQhBCSp0Opwk1RCCAAAAAEmEoITVfCSIZbIBAAAAiRCUsFKddtkMI/icFeIAAACAeoSgBGUYRthoECNBAAAAQD1CUAJzc8NUAAAAoBlCUAJL54apAAAAQDOEoAQWeq8gpsMBAAAA9QhBCcwdskw2I0EAAABAPUJQAksPWxiBEAQAAABIhKCEFj4SxHQ4AAAAQCIEJbT0NEaCAAAAgKYIQQksPWQkqKqGkSAAAABAIgQltIy0xhBU5wuozuuPYjUAAABAbCAEJbDQhREkpsQBAAAAEiEooYWOBElSJVPiAAAAAEJQIktvEoK4LggAAAAgBCU0RoIAAACA5ghBCSzFbpPLaQ8+r+JeQQAAAAAhKNFlhCyOwEgQAAAAQAhKeKHXBbE6HAAAAEAISnihN0xlJAgAAAAgBCW80MURWB0OAAAAIAQlvHRCEAAAABCGEJTgMtIaF0bgmiAAAACAEJTwuCYIAAAACEcISnCh1wRV1nhlmmYUqwEAAACijxCU4EKvCfIHTHm8/ihWAwAAAEQfISjBZYRMh5OYEgcAAAAQghJcesjCCJJUVcPiCAAAAEhuhKAEFzodTpIqaxkJAgAAQHIjBCW49NSmI0GEIAAAACQ3QlCCs9tsSnOF3CuIEAQAAIAkRwhKAqE3TK3khqkAAABIcoSgJBB2r6BqRoIAAACQ3AhBSSDT7Qw+rqipi2IlAAAAQPQRgpJAprtxJKiiihAEAACA5EYISgK9QkaCypkOBwAAgCRHCEoCmWEhiJEgAAAAJDdCUBLolR6+MIJpmlGsBgAAAIguQlASCJ0O5w+YqvawTDYAAACSFyEoCYROh5OkchZHAAAAQBIjBCWB0NXhJKmCxREAAACQxAhBSYCRIAAAAKARISgJOFJsSnOlBJ9X1DASBAAAgORFCEoSvbhhKgAAACCJEJQ0MtO5VxAAAAAgEYKSRmZa40hQOQsjAAAAIIkRgpJEr5CRIKbDAQAAIJkRgpJE6ApxLIwAAACAZEYIShKhCyOwRDYAAACSGSEoSYROh6uq8cofCESxGgAAACB6CEFJInQ6nCmpssYXvWIAAACAKCIEJYnMkOlwklTBMtkAAABIUoSgJNErZCRIkvZzXRAAAACSFCEoSWS4HbLbjODzsgpPFKsBAAAAoocQlCRshqHeGY2jQWWVhCAAAAAkJ0JQEsnKcAUfl1UyHQ4AAADJiRCURLLDQhAjQQAAAEhOhKAkkkUIAgAAAAhBySQrM+SaoAqmwwEAACA5EYKSSNORINM0o1gNAAAAEB2EoCQSGoL8AVOVNd4oVgMAAABEByEoiWRlhN8wtZR7BQEAACAJEYKSSFamK+w5y2QDAAAgGRGCkojblSJHSuO3nBXiAAAAkIwIQUnEMIywKXGEIAAAACSjiIegmTNn6tBDD9Whhx6qm2++uc19V65cqauvvloTJkzQyJEjdcopp+imm27Sxo0bI11m0ghfIY7pcAAAAEg+EQ1Br776qpYuXdqhfZ988klNmzZNb775pvbt26fU1FTt2bNH//nPf3TuuefqzTffjGSpSSMsBLEwAgAAAJJQxEJQWVmZ/vjHPyozM1PDhg1rc9/ly5frrrvuUiAQ0Pnnn6/ly5frs88+09KlSzV58mTV1dXphhtu0NatWyNVbtJoeq8gAAAAINlELATdddddKi4u1rXXXqucnJw2973vvvtkmqZOPvlk3XHHHcrOzpYk9evXTw888IAKCgrk8Xj0l7/8JVLlJo3skBXiSglBAAAASEIRCUEfffSRXnrpJR199NG64IIL2tx3y5YtWrNmjSTpiiuuaLbd6XRqxowZkqTFixerqqrK+oKTSFZm48II5ZV18vkDUawGAAAA6HmWh6Da2lr95je/UUpKiu644w7ZbG2/xfLlyyVJ6enpOu6441rcZ+LEiZIkj8ejlStXWltwkunbKy342JRUwnVBAAAASDIpVp/wz3/+s7Zv364ZM2bosMMOa3f/zZs3S5KGDRsmu93e4j45OTnq06ePSkpKtGnTpmAoiiSbzYj4e7T3vpGoITc7Nex5aXmt+vVxW/4+sSbSfU1G9NR69DQy6Kv16Kn16Glk0FfrJUpPLQ1Ba9eu1YIFCzRgwADNnj27Q8fs3btXkpSfn9/mfvn5+SopKVFRUVG362yP3W5TTk5GxN+nPdnZ6RE5Z4rdkM9vSpJq/WZMfK09KRJ9TXb01Hr0NDLoq/XoqfXoaWTQV+vFc08tmw7n9/v161//Ovh/t7tjowvV1dWSpNTU1Db3a9jONUHdY7MZys1q/N7sLa2JYjUAAABAz7NsJOiJJ57Q2rVr9d3vflennXaaVaeNCr8/oLKy6qi8t81mBFN1aWmVAgHT8vfIynBqd3F9mNy+p1zFxZWWv0es6Ym+Jht6aj16Ghn01Xr01Hr0NDLoq/VioadZWW7Z7d0by7EkBG3fvl1z585Venq6brvttk4d2zBiVFtb2+Z+DdvT03tm2C0W/pAEAmZE6sjp1Tjqtq+sJia+1p4Uqb4mM3pqPXoaGfTVevTUevQ0Muir9eK5p5aEoDvvvFM1NTW65pprlJmZ2WzKmt/vlyT5fL7gtrS0NNlsNuXl5UmSCgsL23yPhu25ublWlJzUcnqHhKD9bYdPAAAAINFYEoJ27twpSXrggQf0wAMPtLrfokWLtGjRIknSf/7zHx1++OEaNmyYpPpV4vx+f4srxBUXF6ukpESSNHz4cCtKTmp9Q0JQaYVHgYAZ16t7AAAAAJ0RkZuldsb48eMl1S94sHr16hb3WbZsmSTJ5XJp9OjRPVZbogqdDucPmCqr5F5BAAAASB6WjAS9/PLLbW6fPn26PvnkE51zzjm66667wrYNHTpUI0eO1Jo1azR//nyNGTMmbLvX69Xjjz8uSZo8eXKPXROUyEKnw0n1U+L69Gp7dT4AAAAgUUR9JEiSrr/+ehmGoaVLl+r2229XWVmZpPrrgK699lqtX79eLperw/ceQtuyM10yQma/FZdzXRAAAACSR0yEoPHjx+umm26SYRh67rnnNG7cOB1//PGaOHGi3nrrLTmdTt17770aMmRItEtNCCl2m7IzXcHnxSyOAAAAgCRi2X2CuuuSSy7RqFGjtGDBAq1evVplZWXq16+fxo4dq8svv1wjRoyIdokJJadXqkrK668FYoU4AAAAJJMeCUH/+Mc/OrTfmDFjml0ThMjo2ztNG3fslyQVldVEuRoAAACg58TEdDj0vPzstODjvaXVUawEAAAA6FmEoCSV16cxBJWUe+T1+aNYDQAAANBzCEFJKj/bHXxsStpbypQ4AAAAJAdCUJIKnQ4nEYIAAACQPAhBScqd6lBGmiP4vJAQBAAAgCRBCEpi+SHXBRWyOAIAAACSBCEoiYVeF1RYQggCAABAciAEJbG80GWyuVcQAAAAkgQhKImFjgSVlHtU52WZbAAAACQ+QlASC70mSGI0CAAAAMmBEJTE8rLcYc8LSwhBAAAASHyEoCTmTk1Rr3Rn8PmekqooVgMAAAD0DEJQkhuQ0zgatGsfK8QBAAAg8RGCklz/vunBx7uKGQkCAABA4iMEJbkBOY0haE9xtQKmGcVqAAAAgMgjBCW50OlwHq9fJeW1UawGAAAAiDxCUJILnQ4nSbuLuS4IAAAAiY0QlOR6pzvldqUEn+/ax3VBAAAASGyEoCRnGIb6922cErebxREAAACQ4AhBCFscgWWyAQAAkOgIQVD/kBC0u7hKJivEAQAAIIERgqABIYsjVNX6tL+qLorVAAAAAJFFCIIG5YavELejqDJKlQAAAACRRwiCsjNdYSvE7djL4ggAAABIXIQgyDAMDcrLCD7fvpeRIAAAACQuQhAkSYNzG0MQ0+EAAACQyAhBkCQNzAtfIc7nD0SxGgAAACByCEGQFD4S5PObKizhfkEAAABITIQgSJIGNlkhbjtT4gAAAJCgCEGQJKU6U5SblRp8zgpxAAAASFSEIAQNYnEEAAAAJAFCEIIGhyyT/W1hRRQrAQAAACKHEISgg/tlBh/vr6xTWaUnitUAAAAAkUEIQtDB+Zlhz7/dw2gQAAAAEg8hCEHZmS71cjuCz5kSBwAAgERECEKQYRg6KGRKHCNBAAAASESEIIQ5JDQEMRIEAACABEQIQpjQ64JKyj0qr66LYjUAAACA9QhBCBO6QpwkbWNKHAAAABIMIQhhcnqlKj01Jfh8KyEIAAAACYYQhDCGYWhI/17B51t3lUexGgAAAMB6hCA0M3RAYwjavGu/TNOMYjUAAACAtQhBaGbogN7BxxXVXu3bXxvFagAAAABrEYLQTOhIkFQ/GgQAAAAkCkIQmslIcyi/jzv4fAvXBQEAACCBEILQoqEhiyMQggAAAJBICEFo0bCBjSFoW2GFvL5AFKsBAAAArEMIQouGhSyO4POb+raQ+wUBAAAgMRCC0KJBeelyOezB5xt3lEWvGAAAAMBChCC0yG6zha0St3E7K8QBAAAgMRCC0KqCwVnBxxt3lCnATVMBAACQAAhBaFXBoMbrgqpqfdq9ryqK1QAAAADWIAShVUMH9JbdZgSfb9jBlDgAAADEP0IQWuVy2nVQfmbwOYsjAAAAIBEQgtCmESFT4jZsL5PJdUEAAACIc4QgtOnQkMURSso9KiqriV4xAAAAgAUIQWjToQdlyWi8LEhfbyuLWi0AAACAFQhBaJM71RF2XdC6b0ujWA0AAADQfYQgtOvwg7ODj7/+tpTrggAAABDXCEFo12EHNYag/VV12l1cHcVqAAAAgO4hBKFdIwb1li3kwqCvtzElDgAAAPGLEIR2pblSNGRA43VBX31DCAIAAED8IgShQ444uE/w8bpvS+UPBKJYDQAAANB1hCB0yJFDGkNQjcenrbsrolgNAAAA0HWEIHTI0AG9lOq0B5+v3VoSxWoAAACAriMEoUNS7LawpbIJQQAAAIhXhCB0WOiUuC27ylVd641iNQAAAEDXEILQYaEhKGCarBIHAACAuEQIQoflZaUpLzst+PzzTfuiWA0AAADQNYQgdJhhGDpmeN/g8y83F7NUNgAAAOIOIQidcuyIxhBUWePV5p3lUawGAAAA6DxCEDpl+KDeSk9NCT7/fCNT4gAAABBfCEHoFLvNpqOG5QSfr+a6IAAAAMQZQhA67eiQ64IKS6q1u7gqitUAAAAAnUMIQqeNHJIju80IPmeVOAAAAMQTQhA6zZ2aosMOygo+57ogAAAAxBNCELrkmBG5wcebdu5XRXVdFKsBAAAAOo4QhC45enjj4gimWX/PIAAAACAeEILQJX17p2lwXkbw+aoNRVGsBgAAAOg4QhC6LPTGqf/bUqLqWl8UqwEAAAA6hhCELjv+8PzgY58/oNUbGQ0CAABA7Eux8mSrVq3S0qVLtWbNGm3fvl3FxcXyeDzKysrSEUccobPOOktnnnmmDMNo9RxLlizRM888o7Vr16qyslJ5eXmaOHGiZs6cqf79+1tZLrppYN90DcrN0I6iSknSx+sKddIovkcAAACIbZaGoH/84x96/fXXg8/dbrdSUlJUVFSkpUuXaunSpfr3v/+tRx55RBkZGc2O/+Mf/6gFCxZIkmw2m9xut3bs2KFnn31WixYt0rx58zR69GgrS0Y3jT0iTzuW1oegr7aWqqK6TpluZ5SrAgAAAFpn6XS4sWPH6ve//71efvllrVq1SqtXr9bnn3+uDz74QHPmzJHdbtfHH3+su+++u9mxL7zwQjAAzZo1S5999plWrlypN954Q8cee6wqKip01VVXqayszMqS0U0nhEyJC5imVq5nShwAAABim6Uh6IILLtBPfvITHXbYYUpPTw++npubq//7v//T5ZdfLkl65ZVX5PV6g9u9Xq8efPBBSdL555+v2bNnB48fOnSo5s2bp9zcXJWWlurRRx+1smR0U25WmoYO6BV8/vFXhVGsBgAAAGhfjy6McNRRR0mSamtrtX///uDry5cv1969eyVJV1xxRbPjevfurQsuuECStGjRIpmm2QPVoqPGhowGbdheptIKTxSrAQAAANpm6TVB7Vm5cqWk+muFcnIab7a5YsUKSdLw4cM1cODAFo+dOHGiHnroIe3Zs0dbtmzRsGHDIlqrzdb64g099b7RqqGzTjgiXwsXb5QpyZT02fq9mnLCQdEuK0w89jXW0VPr0dPIoK/Wo6fWo6eRQV+tlyg9jXgIqq6u1u7du/Wf//xHjz/+uCTpoosuClshbvPmzZKkESNGtHqe0G2bNm2KaAiy223KyWm+cENPy85Ob3+nGJCTk6GRw/rqf5v3SZJWbijShWccEeWqWhcvfY0n9NR69DQy6Kv16Kn16Glk0FfrxXNPIxKCioqKNGHChGavOxwOTZs2TVdffXXY6w1T4fLz85sd0yAtLU29evVSeXm5ioq4+D7WTDx2YDAEbdhWpl1FlRqQG/0gCQAAADQVkRBkt9vVt29fSVJ5ebnq6upkGIYuuugizZgxQ3a7PWz/6upqSVJqamqb501NTVV5ebmqqqoiUXaQ3x9QWVl1RN+jNTabEUzVpaVVCgTi4/qnwwf1VordkM9fX++i9zfpvFOHR7mqRvHa11hGT61HTyODvlqPnlqPnkYGfbVeLPQ0K8stu717SxtEJAT16dNHH374oSQpEAho586dWrBggZ588km9+OKLmjt3rsaMGROJt7ZMLPwhCQTMmKijI9ypKTpmRK4++7p+VG/Zl7v1wwlDZLf16NobHRJPfY0X9NR69DQy6Kv16Kn16Glk0FfrxXNPI/4bqs1m0+DBg3XbbbfpxhtvVGlpqa699lrV1NQE93G73ZLqV41rS8P20OW3ETtOPqp/8PH+yjqt2VISxWoAAACAlvXoP9P/9Kc/ldPpVGFhod5///3g63l5eZKkwsLW7zFTU1Oj8vJySfX3HULsOfKQPsrOdAWff/Dl7ihWAwAAALSsR0OQy+VSVlaWJGnbtm3B1xtWetu4cWOrx4ZuGz48dq41QSObzdBJoxpHgz7ftE/lVXVRrAgAAABorkdDUFVVlUpLSyU1ToGTpPHjx0uqXyp7165dLR7bMHLUr18/DR06NMKVoqsmhEyJ8wdMLV+7J4rVAAAAAM1ZFoJ8Pl+7+zz55JPyer2SpOOPPz74+rhx45SXlyfTNDV//vxmx5WXl2vhwoWSpLPPPjvsHkOILXlZaTrsoKzg82Vf7pZpxucFcwAAAEhMloWgjRs36vzzz9dLL72kPXsa//XfNE1t2rRJd9xxhx566CFJ0pQpU1RQUBDcx+FwaM6cOZKkhQsXau7cucFls7du3aorr7xSRUVFys7O1qWXXmpVyYiQk48aEHy8a1+Vtuwuj2I1AAAAQDhLl8j+/PPP9fnnn0uqv/7H7XarurpaHo8nuM9pp52mu+++u9mxU6dO1ddff62nnnpKDz30kB555BG53W5VVFRIkjIyMvTwww8HrylC7Bp9aK6efjtFNZ760cH3Vu3UsAG9o1wVAAAAUM+yEDRkyBD96U9/0ooVK/S///1P+/btU1lZmZxOp4YOHaqjjjpKZ599tk466aRWz3HrrbfqxBNP1DPPPKM1a9aoqqpKAwcO1MSJEzVz5kwNGDCg1WMRO5wOu048sp8Wr9ohSfp4XaHOO3WYeme42jkSAAAAiDzLQlBqaqrOPPNMnXnmmd06z6RJkzRp0iSLqkK0TB4zKBiCfH5TS1bv1I9OZkELAAAARF+Prg6H5JHfx62jh+UEny9ZvVNenz+KFQEAAAD1CEGImNOPHxx8XFHt1Yq1rd8MFwAAAOgphCBEzGEHZ2tQbkbw+dufbWe5bAAAAEQdIQgRYxiGvnv8oODzHUVVWvdtaRQrAgAAAAhBiLBxR+Srl9sRfP7Wp9ujWA0AAABACEKEOVLsOvXYgcHnX24u1rd7KqJYEQAAAJIdIQgRd9roQXI6Gj9qL3+wNYrVAAAAINkRghBxvdxOfee4xmuDPt+0j9EgAAAARA0hCD1iytiDGA0CAABATCAEoUe0NBr0zZ7yKFYEAACAZEUIQo+ZMvYguRz24PNXPvgmesUAAAAgaRGC0GN6uZ06bXTjSnGfb9qnzbv2R7EiAAAAJCNCEHrUlBPCR4MWLt4o0zSjWBEAAACSDSEIPaqX26nvjT0o+HzzznJ9sm5vFCsCAABAsiEEocd9b+xBys50BZ8//94m1Xn9UawIAAAAyYQQhB7ncth13qnDgs+Lyz1689PtUawIAAAAyYQQhKgYe0S+hg7oFXz++vJvVVrhiWJFAAAASBaEIESFzTD00++MCD73eP3693ubolgRAAAAkgUhCFEzbGBvjTsyP/h8xdpCfbm5OIoVAQAAIBkQghBVPz51uNJcKcHnT735tWo8vihWBAAAgERHCEJUZWe6dP5pw4PPS8o9emHp5ihWBAAAgERHCELUnXxUfx12UFbw+burdmrD9rKo1QMAAIDERghC1BmGoYvPOEzOlMaP4xNvfC1PHfcOAgAAgPUIQYgJedlu/ejkocHnhSXVem7xhihWBAAAgERFCELMOP34wRoWcu+g97/YrU/WFUaxIgAAACQiQhBihs1maObZR4atFrfgv1+rqKwmilUBAAAg0RCCEFNys9J08RmHBZ/XePya98pa+fyBKFYFAACAREIIQsw5/rA8TTx6QPD5ll3l+teSTVGsCAAAAImEEISY9NPJIzSgb3rw+Tuf7dCyL3dFsSIAAAAkCkIQYpLLYdf//WikXE578LV/vLlem3buj2JVAAAASASEIMSsgX3TNfOsI2QceO7zm5r74v9UUl4b1boAAAAQ3whBiGnHjsjVjyY23j+ovKpOf3nhS9V4fFGsCgAAAPGMEISYd+b4g3X8YXnB59sKKzX3xf/J62PFOAAAAHQeIQgxzzAMzfj+4TqkX2bwtXXfluqx175SwDSjWBkAAADiESEIccHltGvOj49WfnZa8LVP1u3VwsUbZRKEAAAA0AmEIMSNXulOXXv+Meqd7gy+9s5nO/TSsi0EIQAAAHQYIQhxJTcrTdf85GiluRqXzn71o28JQgAAAOgwQhDizkH5mbp66lFyOho/vgQhAAAAdBQhCHHp0IOydc2Pj24WhP793maCEAAAANpECELcaikI/ffjbXr8tXXy+Vk+GwAAAC0jBCGuNQQhl6PxGqEP1+zR3Bf/J0+dP4qVAQAAIFYRghD3Dj0oWzdeeKwy0hzB177cXKx7F67W/kpPFCsDAABALCIEISEM6d9Lt0wfrb69U4OvbdlVrjsWfKZv91REsTIAAADEGkIQEka/Pm7dMn20BudlBF8rrfDozqdX6tN1hVGsDAAAALGEEISEkpXh0s0/O07HDO8bfK3OF9DDL63Rk6+uZcEEAAAAEIKQeNJcKZo1dZR+MP7gsNdfWLJJtzzyoUrKa6NUGQAAAGIBIQgJyWYYmnrKMM086wg5Uxo/5uu+KdFvHvtEX2zaF8XqAAAAEE2EICS0cUf2020XjVG/Pu7ga5U1Xv35+S+14L9fq7bOF8XqAAAAEA2EICS8QXkZun3G8Tr1uEFhry/9fJd++/gn2rijLDqFAQAAICoIQUgKqc4UXXvhcbr6J8co1dl4Y9Wislrd9fQq/ePN9aqu9UaxQgAAAPQUQhCShmEY+u7Yg3XHpWNVMKh38HVT0pLVO3XL3z/Wiq/2yDTN6BUJAACAiCMEIenkZafpxguP008mDZcjZNGE8qo6zX/lK93/z89VWFodxQoBAAAQSYQgJCWbzdD3xh6k3196go4c0ids29pvSvXrRz/Rv5dsYoocAABAAiIEIanlZbt17U+O1pU/PFK9053B133+gN74eJtunrdCi1fu4CarAAAACYQQhKRnGIZOODxff7h8nE47bqCMkG2VNV498/YG3TJ/hd77fKe8PsIQAABAvCMEAQe4U1M07fRD9dtLjteRh2SHbdu3v1ZP/Xe9fjV/ud5dtUNenz9KVQIAAKC7CEFAEwflZ+ra84/RNT85WgNz08O2lZR79PRbG3TT35brvx9vUxXXDAEAAMSdlGgXAMQiwzA0amiOjhzSRyvXF2nRh1u1o6gquL2ssk7/WrJJ//lgi04a2V+TxwxS/5z0Ns4IAACAWEEIAtpgMwwdf1ieRh+aq9Ub9mnRh1u1bW9lcHudN6Alq3dqyeqdGjmkj04bPUijhvaR3cYgKwAAQKwiBAEdYDMMjT40V8cV9NUXm4r15ifbtH57Wdg+a7aWaM3WEmVlOHXSqP46+aj+yst2R6dgAAAAtIoQBHSCYRg6ZkRfHTOir7YVVuidz3ZoxVeFYUtol1XW6bXl3+q15d/qsIOydNKo/jquIFdpLv64AQAAxAJ+KwO66KD8TM34weE6b9IwLV29U0u/2KWSck/YPl9vK9PX28q04L/rddSwHI09Il9HDcuRy2GPUtUAAAAgBAHd1Mvt1FknDdEPxh+itd+UaNkXu7R64z75A2ZwH58/oFUbirRqQ5FcDruOHp6jY0b01aihOUpPdUSxegAAgORDCAIsYrPVryg3amiOyqvrtGLNHn3wvz3aUVQZtp/H69cn6/bqk3V7ZTMMFQzurWOG10+x4xoiAACAyCMEARHQy+3U6SccpNNPOEg791Xp03WF+virQhWW1oTtFzDN4JS5he9uUv8ct0YNzdERh2SrYHCWUp38EQUAALAav2EBETawb7oGnjxUP5wwRNsKK/XJ14X6YlOxdu2rarbv7uJq7S6u1lufbpfdZmhI/146/OBsHXFItoYO6C1HCktvAwAAdBchCOghhmHo4H6ZOrhfpn586nDtLa3W55uK9fnGIm3Yvl8B0wzb3x8wtWnnfm3auV+LPvpGzhSbhg7opWEDe2vYwN4aPrC3MtK4nggAAKCzCEFAlORlu3X68W6dfvxgVdV69b8txfrf5mJ99W2p9lfWNdu/zhcITp1rkN/HreED64PRIf0yNbBvBqNFAAAA7SAEATEgPdWhcUf007gj+sk0Te0urta6b0u17ttSff1tqao9vhaPKyypVmFJtT783x5Jkt1maEDfdB2Un6GD8jN1cH6mBudlcI8iAACAEPxmBMQYw6gPMgP6pus7owcpEDC1bW+Fvv62TJt31U+Pa2mkSKqfQrd9b6W2760MBiNDUl4ftwbnpgfPO7BvuvL7uJViZ9QIAAAkH0IQEONsNkOH9OulQ/r1kiSZpqni8lpt2rlfm3eUa9PO/dpRVBl2X6JQphpHjLS+KPi63WYoLzutPhjl1Iej/D5pystyy53KjwYAAJC4+E0HiDOGYahv7zT17Z2mcUf0kyR5fX7t3FelbYWV+nZPhbYVVmj73krV+QKtnscfMIOr0a1UUdi2jDSH8rLT6v/LOvD/bLdys9LUy+2QYRgR/RoBAAAiiRAEJABHir1xtOjo+tcCAVO7S6q1rbA+FO3cV6Xd+6pUXO5p93yVNV5V1ni1ZVd5C+9lU59eqcrtnaqB+ZnKzU6T22FXn0yX+vZOVVaGSzYbIQkAAMQuQhCQoGw2o/4eRX3TNf7IfsHXazw+7S6u1s59ldq9r1o791Vp174qFZfXdui8Xl8gOL1uzdaSZtvtNkPZmS5lZbqUleFSdoar/nmG88D/67e5HHbLvlYAAIDOIAQBSSbNlaKhA3pp6IBeYa97vH7tK6vR3tIaFZbWaG9ZjYpKq1VYWqPi8lqZLV9y1Iw/YGrf/lrt2992qHK7UpSV6VJ2hlO9M1zqle5UL7dTmW6Heqc7lel2qld6/XMWcAAAAFYiBAGQJLkcdg3MzdDA3Ixm23z+wIFgU6Pi/bUqLq9V8X6P9lfXaW9pjYr313Q4JDWo9vhU7fFp176qdvdNT00JhqJebocy053q7XYqPc2h9LQUZaQ5lJ7qUHqaQxmpKUp1pcjGdUsAAKAVhCAA7Uqx29Svj1v9+riDr9lshnJy6gNT4d7y+nB0ICCVlNeqrLJOpRUelVV6VFrpUXlVXaeDUoOqWp+qan3aU1Ldof1thiF3akowFKWnOZQefO4Ifx7yOI3wBABAUiAEAei2FLtNuVlpys1Ka3UffyCg8ipvYzA68P+yCo/2V9WpvLpO5VV1qqj2trrcd0cFTDO4uENhJ44zJKW67Ep1psjtSlGqy640Z4rSXClKc9nr/++sH2lKa9iWmnJgn8btToeNFfQAAIhhhCAAPcJusyk7s36RhLaYpqmqWp8qDoSi8mrvgXAU8vzA46oar6prfepeZAp5b0k1Hr9qPH6VVrS/il5rbIahtANhKixAuVKU5qx/nOpKkcthV6rTLqfDJpejPlTlVtYp1Zmi2mqPHPb61x0OGyNUAABYiBAEIKYYhqGMA9PU+uekt7t/IGCq2uNTVa1XVTUN/68fBaqq9amqxlv/Wq2v/rWG12u9XZ6e125NB4JcVa3PsnM2BCWXwy6X0x587EixyZlikyPFJkeKPeSx7cC2+hDlsNvkPLB/wzHOFLtSgo8bz5FiNxjJAgAkNEtD0O7du/X222/r448/1rp161RUVCS73a78/HyNHTtW06ZNU0FBQZvnWLlypRYsWKBVq1aprKxMOTk5GjdunC677DKNGDHCynIBJACbrTE0KbvjxwVMU7UeX5Ow5FNNnU+1Hr+qPT7Venyq8fhUU+ev/3/I41qPr82b0VqtzhtQnTegCnkj/l6G1BiWHHY57DY5HAeCkt0mhyM8bDlTwsOVI6WFcOawBc/TEMicKbaQEGbn/lIAgB5jmKY1/xa6e/duTZo0SaGnc7vd8vl8qqurkySlpKTo5ptv1vTp01s8x5NPPqm7775bgUCg/l+DMzJUUVEhSXI6nbrvvvs0ZcoUK8ptk98fUElJ+ytWRULoxebFxZUKdPPaCNSjr9ajp/Wr5tWGBqQmIamm6TaPX7V1vgMByy+P98B/dX7LpvTFM5thKMVuKMVuq/9/ik0pNpvsdkMOu012u00OuyG73da4T+jjA/s3PYfDblPv3mly2G2qra2T3WaT3WaE/Wez1Z837HnwP9uB7YZSgttswf2SEX/+rUdPI4O+Wi8WetqnT7rs3bx9hmUjQX6/X6ZpasKECfrRj36k8ePHq2/fvvL7/frqq69011136bPPPtP/+3//T4cccohOPvnksOOXL1+uu+66S6Zp6vzzz9c111yj7Oxs7dmzR7///e/1zjvv6IYbblBBQYGGDBliVdkA0GUpdpsy0mz1o1DdYJqmvL6AvP6A3Ompqq3zqbCoUjUenzxev+oOBKVgaPL65akLyOP1y+vzy+sLqM4XqD+HL6C6A681vl7/3OeP7b/8A6apOp/ZoyNs3WVIwYAUFpiaBqyG4GWvf940TIVuaxa+QrcbzcNas3MF9ws/f0t1Nh7b8B62kGPr/2NqJIBEZNlIUEVFhbZv364jjjiixe11dXU677zztH79eo0bN04LFiwI2z516lStWbNGJ598sh599NFmx06dOlUbNmzQ97//fT3wwANWlNwqRoISD321Hj21XqR7Ggg0hq06r19ef0Beb3hQqmsnSNX56o8JniNsn/r9mgaySF17hZ5hGGoepmz1o2yGYUimKZthyDDqP8PBx4Yh48Bzm6Hwx0b9eRr2szV93mRb6LlbfK8DYc0W9r4HHrdzbpvtQD0N29T83E3rbvvr7UANzd5Xstttyu2bKYmfqVbi7yrrxUJPY2okKDMzs9UAJNVPZzv77LN17733as2aNWHbtmzZEnztiiuuaPHYGTNm6Oabb9bixYtVVVWl9PT2L5gGADSy2Yz6RRVkl7o5etVRpmnKfyB8hYWpA0HK620MTT5//WhV/f/bfuz31x/v95sH/h+6T+i+9c8DDaNtvkC3l2BPNqapA32MdiXJoWkQs9kkQw3hKzSINYao5oErPGAFH4cFxlbO18K5go8NQ4YtPJwaB/4vHXgshb1uKHwf24EXDYUcH3KMgl97Yw8awndDHQ3nDT9P/Quh7ylDshuGepXUyDCk8vJayTSD7xP+/o3naak2hfQr7LWwYw/Uf2BbQ+gNvqaQ14zw15rWgsjr0dXhXK76pXEDgfCpDsuXL5ckpaen67jjjmvx2IkTJ0qSPB6PVq5cGXwOAIhdRsh1Pmltr44eMU3/1dLnDygQMOX31wc0f+DA86b/+QMKmKH7mQf2CxzYbjbZHgg5tmFboMmxoeeqD3H+A+cI315fk6/hOH/4+QPt1In41fCv6nwfk1t4GJNCA15D+FMw8B3YHnys8KB34EHDsQ3/a7aPQgNt+HsoJPzlZqXp/847WoPyMiPag0jr0RD0ySefSFKzFeI2b94sSRo2bJjsdnuLx+bk5KhPnz4qKSnRpk2bIh6ConWxa+j7JusFt5FAX61HT61HTyOjaV9TZJPsknpmMKzHmaZZP3oTaBr2moc4v9kYsBr29YWFrMaA6PMfCG4BUwFTSktzKBAwVVlVp0CgPvQ1/N80FXwe/rj+2Pp9TAUCBx43HG+q/rHqt9Xvb8o8sF/jvi2cI/j+jceFniOslmbbDvQt2t884ADTlEyZavxQxs6nc3dxtf7xxjr96ucnxPXfVT0Wgr744gu98847kqTzzjsvbNvevXslSfn5+W2eIz8/XyUlJSoqKopMkQfY7bbgvxpGU3Y2U/4igb5aj55aj55GBn1FW0KDVFhwawiRDQEv0Bj4wgJWkzBYv5+a7Nf8tdDj/U3etyEcNu4X+h6tvWd4+Azdv9nXE2hpv/a/Tv+B4GmajcFbUvDYsG0KeS41O67pPg3vGTrqybU8saVvVpqk+P6Z2iMhqKysTNddd50CgYCOPvponXvuuWHbq6urJUmpqaltnqdhe1VVdBYtAAAAicswDqyMF+1C0ExoQJXCA5Wahqv6Aw68puDtW5oGLkn1o4AHThBoeM1sfB4W1kLqaDnMtXaOxu2mGgNqy+9RH0xNHfhazSZfc7OvP/x5cP/Qr1+hParfv7EfLfSzteMOnDMvO00nHzvI8u9xT4t4CKqtrdWsWbO0fft2ZWdn6/777291ylus8PsDKiurjsp722xGMFWXllbxLx8Woa/Wo6fWo6eRQV+tR0+tR08jo72+hq4vFvzt1JDCLqBR/E75igSbzZDLUd+taH1Ws7LcsbM6XEvq6uo0a9Ysffrpp8rMzNRjjz2mQYOaJ0e32y2pPjC1pWF7T6wMFws/fAIM/0YEfbUePbUePY0M+mo9emo9ehoZ9NV68dzT7kWoNtTV1enqq6/WsmXL5Ha79fe//11HHnlki/vm5eVJkgoLC9s8Z8P23Nxca4sFAAAAkDQiEoK8Xq9++ctfasmSJUpLS9P8+fN17LHHtrr/sGHDJNWvEuf3t3wjguLiYpWUlEiShg8fbn3RAAAAAJKC5SHI6/Vqzpw5evfdd5Wamqq//vWvOv7449s8Zvz48ZLqFzxYvXp1i/ssW7ZMUv29hkaPHm1t0QAAAACShqUhyOfz6brrrtM777wjp9Ophx9+OBhw2jJ06FCNHDlSkjR//vxm271erx5//HFJ0uTJk3vkmiAAAAAAicmyEOT3+3XDDTfozTfflNPp1Ny5czVhwoQOH3/99dfLMAwtXbpUt99+u8rKyiTVXwd07bXXav369XK5XJo9e7ZVJQMAAABIQpatDrdq1Sq9/vrrkurXGL/lllva3P/5559X//79g8/Hjx+vm266SXfffbeee+45LVy4UJmZmSovL5ckOZ1O3XvvvRoyZIhVJQMAAABIQpaFoEAgEHzs9Xq1b9++NvdvaQGESy65RKNGjdKCBQu0evVqlZWVqV+/fho7dqwuv/xyjRgxwqpyAQAAACQpy0LQ2LFjtX79+m6fZ8yYMRozZowFFQEAAABAcxG7TxAAAAAAxCJCEAAAAICkQggCAAAAkFQIQQAAAACSCiEIAAAAQFIhBAEAAABIKoQgAAAAAEmFEAQAAAAgqRCCAAAAACQVQhAAAACApEIIAgAAAJBUCEEAAAAAkgohCAAAAEBSIQQBAAAASCqEIAAAAABJhRAEAAAAIKkQggAAAAAkFUIQAAAAgKRCCAIAAACQVAhBAAAAAJKKYZqmGe0iYo1pmgoEotcWu70+m/r9gajVkIjoq/XoqfXoaWTQV+vRU+vR08igr9aLdk9tNkOGYXTrHIQgAAAAAEmF6XAAAAAAkgohCAAAAEBSIQQBAAAASCqEIAAAAABJhRAEAAAAIKkQggAAAAAkFUIQAAAAgKRCCAIAAACQVAhBAAAAAJIKIQgAAABAUiEEAQAAAEgqhCAAAAAASYUQBAAAACCpEIIAAAAAJBVCEAAAAICkQggCAAAAkFQIQQAAAACSCiEIAAAAQFIhBAEAAABIKoQgAAAAAEmFEAQAAAAgqRCCAAAAACSVlGgXgEalpaV69NFHtXjxYu3evVsul0sFBQU677zz9KMf/Sja5cWcF198Ub/61a/a3W/58uXq06dPi9uWLFmiZ555RmvXrlVlZaXy8vI0ceJEzZw5U/3797e65KirqanRJ598orVr1+qrr77S2rVrtWvXLknSjTfeqEsvvbTdc6xcuVILFizQqlWrVFZWppycHI0bN06XXXaZRowY0eaxPp9Pzz33nF5++WVt3bpVgUBAgwcP1hlnnKFLLrlEqamplnydPa07fZ0+fbo++eSTNs9/6qmnat68eW2+/xNPPKH//ve/2r59u2w2m4YOHaqzzz5bF154oex2e9e+sCjavXu33n77bX388cdat26dioqKZLfblZ+fr7Fjx2ratGkqKCho8xx8VsN1p6d8Tlu3atUqLV26VGvWrNH27dtVXFwsj8ejrKwsHXHEETrrrLN05plnyjCMVs/Rnb+LErGv3enpaaedpp07d7Z5/p/97Gf6zW9+0+r2ZPp9bObMmVq6dKkk6ZxzztFdd93V6r6J9jPVME3T7PF3RTObN2/Wz3/+cxUVFUmS3G636urq5PP5JElnnHGG7r//ftlsDN41aAhBNput1ZAjSa+99pqysrKavf7HP/5RCxYskCTZbDa53W5VVlZKkjIzMzVv3jyNHj06IrVHy8cff6yLLrqoxW0dCUFPPvmk7r77bgUCARmGoYyMDFVUVEiSnE6n7rvvPk2ZMqXFY6urq3XppZdq1apVwf3tdrtqamokScOGDdPTTz/d5vcyVnWnrw2/XLrdbrnd7hb3OfHEE3Xvvfe2uG3fvn2aNm2atm7dKklKS0uT3+9XXV2dJGnMmDF67LHH4uqX9t27d2vSpEkK/evJ7XbL5/MFv66UlBTdfPPNmj59eovn4LMarrs95XPaumuuuUavv/568Lnb7ZZpmsHPiySNHTtWjzzyiDIyMpod352/ixK1r93paUMIysjIaPXrnjp1qq699toWtyXT72OvvvqqrrvuuuDztkJQQv5MNRF1Ho/H/O53v2sWFBSY3/ve98wvv/wy+PrTTz9tHnnkkWZBQYE5d+7cKFcaW1544QWzoKDAnDRpUqePff75582CggKzoKDA/Mtf/mJWVlaapmmamzdvNs8//3yzoKDAHDt2rFlaWmpx1dG1YsUK8/jjjzd//vOfm3fffbf56quvmieddJJZUFBgPvroo20e+9FHH5mHHnqoWVBQYP761782S0pKTNM0zd27d5u/+MUvzIKCAnPUqFHmli1bWjz+xhtvNAsKCszjjjvOfO2110y/32+apml+8MEHwRouuugia7/gHtKdvk6bNi34OeyKn/3sZ2ZBQYF50kknmR9++KFpmqbp9/vN1157zTz22GPNgoIC81e/+lWXzh0t27dvNwsKCswZM2aYr7zyillUVGSapmn6fD7zyy+/NC+88MLgn9/333+/2fF8Vpvrbk/5nLbuueeeM//5z3+a69atC/5dYpqmuXfvXvORRx4xDz/8cLOgoMC87bbbmh3b3b+LErWv3enppEmTzIKCAvOFF17o9Psm0+9jpaWl5vjx483Ro0ebZ5xxhllQUGDedNNNLe6bqD9TCUEx4OmnnzYLCgrMo446yty2bVuz7X/729/MgoIC85hjjgl+8ND1EFRXV2dOmDAh+Ie5qbKysuAfynvvvdeqcmOCz+dr9lrDXxjt/bJ+7rnnmgUFBeall17abJvH4zHPPPNMs6CgwJwzZ06z7V9//XXwB+irr77abPuqVauCvwgsXbq0E19RbOhOX7vzy+WSJUuCfVu1alWz7YsWLTILCgrMww47zNy4cWOnzx8t5eXl5tq1a1vd7vF4zLPOOqvVvzj5rDbX3Z7yOe26+++/P/h3fF1dXfD17v5dlMx9ba2nptm9EJRMv4/ddNNNZkFBgfnMM88E/3y3FoIS9Wdq/I/lJYCXX35ZkvT9739fgwcPbrZ92rRpcrvdqq6u1jvvvNPT5SWc5cuXa+/evZKkK664otn23r1764ILLpAkLVq0KGz6SLzr6tzwLVu2aM2aNZJa7pnT6dSMGTMkSYsXL1ZVVVXY9oY+Dh48WN///vebHX/sscfqhBNOkCS98sorXaoxmqI1577hZ8fYsWN17LHHNtv+gx/8QIMGDVIgENCiRYt6urwuy8zM1BFHHNHqdqfTqbPPPluSgp/LBnxWW9adnnZXon5OO+qoo46SJNXW1mr//v3B17v7d1Ey97W1nnZXsvw+9tFHH+mll17S0UcfHfyMtSaRf6YSgqKsqqpKX375pSRp4sSJLe6Tnp6uMWPGSKr/4KJ7VqxYIUkaPny4Bg4c2OI+Dd+LPXv2aMuWLT1WW6xavny5pPrP4nHHHdfiPg0983g8WrlyZdi2hp6ffPLJrV4c3HB8w3uhfQ19be1nh2EYOvnkkyUlXl9dLpckKRAIhL3OZ7XrWutpdyXz51RS8DPmdruVk5MTfL27fxclc19b62l3JMvvY7W1tfrNb36jlJQU3XHHHe1e25TIP1MJQVG2ZcuW4L/utLXSUcOqG5s2beqRuuJJSUmJzjnnHB1zzDE65phjNGXKFP3617/W+vXrW9x/8+bNktTmSiah2+h5Y8+GDRvW6qhHTk5O8KLG0J6Zptmhnjd8/vft26fS0lJL6o4nixYt0qRJkzRy5EidcMIJuuCCC/T3v/89eIF0UyUlJSopKZHUsc9yon2OG1Yqa/pzk89q17XW01B8Tjumurpamzdv1p/+9Cc9/vjjkqSLLroo7JfA7vxdlIx97UhPQz3++OOaMGGCRo4cqXHjxunnP/+5nn32WXk8nhb3T5bfx/785z9r+/btuuiii3TYYYe1u38i/0xliewoaxgKl6T8/PxW92vYFro/6tXU1GjdunXq1auXqqur9c033+ibb77RCy+8oOuuu67ZylwNPWyr32lpaerVq5fKy8uDK8Qks470rGF7SUlJWM+qqqpUXV3d7vGh24qKipSdnd2dkuPOt99+K4fDobS0NJWXl2v16tVavXq1nn32Wf31r39t9pdVZ392VFVVqaqqSunp6ZH5AnrQF198EZyKct5554Vt47PaNW31NBSf09YVFRVpwoQJzV53OByaNm2arr766rDXu/N3UbL0tbM9DbVx40alpqYqNTVVpaWlWrFihVasWKHnnntO8+bN04ABA8L2T4bfx9auXasFCxZowIABmj17doeOSeSfqYSgKGv4cEhqcwnLtLQ0SWo21zKZ5eXlafbs2Tr99NN1yCGHyOl0yuv1auXKlbr//vv1xRdf6J577lFeXp7OOuus4HENPW9vydDU1FSVl5fTc3WuZ1L45zT0ccPnuK1jmx6T6E444QRNnTpVJ510kvr27SvDMFRWVqbXXntN999/v3bt2qXLLrtMixYtCvuLIfRnR1t9Dd0Wj78ENVVWVqbrrrtOgUBARx99tM4999yw7XxWO6+9nkp8TjvCbrerb9++kqTy8nLV1dXJMAxddNFFmjFjRrN/Re/O30XJ0tfO9lSSvvOd72jMmDE6/vjjg6MTe/fu1fPPP69HHnlEGzZs0MyZM/Xiiy/K6XQGj0v038f8fr9+/etfB//f2lL3TSXyz1SmwyFuTZgwQbNmzVJBQUHwB5nD4dC4ceP09NNP65hjjpEk3XfffZbPcQesMnv2bP3oRz9Sbm5ucFpHVlaWfvazn2nBggVyOBwqKirSE088EeVKo6+2tlazZs3S9u3blZ2drfvvvz8ubwQZSzraUz6n7evTp48+/PBDffjhh8GRtWnTpunJJ5/UmWeeqc8++yzaJcadrvT01ltv1ZQpU8LuOZOXl6df/OIX+vOf/yypfpTopZde6rGvIxY88cQTWrt2rb773e/qtNNOi3Y5MYEQFGWhSby2trbV/RpuKBVv/4oTLU6nU3PmzJFUf0HpV199FdzW0PO2+h26nZ53r2ehj0NvdNfasU2PSWYjR44MrqazZMmSsG2hPzva6mvotnjua11dnWbNmqVPP/1UmZmZeuyxxzRo0KBm+/FZ7biO9rQ9fE6bs9lsGjx4sG677TbdeOONKi0t1bXXXhv2dXbns5qMfe1IT9vTMEoktf1ZTbTfx7Zv3665c+cqPT1dt912W6eOTeSfqYSgKMvLyws+LiwsbHW/hm2h+6NtRx99dPDx9u3bg48bethWv2tqalReXi5Jys3NjVCF8aMjPQvdHtqz9PT04A/RjnzGmx6f7Bo+x6GfYanzPzvS09Pj6i/tUHV1dbr66qu1bNkyud1u/f3vf9eRRx7Z4r58VjumMz3tCD6nrfvpT38qp9OpwsJCvf/++8HXu/N3UbL3tbWedkTD8trd/azG0+9jd955p2pqajRz5kxlZmYGrxFr+M/v90uSfD5f8LWGGTSJ/DOVEBRlw4YNC04t2LBhQ6v7bdy4UVL9UpronmHDhklq7GlLQrfR88aebd68OfjDsqni4uLgakWhPTMMo0M9b/j89+3bNyEuNI+0Pn36BKd7dOSzHK+fY6/Xq1/+8pdasmSJ0tLSNH/+/BbvidKAz2r7OtvT7kiWz2lbXC6XsrKyJEnbtm0Lvt6dv4uSva+t9bQ7Evn3sZ07d0qSHnjgAR133HHN/mtY1nrRokXB1xpW2E3kn6mEoChzu93Bf0FbtmxZi/tUV1cH572eeOKJPVZbvPviiy+Cj0OneIwfP15S/R/oXbt2tXhsw78s9evXT0OHDo1glfGhoWdVVVVavXp1i/s0fH5dLpdGjx7d4vEffPBBqzefbTi+YV/Ua/gctzRNqaFXrf3sME1TH3zwQdi+8cTr9WrOnDl69913lZqaqr/+9a86/vjj2zyGz2rbutLTjkjmz2l7qqqqgsv+hk656u7fRcnc19Z62hEN9wJq+lnl97GWJfLPVEJQDGi4S/frr7+uHTt2NNv+zDPPqLq6Wm63W5MnT+7p8mJSa3+QGni93uAFkPn5+WHTPMaNG6e8vDyZpqn58+c3O7a8vFwLFy6UVP+9ae0eBMlk6NChGjlypCS12DOv1xu8b8PkyZObTbs466yzZBiGtm3bpjfeeKPZ8V988YU+/vhjSdIPf/hDq8uPWe19jr/66iu9/vrrkqRJkyY1297ws+Pjjz8OC/0N3njjDW3fvl02my1shcR44PP5dN111+mdd96R0+nUww8/3KG/IPmstq6rPeVz2jqfz9fuPk8++aS8Xq8khQXO7v5dlKh97U5P2/usvvfee8EQ09ZnNdF+H3v55Ze1fv36Vv874YQTJEnnnHNO8LXDDz9cUmL/TCUExYAf//jHOvjgg1VTU6MrrrhCa9askVQ/Z/vZZ58N/jJ/2WWXxeXUi0jYuXOnfvzjH+tf//pX2A8qn8+nTz75RNOnTw/+i8X1118fdkdkh8MRXDRh4cKFmjt3bnAJyK1bt+rKK68MrlPf9B5DiWD//v3BG+2VlJQE5/3W1NSEvV5XVxd23PXXXy/DMLR06VLdfvvtKisrk1Q/l/faa6/V+vXr5XK5Wrz3QEFBQfCH229+8xu98cYbwfddvny5Zs2aJan+l4KGO5zHm670df78+frVr36lZcuWqaKiIuxczz33nH7+85/L6/UqNzdXM2bMaPaep556qo4//niZpqnZs2cH77YdCAT0/9u7/5iqygeO45+rggi3wB9ohjiNlAqt5UrcKBGtCHQp/q4BNcxsuWouSx1rC0KjTW2pa6Y1AsGtIt10QqFXm25N1IANDRQ1TQVZCFe9oCJyv38wzpcb94Jfwa/Jeb82tnvPc57nnPtwued+OOc8T35+vj7++GNJLQe2++nSjVu3bunDDz/UL7/8Im9vb23YsMHtXCGe8F5tryt9yvvUs4qKCs2bN0/bt2/XxYsXjeVOp1MnT55Uamqq1q9fL0mKjo52mYSzq8eintqvXenTtLQ0paWl6fDhwy434v/999/6+uuvjXmFRo0a5XYoeL6PuddTP1Mtzs5iM/4vTp06pddff92YZMrPz0+NjY3GfzpiYmK0du1aly/zZnb+/HlNmTLFeN63b1/5+vrK4XAYfebl5aWlS5fqjTfecNvGypUrlZWVJallLgJfX1/jAG+1WrVp06Z2p3V7gsmTJxvXB3fks88+a3eQyMjI0Oeffy6n0ymLxaIHHnjAuGnX29tbq1evVnR0tNv2GhoatGDBAhUVFUlq+Z316tXLOFCFhIQoOzvbZVjT+8md9Ov69eu1YcMGo8xqtap37966cuWK8R/N4OBgbdiwwePM3jU1NYqPj9eff/4pqWUuhubmZmNW9GeeeUbffvttp3M8/JscPnxY8fHxklr+jv39/TtcPzc3V0OHDnVZxnvVVVf6lPepZ2VlZZoxY4bxvPVY1NDQYLw2qeXzYe3atW7nSunKsagn9mtX+nT58uXG0Netf/dOp9MlvD/xxBP66quv2n1mtDLj97GEhAQdOnRIcXFxSk9Pd7tOT/xMJQT9i9TV1Wnz5s2y2WyqqqpS3759FRoaqtmzZ7t8IKBlOMUff/xRxcXFKisrU21trRwOh3x8fBQcHKzw8HDNnz9fI0eO7LCdffv2KScnR0ePHlV9fb0CAwM1ceJEvfXWW+1mk+4puhKCJOnIkSPKzMxUcXGx7Ha7Bg4cqPDwcC1cuFCjRo3qsM2mpiZt3bpVO3bs0OnTp+V0OjVs2DDFxMQoKSnpvjpQ/9Od9GtFRYV27dql4uJinTt3TnV1dbp586b8/f01evRovfDCC4qLi+v0mvdr164pIyND+fn5On/+vCwWix555BFNnz5dr7322n03l05hYaESExNve32bzeb2XhTeq//VlT7lferZ9evXtWfPHh08eFClpaWqqamR3W6Xt7e3HnroIT355JN65ZVXFBER0WE7XTkW9bR+7UqflpSUqKCgQCUlJaqsrFRdXZ2am5sVEBCgsLAwvfzyy5o6daq8vLw63AezfR+7nRAk9bzPVEIQAAAAAFPpOefyAAAAAOA2EIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAOgG27ZtU2hoqEJDQ+/1rgAAOkEIAgAAAGAqhCAAAAAApkIIAgAAAGAqhCAAAAAAptLnXu8AAKDnuXXrlnbu3Km8vDz98ccfstvt8vPz0+jRozVt2jTNmjVLffq4HoIKCwuVmJgoSbLZbLJarfrmm2+0e/duXbx4UT4+PhozZowSExMVGRnZ4fZv3ryp3Nxc5efn68SJE3I4HPL399eYMWM0ffp0xcTEyGKxdNhGbW2tcnJydODAAZ09e1b19fUaNGiQgoODNWnSJMXGxmro0KEd1t+8ebNsNpuqqqrk6+ursWPH6s0339SECRNusycBAHeDxel0Ou/1TgAAeo6LFy/qnXfe0bFjxzyu89RTT2njxo0aMGCAsaxtCMrKytLy5ctVWVnptn5SUpKWLVvmtqy6uloLFy7U8ePHPW7/ueee05dffimr1eq2PC8vT8nJyWpoaPDYRlxcnNLT043n27Zt04oVKyRJu3btUlJSkqqrq9vVs1gsSk9P14wZMzy2DQC4uwhBAIBu43A4NGvWLJ05c0b9+/fXokWL9PzzzyswMFBXrlzRvn37tG7dOl29elXh4eH67rvv1KtXy5XZbUPQsGHDVFtbq3fffVcvvvii/Pz8VFpaqi+++EJlZWWSpLS0NM2ZM8dl+42NjZozZ47Ky8vVq1cvJSQkaPbs2Ro8eLD++usvZWVlaefOnZKkqKgobdy4sd1rsNlsWrx4sZxOpwIDA7Vo0SJFRERo4MCBunr1qsrKyrR79275+PgoNTXVqNc2BAUHB6u5uVnvvfeeJkyYIG9vbxUVFSktLc04K7R3717179+/+38JAIBOEYIAAN1m5cqVysrKUmBgoL7//nsFBQW1W6esrExz585VY2Oj1q1bp+joaEmuIchisSgzM1Ph4eEudR0Oh+bNm6eTJ08qICBA+/fvV9++fY3yzMxMrVq1SpKUnJxstNdWWlqatmzZIknauHGjoqKijLJr164pKipKdXV1Gj58uHJycjR48GC3r7Wpqcnlkr62IWjIkCHavn27Bg4c6FLn2LFjmjlzpiTpk08+0auvvuq2bQDA3cXACACAbtHQ0KDc3FxJ0vvvv+82AEnS448/rmnTpkmScVbmn6Kjo9sFIEmyWq364IMPJEl2u102m82lvHX7o0ePVkJCgtu2ly5dqoCAAEnSDz/84FK2Y8cO1dXVSWoJKZ4CkKR29zS1tXjx4nYBSJLCwsKMyVRLS0s91gcA3F2EIABAtygpKTHuoRk/frzq6+s9/nQWBF566SWP25k4caJ8fHwkSUVFRcbyy5cvq6KiQlJLiPI08IGPj49x9qdtfUn67bffJLWcyYmIiOj0NXe0j56MHDlSklRTU3PH7QMAuobR4QAA3eL06dPG445CTFu1tbVul4eEhHis06dPH40YMULl5eU6f/68sbyqqkqtV3g/+uijHW63tdxut8vhcBgDJJw7d06S9Nhjj93W/nvS0Rmkfv36SWq59A4AcG9wJggA0C2uXr36P9dpbGx0u9zX17fDeq3l9fX1xjKHw2E89vPz67B+23J3bXRWvzO9e/fuUn0AwN3FmSAAQLdoG1x+//13j8NP346OhqZuW942rLTd3u3W99RG22AEAOh5OBMEAOgWwcHBxuPWy8ru1KlTpzyWNTU16ezZs5JahtJuNXToUOM+oNZ7gzxpLQ8ICHAJT8OHD5cklZeX39mOAwDuC4QgAEC3GD9+vLy9vSW1TBbaFQUFBR7L9u/fb9xPM27cOGO5v7+/Ro0a1Wn969eva9++fe3qSzIGQ6iurjYGSQAA9DyEIABAt7BarZo7d66klvl6Dh482OH6N27c0IULF9yWFRQUqLCwsN3y+vp6rVmzRlLLWZwpU6a4lLdOnnr8+HHl5OS4bXvt2rWy2+2SpHnz5rmUTZs2TQMGDJAkpaSkdDiCW1NTk8cyAMC/GyEIANBtlixZopCQEDU2NmrBggVKSUnRkSNHdOnSJV2+fFlnz57Vnj17lJKSosjISP38889u23n44Yf19ttvKyMjQxcuXFBtba3279+v+Ph4nTx5UlLLfD9tJ0qVpPnz5xsju6WlpSk9PV0VFRWy2+06evSoPvroI2VmZkqSoqKiNGnSJJf6/fr108qVK2WxWHTmzBnNnDlT2dnZOnPmjK5cuaLKykrZbDatWLFCqamp3dx7AID/FwZGAAB0G6vVqqysLC1ZskSHDh3S1q1btXXrVo/re3l5uV2+atUqLVu2TOnp6UpPT29XnpSUZJz1acvb21ubNm3SwoULdfz4cWVkZCgjI6PdehEREVq9erXbbU+ePFlr1qxRcnKyqqur9emnn7pdLy4uzuPrAgD8uxGCAADdatCgQdqyZYt+/fVX7dy5U8XFxbp06ZJu3bqlBx98UCNGjNC4ceM0ZcoUPf30027bCAoK0rZt27R582bt3btXVVVV8vHx0dixY5WYmKjIyEiP2x8yZIh++ukn5ebmKi8vTydOnFB9fb38/f0VFham6dOnKzY21uNkqpI0depUPfvss8rOztaBAwd07tw53bhxQ4GBgQoKCtLkyZMVGxvb5b4CANwbFmfrzHIAANxDhYWFSkxMlCTZbDaXkd8AAOhO3BMEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQYHQ4AAACAqXAmCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmMp/APh2jCTWxIkvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 424, + "width": 416 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "follicular_model.history[\"elbo_validation\"].plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eiWLO9aRm_ua" + }, + "source": [ + "### Predict and plot assigned cell types" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uDP7enWk6vzl" + }, + "source": [ + "Predict the soft cell type assignment probability for each cell." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 9/400: 2%|▏ | 8/400 [00:00<00:27, 14.29it/s, v_num=1, train_loss_step=64.5, train_loss_epoch=63.8]" - ] + "execution": { + "iopub.execute_input": "2024-09-30T15:43:22.356706Z", + "iopub.status.busy": "2024-09-30T15:43:22.356612Z", + "iopub.status.idle": "2024-09-30T15:43:22.405966Z", + "shell.execute_reply": "2024-09-30T15:43:22.405711Z" }, + "id": "VbC-kp6I-5NM", + "outputId": "95d227e8-aa38-4f36-a5d1-2d772606c1c6" + }, + "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 9/400: 2%|▏ | 9/400 [00:00<00:24, 15.98it/s, v_num=1, train_loss_step=64.5, train_loss_epoch=63.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 9/400: 2%|▏ | 9/400 [00:00<00:24, 15.98it/s, v_num=1, train_loss_step=55.4, train_loss_epoch=59.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 10/400: 2%|▏ | 9/400 [00:00<00:24, 15.98it/s, v_num=1, train_loss_step=55.4, train_loss_epoch=59.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 10/400: 2%|▎ | 10/400 [00:00<00:24, 15.98it/s, v_num=1, train_loss_step=52, train_loss_epoch=54.4] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 11/400: 2%|▎ | 10/400 [00:00<00:24, 15.98it/s, v_num=1, train_loss_step=52, train_loss_epoch=54.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 11/400: 3%|▎ | 11/400 [00:00<00:22, 17.19it/s, v_num=1, train_loss_step=52, train_loss_epoch=54.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 11/400: 3%|▎ | 11/400 [00:00<00:22, 17.19it/s, v_num=1, train_loss_step=47.1, train_loss_epoch=50.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 12/400: 3%|▎ | 11/400 [00:00<00:22, 17.19it/s, v_num=1, train_loss_step=47.1, train_loss_epoch=50.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 12/400: 3%|▎ | 12/400 [00:00<00:22, 17.19it/s, v_num=1, train_loss_step=48.3, train_loss_epoch=47.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 13/400: 3%|▎ | 12/400 [00:00<00:22, 17.19it/s, v_num=1, train_loss_step=48.3, train_loss_epoch=47.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 13/400: 3%|▎ | 13/400 [00:00<00:22, 17.19it/s, v_num=1, train_loss_step=43.8, train_loss_epoch=44.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 14/400: 3%|▎ | 13/400 [00:00<00:22, 17.19it/s, v_num=1, train_loss_step=43.8, train_loss_epoch=44.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 14/400: 4%|▎ | 14/400 [00:00<00:21, 18.31it/s, v_num=1, train_loss_step=43.8, train_loss_epoch=44.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 14/400: 4%|▎ | 14/400 [00:00<00:21, 18.31it/s, v_num=1, train_loss_step=43.8, train_loss_epoch=42.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 15/400: 4%|▎ | 14/400 [00:00<00:21, 18.31it/s, v_num=1, train_loss_step=43.8, train_loss_epoch=42.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 15/400: 4%|▍ | 15/400 [00:01<00:21, 18.31it/s, v_num=1, train_loss_step=42.9, train_loss_epoch=41] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 16/400: 4%|▍ | 15/400 [00:01<00:21, 18.31it/s, v_num=1, train_loss_step=42.9, train_loss_epoch=41]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 16/400: 4%|▍ | 16/400 [00:01<00:20, 18.75it/s, v_num=1, train_loss_step=42.9, train_loss_epoch=41]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 16/400: 4%|▍ | 16/400 [00:01<00:20, 18.75it/s, v_num=1, train_loss_step=37.4, train_loss_epoch=39.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 17/400: 4%|▍ | 16/400 [00:01<00:20, 18.75it/s, v_num=1, train_loss_step=37.4, train_loss_epoch=39.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 17/400: 4%|▍ | 17/400 [00:01<00:20, 18.75it/s, v_num=1, train_loss_step=38.1, train_loss_epoch=38.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 18/400: 4%|▍ | 17/400 [00:01<00:20, 18.75it/s, v_num=1, train_loss_step=38.1, train_loss_epoch=38.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 18/400: 4%|▍ | 18/400 [00:01<00:20, 19.10it/s, v_num=1, train_loss_step=38.1, train_loss_epoch=38.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 18/400: 4%|▍ | 18/400 [00:01<00:20, 19.10it/s, v_num=1, train_loss_step=38.3, train_loss_epoch=37] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 19/400: 4%|▍ | 18/400 [00:01<00:20, 19.10it/s, v_num=1, train_loss_step=38.3, train_loss_epoch=37]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 19/400: 5%|▍ | 19/400 [00:01<00:19, 19.10it/s, v_num=1, train_loss_step=37.4, train_loss_epoch=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 20/400: 5%|▍ | 19/400 [00:01<00:19, 19.10it/s, v_num=1, train_loss_step=37.4, train_loss_epoch=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 20/400: 5%|▌ | 20/400 [00:01<00:19, 19.10it/s, v_num=1, train_loss_step=35, train_loss_epoch=35.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 21/400: 5%|▌ | 20/400 [00:01<00:19, 19.10it/s, v_num=1, train_loss_step=35, train_loss_epoch=35.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 21/400: 5%|▌ | 21/400 [00:01<00:19, 19.46it/s, v_num=1, train_loss_step=35, train_loss_epoch=35.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 21/400: 5%|▌ | 21/400 [00:01<00:19, 19.46it/s, v_num=1, train_loss_step=32.5, train_loss_epoch=34.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 22/400: 5%|▌ | 21/400 [00:01<00:19, 19.46it/s, v_num=1, train_loss_step=32.5, train_loss_epoch=34.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 22/400: 6%|▌ | 22/400 [00:01<00:19, 19.46it/s, v_num=1, train_loss_step=32.4, train_loss_epoch=33.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 23/400: 6%|▌ | 22/400 [00:01<00:19, 19.46it/s, v_num=1, train_loss_step=32.4, train_loss_epoch=33.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 23/400: 6%|▌ | 23/400 [00:01<00:19, 19.60it/s, v_num=1, train_loss_step=32.4, train_loss_epoch=33.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 23/400: 6%|▌ | 23/400 [00:01<00:19, 19.60it/s, v_num=1, train_loss_step=33.7, train_loss_epoch=32.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 24/400: 6%|▌ | 23/400 [00:01<00:19, 19.60it/s, v_num=1, train_loss_step=33.7, train_loss_epoch=32.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 24/400: 6%|▌ | 24/400 [00:01<00:19, 19.60it/s, v_num=1, train_loss_step=31.7, train_loss_epoch=32.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 25/400: 6%|▌ | 24/400 [00:01<00:19, 19.60it/s, v_num=1, train_loss_step=31.7, train_loss_epoch=32.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 25/400: 6%|▋ | 25/400 [00:01<00:19, 19.60it/s, v_num=1, train_loss_step=30.1, train_loss_epoch=31.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 26/400: 6%|▋ | 25/400 [00:01<00:19, 19.60it/s, v_num=1, train_loss_step=30.1, train_loss_epoch=31.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 26/400: 6%|▋ | 26/400 [00:01<00:18, 19.77it/s, v_num=1, train_loss_step=30.1, train_loss_epoch=31.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 26/400: 6%|▋ | 26/400 [00:01<00:18, 19.77it/s, v_num=1, train_loss_step=29.7, train_loss_epoch=31] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 27/400: 6%|▋ | 26/400 [00:01<00:18, 19.77it/s, v_num=1, train_loss_step=29.7, train_loss_epoch=31]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 27/400: 7%|▋ | 27/400 [00:01<00:18, 19.77it/s, v_num=1, train_loss_step=31.1, train_loss_epoch=30.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 28/400: 7%|▋ | 27/400 [00:01<00:18, 19.77it/s, v_num=1, train_loss_step=31.1, train_loss_epoch=30.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 28/400: 7%|▋ | 28/400 [00:01<00:18, 19.77it/s, v_num=1, train_loss_step=32, train_loss_epoch=29.9] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 29/400: 7%|▋ | 28/400 [00:01<00:18, 19.77it/s, v_num=1, train_loss_step=32, train_loss_epoch=29.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 29/400: 7%|▋ | 29/400 [00:01<00:18, 19.87it/s, v_num=1, train_loss_step=32, train_loss_epoch=29.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 29/400: 7%|▋ | 29/400 [00:01<00:18, 19.87it/s, v_num=1, train_loss_step=30.6, train_loss_epoch=29.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 30/400: 7%|▋ | 29/400 [00:01<00:18, 19.87it/s, v_num=1, train_loss_step=30.6, train_loss_epoch=29.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 30/400: 8%|▊ | 30/400 [00:01<00:18, 19.87it/s, v_num=1, train_loss_step=28.8, train_loss_epoch=29] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 31/400: 8%|▊ | 30/400 [00:01<00:18, 19.87it/s, v_num=1, train_loss_step=28.8, train_loss_epoch=29]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 31/400: 8%|▊ | 31/400 [00:01<00:18, 19.87it/s, v_num=1, train_loss_step=30.1, train_loss_epoch=28.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 32/400: 8%|▊ | 31/400 [00:01<00:18, 19.87it/s, v_num=1, train_loss_step=30.1, train_loss_epoch=28.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 32/400: 8%|▊ | 32/400 [00:01<00:18, 19.92it/s, v_num=1, train_loss_step=30.1, train_loss_epoch=28.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 32/400: 8%|▊ | 32/400 [00:01<00:18, 19.92it/s, v_num=1, train_loss_step=27.1, train_loss_epoch=28.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 33/400: 8%|▊ | 32/400 [00:01<00:18, 19.92it/s, v_num=1, train_loss_step=27.1, train_loss_epoch=28.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 33/400: 8%|▊ | 33/400 [00:01<00:18, 19.92it/s, v_num=1, train_loss_step=27.1, train_loss_epoch=27.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 34/400: 8%|▊ | 33/400 [00:01<00:18, 19.92it/s, v_num=1, train_loss_step=27.1, train_loss_epoch=27.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 34/400: 8%|▊ | 34/400 [00:01<00:18, 19.92it/s, v_num=1, train_loss_step=26.1, train_loss_epoch=27.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 35/400: 8%|▊ | 34/400 [00:01<00:18, 19.92it/s, v_num=1, train_loss_step=26.1, train_loss_epoch=27.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 35/400: 9%|▉ | 35/400 [00:02<00:18, 19.97it/s, v_num=1, train_loss_step=26.1, train_loss_epoch=27.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 35/400: 9%|▉ | 35/400 [00:02<00:18, 19.97it/s, v_num=1, train_loss_step=27.4, train_loss_epoch=27.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 36/400: 9%|▉ | 35/400 [00:02<00:18, 19.97it/s, v_num=1, train_loss_step=27.4, train_loss_epoch=27.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 36/400: 9%|▉ | 36/400 [00:02<00:18, 19.97it/s, v_num=1, train_loss_step=26.9, train_loss_epoch=26.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 37/400: 9%|▉ | 36/400 [00:02<00:18, 19.97it/s, v_num=1, train_loss_step=26.9, train_loss_epoch=26.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 37/400: 9%|▉ | 37/400 [00:02<00:18, 19.97it/s, v_num=1, train_loss_step=26.4, train_loss_epoch=26.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 38/400: 9%|▉ | 37/400 [00:02<00:18, 19.97it/s, v_num=1, train_loss_step=26.4, train_loss_epoch=26.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 38/400: 10%|▉ | 38/400 [00:02<00:18, 19.99it/s, v_num=1, train_loss_step=26.4, train_loss_epoch=26.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 38/400: 10%|▉ | 38/400 [00:02<00:18, 19.99it/s, v_num=1, train_loss_step=24.9, train_loss_epoch=26.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 39/400: 10%|▉ | 38/400 [00:02<00:18, 19.99it/s, v_num=1, train_loss_step=24.9, train_loss_epoch=26.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 39/400: 10%|▉ | 39/400 [00:02<00:18, 19.99it/s, v_num=1, train_loss_step=26.6, train_loss_epoch=26.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 40/400: 10%|▉ | 39/400 [00:02<00:18, 19.99it/s, v_num=1, train_loss_step=26.6, train_loss_epoch=26.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 40/400: 10%|█ | 40/400 [00:02<00:18, 19.99it/s, v_num=1, train_loss_step=25.1, train_loss_epoch=25.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 41/400: 10%|█ | 40/400 [00:02<00:18, 19.99it/s, v_num=1, train_loss_step=25.1, train_loss_epoch=25.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 41/400: 10%|█ | 41/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=25.1, train_loss_epoch=25.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 41/400: 10%|█ | 41/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=24.9, train_loss_epoch=25.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 42/400: 10%|█ | 41/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=24.9, train_loss_epoch=25.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 42/400: 10%|█ | 42/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=25.4, train_loss_epoch=25.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 43/400: 10%|█ | 42/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=25.4, train_loss_epoch=25.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 43/400: 11%|█ | 43/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=24, train_loss_epoch=25.2] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 44/400: 11%|█ | 43/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=24, train_loss_epoch=25.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 44/400: 11%|█ | 44/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=24, train_loss_epoch=25.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 44/400: 11%|█ | 44/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=25.9, train_loss_epoch=25]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 45/400: 11%|█ | 44/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=25.9, train_loss_epoch=25]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 45/400: 11%|█▏ | 45/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=24.8, train_loss_epoch=24.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 46/400: 11%|█▏ | 45/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=24.8, train_loss_epoch=24.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 46/400: 12%|█▏ | 46/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=25.1, train_loss_epoch=24.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 47/400: 12%|█▏ | 46/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=25.1, train_loss_epoch=24.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 47/400: 12%|█▏ | 47/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=25.1, train_loss_epoch=24.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 47/400: 12%|█▏ | 47/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=22.9, train_loss_epoch=24.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 48/400: 12%|█▏ | 47/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=22.9, train_loss_epoch=24.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 48/400: 12%|█▏ | 48/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=25.9, train_loss_epoch=24.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 49/400: 12%|█▏ | 48/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=25.9, train_loss_epoch=24.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 49/400: 12%|█▏ | 49/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=24.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 50/400: 12%|█▏ | 49/400 [00:02<00:17, 20.03it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=24.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 50/400: 12%|█▎ | 50/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=24.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 50/400: 12%|█▎ | 50/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=23, train_loss_epoch=24] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 51/400: 12%|█▎ | 50/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=23, train_loss_epoch=24]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 51/400: 13%|█▎ | 51/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=23, train_loss_epoch=23.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 52/400: 13%|█▎ | 51/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=23, train_loss_epoch=23.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 52/400: 13%|█▎ | 52/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=23.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 53/400: 13%|█▎ | 52/400 [00:02<00:17, 20.02it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=23.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 53/400: 13%|█▎ | 53/400 [00:02<00:17, 20.01it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=23.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 53/400: 13%|█▎ | 53/400 [00:02<00:17, 20.01it/s, v_num=1, train_loss_step=24.6, train_loss_epoch=23.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 54/400: 13%|█▎ | 53/400 [00:02<00:17, 20.01it/s, v_num=1, train_loss_step=24.6, train_loss_epoch=23.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 54/400: 14%|█▎ | 54/400 [00:02<00:17, 20.01it/s, v_num=1, train_loss_step=24.7, train_loss_epoch=23.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 55/400: 14%|█▎ | 54/400 [00:02<00:17, 20.01it/s, v_num=1, train_loss_step=24.7, train_loss_epoch=23.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 55/400: 14%|█▍ | 55/400 [00:03<00:17, 20.01it/s, v_num=1, train_loss_step=24.7, train_loss_epoch=23.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 56/400: 14%|█▍ | 55/400 [00:03<00:17, 20.01it/s, v_num=1, train_loss_step=24.7, train_loss_epoch=23.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 56/400: 14%|█▍ | 56/400 [00:03<00:17, 20.03it/s, v_num=1, train_loss_step=24.7, train_loss_epoch=23.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 56/400: 14%|█▍ | 56/400 [00:03<00:17, 20.03it/s, v_num=1, train_loss_step=22, train_loss_epoch=23.3] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 57/400: 14%|█▍ | 56/400 [00:03<00:17, 20.03it/s, v_num=1, train_loss_step=22, train_loss_epoch=23.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 57/400: 14%|█▍ | 57/400 [00:03<00:17, 20.03it/s, v_num=1, train_loss_step=22.5, train_loss_epoch=23.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 58/400: 14%|█▍ | 57/400 [00:03<00:17, 20.03it/s, v_num=1, train_loss_step=22.5, train_loss_epoch=23.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 58/400: 14%|█▍ | 58/400 [00:03<00:17, 20.03it/s, v_num=1, train_loss_step=23.8, train_loss_epoch=23.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 59/400: 14%|█▍ | 58/400 [00:03<00:17, 20.03it/s, v_num=1, train_loss_step=23.8, train_loss_epoch=23.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 59/400: 15%|█▍ | 59/400 [00:03<00:17, 20.03it/s, v_num=1, train_loss_step=23.8, train_loss_epoch=23.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 59/400: 15%|█▍ | 59/400 [00:03<00:17, 20.03it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=23] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 60/400: 15%|█▍ | 59/400 [00:03<00:17, 20.03it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=23]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 60/400: 15%|█▌ | 60/400 [00:03<00:16, 20.03it/s, v_num=1, train_loss_step=23, train_loss_epoch=22.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 61/400: 15%|█▌ | 60/400 [00:03<00:16, 20.03it/s, v_num=1, train_loss_step=23, train_loss_epoch=22.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 61/400: 15%|█▌ | 61/400 [00:03<00:16, 20.03it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=22.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 62/400: 15%|█▌ | 61/400 [00:03<00:16, 20.03it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=22.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 62/400: 16%|█▌ | 62/400 [00:03<00:16, 20.04it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=22.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 62/400: 16%|█▌ | 62/400 [00:03<00:16, 20.04it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=22.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 63/400: 16%|█▌ | 62/400 [00:03<00:16, 20.04it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=22.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 63/400: 16%|█▌ | 63/400 [00:03<00:16, 20.04it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=22.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 64/400: 16%|█▌ | 63/400 [00:03<00:16, 20.04it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=22.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 64/400: 16%|█▌ | 64/400 [00:03<00:16, 20.04it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=22.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 65/400: 16%|█▌ | 64/400 [00:03<00:16, 20.04it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=22.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 65/400: 16%|█▋ | 65/400 [00:03<00:16, 20.02it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=22.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 65/400: 16%|█▋ | 65/400 [00:03<00:16, 20.02it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=22.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 66/400: 16%|█▋ | 65/400 [00:03<00:16, 20.02it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=22.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 66/400: 16%|█▋ | 66/400 [00:03<00:16, 20.02it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=22.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 67/400: 16%|█▋ | 66/400 [00:03<00:16, 20.02it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=22.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 67/400: 17%|█▋ | 67/400 [00:03<00:16, 20.02it/s, v_num=1, train_loss_step=21.9, train_loss_epoch=22.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 68/400: 17%|█▋ | 67/400 [00:03<00:16, 20.02it/s, v_num=1, train_loss_step=21.9, train_loss_epoch=22.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 68/400: 17%|█▋ | 68/400 [00:03<00:16, 20.03it/s, v_num=1, train_loss_step=21.9, train_loss_epoch=22.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 68/400: 17%|█▋ | 68/400 [00:03<00:16, 20.03it/s, v_num=1, train_loss_step=23.8, train_loss_epoch=22.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 69/400: 17%|█▋ | 68/400 [00:03<00:16, 20.03it/s, v_num=1, train_loss_step=23.8, train_loss_epoch=22.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 69/400: 17%|█▋ | 69/400 [00:03<00:16, 20.03it/s, v_num=1, train_loss_step=21, train_loss_epoch=22.2] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 70/400: 17%|█▋ | 69/400 [00:03<00:16, 20.03it/s, v_num=1, train_loss_step=21, train_loss_epoch=22.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 70/400: 18%|█▊ | 70/400 [00:03<00:16, 20.03it/s, v_num=1, train_loss_step=21.9, train_loss_epoch=22.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 71/400: 18%|█▊ | 70/400 [00:03<00:16, 20.03it/s, v_num=1, train_loss_step=21.9, train_loss_epoch=22.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 71/400: 18%|█▊ | 71/400 [00:03<00:16, 20.01it/s, v_num=1, train_loss_step=21.9, train_loss_epoch=22.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 71/400: 18%|█▊ | 71/400 [00:03<00:16, 20.01it/s, v_num=1, train_loss_step=22, train_loss_epoch=22.1] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 72/400: 18%|█▊ | 71/400 [00:03<00:16, 20.01it/s, v_num=1, train_loss_step=22, train_loss_epoch=22.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 72/400: 18%|█▊ | 72/400 [00:03<00:16, 20.01it/s, v_num=1, train_loss_step=23.6, train_loss_epoch=22.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 73/400: 18%|█▊ | 72/400 [00:03<00:16, 20.01it/s, v_num=1, train_loss_step=23.6, train_loss_epoch=22.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 73/400: 18%|█▊ | 73/400 [00:03<00:16, 20.01it/s, v_num=1, train_loss_step=22, train_loss_epoch=22] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 74/400: 18%|█▊ | 73/400 [00:03<00:16, 20.01it/s, v_num=1, train_loss_step=22, train_loss_epoch=22]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 74/400: 18%|█▊ | 74/400 [00:03<00:16, 20.01it/s, v_num=1, train_loss_step=22, train_loss_epoch=22]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 74/400: 18%|█▊ | 74/400 [00:03<00:16, 20.01it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=22]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 75/400: 18%|█▊ | 74/400 [00:03<00:16, 20.01it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=22]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 75/400: 19%|█▉ | 75/400 [00:04<00:16, 20.01it/s, v_num=1, train_loss_step=23.9, train_loss_epoch=21.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 76/400: 19%|█▉ | 75/400 [00:04<00:16, 20.01it/s, v_num=1, train_loss_step=23.9, train_loss_epoch=21.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 76/400: 19%|█▉ | 76/400 [00:04<00:16, 20.01it/s, v_num=1, train_loss_step=21, train_loss_epoch=21.9] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 77/400: 19%|█▉ | 76/400 [00:04<00:16, 20.01it/s, v_num=1, train_loss_step=21, train_loss_epoch=21.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 77/400: 19%|█▉ | 77/400 [00:04<00:16, 20.00it/s, v_num=1, train_loss_step=21, train_loss_epoch=21.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 77/400: 19%|█▉ | 77/400 [00:04<00:16, 20.00it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=21.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 78/400: 19%|█▉ | 77/400 [00:04<00:16, 20.00it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=21.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 78/400: 20%|█▉ | 78/400 [00:04<00:16, 20.00it/s, v_num=1, train_loss_step=22.2, train_loss_epoch=21.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 79/400: 20%|█▉ | 78/400 [00:04<00:16, 20.00it/s, v_num=1, train_loss_step=22.2, train_loss_epoch=21.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 79/400: 20%|█▉ | 79/400 [00:04<00:16, 20.00it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=21.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 80/400: 20%|█▉ | 79/400 [00:04<00:16, 20.00it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=21.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 80/400: 20%|██ | 80/400 [00:04<00:15, 20.02it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=21.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 80/400: 20%|██ | 80/400 [00:04<00:15, 20.02it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=21.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 81/400: 20%|██ | 80/400 [00:04<00:15, 20.02it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=21.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 81/400: 20%|██ | 81/400 [00:04<00:15, 20.02it/s, v_num=1, train_loss_step=22.3, train_loss_epoch=21.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 82/400: 20%|██ | 81/400 [00:04<00:15, 20.02it/s, v_num=1, train_loss_step=22.3, train_loss_epoch=21.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 82/400: 20%|██ | 82/400 [00:04<00:15, 20.02it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=21.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 83/400: 20%|██ | 82/400 [00:04<00:15, 20.02it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=21.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 83/400: 21%|██ | 83/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=21.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 83/400: 21%|██ | 83/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=21.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 84/400: 21%|██ | 83/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=21.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 84/400: 21%|██ | 84/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=21.8, train_loss_epoch=21.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 85/400: 21%|██ | 84/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=21.8, train_loss_epoch=21.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 85/400: 21%|██▏ | 85/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=21.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 86/400: 21%|██▏ | 85/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=21.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 86/400: 22%|██▏ | 86/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=21.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 86/400: 22%|██▏ | 86/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=23.4, train_loss_epoch=21.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 87/400: 22%|██▏ | 86/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=23.4, train_loss_epoch=21.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 87/400: 22%|██▏ | 87/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=21.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 88/400: 22%|██▏ | 87/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=21.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 88/400: 22%|██▏ | 88/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=21.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 89/400: 22%|██▏ | 88/400 [00:04<00:15, 20.01it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=21.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 89/400: 22%|██▏ | 89/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=21.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 89/400: 22%|██▏ | 89/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=21.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 90/400: 22%|██▏ | 89/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=21.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 90/400: 22%|██▎ | 90/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=21, train_loss_epoch=21.3] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 91/400: 22%|██▎ | 90/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=21, train_loss_epoch=21.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 91/400: 23%|██▎ | 91/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=21.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 92/400: 23%|██▎ | 91/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=21.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 92/400: 23%|██▎ | 92/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=21.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 92/400: 23%|██▎ | 92/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=23.2, train_loss_epoch=21.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 93/400: 23%|██▎ | 92/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=23.2, train_loss_epoch=21.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 93/400: 23%|██▎ | 93/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=21.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 94/400: 23%|██▎ | 93/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=21.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 94/400: 24%|██▎ | 94/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=21.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 94/400: 24%|██▎ | 94/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=21.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 95/400: 24%|██▎ | 94/400 [00:04<00:15, 20.00it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=21.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 95/400: 24%|██▍ | 95/400 [00:05<00:15, 20.00it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=21.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 96/400: 24%|██▍ | 95/400 [00:05<00:15, 20.00it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=21.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 96/400: 24%|██▍ | 96/400 [00:05<00:15, 19.97it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=21.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 96/400: 24%|██▍ | 96/400 [00:05<00:15, 19.97it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=21.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 97/400: 24%|██▍ | 96/400 [00:05<00:15, 19.97it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=21.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 97/400: 24%|██▍ | 97/400 [00:05<00:15, 19.97it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=21.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 98/400: 24%|██▍ | 97/400 [00:05<00:15, 19.97it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=21.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 98/400: 24%|██▍ | 98/400 [00:05<00:15, 19.97it/s, v_num=1, train_loss_step=22.3, train_loss_epoch=21.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 99/400: 24%|██▍ | 98/400 [00:05<00:15, 19.97it/s, v_num=1, train_loss_step=22.3, train_loss_epoch=21.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 99/400: 25%|██▍ | 99/400 [00:05<00:15, 20.01it/s, v_num=1, train_loss_step=22.3, train_loss_epoch=21.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 99/400: 25%|██▍ | 99/400 [00:05<00:15, 20.01it/s, v_num=1, train_loss_step=22.3, train_loss_epoch=21.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 100/400: 25%|██▍ | 99/400 [00:05<00:15, 20.01it/s, v_num=1, train_loss_step=22.3, train_loss_epoch=21.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 100/400: 25%|██▌ | 100/400 [00:05<00:14, 20.01it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=21.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 101/400: 25%|██▌ | 100/400 [00:05<00:14, 20.01it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=21.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 101/400: 25%|██▌ | 101/400 [00:05<00:14, 20.01it/s, v_num=1, train_loss_step=21, train_loss_epoch=21.1] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 102/400: 25%|██▌ | 101/400 [00:05<00:14, 20.01it/s, v_num=1, train_loss_step=21, train_loss_epoch=21.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 102/400: 26%|██▌ | 102/400 [00:05<00:14, 20.03it/s, v_num=1, train_loss_step=21, train_loss_epoch=21.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 102/400: 26%|██▌ | 102/400 [00:05<00:14, 20.03it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=21]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 103/400: 26%|██▌ | 102/400 [00:05<00:14, 20.03it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=21]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 103/400: 26%|██▌ | 103/400 [00:05<00:14, 20.03it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=21]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 104/400: 26%|██▌ | 103/400 [00:05<00:14, 20.03it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=21]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 104/400: 26%|██▌ | 104/400 [00:05<00:14, 20.03it/s, v_num=1, train_loss_step=21, train_loss_epoch=21] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 105/400: 26%|██▌ | 104/400 [00:05<00:14, 20.03it/s, v_num=1, train_loss_step=21, train_loss_epoch=21]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 105/400: 26%|██▋ | 105/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=21, train_loss_epoch=21]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 105/400: 26%|██▋ | 105/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=21]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 106/400: 26%|██▋ | 105/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=21]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 106/400: 26%|██▋ | 106/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=20.6, train_loss_epoch=21]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 107/400: 26%|██▋ | 106/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=20.6, train_loss_epoch=21]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 107/400: 27%|██▋ | 107/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 108/400: 27%|██▋ | 107/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 108/400: 27%|██▋ | 108/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 108/400: 27%|██▋ | 108/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=22.8, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 109/400: 27%|██▋ | 108/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=22.8, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 109/400: 27%|██▋ | 109/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 110/400: 27%|██▋ | 109/400 [00:05<00:14, 20.00it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 110/400: 28%|██▊ | 110/400 [00:05<00:14, 19.98it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 110/400: 28%|██▊ | 110/400 [00:05<00:14, 19.98it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 111/400: 28%|██▊ | 110/400 [00:05<00:14, 19.98it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 111/400: 28%|██▊ | 111/400 [00:05<00:14, 19.98it/s, v_num=1, train_loss_step=22.7, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 112/400: 28%|██▊ | 111/400 [00:05<00:14, 19.98it/s, v_num=1, train_loss_step=22.7, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 112/400: 28%|██▊ | 112/400 [00:05<00:14, 19.98it/s, v_num=1, train_loss_step=22.7, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 112/400: 28%|██▊ | 112/400 [00:05<00:14, 19.98it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 113/400: 28%|██▊ | 112/400 [00:05<00:14, 19.98it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=20.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 113/400: 28%|██▊ | 113/400 [00:05<00:14, 19.98it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 114/400: 28%|██▊ | 113/400 [00:05<00:14, 19.98it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 114/400: 28%|██▊ | 114/400 [00:05<00:14, 19.94it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 114/400: 28%|██▊ | 114/400 [00:05<00:14, 19.94it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 115/400: 28%|██▊ | 114/400 [00:05<00:14, 19.94it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 115/400: 29%|██▉ | 115/400 [00:06<00:14, 19.94it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 116/400: 29%|██▉ | 115/400 [00:06<00:14, 19.94it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 116/400: 29%|██▉ | 116/400 [00:06<00:14, 19.92it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 116/400: 29%|██▉ | 116/400 [00:06<00:14, 19.92it/s, v_num=1, train_loss_step=22.8, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 117/400: 29%|██▉ | 116/400 [00:06<00:14, 19.92it/s, v_num=1, train_loss_step=22.8, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 117/400: 29%|██▉ | 117/400 [00:06<00:14, 19.92it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 118/400: 29%|██▉ | 117/400 [00:06<00:14, 19.92it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 118/400: 30%|██▉ | 118/400 [00:06<00:14, 19.92it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 118/400: 30%|██▉ | 118/400 [00:06<00:14, 19.92it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 119/400: 30%|██▉ | 118/400 [00:06<00:14, 19.92it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 119/400: 30%|██▉ | 119/400 [00:06<00:14, 19.92it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 120/400: 30%|██▉ | 119/400 [00:06<00:14, 19.92it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 120/400: 30%|███ | 120/400 [00:06<00:14, 19.94it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 120/400: 30%|███ | 120/400 [00:06<00:14, 19.94it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 121/400: 30%|███ | 120/400 [00:06<00:14, 19.94it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 121/400: 30%|███ | 121/400 [00:06<00:13, 19.94it/s, v_num=1, train_loss_step=21, train_loss_epoch=20.7] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 122/400: 30%|███ | 121/400 [00:06<00:13, 19.94it/s, v_num=1, train_loss_step=21, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 122/400: 30%|███ | 122/400 [00:06<00:13, 19.94it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 123/400: 30%|███ | 122/400 [00:06<00:13, 19.94it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 123/400: 31%|███ | 123/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=22.6, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 123/400: 31%|███ | 123/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 124/400: 31%|███ | 123/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 124/400: 31%|███ | 124/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 125/400: 31%|███ | 124/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 125/400: 31%|███▏ | 125/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 125/400: 31%|███▏ | 125/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 126/400: 31%|███▏ | 125/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 126/400: 32%|███▏ | 126/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 127/400: 32%|███▏ | 126/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 127/400: 32%|███▏ | 127/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 127/400: 32%|███▏ | 127/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 128/400: 32%|███▏ | 127/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 128/400: 32%|███▏ | 128/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 129/400: 32%|███▏ | 128/400 [00:06<00:13, 19.97it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 129/400: 32%|███▏ | 129/400 [00:06<00:13, 19.98it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 129/400: 32%|███▏ | 129/400 [00:06<00:13, 19.98it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 130/400: 32%|███▏ | 129/400 [00:06<00:13, 19.98it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 130/400: 32%|███▎ | 130/400 [00:06<00:13, 19.98it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 131/400: 32%|███▎ | 130/400 [00:06<00:13, 19.98it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 131/400: 33%|███▎ | 131/400 [00:06<00:13, 19.98it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 132/400: 33%|███▎ | 131/400 [00:06<00:13, 19.98it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 132/400: 33%|███▎ | 132/400 [00:06<00:13, 20.01it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 132/400: 33%|███▎ | 132/400 [00:06<00:13, 20.01it/s, v_num=1, train_loss_step=21.9, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 133/400: 33%|███▎ | 132/400 [00:06<00:13, 20.01it/s, v_num=1, train_loss_step=21.9, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 133/400: 33%|███▎ | 133/400 [00:06<00:13, 20.01it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 134/400: 33%|███▎ | 133/400 [00:06<00:13, 20.01it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 134/400: 34%|███▎ | 134/400 [00:06<00:13, 19.99it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 134/400: 34%|███▎ | 134/400 [00:06<00:13, 19.99it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 135/400: 34%|███▎ | 134/400 [00:06<00:13, 19.99it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 135/400: 34%|███▍ | 135/400 [00:07<00:13, 19.99it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 136/400: 34%|███▍ | 135/400 [00:07<00:13, 19.99it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 136/400: 34%|███▍ | 136/400 [00:07<00:13, 19.96it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.6]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 136/400: 34%|███▍ | 136/400 [00:07<00:13, 19.96it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 137/400: 34%|███▍ | 136/400 [00:07<00:13, 19.96it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 137/400: 34%|███▍ | 137/400 [00:07<00:13, 19.96it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 138/400: 34%|███▍ | 137/400 [00:07<00:13, 19.96it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 138/400: 34%|███▍ | 138/400 [00:07<00:13, 19.93it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 138/400: 34%|███▍ | 138/400 [00:07<00:13, 19.93it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 139/400: 34%|███▍ | 138/400 [00:07<00:13, 19.93it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 139/400: 35%|███▍ | 139/400 [00:07<00:13, 19.93it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 140/400: 35%|███▍ | 139/400 [00:07<00:13, 19.93it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 140/400: 35%|███▌ | 140/400 [00:07<00:13, 19.93it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 140/400: 35%|███▌ | 140/400 [00:07<00:13, 19.93it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 141/400: 35%|███▌ | 140/400 [00:07<00:13, 19.93it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 141/400: 35%|███▌ | 141/400 [00:07<00:12, 19.93it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 142/400: 35%|███▌ | 141/400 [00:07<00:12, 19.93it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 142/400: 36%|███▌ | 142/400 [00:07<00:12, 19.93it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 143/400: 36%|███▌ | 142/400 [00:07<00:12, 19.93it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 143/400: 36%|███▌ | 143/400 [00:07<00:12, 19.97it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 143/400: 36%|███▌ | 143/400 [00:07<00:12, 19.97it/s, v_num=1, train_loss_step=19, train_loss_epoch=20.5] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 144/400: 36%|███▌ | 143/400 [00:07<00:12, 19.97it/s, v_num=1, train_loss_step=19, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 144/400: 36%|███▌ | 144/400 [00:07<00:12, 19.97it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 145/400: 36%|███▌ | 144/400 [00:07<00:12, 19.97it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 145/400: 36%|███▋ | 145/400 [00:07<00:12, 19.94it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 145/400: 36%|███▋ | 145/400 [00:07<00:12, 19.94it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 146/400: 36%|███▋ | 145/400 [00:07<00:12, 19.94it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=20.5]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 146/400: 36%|███▋ | 146/400 [00:07<00:12, 19.94it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 147/400: 36%|███▋ | 146/400 [00:07<00:12, 19.94it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 147/400: 37%|███▋ | 147/400 [00:07<00:12, 19.85it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 147/400: 37%|███▋ | 147/400 [00:07<00:12, 19.85it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 148/400: 37%|███▋ | 147/400 [00:07<00:12, 19.85it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 148/400: 37%|███▋ | 148/400 [00:07<00:12, 19.85it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 149/400: 37%|███▋ | 148/400 [00:07<00:12, 19.85it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 149/400: 37%|███▋ | 149/400 [00:07<00:12, 19.83it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 149/400: 37%|███▋ | 149/400 [00:07<00:12, 19.83it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 150/400: 37%|███▋ | 149/400 [00:07<00:12, 19.83it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 150/400: 38%|███▊ | 150/400 [00:07<00:12, 19.83it/s, v_num=1, train_loss_step=18.8, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 151/400: 38%|███▊ | 150/400 [00:07<00:12, 19.83it/s, v_num=1, train_loss_step=18.8, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 151/400: 38%|███▊ | 151/400 [00:07<00:12, 19.83it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 152/400: 38%|███▊ | 151/400 [00:07<00:12, 19.83it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 152/400: 38%|███▊ | 152/400 [00:07<00:12, 19.89it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 152/400: 38%|███▊ | 152/400 [00:07<00:12, 19.89it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 153/400: 38%|███▊ | 152/400 [00:07<00:12, 19.89it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 153/400: 38%|███▊ | 153/400 [00:07<00:12, 19.89it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 154/400: 38%|███▊ | 153/400 [00:07<00:12, 19.89it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 154/400: 38%|███▊ | 154/400 [00:07<00:12, 19.92it/s, v_num=1, train_loss_step=23.1, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 154/400: 38%|███▊ | 154/400 [00:07<00:12, 19.92it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 155/400: 38%|███▊ | 154/400 [00:07<00:12, 19.92it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 155/400: 39%|███▉ | 155/400 [00:08<00:12, 19.92it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 156/400: 39%|███▉ | 155/400 [00:08<00:12, 19.92it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 156/400: 39%|███▉ | 156/400 [00:08<00:12, 19.91it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 156/400: 39%|███▉ | 156/400 [00:08<00:12, 19.91it/s, v_num=1, train_loss_step=20, train_loss_epoch=20.4] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 157/400: 39%|███▉ | 156/400 [00:08<00:12, 19.91it/s, v_num=1, train_loss_step=20, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 157/400: 39%|███▉ | 157/400 [00:08<00:12, 19.91it/s, v_num=1, train_loss_step=22.7, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 158/400: 39%|███▉ | 157/400 [00:08<00:12, 19.91it/s, v_num=1, train_loss_step=22.7, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 158/400: 40%|███▉ | 158/400 [00:08<00:12, 19.93it/s, v_num=1, train_loss_step=22.7, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 158/400: 40%|███▉ | 158/400 [00:08<00:12, 19.93it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 159/400: 40%|███▉ | 158/400 [00:08<00:12, 19.93it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20.4]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 159/400: 40%|███▉ | 159/400 [00:08<00:12, 19.93it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 160/400: 40%|███▉ | 159/400 [00:08<00:12, 19.93it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 160/400: 40%|████ | 160/400 [00:08<00:12, 19.93it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 160/400: 40%|████ | 160/400 [00:08<00:12, 19.93it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 161/400: 40%|████ | 160/400 [00:08<00:12, 19.93it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 161/400: 40%|████ | 161/400 [00:08<00:11, 19.93it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 162/400: 40%|████ | 161/400 [00:08<00:11, 19.93it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 162/400: 40%|████ | 162/400 [00:08<00:11, 19.89it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 162/400: 40%|████ | 162/400 [00:08<00:11, 19.89it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 163/400: 40%|████ | 162/400 [00:08<00:11, 19.89it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 163/400: 41%|████ | 163/400 [00:08<00:11, 19.89it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 164/400: 41%|████ | 163/400 [00:08<00:11, 19.89it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 164/400: 41%|████ | 164/400 [00:08<00:11, 19.84it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 164/400: 41%|████ | 164/400 [00:08<00:11, 19.84it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 165/400: 41%|████ | 164/400 [00:08<00:11, 19.84it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 165/400: 41%|████▏ | 165/400 [00:08<00:11, 19.84it/s, v_num=1, train_loss_step=19, train_loss_epoch=20.3] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 166/400: 41%|████▏ | 165/400 [00:08<00:11, 19.84it/s, v_num=1, train_loss_step=19, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 166/400: 42%|████▏ | 166/400 [00:08<00:11, 19.84it/s, v_num=1, train_loss_step=19, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 166/400: 42%|████▏ | 166/400 [00:08<00:11, 19.84it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 167/400: 42%|████▏ | 166/400 [00:08<00:11, 19.84it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 167/400: 42%|████▏ | 167/400 [00:08<00:11, 19.84it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 168/400: 42%|████▏ | 167/400 [00:08<00:11, 19.84it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 168/400: 42%|████▏ | 168/400 [00:08<00:11, 19.79it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 168/400: 42%|████▏ | 168/400 [00:08<00:11, 19.79it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 169/400: 42%|████▏ | 168/400 [00:08<00:11, 19.79it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 169/400: 42%|████▏ | 169/400 [00:08<00:11, 19.79it/s, v_num=1, train_loss_step=21.9, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 170/400: 42%|████▏ | 169/400 [00:08<00:11, 19.79it/s, v_num=1, train_loss_step=21.9, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 170/400: 42%|████▎ | 170/400 [00:08<00:11, 19.74it/s, v_num=1, train_loss_step=21.9, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 170/400: 42%|████▎ | 170/400 [00:08<00:11, 19.74it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 171/400: 42%|████▎ | 170/400 [00:08<00:11, 19.74it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 171/400: 43%|████▎ | 171/400 [00:08<00:11, 19.74it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 172/400: 43%|████▎ | 171/400 [00:08<00:11, 19.74it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 172/400: 43%|████▎ | 172/400 [00:08<00:11, 19.73it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 172/400: 43%|████▎ | 172/400 [00:08<00:11, 19.73it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 173/400: 43%|████▎ | 172/400 [00:08<00:11, 19.73it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 173/400: 43%|████▎ | 173/400 [00:08<00:11, 19.73it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 174/400: 43%|████▎ | 173/400 [00:08<00:11, 19.73it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 174/400: 44%|████▎ | 174/400 [00:08<00:11, 19.77it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.3]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 174/400: 44%|████▎ | 174/400 [00:08<00:11, 19.77it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 175/400: 44%|████▎ | 174/400 [00:08<00:11, 19.77it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 175/400: 44%|████▍ | 175/400 [00:09<00:11, 19.77it/s, v_num=1, train_loss_step=19, train_loss_epoch=20.2] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 176/400: 44%|████▍ | 175/400 [00:09<00:11, 19.77it/s, v_num=1, train_loss_step=19, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 176/400: 44%|████▍ | 176/400 [00:09<00:11, 19.80it/s, v_num=1, train_loss_step=19, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 176/400: 44%|████▍ | 176/400 [00:09<00:11, 19.80it/s, v_num=1, train_loss_step=20, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 177/400: 44%|████▍ | 176/400 [00:09<00:11, 19.80it/s, v_num=1, train_loss_step=20, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 177/400: 44%|████▍ | 177/400 [00:09<00:11, 19.80it/s, v_num=1, train_loss_step=20, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 178/400: 44%|████▍ | 177/400 [00:09<00:11, 19.80it/s, v_num=1, train_loss_step=20, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 178/400: 44%|████▍ | 178/400 [00:09<00:11, 19.83it/s, v_num=1, train_loss_step=20, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 178/400: 44%|████▍ | 178/400 [00:09<00:11, 19.83it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 179/400: 44%|████▍ | 178/400 [00:09<00:11, 19.83it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 179/400: 45%|████▍ | 179/400 [00:09<00:11, 19.83it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 180/400: 45%|████▍ | 179/400 [00:09<00:11, 19.83it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 180/400: 45%|████▌ | 180/400 [00:09<00:11, 19.84it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 180/400: 45%|████▌ | 180/400 [00:09<00:11, 19.84it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 181/400: 45%|████▌ | 180/400 [00:09<00:11, 19.84it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 181/400: 45%|████▌ | 181/400 [00:09<00:11, 19.84it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 182/400: 45%|████▌ | 181/400 [00:09<00:11, 19.84it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 182/400: 46%|████▌ | 182/400 [00:09<00:10, 19.88it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 182/400: 46%|████▌ | 182/400 [00:09<00:10, 19.88it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 183/400: 46%|████▌ | 182/400 [00:09<00:10, 19.88it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 183/400: 46%|████▌ | 183/400 [00:09<00:10, 19.88it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 184/400: 46%|████▌ | 183/400 [00:09<00:10, 19.88it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 184/400: 46%|████▌ | 184/400 [00:09<00:10, 19.85it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 184/400: 46%|████▌ | 184/400 [00:09<00:10, 19.85it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 185/400: 46%|████▌ | 184/400 [00:09<00:10, 19.85it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 185/400: 46%|████▋ | 185/400 [00:09<00:10, 19.85it/s, v_num=1, train_loss_step=17.4, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 186/400: 46%|████▋ | 185/400 [00:09<00:10, 19.85it/s, v_num=1, train_loss_step=17.4, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 186/400: 46%|████▋ | 186/400 [00:09<00:10, 19.87it/s, v_num=1, train_loss_step=17.4, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 186/400: 46%|████▋ | 186/400 [00:09<00:10, 19.87it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 187/400: 46%|████▋ | 186/400 [00:09<00:10, 19.87it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 187/400: 47%|████▋ | 187/400 [00:09<00:10, 19.87it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 188/400: 47%|████▋ | 187/400 [00:09<00:10, 19.87it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 188/400: 47%|████▋ | 188/400 [00:09<00:10, 19.87it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 188/400: 47%|████▋ | 188/400 [00:09<00:10, 19.87it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 189/400: 47%|████▋ | 188/400 [00:09<00:10, 19.87it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 189/400: 47%|████▋ | 189/400 [00:09<00:10, 19.87it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 190/400: 47%|████▋ | 189/400 [00:09<00:10, 19.87it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 190/400: 48%|████▊ | 190/400 [00:09<00:10, 19.88it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 190/400: 48%|████▊ | 190/400 [00:09<00:10, 19.88it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 191/400: 48%|████▊ | 190/400 [00:09<00:10, 19.88it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 191/400: 48%|████▊ | 191/400 [00:09<00:10, 19.88it/s, v_num=1, train_loss_step=18.8, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 192/400: 48%|████▊ | 191/400 [00:09<00:10, 19.88it/s, v_num=1, train_loss_step=18.8, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 192/400: 48%|████▊ | 192/400 [00:09<00:10, 19.89it/s, v_num=1, train_loss_step=18.8, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 192/400: 48%|████▊ | 192/400 [00:09<00:10, 19.89it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 193/400: 48%|████▊ | 192/400 [00:09<00:10, 19.89it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=20.2]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 193/400: 48%|████▊ | 193/400 [00:09<00:10, 19.89it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 194/400: 48%|████▊ | 193/400 [00:09<00:10, 19.89it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 194/400: 48%|████▊ | 194/400 [00:09<00:10, 19.89it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 194/400: 48%|████▊ | 194/400 [00:09<00:10, 19.89it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 195/400: 48%|████▊ | 194/400 [00:09<00:10, 19.89it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 195/400: 49%|████▉ | 195/400 [00:10<00:10, 19.89it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 196/400: 49%|████▉ | 195/400 [00:10<00:10, 19.89it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 196/400: 49%|████▉ | 196/400 [00:10<00:10, 19.89it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 196/400: 49%|████▉ | 196/400 [00:10<00:10, 19.89it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 197/400: 49%|████▉ | 196/400 [00:10<00:10, 19.89it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 197/400: 49%|████▉ | 197/400 [00:10<00:10, 19.89it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 198/400: 49%|████▉ | 197/400 [00:10<00:10, 19.89it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 198/400: 50%|████▉ | 198/400 [00:10<00:10, 19.86it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 198/400: 50%|████▉ | 198/400 [00:10<00:10, 19.86it/s, v_num=1, train_loss_step=21, train_loss_epoch=20.1] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 199/400: 50%|████▉ | 198/400 [00:10<00:10, 19.86it/s, v_num=1, train_loss_step=21, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 199/400: 50%|████▉ | 199/400 [00:10<00:10, 19.86it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 200/400: 50%|████▉ | 199/400 [00:10<00:10, 19.86it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 200/400: 50%|█████ | 200/400 [00:10<00:10, 19.87it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 200/400: 50%|█████ | 200/400 [00:10<00:10, 19.87it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 201/400: 50%|█████ | 200/400 [00:10<00:10, 19.87it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 201/400: 50%|█████ | 201/400 [00:10<00:10, 19.87it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 202/400: 50%|█████ | 201/400 [00:10<00:10, 19.87it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 202/400: 50%|█████ | 202/400 [00:10<00:09, 19.87it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 203/400: 50%|█████ | 202/400 [00:10<00:09, 19.87it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 203/400: 51%|█████ | 203/400 [00:10<00:09, 19.92it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 203/400: 51%|█████ | 203/400 [00:10<00:09, 19.92it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 204/400: 51%|█████ | 203/400 [00:10<00:09, 19.92it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 204/400: 51%|█████ | 204/400 [00:10<00:09, 19.92it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 205/400: 51%|█████ | 204/400 [00:10<00:09, 19.92it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 205/400: 51%|█████▏ | 205/400 [00:10<00:09, 19.91it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 205/400: 51%|█████▏ | 205/400 [00:10<00:09, 19.91it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 206/400: 51%|█████▏ | 205/400 [00:10<00:09, 19.91it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 206/400: 52%|█████▏ | 206/400 [00:10<00:09, 19.91it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 207/400: 52%|█████▏ | 206/400 [00:10<00:09, 19.91it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 207/400: 52%|█████▏ | 207/400 [00:10<00:09, 19.89it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 207/400: 52%|█████▏ | 207/400 [00:10<00:09, 19.89it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 208/400: 52%|█████▏ | 207/400 [00:10<00:09, 19.89it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 208/400: 52%|█████▏ | 208/400 [00:10<00:09, 19.89it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 209/400: 52%|█████▏ | 208/400 [00:10<00:09, 19.89it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 209/400: 52%|█████▏ | 209/400 [00:10<00:09, 19.88it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 209/400: 52%|█████▏ | 209/400 [00:10<00:09, 19.88it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 210/400: 52%|█████▏ | 209/400 [00:10<00:09, 19.88it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 210/400: 52%|█████▎ | 210/400 [00:10<00:09, 19.88it/s, v_num=1, train_loss_step=20, train_loss_epoch=20.1] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 211/400: 52%|█████▎ | 210/400 [00:10<00:09, 19.88it/s, v_num=1, train_loss_step=20, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 211/400: 53%|█████▎ | 211/400 [00:10<00:09, 19.88it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 212/400: 53%|█████▎ | 211/400 [00:10<00:09, 19.88it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 212/400: 53%|█████▎ | 212/400 [00:10<00:09, 19.93it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 212/400: 53%|█████▎ | 212/400 [00:10<00:09, 19.93it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 213/400: 53%|█████▎ | 212/400 [00:10<00:09, 19.93it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 213/400: 53%|█████▎ | 213/400 [00:10<00:09, 19.93it/s, v_num=1, train_loss_step=21, train_loss_epoch=20.1] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 214/400: 53%|█████▎ | 213/400 [00:10<00:09, 19.93it/s, v_num=1, train_loss_step=21, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 214/400: 54%|█████▎ | 214/400 [00:10<00:09, 19.93it/s, v_num=1, train_loss_step=21, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 214/400: 54%|█████▎ | 214/400 [00:10<00:09, 19.93it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 215/400: 54%|█████▎ | 214/400 [00:10<00:09, 19.93it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 215/400: 54%|█████▍ | 215/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=19, train_loss_epoch=20.1] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 216/400: 54%|█████▍ | 215/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=19, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 216/400: 54%|█████▍ | 216/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=19, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 216/400: 54%|█████▍ | 216/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=23, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 217/400: 54%|█████▍ | 216/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=23, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 217/400: 54%|█████▍ | 217/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 218/400: 54%|█████▍ | 217/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 218/400: 55%|█████▍ | 218/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=20.1]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 218/400: 55%|█████▍ | 218/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=20, train_loss_epoch=20] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 219/400: 55%|█████▍ | 218/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=20, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 219/400: 55%|█████▍ | 219/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=19, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 220/400: 55%|█████▍ | 219/400 [00:11<00:09, 19.93it/s, v_num=1, train_loss_step=19, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 220/400: 55%|█████▌ | 220/400 [00:11<00:09, 19.94it/s, v_num=1, train_loss_step=19, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 220/400: 55%|█████▌ | 220/400 [00:11<00:09, 19.94it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 221/400: 55%|█████▌ | 220/400 [00:11<00:09, 19.94it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 221/400: 55%|█████▌ | 221/400 [00:11<00:08, 19.94it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 222/400: 55%|█████▌ | 221/400 [00:11<00:08, 19.94it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 222/400: 56%|█████▌ | 222/400 [00:11<00:08, 19.94it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 223/400: 56%|█████▌ | 222/400 [00:11<00:08, 19.94it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 223/400: 56%|█████▌ | 223/400 [00:11<00:08, 19.96it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 223/400: 56%|█████▌ | 223/400 [00:11<00:08, 19.96it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 224/400: 56%|█████▌ | 223/400 [00:11<00:08, 19.96it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 224/400: 56%|█████▌ | 224/400 [00:11<00:08, 19.96it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 225/400: 56%|█████▌ | 224/400 [00:11<00:08, 19.96it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 225/400: 56%|█████▋ | 225/400 [00:11<00:08, 19.94it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 225/400: 56%|█████▋ | 225/400 [00:11<00:08, 19.94it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 226/400: 56%|█████▋ | 225/400 [00:11<00:08, 19.94it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 226/400: 56%|█████▋ | 226/400 [00:11<00:08, 19.94it/s, v_num=1, train_loss_step=17.8, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 227/400: 56%|█████▋ | 226/400 [00:11<00:08, 19.94it/s, v_num=1, train_loss_step=17.8, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 227/400: 57%|█████▋ | 227/400 [00:11<00:08, 19.93it/s, v_num=1, train_loss_step=17.8, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 227/400: 57%|█████▋ | 227/400 [00:11<00:08, 19.93it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 228/400: 57%|█████▋ | 227/400 [00:11<00:08, 19.93it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 228/400: 57%|█████▋ | 228/400 [00:11<00:08, 19.93it/s, v_num=1, train_loss_step=20.6, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 229/400: 57%|█████▋ | 228/400 [00:11<00:08, 19.93it/s, v_num=1, train_loss_step=20.6, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 229/400: 57%|█████▋ | 229/400 [00:11<00:08, 19.89it/s, v_num=1, train_loss_step=20.6, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 229/400: 57%|█████▋ | 229/400 [00:11<00:08, 19.89it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 230/400: 57%|█████▋ | 229/400 [00:11<00:08, 19.89it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 230/400: 57%|█████▊ | 230/400 [00:11<00:08, 19.89it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 231/400: 57%|█████▊ | 230/400 [00:11<00:08, 19.89it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 231/400: 58%|█████▊ | 231/400 [00:11<00:08, 19.90it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 231/400: 58%|█████▊ | 231/400 [00:11<00:08, 19.90it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 232/400: 58%|█████▊ | 231/400 [00:11<00:08, 19.90it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 232/400: 58%|█████▊ | 232/400 [00:11<00:08, 19.90it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 233/400: 58%|█████▊ | 232/400 [00:11<00:08, 19.90it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 233/400: 58%|█████▊ | 233/400 [00:11<00:08, 19.83it/s, v_num=1, train_loss_step=21.6, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 233/400: 58%|█████▊ | 233/400 [00:11<00:08, 19.83it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 234/400: 58%|█████▊ | 233/400 [00:11<00:08, 19.83it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 234/400: 58%|█████▊ | 234/400 [00:12<00:08, 19.83it/s, v_num=1, train_loss_step=20, train_loss_epoch=20] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 235/400: 58%|█████▊ | 234/400 [00:12<00:08, 19.83it/s, v_num=1, train_loss_step=20, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 235/400: 59%|█████▉ | 235/400 [00:12<00:08, 19.76it/s, v_num=1, train_loss_step=20, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 235/400: 59%|█████▉ | 235/400 [00:12<00:08, 19.76it/s, v_num=1, train_loss_step=21.8, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 236/400: 59%|█████▉ | 235/400 [00:12<00:08, 19.76it/s, v_num=1, train_loss_step=21.8, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 236/400: 59%|█████▉ | 236/400 [00:12<00:08, 19.76it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 237/400: 59%|█████▉ | 236/400 [00:12<00:08, 19.76it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 237/400: 59%|█████▉ | 237/400 [00:12<00:08, 19.77it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 237/400: 59%|█████▉ | 237/400 [00:12<00:08, 19.77it/s, v_num=1, train_loss_step=21, train_loss_epoch=20] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 238/400: 59%|█████▉ | 237/400 [00:12<00:08, 19.77it/s, v_num=1, train_loss_step=21, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 238/400: 60%|█████▉ | 238/400 [00:12<00:08, 19.77it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 239/400: 60%|█████▉ | 238/400 [00:12<00:08, 19.77it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 239/400: 60%|█████▉ | 239/400 [00:12<00:08, 19.79it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 239/400: 60%|█████▉ | 239/400 [00:12<00:08, 19.79it/s, v_num=1, train_loss_step=21.8, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 240/400: 60%|█████▉ | 239/400 [00:12<00:08, 19.79it/s, v_num=1, train_loss_step=21.8, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 240/400: 60%|██████ | 240/400 [00:12<00:08, 19.79it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 241/400: 60%|██████ | 240/400 [00:12<00:08, 19.79it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 241/400: 60%|██████ | 241/400 [00:12<00:08, 19.83it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 241/400: 60%|██████ | 241/400 [00:12<00:08, 19.83it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 242/400: 60%|██████ | 241/400 [00:12<00:08, 19.83it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 242/400: 60%|██████ | 242/400 [00:12<00:07, 19.83it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 243/400: 60%|██████ | 242/400 [00:12<00:07, 19.83it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 243/400: 61%|██████ | 243/400 [00:12<00:07, 19.85it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 243/400: 61%|██████ | 243/400 [00:12<00:07, 19.85it/s, v_num=1, train_loss_step=22, train_loss_epoch=20] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 244/400: 61%|██████ | 243/400 [00:12<00:07, 19.85it/s, v_num=1, train_loss_step=22, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 244/400: 61%|██████ | 244/400 [00:12<00:07, 19.85it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 245/400: 61%|██████ | 244/400 [00:12<00:07, 19.85it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 245/400: 61%|██████▏ | 245/400 [00:12<00:07, 19.84it/s, v_num=1, train_loss_step=22.1, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 245/400: 61%|██████▏ | 245/400 [00:12<00:07, 19.84it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 246/400: 61%|██████▏ | 245/400 [00:12<00:07, 19.84it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 246/400: 62%|██████▏ | 246/400 [00:12<00:07, 19.84it/s, v_num=1, train_loss_step=19, train_loss_epoch=20] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 247/400: 62%|██████▏ | 246/400 [00:12<00:07, 19.84it/s, v_num=1, train_loss_step=19, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 247/400: 62%|██████▏ | 247/400 [00:12<00:07, 19.82it/s, v_num=1, train_loss_step=19, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 247/400: 62%|██████▏ | 247/400 [00:12<00:07, 19.82it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 248/400: 62%|██████▏ | 247/400 [00:12<00:07, 19.82it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 248/400: 62%|██████▏ | 248/400 [00:12<00:07, 19.82it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 249/400: 62%|██████▏ | 248/400 [00:12<00:07, 19.82it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 249/400: 62%|██████▏ | 249/400 [00:12<00:07, 19.81it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 249/400: 62%|██████▏ | 249/400 [00:12<00:07, 19.81it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 250/400: 62%|██████▏ | 249/400 [00:12<00:07, 19.81it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=20]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 250/400: 62%|██████▎ | 250/400 [00:12<00:07, 19.81it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 251/400: 62%|██████▎ | 250/400 [00:12<00:07, 19.81it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 251/400: 63%|██████▎ | 251/400 [00:12<00:07, 19.83it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 251/400: 63%|██████▎ | 251/400 [00:12<00:07, 19.83it/s, v_num=1, train_loss_step=18.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 252/400: 63%|██████▎ | 251/400 [00:12<00:07, 19.83it/s, v_num=1, train_loss_step=18.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 252/400: 63%|██████▎ | 252/400 [00:12<00:07, 19.83it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 253/400: 63%|██████▎ | 252/400 [00:12<00:07, 19.83it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 253/400: 63%|██████▎ | 253/400 [00:12<00:07, 19.81it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 253/400: 63%|██████▎ | 253/400 [00:12<00:07, 19.81it/s, v_num=1, train_loss_step=21, train_loss_epoch=19.9] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 254/400: 63%|██████▎ | 253/400 [00:12<00:07, 19.81it/s, v_num=1, train_loss_step=21, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 254/400: 64%|██████▎ | 254/400 [00:13<00:07, 19.81it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 255/400: 64%|██████▎ | 254/400 [00:13<00:07, 19.81it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 255/400: 64%|██████▍ | 255/400 [00:13<00:07, 19.82it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 255/400: 64%|██████▍ | 255/400 [00:13<00:07, 19.82it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.9] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 256/400: 64%|██████▍ | 255/400 [00:13<00:07, 19.82it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 256/400: 64%|██████▍ | 256/400 [00:13<00:07, 19.82it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 257/400: 64%|██████▍ | 256/400 [00:13<00:07, 19.82it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 257/400: 64%|██████▍ | 257/400 [00:13<00:07, 19.84it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 257/400: 64%|██████▍ | 257/400 [00:13<00:07, 19.84it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 258/400: 64%|██████▍ | 257/400 [00:13<00:07, 19.84it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 258/400: 64%|██████▍ | 258/400 [00:13<00:07, 19.84it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 259/400: 64%|██████▍ | 258/400 [00:13<00:07, 19.84it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 259/400: 65%|██████▍ | 259/400 [00:13<00:07, 19.84it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 259/400: 65%|██████▍ | 259/400 [00:13<00:07, 19.84it/s, v_num=1, train_loss_step=22.3, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 260/400: 65%|██████▍ | 259/400 [00:13<00:07, 19.84it/s, v_num=1, train_loss_step=22.3, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 260/400: 65%|██████▌ | 260/400 [00:13<00:07, 19.84it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 261/400: 65%|██████▌ | 260/400 [00:13<00:07, 19.84it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 261/400: 65%|██████▌ | 261/400 [00:13<00:06, 19.86it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 261/400: 65%|██████▌ | 261/400 [00:13<00:06, 19.86it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 262/400: 65%|██████▌ | 261/400 [00:13<00:06, 19.86it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 262/400: 66%|██████▌ | 262/400 [00:13<00:06, 19.86it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 263/400: 66%|██████▌ | 262/400 [00:13<00:06, 19.86it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 263/400: 66%|██████▌ | 263/400 [00:13<00:06, 19.83it/s, v_num=1, train_loss_step=21.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 263/400: 66%|██████▌ | 263/400 [00:13<00:06, 19.83it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 264/400: 66%|██████▌ | 263/400 [00:13<00:06, 19.83it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 264/400: 66%|██████▌ | 264/400 [00:13<00:06, 19.83it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 265/400: 66%|██████▌ | 264/400 [00:13<00:06, 19.83it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 265/400: 66%|██████▋ | 265/400 [00:13<00:06, 19.80it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 265/400: 66%|██████▋ | 265/400 [00:13<00:06, 19.80it/s, v_num=1, train_loss_step=18.6, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 266/400: 66%|██████▋ | 265/400 [00:13<00:06, 19.80it/s, v_num=1, train_loss_step=18.6, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 266/400: 66%|██████▋ | 266/400 [00:13<00:06, 19.80it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 267/400: 66%|██████▋ | 266/400 [00:13<00:06, 19.80it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 267/400: 67%|██████▋ | 267/400 [00:13<00:06, 19.83it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 267/400: 67%|██████▋ | 267/400 [00:13<00:06, 19.83it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 268/400: 67%|██████▋ | 267/400 [00:13<00:06, 19.83it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 268/400: 67%|██████▋ | 268/400 [00:13<00:06, 19.83it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 269/400: 67%|██████▋ | 268/400 [00:13<00:06, 19.83it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 269/400: 67%|██████▋ | 269/400 [00:13<00:06, 19.82it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 269/400: 67%|██████▋ | 269/400 [00:13<00:06, 19.82it/s, v_num=1, train_loss_step=18, train_loss_epoch=19.9] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 270/400: 67%|██████▋ | 269/400 [00:13<00:06, 19.82it/s, v_num=1, train_loss_step=18, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 270/400: 68%|██████▊ | 270/400 [00:13<00:06, 19.82it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 271/400: 68%|██████▊ | 270/400 [00:13<00:06, 19.82it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 271/400: 68%|██████▊ | 271/400 [00:13<00:06, 19.81it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 271/400: 68%|██████▊ | 271/400 [00:13<00:06, 19.81it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 272/400: 68%|██████▊ | 271/400 [00:13<00:06, 19.81it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 272/400: 68%|██████▊ | 272/400 [00:13<00:06, 19.81it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 273/400: 68%|██████▊ | 272/400 [00:13<00:06, 19.81it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 273/400: 68%|██████▊ | 273/400 [00:13<00:06, 19.85it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 273/400: 68%|██████▊ | 273/400 [00:13<00:06, 19.85it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 274/400: 68%|██████▊ | 273/400 [00:13<00:06, 19.85it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 274/400: 68%|██████▊ | 274/400 [00:14<00:06, 19.85it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 275/400: 68%|██████▊ | 274/400 [00:14<00:06, 19.85it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 275/400: 69%|██████▉ | 275/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 275/400: 69%|██████▉ | 275/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 276/400: 69%|██████▉ | 275/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 276/400: 69%|██████▉ | 276/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 277/400: 69%|██████▉ | 276/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 277/400: 69%|██████▉ | 277/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 277/400: 69%|██████▉ | 277/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 278/400: 69%|██████▉ | 277/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 278/400: 70%|██████▉ | 278/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=18.1, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 279/400: 70%|██████▉ | 278/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=18.1, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 279/400: 70%|██████▉ | 279/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=18.1, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 279/400: 70%|██████▉ | 279/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.9] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 280/400: 70%|██████▉ | 279/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 280/400: 70%|███████ | 280/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 281/400: 70%|███████ | 280/400 [00:14<00:06, 19.83it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 281/400: 70%|███████ | 281/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 281/400: 70%|███████ | 281/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.9] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 282/400: 70%|███████ | 281/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 282/400: 70%|███████ | 282/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 283/400: 70%|███████ | 282/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 283/400: 71%|███████ | 283/400 [00:14<00:05, 19.87it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 283/400: 71%|███████ | 283/400 [00:14<00:05, 19.87it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.9] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 284/400: 71%|███████ | 283/400 [00:14<00:05, 19.87it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 284/400: 71%|███████ | 284/400 [00:14<00:05, 19.87it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 285/400: 71%|███████ | 284/400 [00:14<00:05, 19.87it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 285/400: 71%|███████▏ | 285/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 285/400: 71%|███████▏ | 285/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 286/400: 71%|███████▏ | 285/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 286/400: 72%|███████▏ | 286/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 287/400: 72%|███████▏ | 286/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 287/400: 72%|███████▏ | 287/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=21.3, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 287/400: 72%|███████▏ | 287/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 288/400: 72%|███████▏ | 287/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 288/400: 72%|███████▏ | 288/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 289/400: 72%|███████▏ | 288/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 289/400: 72%|███████▏ | 289/400 [00:14<00:05, 19.83it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 289/400: 72%|███████▏ | 289/400 [00:14<00:05, 19.83it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 290/400: 72%|███████▏ | 289/400 [00:14<00:05, 19.83it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 290/400: 72%|███████▎ | 290/400 [00:14<00:05, 19.83it/s, v_num=1, train_loss_step=22.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 291/400: 72%|███████▎ | 290/400 [00:14<00:05, 19.83it/s, v_num=1, train_loss_step=22.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 291/400: 73%|███████▎ | 291/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=22.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 291/400: 73%|███████▎ | 291/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 292/400: 73%|███████▎ | 291/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 292/400: 73%|███████▎ | 292/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 293/400: 73%|███████▎ | 292/400 [00:14<00:05, 19.85it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 293/400: 73%|███████▎ | 293/400 [00:14<00:05, 19.84it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 293/400: 73%|███████▎ | 293/400 [00:14<00:05, 19.84it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 294/400: 73%|███████▎ | 293/400 [00:14<00:05, 19.84it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 294/400: 74%|███████▎ | 294/400 [00:15<00:05, 19.84it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 295/400: 74%|███████▎ | 294/400 [00:15<00:05, 19.84it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 295/400: 74%|███████▍ | 295/400 [00:15<00:05, 19.86it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=19.9]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 295/400: 74%|███████▍ | 295/400 [00:15<00:05, 19.86it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 296/400: 74%|███████▍ | 295/400 [00:15<00:05, 19.86it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 296/400: 74%|███████▍ | 296/400 [00:15<00:05, 19.86it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 297/400: 74%|███████▍ | 296/400 [00:15<00:05, 19.86it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 297/400: 74%|███████▍ | 297/400 [00:15<00:05, 19.87it/s, v_num=1, train_loss_step=21.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 297/400: 74%|███████▍ | 297/400 [00:15<00:05, 19.87it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 298/400: 74%|███████▍ | 297/400 [00:15<00:05, 19.87it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 298/400: 74%|███████▍ | 298/400 [00:15<00:05, 19.87it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 299/400: 74%|███████▍ | 298/400 [00:15<00:05, 19.87it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 299/400: 75%|███████▍ | 299/400 [00:15<00:05, 19.87it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 299/400: 75%|███████▍ | 299/400 [00:15<00:05, 19.87it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 300/400: 75%|███████▍ | 299/400 [00:15<00:05, 19.87it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 300/400: 75%|███████▌ | 300/400 [00:15<00:05, 19.87it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 301/400: 75%|███████▌ | 300/400 [00:15<00:05, 19.87it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 301/400: 75%|███████▌ | 301/400 [00:15<00:04, 19.87it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 302/400: 75%|███████▌ | 301/400 [00:15<00:04, 19.87it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 302/400: 76%|███████▌ | 302/400 [00:15<00:04, 19.94it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 302/400: 76%|███████▌ | 302/400 [00:15<00:04, 19.94it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 303/400: 76%|███████▌ | 302/400 [00:15<00:04, 19.94it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 303/400: 76%|███████▌ | 303/400 [00:15<00:04, 19.94it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 304/400: 76%|███████▌ | 303/400 [00:15<00:04, 19.94it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 304/400: 76%|███████▌ | 304/400 [00:15<00:04, 19.92it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 304/400: 76%|███████▌ | 304/400 [00:15<00:04, 19.92it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 305/400: 76%|███████▌ | 304/400 [00:15<00:04, 19.92it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 305/400: 76%|███████▋ | 305/400 [00:15<00:04, 19.92it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 306/400: 76%|███████▋ | 305/400 [00:15<00:04, 19.92it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 306/400: 76%|███████▋ | 306/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 306/400: 76%|███████▋ | 306/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=22.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 307/400: 76%|███████▋ | 306/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=22.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 307/400: 77%|███████▋ | 307/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 308/400: 77%|███████▋ | 307/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 308/400: 77%|███████▋ | 308/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 308/400: 77%|███████▋ | 308/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=22, train_loss_epoch=19.8] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 309/400: 77%|███████▋ | 308/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=22, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 309/400: 77%|███████▋ | 309/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 310/400: 77%|███████▋ | 309/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 310/400: 78%|███████▊ | 310/400 [00:15<00:04, 19.90it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 310/400: 78%|███████▊ | 310/400 [00:15<00:04, 19.90it/s, v_num=1, train_loss_step=17.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 311/400: 78%|███████▊ | 310/400 [00:15<00:04, 19.90it/s, v_num=1, train_loss_step=17.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 311/400: 78%|███████▊ | 311/400 [00:15<00:04, 19.90it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 312/400: 78%|███████▊ | 311/400 [00:15<00:04, 19.90it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 312/400: 78%|███████▊ | 312/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 312/400: 78%|███████▊ | 312/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 313/400: 78%|███████▊ | 312/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 313/400: 78%|███████▊ | 313/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 314/400: 78%|███████▊ | 313/400 [00:15<00:04, 19.89it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 314/400: 78%|███████▊ | 314/400 [00:16<00:04, 19.89it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 314/400: 78%|███████▊ | 314/400 [00:16<00:04, 19.89it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 315/400: 78%|███████▊ | 314/400 [00:16<00:04, 19.89it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 315/400: 79%|███████▉ | 315/400 [00:16<00:04, 19.89it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 316/400: 79%|███████▉ | 315/400 [00:16<00:04, 19.89it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 316/400: 79%|███████▉ | 316/400 [00:16<00:04, 19.87it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 316/400: 79%|███████▉ | 316/400 [00:16<00:04, 19.87it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 317/400: 79%|███████▉ | 316/400 [00:16<00:04, 19.87it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 317/400: 79%|███████▉ | 317/400 [00:16<00:04, 19.87it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 318/400: 79%|███████▉ | 317/400 [00:16<00:04, 19.87it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 318/400: 80%|███████▉ | 318/400 [00:16<00:04, 19.85it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 318/400: 80%|███████▉ | 318/400 [00:16<00:04, 19.85it/s, v_num=1, train_loss_step=18.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 319/400: 80%|███████▉ | 318/400 [00:16<00:04, 19.85it/s, v_num=1, train_loss_step=18.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 319/400: 80%|███████▉ | 319/400 [00:16<00:04, 19.85it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 320/400: 80%|███████▉ | 319/400 [00:16<00:04, 19.85it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 320/400: 80%|████████ | 320/400 [00:16<00:04, 19.86it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 320/400: 80%|████████ | 320/400 [00:16<00:04, 19.86it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 321/400: 80%|████████ | 320/400 [00:16<00:04, 19.86it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 321/400: 80%|████████ | 321/400 [00:16<00:03, 19.86it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 322/400: 80%|████████ | 321/400 [00:16<00:03, 19.86it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 322/400: 80%|████████ | 322/400 [00:16<00:03, 19.84it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 322/400: 80%|████████ | 322/400 [00:16<00:03, 19.84it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.8] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 323/400: 80%|████████ | 322/400 [00:16<00:03, 19.84it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 323/400: 81%|████████ | 323/400 [00:16<00:03, 19.84it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 324/400: 81%|████████ | 323/400 [00:16<00:03, 19.84it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 324/400: 81%|████████ | 324/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 324/400: 81%|████████ | 324/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 325/400: 81%|████████ | 324/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 325/400: 81%|████████▏ | 325/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 326/400: 81%|████████▏ | 325/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 326/400: 82%|████████▏ | 326/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 326/400: 82%|████████▏ | 326/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 327/400: 82%|████████▏ | 326/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 327/400: 82%|████████▏ | 327/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 328/400: 82%|████████▏ | 327/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 328/400: 82%|████████▏ | 328/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 328/400: 82%|████████▏ | 328/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=18.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 329/400: 82%|████████▏ | 328/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=18.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 329/400: 82%|████████▏ | 329/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 330/400: 82%|████████▏ | 329/400 [00:16<00:03, 19.82it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 330/400: 82%|████████▎ | 330/400 [00:16<00:03, 19.83it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 330/400: 82%|████████▎ | 330/400 [00:16<00:03, 19.83it/s, v_num=1, train_loss_step=18.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 331/400: 82%|████████▎ | 330/400 [00:16<00:03, 19.83it/s, v_num=1, train_loss_step=18.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 331/400: 83%|████████▎ | 331/400 [00:16<00:03, 19.83it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 332/400: 83%|████████▎ | 331/400 [00:16<00:03, 19.83it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 332/400: 83%|████████▎ | 332/400 [00:16<00:03, 19.83it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 332/400: 83%|████████▎ | 332/400 [00:16<00:03, 19.83it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 333/400: 83%|████████▎ | 332/400 [00:16<00:03, 19.83it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 333/400: 83%|████████▎ | 333/400 [00:16<00:03, 19.83it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.8] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 334/400: 83%|████████▎ | 333/400 [00:16<00:03, 19.83it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 334/400: 84%|████████▎ | 334/400 [00:17<00:03, 19.82it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 334/400: 84%|████████▎ | 334/400 [00:17<00:03, 19.82it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 335/400: 84%|████████▎ | 334/400 [00:17<00:03, 19.82it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 335/400: 84%|████████▍ | 335/400 [00:17<00:03, 19.82it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 336/400: 84%|████████▍ | 335/400 [00:17<00:03, 19.82it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 336/400: 84%|████████▍ | 336/400 [00:17<00:03, 19.84it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 336/400: 84%|████████▍ | 336/400 [00:17<00:03, 19.84it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 337/400: 84%|████████▍ | 336/400 [00:17<00:03, 19.84it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 337/400: 84%|████████▍ | 337/400 [00:17<00:03, 19.84it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.8] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 338/400: 84%|████████▍ | 337/400 [00:17<00:03, 19.84it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 338/400: 84%|████████▍ | 338/400 [00:17<00:03, 19.85it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 338/400: 84%|████████▍ | 338/400 [00:17<00:03, 19.85it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 339/400: 84%|████████▍ | 338/400 [00:17<00:03, 19.85it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 339/400: 85%|████████▍ | 339/400 [00:17<00:03, 19.85it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 340/400: 85%|████████▍ | 339/400 [00:17<00:03, 19.85it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 340/400: 85%|████████▌ | 340/400 [00:17<00:03, 19.86it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 340/400: 85%|████████▌ | 340/400 [00:17<00:03, 19.86it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 341/400: 85%|████████▌ | 340/400 [00:17<00:03, 19.86it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 341/400: 85%|████████▌ | 341/400 [00:17<00:02, 19.86it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 342/400: 85%|████████▌ | 341/400 [00:17<00:02, 19.86it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 342/400: 86%|████████▌ | 342/400 [00:17<00:02, 19.89it/s, v_num=1, train_loss_step=20.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 342/400: 86%|████████▌ | 342/400 [00:17<00:02, 19.89it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 343/400: 86%|████████▌ | 342/400 [00:17<00:02, 19.89it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 343/400: 86%|████████▌ | 343/400 [00:17<00:02, 19.89it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 344/400: 86%|████████▌ | 343/400 [00:17<00:02, 19.89it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 344/400: 86%|████████▌ | 344/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 344/400: 86%|████████▌ | 344/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 345/400: 86%|████████▌ | 344/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 345/400: 86%|████████▋ | 345/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=17.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 346/400: 86%|████████▋ | 345/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=17.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 346/400: 86%|████████▋ | 346/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=17.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 346/400: 86%|████████▋ | 346/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 347/400: 86%|████████▋ | 346/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 347/400: 87%|████████▋ | 347/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 348/400: 87%|████████▋ | 347/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 348/400: 87%|████████▋ | 348/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 348/400: 87%|████████▋ | 348/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=21.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 349/400: 87%|████████▋ | 348/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=21.8, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 349/400: 87%|████████▋ | 349/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=18.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 350/400: 87%|████████▋ | 349/400 [00:17<00:02, 19.88it/s, v_num=1, train_loss_step=18.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 350/400: 88%|████████▊ | 350/400 [00:17<00:02, 19.87it/s, v_num=1, train_loss_step=18.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 350/400: 88%|████████▊ | 350/400 [00:17<00:02, 19.87it/s, v_num=1, train_loss_step=18.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 351/400: 88%|████████▊ | 350/400 [00:17<00:02, 19.87it/s, v_num=1, train_loss_step=18.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 351/400: 88%|████████▊ | 351/400 [00:17<00:02, 19.87it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 352/400: 88%|████████▊ | 351/400 [00:17<00:02, 19.87it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 352/400: 88%|████████▊ | 352/400 [00:17<00:02, 19.86it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 352/400: 88%|████████▊ | 352/400 [00:17<00:02, 19.86it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 353/400: 88%|████████▊ | 352/400 [00:17<00:02, 19.86it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 353/400: 88%|████████▊ | 353/400 [00:17<00:02, 19.86it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 354/400: 88%|████████▊ | 353/400 [00:18<00:02, 19.86it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 354/400: 88%|████████▊ | 354/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 354/400: 88%|████████▊ | 354/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 355/400: 88%|████████▊ | 354/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 355/400: 89%|████████▉ | 355/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 356/400: 89%|████████▉ | 355/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 356/400: 89%|████████▉ | 356/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 356/400: 89%|████████▉ | 356/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 357/400: 89%|████████▉ | 356/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 357/400: 89%|████████▉ | 357/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=20.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 358/400: 89%|████████▉ | 357/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=20.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 358/400: 90%|████████▉ | 358/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=20.6, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 358/400: 90%|████████▉ | 358/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 359/400: 90%|████████▉ | 358/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 359/400: 90%|████████▉ | 359/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 360/400: 90%|████████▉ | 359/400 [00:18<00:02, 19.87it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 360/400: 90%|█████████ | 360/400 [00:18<00:02, 19.85it/s, v_num=1, train_loss_step=20.1, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 360/400: 90%|█████████ | 360/400 [00:18<00:02, 19.85it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.8] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 361/400: 90%|█████████ | 360/400 [00:18<00:02, 19.85it/s, v_num=1, train_loss_step=19, train_loss_epoch=19.8]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 361/400: 90%|█████████ | 361/400 [00:18<00:01, 19.85it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 362/400: 90%|█████████ | 361/400 [00:18<00:01, 19.85it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 362/400: 90%|█████████ | 362/400 [00:18<00:01, 19.87it/s, v_num=1, train_loss_step=20.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 362/400: 90%|█████████ | 362/400 [00:18<00:01, 19.87it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 363/400: 90%|█████████ | 362/400 [00:18<00:01, 19.87it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 363/400: 91%|█████████ | 363/400 [00:18<00:01, 19.87it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 364/400: 91%|█████████ | 363/400 [00:18<00:01, 19.87it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 364/400: 91%|█████████ | 364/400 [00:18<00:01, 19.85it/s, v_num=1, train_loss_step=20.9, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 364/400: 91%|█████████ | 364/400 [00:18<00:01, 19.85it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 365/400: 91%|█████████ | 364/400 [00:18<00:01, 19.85it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 365/400: 91%|█████████▏| 365/400 [00:18<00:01, 19.85it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.7] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 366/400: 91%|█████████▏| 365/400 [00:18<00:01, 19.85it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 366/400: 92%|█████████▏| 366/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 366/400: 92%|█████████▏| 366/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 367/400: 92%|█████████▏| 366/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 367/400: 92%|█████████▏| 367/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 368/400: 92%|█████████▏| 367/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 368/400: 92%|█████████▏| 368/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=18.7, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 368/400: 92%|█████████▏| 368/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 369/400: 92%|█████████▏| 368/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 369/400: 92%|█████████▏| 369/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 370/400: 92%|█████████▏| 369/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 370/400: 92%|█████████▎| 370/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 371/400: 92%|█████████▎| 370/400 [00:18<00:01, 19.83it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 371/400: 93%|█████████▎| 371/400 [00:18<00:01, 19.97it/s, v_num=1, train_loss_step=21.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 371/400: 93%|█████████▎| 371/400 [00:18<00:01, 19.97it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 372/400: 93%|█████████▎| 371/400 [00:18<00:01, 19.97it/s, v_num=1, train_loss_step=21.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 372/400: 93%|█████████▎| 372/400 [00:18<00:01, 19.97it/s, v_num=1, train_loss_step=18.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 373/400: 93%|█████████▎| 372/400 [00:18<00:01, 19.97it/s, v_num=1, train_loss_step=18.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 373/400: 93%|█████████▎| 373/400 [00:19<00:01, 19.97it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 374/400: 93%|█████████▎| 373/400 [00:19<00:01, 19.97it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 374/400: 94%|█████████▎| 374/400 [00:19<00:01, 20.10it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 374/400: 94%|█████████▎| 374/400 [00:19<00:01, 20.10it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 375/400: 94%|█████████▎| 374/400 [00:19<00:01, 20.10it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 375/400: 94%|█████████▍| 375/400 [00:19<00:01, 20.10it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 376/400: 94%|█████████▍| 375/400 [00:19<00:01, 20.10it/s, v_num=1, train_loss_step=19.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 376/400: 94%|█████████▍| 376/400 [00:19<00:01, 20.10it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 377/400: 94%|█████████▍| 376/400 [00:19<00:01, 20.10it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 377/400: 94%|█████████▍| 377/400 [00:19<00:01, 20.19it/s, v_num=1, train_loss_step=18.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 377/400: 94%|█████████▍| 377/400 [00:19<00:01, 20.19it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 378/400: 94%|█████████▍| 377/400 [00:19<00:01, 20.19it/s, v_num=1, train_loss_step=20.7, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 378/400: 94%|█████████▍| 378/400 [00:19<00:01, 20.19it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 379/400: 94%|█████████▍| 378/400 [00:19<00:01, 20.19it/s, v_num=1, train_loss_step=21.4, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 379/400: 95%|█████████▍| 379/400 [00:19<00:01, 20.19it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 380/400: 95%|█████████▍| 379/400 [00:19<00:01, 20.19it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 380/400: 95%|█████████▌| 380/400 [00:19<00:00, 20.24it/s, v_num=1, train_loss_step=19.1, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 380/400: 95%|█████████▌| 380/400 [00:19<00:00, 20.24it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 381/400: 95%|█████████▌| 380/400 [00:19<00:00, 20.24it/s, v_num=1, train_loss_step=19.3, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 381/400: 95%|█████████▌| 381/400 [00:19<00:00, 20.24it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 382/400: 95%|█████████▌| 381/400 [00:19<00:00, 20.24it/s, v_num=1, train_loss_step=20.3, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 382/400: 96%|█████████▌| 382/400 [00:19<00:00, 20.24it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 383/400: 96%|█████████▌| 382/400 [00:19<00:00, 20.24it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 383/400: 96%|█████████▌| 383/400 [00:19<00:00, 20.30it/s, v_num=1, train_loss_step=20.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 383/400: 96%|█████████▌| 383/400 [00:19<00:00, 20.30it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 384/400: 96%|█████████▌| 383/400 [00:19<00:00, 20.30it/s, v_num=1, train_loss_step=19.7, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 384/400: 96%|█████████▌| 384/400 [00:19<00:00, 20.30it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 385/400: 96%|█████████▌| 384/400 [00:19<00:00, 20.30it/s, v_num=1, train_loss_step=18.3, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 385/400: 96%|█████████▋| 385/400 [00:19<00:00, 20.30it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 386/400: 96%|█████████▋| 385/400 [00:19<00:00, 20.30it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 386/400: 96%|█████████▋| 386/400 [00:19<00:00, 20.31it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 386/400: 96%|█████████▋| 386/400 [00:19<00:00, 20.31it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 387/400: 96%|█████████▋| 386/400 [00:19<00:00, 20.31it/s, v_num=1, train_loss_step=19.6, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 387/400: 97%|█████████▋| 387/400 [00:19<00:00, 20.31it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 388/400: 97%|█████████▋| 387/400 [00:19<00:00, 20.31it/s, v_num=1, train_loss_step=19.4, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 388/400: 97%|█████████▋| 388/400 [00:19<00:00, 20.31it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 389/400: 97%|█████████▋| 388/400 [00:19<00:00, 20.31it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 389/400: 97%|█████████▋| 389/400 [00:19<00:00, 20.32it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 389/400: 97%|█████████▋| 389/400 [00:19<00:00, 20.32it/s, v_num=1, train_loss_step=18.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 390/400: 97%|█████████▋| 389/400 [00:19<00:00, 20.32it/s, v_num=1, train_loss_step=18.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 390/400: 98%|█████████▊| 390/400 [00:19<00:00, 20.32it/s, v_num=1, train_loss_step=18.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 391/400: 98%|█████████▊| 390/400 [00:19<00:00, 20.32it/s, v_num=1, train_loss_step=18.2, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 391/400: 98%|█████████▊| 391/400 [00:19<00:00, 20.32it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 392/400: 98%|█████████▊| 391/400 [00:19<00:00, 20.32it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 392/400: 98%|█████████▊| 392/400 [00:19<00:00, 20.34it/s, v_num=1, train_loss_step=19.8, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 392/400: 98%|█████████▊| 392/400 [00:19<00:00, 20.34it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 393/400: 98%|█████████▊| 392/400 [00:19<00:00, 20.34it/s, v_num=1, train_loss_step=19.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 393/400: 98%|█████████▊| 393/400 [00:19<00:00, 20.34it/s, v_num=1, train_loss_step=18.6, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 394/400: 98%|█████████▊| 393/400 [00:19<00:00, 20.34it/s, v_num=1, train_loss_step=18.6, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 394/400: 98%|█████████▊| 394/400 [00:20<00:00, 20.34it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.7] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 395/400: 98%|█████████▊| 394/400 [00:20<00:00, 20.34it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 395/400: 99%|█████████▉| 395/400 [00:20<00:00, 20.34it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 395/400: 99%|█████████▉| 395/400 [00:20<00:00, 20.34it/s, v_num=1, train_loss_step=18, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 396/400: 99%|█████████▉| 395/400 [00:20<00:00, 20.34it/s, v_num=1, train_loss_step=18, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 396/400: 99%|█████████▉| 396/400 [00:20<00:00, 20.34it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 397/400: 99%|█████████▉| 396/400 [00:20<00:00, 20.34it/s, v_num=1, train_loss_step=20.5, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 397/400: 99%|█████████▉| 397/400 [00:20<00:00, 20.34it/s, v_num=1, train_loss_step=18.6, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 398/400: 99%|█████████▉| 397/400 [00:20<00:00, 20.34it/s, v_num=1, train_loss_step=18.6, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 398/400: 100%|█████████▉| 398/400 [00:20<00:00, 20.36it/s, v_num=1, train_loss_step=18.6, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 398/400: 100%|█████████▉| 398/400 [00:20<00:00, 20.36it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.7] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 399/400: 100%|█████████▉| 398/400 [00:20<00:00, 20.36it/s, v_num=1, train_loss_step=20, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 399/400: 100%|█████████▉| 399/400 [00:20<00:00, 20.36it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 400/400: 100%|█████████▉| 399/400 [00:20<00:00, 20.36it/s, v_num=1, train_loss_step=19.9, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 400/400: 100%|██████████| 400/400 [00:20<00:00, 20.36it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=19.7]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "`Trainer.fit` stopped: `max_epochs=400` reached.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 400/400: 100%|██████████| 400/400 [00:20<00:00, 19.68it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=19.7]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "follicular_model = CellAssign(follicular_bdata, fl_celltype_markers)\n", - "follicular_model.train()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "thYsvuXzmwmX" - }, - "source": [ - "Inspecting the convergence:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 300 - }, - "id": "LgKjvavxwF5_", - "outputId": "ec9456bc-61e1-476d-e6ee-7fd4905ad06f" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAANQCAYAAADud2TnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABibAAAYmwFJdYOUAACP9ElEQVR4nOzdeXhU5f3+8fvMZGaSSQIJIQmryhY3cAMFFFEsldqqrWKrtWAVFf1WsLhbta21v9a1aivaQt2wLrR1qeJSF0REBRdALYjsyh5CFrJPZjm/P0ImM9mXM5nt/bouL2fmLPPJJ0PIzfOc5ximaZoCAAAAgCRhi3YBAAAAANCTCEEAAAAAkgohCAAAAEBSIQQBAAAASCqEIAAAAABJhRAEAAAAIKkQggAAAAAkFUIQAAAAgKRCCAIAAACQVAhBAAAAAJIKIQgAAABAUiEEAQAAAEgqhCAAAAAASYUQBAAAACCpEIIAAAAAJBVCEAAAAICkkhKJk7799tv617/+pTVr1qiiokLZ2dk67rjjNH36dI0ZM6bNY1euXKkFCxZo1apVKisrU05OjsaNG6fLLrtMI0aMiES5AAAAAJKIYZqmadXJfD6fbrzxRr322muSJLvdroyMDFVUVCgQCMgwDM2ZM0dXXnlli8c/+eSTuvvuu4P7NhwrSU6nU/fdd5+mTJliVbkAAAAAkpCl0+EeeOABvfbaa7Lb7br++uv16aef6pNPPtGKFSt02WWXyTRNPfDAA3rrrbeaHbt8+XLdddddCgQCOv/887V8+XJ99tlnWrp0qSZPnqy6ujrdcMMN2rp1q5UlAwAAAEgylo0ElZSU6JRTTlFdXZ1mzJihm266qdk+1157rV577TUNGjRIb7/9tmy2xgw2depUrVmzRieffLIeffTRsOPq6uo0depUbdiwQd///vf1wAMPWFEyAAAAgCRk2UjQihUrVFdXJ0maMWNGi/tceumlkqQdO3bo008/Db6+ZcsWrVmzRpJ0xRVXNDvO6XQGz7l48WJVVVVZVTYAAACAJGNZCNq5c6ckKTMzU7m5uS3uM3ToUBmGIUn68MMPg68vX75ckpSenq7jjjuuxWMnTpwoSfJ4PFq5cqVVZQMAAABIMpavDhcIBNrc1jD7buPGjcHXN2/eLEkaNmyY7HZ7i8fm5OSoT58+Kikp0aZNm4KhKBJM01QgYNl6EZ1iGApOE6zvV1TKSDj01Xr01Hr0NDLoq/XoqfXoaWTQV+vFQk9tNiM4sNJVloWggQMHSpKqqqq0a9cuDRgwoNk+ocFn7969zR7n5+e3+R75+fkqKSlRUVGRFSW3yjAM2e3da6wVQq+ZgnXoq/XoqfXoaWTQV+vRU+vR08igr9aL555aVvm4cePkcDgkSX/7299a3Cf09crKyuDj6upqSVJqamqb79GwnWuCAAAAAHSVZSNBffr00YUXXqgFCxbon//8p9LT0/Wzn/1M+fn52rFjh+bPn68lS5bI4XDI6/XGdHL0+wMqK6uOynvbbIays9MlSaWlVVGblpdo6Kv16Kn16Glk0Ffr0VPr0dPIoK/Wi4WeZmW5Zbd3L0tYek3Q9ddfr127duntt9/W448/rscffzxs+6RJk2S32/XOO++od+/ewdfdbrckqba2ts3zN2xPT0+3suwWxcIfkkAgetcmJTL6aj16aj16Ghn01Xr01Hr0NDLoq/XiuaeWhiCn06mHHnpIixcv1iuvvKINGzaorq5OgwcP1tlnn61zzz1X06dPlyQdcsghwePy8vIkSYWFhW2ev2F7a6vPAQAAAEB7LF8dzjAMTZ48WZMnT262zefz6euvv5YkHXPMMcHXhw0bJql+lTi/39/iCnHFxcUqKSmRJA0fPtzqsgEAAAAkiR69MOe9995TRUWFXC6Xvve97wVfHz9+vKT6BQ9Wr17d4rHLli2TJLlcLo0ePTryxQIAAABISD0WgkpLS3XPPfdIkn76058qKysruG3o0KEaOXKkJGn+/PnNjvV6vcHriyZPntwj1wQBAAAASEyWhqDly5fr0Ucf1datW+Xz+SRJHo9Hb7/9ti644AJ9++23Kigo0Jw5c5ode/3118swDC1dulS33367ysrKJNVfB3Tttddq/fr1crlcmj17tpUlAwAAAEgyll4TtHv3bt1777269957ZbPZlJmZqYqKCgUCAUnSscceq0ceeURpaWnNjh0/frxuuukm3X333Xruuee0cOFCZWZmqry8XFL9ogv33nuvhgwZYmXJAAAAkiTTNGWaAZlmz692ZZqGvF6vJMnv98Xtiluxhr5az4qeGoYhw7DJMAyry+swS0PQ6NGjdfHFF+uzzz7Trl27VFFRoZycHB155JE688wzdeaZZ7b5xV5yySUaNWqUFixYoNWrV6usrEz9+vXT2LFjdfnll2vEiBFWlgsAACCPp0Y1NVXyeGpkmoGo1VFcXL8wlM/nj1oNiYi+Ws+KnhqGTS5XmtLS0uVyNR8giTTDjMY/d8Q4vz+gkpKqqLy3zWYoJydDklRcXMm/WFiEvlqPnlqPnkYGfbVeIvW0qqpCFRUl0S7jgIZ/KI7ffsYm+mo9a3uamdlH6emZHd6/T5/02LpZKgAAQLzweGqCAcjhcMntzpTD4YzaFJ2UlPpf6ny+6I1GJSL6ar3u9tQ0TXm9daqurpDX61FFRYlSUlJ6dESIEAQAAJJSTU39rA+Hw6U+ffKjen2CpOC/bEdzSl4ioq/Ws6KnKSkOpaa6VVJSKK/Xo5qaqh4NQT16nyAAAIBYYJqmPJ4aSZLbnRn1AAQkI8Mw5HbXT62tvyav56YsEoIAAEDSqV8Frv5fsR0OZ5SrAZKXw+GSFP5nsicQggAAQNIJ/RdnRoGA6An988dIEAAAAABECCEIAAAAQFIhBAEAAABIKoQgAAAAAEmFEAQAABCnZs2aqQkTxuixx+Y12zZhwhhNmDBGq1Z9FoXKYt9jj83ThAljNGvWzGbb2upre3bv3hXs/e7du6wotVP+8IfbNWHCGP3hD7f3+HvHE26WCgAAAMS43bt36fXXF0mSLr30iihXE/8YCQIAAABC5Of300EHHaysrKxolxK0e/cuPfHE3/XEE39vc7+cnL466KCDlZPTt4cqi0+MBAEAAAAhfv3rO6JdQpddeeUsXXnlrGiXEfMYCQIAAACQVBgJAgAAiBHbtm3Ts8/+Q5999qmKigpls9k1cOAgTZx4qn7ykwuVkZHRpfMWFe3VE0/8XStWfKSyslJlZWVrwoSJuuSSmcrOzm71uMLCPXruuaf18ccfae/eQtntKRo0aJAmTpykn/zkp3K707v6pUqSnnlmgf7614c0cOAg/fOf/2l1vz17duvHPz5bpmlq/vwndcQRIyVJtbW1ev/997RixYfavHmT9u3bq+rqamVlZWvkyKM0depPNGbMmE7XNWvWTH3++SpdcsnlLV5/U11dpaeeekJLlryjoqK9yszspeOOG6OLL75MTqez1fMGAgGtXPmpPvhgqb76aq2KivaqrKxU6enpGj78UH3ve9/XlCnfl80WPk5x3nlnac+e3cHnEyaEf02hdf7hD7frjTde1RlnnKlbb729WQ2maeqdd97U668v0oYNX6uqqkq9e2dp1Kijdd555+uYY45rsfaGGm655bf63vfO0NNPP6U333xdu3fvVlpaqo466hjNmDFTI0Yc2urXH0sIQQAAADHglVf+o3vu+aN8Pp8kKTU1VV5vnTZt2qBNmzbojTde04MPPqyBAwd16ry7du3Qb397i0pLS5SWlibDMLR3b6FefPHfWrp0iR5++O8aNGhws+M+/XSFbrnlRtXUVEuS0tLc8vl82rBhvTZsWK/XXntF998/V4MHH9Tlr3ny5Cn629/maufOHVqz5n8aOXJUi/u9/fZ/ZZqmBg8+KBiAJOndd9/WH//4O0mSzWZTenqGDMOmoqK9WrLkHb333mJdddXVmjbt512usamSkmLNnn2Fvv32G0mSw+FQbW2N3n77v/rgg/d10023tnpsYeEeXXPNVcHnbne6XC6X9u/fr5UrP9HKlZ9o6dJ39Yc/3Cu73R7cLysrW1VVVaqoKJck9emTE3betDR3h2r3eDy6/fZbtGzZUkmS3W6X252ukpJivffeYr333mJNn36JrrjiqlbPUV1dpSuumKF1676S0+mUYRjav3+/li1bqk8//Vh/+cvfwr5HsYoQBAAAEGXLl3+gO+/8vZxOl37+80t11lnnqG/fvvL5fFq3bq3+/Oc/6euvv9Itt9ygJ554ptlIQVvmzn1QvXtn6fe/v0vHHHOcTNPUJ5+s0J133qF9+4r061/fpL///SmlpDT+Wrh79y7deutNqqmpVkHBobrxxlt12GFHKBAI6OOPl+uee/6g3bt36Ve/uk6PPfYPuVypXfq68/P76ZhjjtPq1Sv19ttvtBqC3nrrDUnS6aefEfZ6ZmamLrxwuiZOnKQRIw6Vy+WSaZoqLNyjf/7zWf3738/pkUce0nHHjVFBweFdqrGpP/zhd/r222+Unp6uG264Raee+h2lpKRo48b1uvPO3+u+++5s9Vi73a7TTz9DkydP0ciRR6lXr16SpIqKCr311uv6298e1gcfvK9//es5/fSn04LHPfroU1q16jNdffWVkqRXXnmzS7X/9a9/0bJlS2Wz2XT55b/Q1Kk/DoagRx/9m1555SX94x9P6KCDDtYZZ5zZ4jkee2y+MjIy9OCDc3XsscfLMAz9739f6He/u0179xbqwQfv0/z5T3apvp7ENUExyDRNeX2BaJcBAABU//dyUVmNdhZVdvi/orIamabZofP7/X498MC9Mk1Tv/nN73TJJZerb9/6lb1SUlI0atTRuv/+h5ST01ebN2/UsmXvdar+ujqv/vSnh4LTnAzD0Nix43X33Q/IZrNp48YNWrLknbBjnnrqCVVXVyknJ0cPPviIDjvsCEn1oy3jx5+ke+/9s+x2u775Zqtef/3VTtXT1JQp9cFm8eK3g6NgoTZu3KCtW7dIah6CTj75VP3iF7/UyJFHyeVyBb++fv3665e/vE4/+MHZCgQCevHFf3erxgZffPG5Pv74I0nSbbf9TpMnTwmGxxEjDtX9988NC5NN5eXl6ze/+b1OPHFCMABJ9WFu6tTzdd11N0mSZfWGKizco5deel6SdNllV2r69IuD0xn79MnRjTfeqtNO+64kaf78R1r8XkhSXZ1Hf/nLIxo37kTZ7XbZbDYdffSxuvrqayVJX321Rnv27LG8fqsxEhRjfP6Afj3vI32xcZ/OGHeQfnzq8GiXBABA0gqYpv7y/Jf6cnNxp489aliOrj7vKNkMo839Pv98lXbt2ql+/frrO9/5rnwt/ENor169NW7ciXrttVf0yScrdMopp3W4jtNOm9zidLdDDz1M48adpI8+WqZ3331H3/3u9yTVh7733lssSZo69Xz16tW72bHDh4/QqaeepsWL39Y777ypc845r8P1NHXqqZN1//33qKysVJ9+ukLjx08I294wCnTkkaM6PRXwpJMm6rXXXtEXX3ze5fpCNfTlkEOG6uSTT222PSsrSz/84VQtWPBYl85/0kkTJUm7d+/Uvn1F6ts3t8u1NrV06bvy+/1KT0/X+ef/rMV9Lr30Cr377tsqKtqrL75YrdGjj2+2z6mnfqfFKZATJpwiwzBkmqa2bt2kfv36WVZ7JBCCYsy2wgp9sXGfJOmtT7br7BOHyOW0t3MUAACIhMpqb5cCkCR9ublYldVe9Upv/UJ5Sfrf/76QJBUX79P3v//dVvdruDansLBz/8p+7LGjW9123HGj9dFHy7Rhw9fB13bt2hm89mTMmBNaPXbMmLFavPhtrV+/rlP1NJWRkaETT5yg9957V2+99d+wEBQIBPTOO/VTv5qOAjXYt2+fXnjhn/rss4+1fft2VVdXKRAINNmnqFs1Nmj4Wtvu6Zg2Q5DH49Grr/5H77//nrZu3aLy8v0tjrpYHYIaah816ujgqFlTBx98iHJz81RUtFfr169rMQQdfvgRLR6bkpKi7Ow+KikpVkVFhWV1RwohKMb4/Y1D5/6AqWqPjxAEAECUZLgdOmpYTpdHgjLcjnb3Ky6uP7fX61VJSfvvU1tb26k6cnPz2t1WWloafC30cUeOra2tVU1NjdLS0jpVV6jTT/++3nvvXX3wwdKwc33++SoVFe2V3W7Xd75zerPjvvzyc91wwy9VVVUVfK1hsQHDMOT1elVRUa6ampou1xaqrKy+N7m5rYeTtraVlBTr6qv/T998syX4msvlUkZGZvA6r4bPgFU1NygtLTtQX+vf04btRUV7wz4HodpaEbBhZbzWptLFEkJQjGkaeGrrfJJaTusAACCybIahX553lPbtr1Wd19/h45wOu3KzOhYKAoH6844Zc4Lmzv1bi9PhEt348ScpM7OXKirKtWzZe8FRn4apcGPHjldWVlbYMT6fT7/73W2qqqpSQcFhuuKKqzRq1NFyuxtXSvvss080Z84veuiraN9f/nK/vvlmi7KysnTVVXM0btyJys7uE9zu9/t1yiljJanD15ShawhBMSa1SQjydOIHLgAAsJ5hGB0ONF3RsNxxZ6e5dVRbU8GKivZKUti9gkIfFxXtbXXkoOHY1NTUbo0CSfXLTE+a9B298spLevPNN3T66Weorq4ueA1OS1Ph1q79nwoL98hut+vuu+9vsc6SkpJu1dVUVla2tm37tp2etrzN5/Pp/fffkyTNmXODJk+e0myf0lJr6w2VnZ0lqfH71pqWPhOJiNXhYozT0SQE1RGCAABIZCNHHiVJ2r59m7Zt+9by83/++apWt61evVKSVFBwWPC1AQMGKjOzfuWylSs/bfXYzz77WJKCK8d115Qp3w+et7S0RB99tEyVlZVyu9N18smnNNu/sLBQUv1iBK0FtYYarXLoofXLbHekp02VlZWqrs4jSSooaPmGop9+2nq9ocuid2WU6NBD679Pa9Z8KY/H0+I+3377TTAEWfV9jVWEoBjDSBAAAMll9Ojj1a9ff0nSAw/cJ7+/9b/7fT6fqqurO3X+xYvf0s6dO5q9vnHjeq1YUb/c83e+07ggg2EYmjTpO5Kk55//Z4sXuW/atFHvvfeuJGny5ObX6nTFUUcdo379+svv92vx4rf01lv/lSSdcsqkFu9DlJGRIal+tKelEZTNmzcFF1WwSkNftmzZrA8+eL/Z9vLy/frPf15o8Vi32y3jwEqBmzdvara9urpaTz31eKvvnZ7eeC1OVxYeOOWUSbLb7aqsrNS///1ci/s89tg8SfVLeR911DGdfo94QgiKMU1HgmoZCQIAIKGlpKTouutuks1m0/LlH+raa2dpzZovgyucBQIBbd26Rf/4x5P66U/P1caNGzp1fofDoeuuuzq4TLRpmvr00xW66aZr5ff7NWJEgU499Tthx1x00Qy53ekqLt6na665SuvXfx2sZfnyD3XDDb+U3+/XIYcM0RlnnNX9Jqg+fDUs0/3KKy9pxYoPJUmnn/69FvcfNepopaWlHbi/0q+0Y8d2SfVBcenSd3XNNVd1e5peU0cddYzGjj1RkvT//t9vtHjx28HQunHjBl177Wz5fN4Wj3W704Ojfg899IBWr14ZHNFZt26tfvnL/1N5+f5W33vw4IOD9yB6/fVXOl17fn4/nXPOjyVJf//7X/Xss08FA3VpaYnuuecPevfdtyVJl1/+f23e7ygRJPZXF4dshiGX0x6cBsd0OAAAEt/48RN0++3/T3/4wx1aufJTrVz5qZxOp9LS0lRVVRW22lY7tx1qZtasOZo37xFdddVlwdDQsMJcTk5f3XHHXc1+4e3Xr7/+8Ie7dcstN+rrr7/SpZdOk9udLr/fF5xK1a9ff915559aXW65K04//Qz94x9PaMuWzcH6Ro9ueZnuzMxMXXnlbD3wwD1avXqlLrjgHLnd6fJ66+T1etWvX3/NnDlHd9zxa8vqk6Rbb/2tZs++Qt9++41++9tfyel0yuFwqKqqSmlpbt144y363e9ua/HYq6++VrNnX6G9ews1e/YVcjpdstttqqmpkcvl0l13/UnXXDOrxWNTU1N1+uln6PXXF2nu3Af12GPz1Lt3liTpJz/5qX7ykwvbrf3//m+29uzZpQ8+eF+PPPIXzZv3sNzudFVWVgQD2fTpl+iMM87sWnPiCCEoBqU5UxpDENPhAABICqef/j0dc8xx+te/Furjjz/Srl07VVlZqfT0DA0aNFijRh2tU06Z1OlpSgMGDNLjjz+tJ574u1as+EilpSXKy8vXSSdN1IwZl4etThbq+OPH6emn/6XnnvuHVqxYrr17C2W32zViRIFOOeU0/fjHFyg9PcOCr7zRkCFDVVBwqDZsWC9Jmjx5Sti1ME1NnfoT5efn67nnntaGDV/L7/epf/8BmjDhFE2bdrE2bercqFlH9OmTo7//fYGeeuoJLVnyjvbuLVRqaqrGj5+giy++rM1QePjhR2r+/Cf1+OPztXr1SlVXVyszM0unnHKafvazn2vIkKFtvvd1192svLx8vffeu9q1a6f27NktqePT41wul+688096++039frrr2jDhvWqrq5Snz59NGrU0Zo69fw274GUSAyT9fea8fsDKimpan/HCLDZDN08b7n2FNcPT049Zah+MP6QqNSSSGw2Qzk59T+oi4srFQjwse8uemo9ehoZ9NV6idBTv9+noqKdkqTc3IGy26P/78IpKfW/7CfjEtmRRF+tZ2VPu/JnsU+fdNnt3buqh2uCYlCqs/GbzzVBAAAAgLUIQTEodIU4psMBAAAA1iIExaBUV+NIEAsjAAAAANaK/gRYNJMWGoIYCQIAAHHgsssu0t69hR3ePy8vX48++lQEKwJaRwiKQa7Q6XCMBAEAgDhQVlaqkpLiDu/vdDojWA3QNkJQDEpzMhIEAADiy/PPL4p2CUCHcU1QDAq9JojV4QAAAABrEYJiEKvDAQAAAJFDCIpBqUyHAwAAACKGEBSD0lwsjAAAQCQZhhF8bJpmFCsBklvon7/QP5eRRgiKQS5GggAAiCjDsMkw6n8N8nrrolwNkLy8Xo+k8D+TPYEQFINCR4J8flM+fyCK1QAAkHgMw5DLlSZJqq6uYDQIiALTNFVdXSlJcrnSenQkiCWyY1DoNUFS/WhQip28CgCAldLS0lVbWyWv16OSkkK53RlyOFw9+otYqIZ/Bffzj5+Woq/W625PTdOU1+tRdXVlcCQoLS3dsvo6ghAUg5qFoDq/0lMdUaoGAIDE5HKlKTOzjyoqSuT1erR/vyfKFTWEL0alrEVfrWdtTzMz+wRHZnsKISgGpYZMh5O4LggAgEhJT89USkqKamqq5PHUyDSjN1qQklL/r+s+H3/vW4m+Ws+KnhqGTS5XmtLS0ns8AEmEoJiU5gr/tnDDVAAAIsflSpPLlSbTNGWagahcH2SzGcrOrp8OVFpapUCAUQsr0FfrWdFTwzAOLIQQnamnEiEoJrmc4SNBdYwEAQAQcfW/mNnb3zECbDZDDkf91He7PUWGwS/rVqCv1kuUnnK1fQxKczISBAAAAEQKISgGOR12hY4Ock0QAAAAYB1CUAyy2Qy5HI3D8R5GggAAAADLEIJiVGrI4gi1jAQBAAAAliEExajQ64IYCQIAAACsQwiKUaErxHFNEAAAAGAdQlCMCr1XECNBAAAAgHUIQTEqNWQkiGuCAAAAAOsQgmJUKiNBAAAAQEQQgmJUKtcEAQAAABFBCIpRjAQBAAAAkUEIilGpTu4TBAAAAEQCIShGpYVMh6sjBAEAAACWIQTFqNDpcLVMhwMAAAAsQwiKUWELIxCCAAAAAMsQgmJU2MIITIcDAAAALEMIilGhCyP4A6Z8/kAUqwEAAAASByEoRqW57GHPuS4IAAAAsAYhKEaFjgRJrBAHAAAAWIUQFKNCrwmSGAkCAAAArEIIilGhq8NJLI4AAAAAWIUQFKOaTodjmWwAAADAGoSgGJXadGEERoIAAAAASxCCYpTLYZcR8pyRIAAAAMAahKAYZRiGXCHXBXFNEAAAAGANQlAMczlCQhAjQQAAAIAlCEExLHSFOK4JAgAAAKxBCIphzpCRIG6WCgAAAFiDEBTDwkaCmA4HAAAAWIIQFMPCFkYgBAEAAACWIATFsLCFEZgOBwAAAFiCEBTDUlkiGwAAALAcISiGhY4EcU0QAAAAYA1CUAzjmiAAAADAeilWn9A0Tb3++ut66aWXtG7dOu3fv18Oh0ODBg3S+PHjNX36dA0ePLjV45csWaJnnnlGa9euVWVlpfLy8jRx4kTNnDlT/fv3t7rcmJbKNUEAAACA5SwNQR6PR7Nnz9bSpUuDr6Wnp8vj8WjDhg3asGGD/vnPf+r+++/Xd77znWbH//GPf9SCBQskSTabTW63Wzt27NCzzz6rRYsWad68eRo9erSVJcc0l7Px20MIAgAAAKxh6XS4v/3tb8EANHv2bK1YsUKrVq3Sl19+qX/84x8aMWKEamtrdcMNN6ikpCTs2BdeeCEYgGbNmqXPPvtMK1eu1BtvvKFjjz1WFRUVuuqqq1RWVmZlyTHN5Wj89nBNEAAAAGANS0PQyy+/LEk655xzNGvWLGVnZ0uS7Ha7TjjhBD3yyCOSpKqqKn3wwQfB47xerx588EFJ0vnnn6/Zs2crPT1dkjR06FDNmzdPubm5Ki0t1aOPPmplyTEtdCSozuuXaZpRrAYAAABIDJaGoKKiIknSyJEjW9x+0EEHKSsrS5JUXV0dfH358uXau3evJOmKK65odlzv3r11wQUXSJIWLVqUNGEgdIlsf8CUz58cXzcAAAAQSZaGoEGDBkmS1qxZ0+L2bdu2BaezHXnkkcHXV6xYIUkaPny4Bg4c2OKxEydOlCTt2bNHW7ZssarkmBa6RLbEdUEAAACAFSxdGOH888/XnXfeqZdeekmDBg3Sz372M2VnZ8vv92vlypW64447JEk//OEPNWrUqOBxmzdvliSNGDGi1XOHbtu0aZOGDRtmZenN2GxGRM/fkfdNc4V/e7y+QNTqinehfaOH1qCn1qOnkUFfrUdPrUdPI4O+Wi9RemppCJo+fbp2796tBQsW6KGHHtJDDz2kjIwM1dbWyufzafDgwbrpppt08cUXhx3XMBUuPz+/1XOnpaWpV69eKi8vD067ixS73aacnIyIvkdH5PUNryHV7YyJuuJddnZ6tEtIOPTUevQ0Muir9eip9ehpZNBX68VzTy2dDme323XTTTfp9ttvl8vlkiRVVlbK5/NJkmpra1VeXh583qDh+qDU1NQ2z9+wvaqqysqyY1bozVIlVogDAAAArGDpSFBxcbFmzZqlVatW6Qc/+IFmzJihIUOGqLy8XCtWrNCf/vQn/fWvf9WqVav0+OOPKyXF8nu1WsLvD6isrLr9HSPAZjOCqdpTUxe2bW9RhXLSHdEoK+6F9rW0tEqBAItMdBc9tR49jQz6aj16aj16Ghn01Xqx0NOsLLfs9u6N5ViaQm688UatWrVKP/rRj3T33XcHX09PT9c555yjUaNG6ZxzztHHH3+s559/Prjim9vtllQ/UtSWhu0Ny2dHUiz8IXGmhH9zazz+mKgr3gUCJn20GD21Hj2NDPpqPXpqPXoaGfTVevHcU8umw23evDl4758ZM2a0uM/w4cN16qmnSpLefvvt4Ot5eXmSpMLCwlbPX1NTo/LycklSbm6uFSXHPEeKTaGXm9V6fa3uCwAAAKBjLAtBmzZtCj4+6KCDWt3v4IMPliTt3Lkz+FrDSm8bN25s9bjQbcOHD+9ynfHEMIyw64LqvIEoVgMAAAAkBstCkM3WeKpdu3a1ul9xcbEkKSOjcZWz8ePHS6ofTWrt2Pfff1+S1K9fPw0dOrTb9caL0BDEwggAAABA91kWgg4//PDg4+eee67FfYqKioLT4I455pjg6+PGjVNeXp5M09T8+fObHVdeXq6FCxdKks4++2wZRvyuSd5ZqY7QEMR0OAAAAKC7LAtBgwYN0imnnCJJevrpp3XnnXcGr/HxeDx6//33NW3aNFVUVMjhcOjCCy8MHutwODRnzhxJ0sKFCzV37tzgstlbt27VlVdeqaKiImVnZ+vSSy+1quS4EDoS5GEkCAAAAOg2S1eHu/POO3XJJZdo/fr1evLJJ/Xkk0/K7XartrZWgUD99SxOp1N33nlnsyltU6dO1ddff62nnnpKDz30kB555BG53W5VVFRIqp8+9/DDDysrK8vKkmNeqrPxW8R0OAAAAKD7LA1BOTk5ev755/X888/rzTff1Pr161VRUSGXy6UBAwZo/PjxmjZtmoYMGdLi8bfeeqtOPPFEPfPMM1qzZo2qqqo0cOBATZw4UTNnztSAAQOsLDcupDqZDgcAAABYyfK7lTqdTl144YVh0906Y9KkSZo0aZLFVcWvVBZGAAAAACxl2TVBiAymwwEAAADWIgTFOKbDAQAAANYiBMU4psMBAAAA1iIExTimwwEAAADWIgTFuFQX0+EAAAAAKxGCYlzT6XCmaUaxGgAAACD+EYJiXOh0ONOU6ryBKFYDAAAAxD9CUIxLCxkJkpgSBwAAAHQXISjGhY4ESSyOAAAAAHQXISjGpTYbCSIEAQAAAN1BCIpxzUMQ0+EAAACA7iAExbim0+FqGAkCAAAAuoUQFOOcDpsMo/E5I0EAAABA9xCCYpxhGM3uFQQAAACg6whBcSB0SlythxAEAAAAdAchKA6EjwQxHQ4AAADoDkJQHGA6HAAAAGAdQlAcCJsORwgCAAAAuoUQFAeYDgcAAABYhxAUB5gOBwAAAFiHEBQHmA4HAAAAWIcQFAeYDgcAAABYhxAUB5gOBwAAAFiHEBQHmA4HAAAAWIcQFAeYDgcAAABYhxAUB1JdjSNBdd6AAgEzitUAAAAA8Y0QFAdCR4IkpsQBAAAA3UEIigPNQxBT4gAAAICuIgTFgdCFESRGggAAAIDuIATFAabDAQAAANYhBMUBpsMBAAAA1iEExQGmwwEAAADWIQTFAUeKTXabEXzOSBAAAADQdYSgOBF+w1RGggAAAICuIgTFidApcYQgAAAAoOsIQXEifCSI6XAAAABAVxGC4kRYCPIwEgQAAAB0FSEoTnBNEAAAAGANQlCcCL8miOlwAAAAQFcRguIEI0EAAACANQhBcYLV4QAAAABrEILiRKqL1eEAAAAAKxCC4gTT4QAAAABrEILiBNPhAAAAAGsQguIEN0sFAAAArEEIihOhIcjnN+XzB6JYDQAAABC/CEFxInQ6nMSUOAAAAKCrCEFxInQkSJJqPUyJAwAAALqCEBQnmoUgRoIAAACALiEExQmmwwEAAADWIATFidCbpUqsEAcAAAB0FSEoTjAdDgAAALAGIShO2G02OVIav101jAQBAAAAXUIIiiPhN0xlJAgAAADoCkJQHCEEAQAAAN1HCIojoSvEsTACAAAA0DWEoDjCSBAAAADQfYSgOBI2EuQhBAEAAABdQQiKI6EjQR4vIQgAAADoCkJQHAmfDsc1QQAAAEBXEILiSPjCCIwEAQAAAF1BCIojLIwAAAAAdB8hKI6kupgOBwAAAHQXISiOsDocAAAA0H2EoDjSdDqcaZpRrAYAAACIT4SgOBIaggKmKa8vEMVqAAAAgPhECIojodPhJBZHAAAAALqCEBRHQkeCJBZHAAAAALqCEBRHmocgRoIAAACAziIExRGmwwEAAADdRwiKI0yHAwAAALqPEBRHXEyHAwAAALqNEBRHbIYRFoQIQQAAAEDnEYLiTNgNUz1MhwMAAAA6ixAUZ0IXR2AkCAAAAOg8QlCcSWU6HAAAANAthKA4kxYWgpgOBwAAAHQWISjOMB0OAAAA6B5CUJxhOhwAAADQPYSgOJPKdDgAAACgWwhBcSZ0OlwNI0EAAABAp6W0v0vHHHrooR3ed/bs2Zo1a1aL21auXKkFCxZo1apVKisrU05OjsaNG6fLLrtMI0aMsKrcuMV0OAAAAKB7LAtBffv2bXN7TU2NqqqqJEkjR45scZ8nn3xSd999twKBgAzDUEZGhvbs2aP//Oc/ev3113XfffdpypQpVpUcl5gOBwAAAHSPZSHoww8/bHP7jTfeqJdfflm5ubk6+eSTm21fvny57rrrLpmmqfPPP1/XXHONsrOztWfPHv3+97/XO++8oxtuuEEFBQUaMmSIVWXHHRcjQQAAAEC39Mg1QZWVlXrrrbckST/84Q9lt9ub7XPffffJNE2dfPLJuuOOO5SdnS1J6tevnx544AEVFBTI4/HoL3/5S0+UHLNCrwny1PkVMM0oVgMAAADEnx4JQW+88YZqamokSeeee26z7Vu2bNGaNWskSVdccUWz7U6nUzNmzJAkLV68ODitLhmFToeT6oMQAAAAgI6zbDpcW1544QVJ0rHHHqthw4Y12758+XJJUnp6uo477rgWzzFx4kRJksfj0cqVK4PPI8VmMyJ6/o68b0s1uFPDv2V1voDS06JTazxpr6/oPHpqPXoaGfTVevTUevQ0Muir9RKlpxEPQVu2bNHq1aslSVOnTm1xn82bN0uShg0b1uJUOUnKyclRnz59VFJSok2bNkU0BNntNuXkZETs/B2VnZ3e7LX8mvDFEFLdzpioNZ601Fd0Dz21Hj2NDPpqPXpqPXoaGfTVevHc04hPh3vxxRclSWlpaTrjjDNa3Gfv3r2SpPz8/DbP1bC9qKjIwgrjS1qTkaAaDyvEAQAAAJ0R0ZEgv9+vl19+WZI0ZcoUZWS0PGJRXV0tSUpNTW3zfA3bI31NkN8fUFlZdUTfozU2mxFM1aWlVQoEwhc+qK3yhD0v3FuhPm5Hj9UXr9rrKzqPnlqPnkYGfbUePbUePY0M+mq9WOhpVpZbdnv3xnIiGoI++OCD4ChPSwsixLJY+EMSCJjN6nA6wqcLVnt8MVFrPGmpr+geemo9ehoZ9NV69NR69DQy6Kv14rmnEZ0O17AgwuDBg3XCCSe0up/b7ZYk1dbWtnm+hu3p6fE7/7C7nCk2GSHXoHGvIAAAAKBzIhaCSktL9e6770qSzjnnHBlG66tH5OXlSZIKCwvbPGfD9tzcXIuqjD+GYYTdK4gQBAAAAHROxELQokWL5PV6ZbPZ2p0K17Bs9ubNm+X3t/xLfXFxsUpKSiRJw4cPt7bYOBN6r6DaOhZGAAAAADojYiGoYVW48ePHq3///m3uO378eEn1Cx40LKfd1LJlyyRJLpdLo0ePtrDS+BMWgjyMBAEAAACdEZEQtG7dOq1bt05S6/cGCjV06FCNHDlSkjR//vxm271erx5//HFJ0uTJk5P6miBJTIcDAAAAuiEiIahhQYTevXtr8uTJHTrm+uuvl2EYWrp0qW6//XaVlZVJqr8O6Nprr9X69evlcrk0e/bsSJQcV5gOBwAAAHSd5Utk19XVadGiRZKkH/zgB3K5XB06bvz48brpppt0991367nnntPChQuVmZmp8vJySZLT6dS9996rIUOGWF1y3AkPQYwEAQAAAJ1heQhasmRJcBSns/cGuuSSSzRq1CgtWLBAq1evVllZmfr166exY8fq8ssv14gRI6wuNy4xHQ4AAADoOstD0JQpU7R+/fouHz9mzBiNGTPGwooST6qL6XAAAABAV0X0ZqmIDKbDAQAAAF1HCIpD4dPhGAkCAAAAOoMQFIcYCQIAAAC6jhAUhwhBAAAAQNcRguJQWsh0OK8vIH8gEMVqAAAAgPhCCIpDoSNBEqNBAAAAQGcQguJQ6MIIklTrIQQBAAAAHUUIikPNR4JYIQ4AAADoKEJQHGI6HAAAANB1hKA4lOpqMh2OEAQAAAB0GCEoDjEdDgAAAOg6QlAcSrHblGI3gs8ZCQIAAAA6jhAUp0JXiCMEAQAAAB1HCIpToVPimA4HAAAAdBwhKE6FhyBGggAAAICOIgTFqbDpcNwsFQAAAOgwQlCcYjocAAAA0DWEoDjFdDgAAACgawhBcSp8dThGggAAAICOIgTFKUaCAAAAgK4hBMWpVBchCAAAAOgKQlCcYjocAAAA0DWEoDjFdDgAAACgawhBcappCDJNM4rVAAAAAPGDEBSnQqfD+QOmfP5AFKsBAAAA4gchKE6FjgRJUg1T4gAAAIAOIQTFqdCRIInrggAAAICOIgTFqaYjQbUeVogDAAAAOoIQFKeahiCPl5EgAAAAoCMIQXGK6XAAAABA1xCC4pTLGf6t8xCCAAAAgA4hBMUpu82mFLsRfM50OAAAAKBjCEFxzOVovC6ojhAEAAAAdAghKI45Q0KQx8vNUgEAAICOIATFMScjQQAAAECnEYLimCul8dvn8RGCAAAAgI4gBMUxZ8i9gurqmA4HAAAAdAQhKI4xEgQAAAB0HiEojnFNEAAAANB5hKA4Fr5ENtPhAAAAgI4gBMWx8CWyGQkCAAAAOoIQFMecjsZvH9PhAAAAgI4hBMUxFzdLBQAAADqNEBTHWBgBAAAA6DxCUBwLGwliiWwAAACgQwhBcYxrggAAAIDOIwTFMZbIBgAAADqPEBTHnCmNIcgfMOXzE4QAAACA9hCC4pjLGf7tY0ocAAAA0D5CUBwLHQmSWCYbAAAA6AhCUBwLvSZIYiQIAAAA6AhCUBwLXR1OkjyEIAAAAKBdhKA41nwkiOlwAAAAQHsIQXHM6Wh6TRAjQQAAAEB7CEFxjGuCAAAAgM4jBMWxFLshw2h8zkgQAAAA0D5CUBwzDCNsNKjOxzVBAAAAQHsIQXEu9LogTx0jQQAAAEB7CEFxzhWyTHadjxAEAAAAtIcQFOdCp8NxTRAAAADQPkJQnAudDsd9ggAAAID2EYLiHCNBAAAAQOcQguKcMyXkmiBCEAAAANAuQlCcczlDR4KYDgcAAAC0hxAU55wpodcEMRIEAAAAtIcQFOe4JggAAADoHEJQnHOG3ieI6XAAAABAuwhBcY6RIAAAAKBzCEFxLuw+QT5CEAAAANAeQlCcc4VMh/PUEYIAAACA9hCC4lz4SBDXBAEAAADtIQTFudBrgry+gAIBM4rVAAAAALGPEBTnHCnh30Ivo0EAAABAmwhBcc7ZJASxOAIAAADQNkJQnAu9JkjiXkEAAABAewhBca7pdDhGggAAAIC2EYLiXNORIK4JAgAAANpGCIpzza8JIgQBAAAAbSEExbnm1wQxHQ4AAABoCyEozjW/JoiRIAAAAKAtKZE6cXFxsZ566iktXbpUO3bskNfrVd++fXX44YfrtNNO07nnntvicUuWLNEzzzyjtWvXqrKyUnl5eZo4caJmzpyp/v37R6rcuMV9ggAAAIDOiUgIWrx4sW6++WaVl5dLklwul1JSUrRjxw7t2LFD69evbzEE/fGPf9SCBQskSTabTW63Wzt27NCzzz6rRYsWad68eRo9enQkSo5bNsOQI8UWDD9MhwMAAADaZnkI+uijj/TLX/5SXq9XP/zhD3X55ZdrxIgRkqTy8nKtXr1an3/+ebPjXnjhhWAAmjVrlmbMmKH09HRt2bJFt9xyi1avXq2rrrpK//3vf5WVlWV12XHNGRqCGAkCAAAA2mTpNUFVVVW65ZZb5PV6ddlll+mee+4JBiBJ6tWrl0455RT98pe/DDvO6/XqwQcflCSdf/75mj17ttLT0yVJQ4cO1bx585Sbm6vS0lI9+uijVpacEEKnxHkZCQIAAADaZGkIeumll7R7927l5+c3CzptWb58ufbu3StJuuKKK5pt7927ty644AJJ0qJFi2SapjUFJwhnSuMKcR5GggAAAIA2WRqCXnnlFUnSlClT5HQ6O3zcihUrJEnDhw/XwIEDW9xn4sSJkqQ9e/Zoy5Yt3aw0sTgdISNBPkaCAAAAgLZYdk2Qx+PRV199JUk68sgjtWXLFj3yyCNavny59u/fr9zcXI0dO1aXXXaZhg8fHnbs5s2bJSls6lxTods2bdqkYcOGWVV6i2w2I6Ln78j7drSG0HsFeX1m1GqPZV3pK9pGT61HTyODvlqPnlqPnkYGfbVeovTUshC0c+dOeb1eSdLWrVt1++23q6amRi6XSy6XS7t27dJLL72k1157Tffcc4/OOOOM4LENU+Hy8/NbPX9aWpp69eql8vJyFRUVWVV2i+x2m3JyMiL6Hh2RnZ3eof3caY7gY1uM1B7LOtpXdBw9tR49jQz6aj16aj16Ghn01Xrx3FPLpsM1LIctSfPnz1dGRobmz5+vzz//XCtXrtTLL7+skSNHqq6uTjfffLO+/fbb4P7V1dWSpNTU1Dbfo2F7VVWVVWUnBFfISJCHhREAAACANlk2EhQIBMIe33XXXZowYULwtcMOO0x//etfNWXKFFVXV+vJJ5/Ub3/7W6ve3lJ+f0BlZdVReW+bzQim6tLSKgUCHVgEImShiMoqj4qLKyNVXtzqUl/RJnpqPXoaGfTVevTUevQ0Muir9WKhp1lZbtnt3RvLsSwENSxpLdUvcBAagBrk5eXpzDPP1L/+9S999NFHwdfdbrckqba2ts33aNge+l6REgt/SAIBs0N1hC6R7anzx0TtsayjfUXH0VPr0dPIoK/Wo6fWo6eRQV+tF889tWw6XF5eXvDx0KFDW92vYduePXuaHVtYWNjqcTU1NcEpd7m5ud2qNdGELpHNzVIBAACAtlkWgrKzszsVTgyjcTWJhpXeNm7c2Or+oduari6X7JyhN0slBAEAAABtsvQ+QSeeeKIktXkfn4ZtofcDGj9+vKT6pbJ37drV4nHvv/++JKlfv35tjjQlI0fIfYLquE8QAAAA0CZLQ9A555wjqf4+PsuWLWu2fe/evXr11VclSaecckrw9XHjxikvL0+maWr+/PnNjisvL9fChQslSWeffXbYKBKaTIfzMhIEAAAAtMXSEDR+/HhNnDhRkvSrX/1KS5cuDa4a9/XXX+sXv/iFqqurlZWVpYsvvjh4nMPh0Jw5cyRJCxcu1Ny5c4PLZm/dulVXXnmlioqKlJ2drUsvvdTKkhOC0xE6HY6RIAAAAKAtlq0O1+C+++7TxRdfrK+++kozZ85UamqqUlJSVFlZv2xz7969NXfu3LCFFCRp6tSp+vrrr/XUU0/poYce0iOPPCK3262KigpJUkZGhh5++GFlZWVZXXLcY2EEAAAAoOMsD0G9e/fWP//5Tz3zzDN69dVXtXXrVnm9Xh1yyCE65ZRTdOmllyo/P7/FY2+99VadeOKJeuaZZ7RmzRpVVVVp4MCBmjhxombOnKkBAwZYXW5CCF0im+lwAAAAQNssD0GS5HQ6dckll+iSSy7p9LGTJk3SpEmTIlBV4nI2WRjBNE2umwIAAABaYek1QYiO0Olwpin54/SmVQAAAEBPIAQlgND7BElSnZfFEQAAAIDWEIISgKNpCGJxBAAAAKBVhKAE4HTYw54TggAAAIDWEYISANPhAAAAgI4jBCUAR5ORIC8jQQAAAECrCEEJwMVIEAAAANBhhKAE4EjhmiAAAACgowhBCSD0ZqmSVOclBAEAAACtIQQlALvNkM0wgs+9PqbDAQAAAK0hBCUAwzDkCBkNYjocAAAA0DpCUIIIXSabhREAAACA1hGCEkRoCGKJbAAAAKB1hKAE4Qy5VxDT4QAAAIDWEYIShIPpcAAAAECHEIIShDOFkSAAAACgIwhBCSL0XkEskQ0AAAC0jhCUIMJGgrhZKgAAANAqQlCCCLsmiOlwAAAAQKsIQQkidDocCyMAAAAArSMEJQiWyAYAAAA6hhCUIFxh1wQxEgQAAAC0hhCUIEKnw3kIQQAAAECrCEEJImw6HKvDAQAAAK0iBCUIZ9jqcIwEAQAAAK0hBCUIFyNBAAAAQIcQghJE+HQ4v0zTjGI1AAAAQOwiBCWI0IURTEk+P6NBAAAAQEsIQQkidCRIkjxMiQMAAABaRAhKEKH3CZK4VxAAAADQGkJQggidDidxryAAAACgNYSgBNF0OhwrxAEAAAAtIwQlCFfTEMS9ggAAAIAWEYISRNPpcIwEAQAAAC0jBCUIJwsjAAAAAB1CCEoQKXZDhtH43MN0OAAAAKBFhKAEYRhG2OIITIcDAAAAWkYISiCulMZvJ0tkAwAAAC0jBCWQ8JEgQhAAAADQEkJQAmE6HAAAANA+QlACcYUsk819ggAAAICWEYISSOgy2YwEAQAAAC0jBCUQrgkCAAAA2kcISiBOB6vDAQAAAO0hBCWQsOlwPqbDAQAAAC0hBCWQsIURGAkCAAAAWkQISiCh1wR5WBgBAAAAaBEhKIE4WSIbAAAAaBchKIG4WB0OAAAAaBchKIFwnyAAAACgfYSgBMJ0OAAAAKB9hKAEErYwQl1ApmlGsRoAAAAgNhGCEkjodLiAacofIAQBAAAATRGCEkjofYIkFkcAAAAAWkIISiCh0+Ek7hUEAAAAtIQQlEBcTUIQiyMAAAAAzRGCEoiz2XQ4RoIAAACApghBCSR0YQSJa4IAAACAlhCCEkjTkSAPIQgAAABohhCUQJoujMB0OAAAAKA5QlACcaQ0uSaIhREAAACAZghBCcRmGHKGBCGmwwEAAADNEYISTOiUOKbDAQAAAM0RghJMqrMxBNXW+aJYCQAAABCbCEEJxhUWgpgOBwAAADRFCEowqYQgAAAAoE2EoAST6kwJPmY6HAAAANAcISjBhI4EeRgJAgAAAJohBCUYpsMBAAAAbSMEJZhUR+h0OEIQAAAA0BQhKMGkulgiGwAAAGgLISjBMB0OAAAAaBshKMGErw5HCAIAAACaIgQlGJeDkSAAAACgLYSgBBM6Hc7nD8jnD0SxGgAAACD2EIISTOjCCJLk8TIaBAAAAIQiBCWY0GuCJKnWQwgCAAAAQhGCEkzodDiJZbIBAACApghBCSbV0TQEMRIEAAAAhCIEJZhUV5PpcIQgAAAAIExK+7t03Isvvqhf/epX7e63fPly9enTp8VtS5Ys0TPPPKO1a9eqsrJSeXl5mjhxombOnKn+/ftbWW5Caj4djhAEAAAAhLI0BDWw2WythpyG7S354x//qAULFgT3cbvd2rFjh5599lktWrRI8+bN0+jRoyNRcsJIsduUYjfk85uSuCYIAAAAaCoiIah///569913O3XMCy+8EAxAs2bN0owZM5Senq4tW7bolltu0erVq3XVVVfpv//9r7KysiJQdeJwOezy+evDDyNBAAAAQLiYuCbI6/XqwQcflCSdf/75mj17ttLT0yVJQ4cO1bx585Sbm6vS0lI9+uijUaw0PoQuk81IEAAAABAuJkLQ8uXLtXfvXknSFVdc0Wx77969dcEFF0iSFi1aJNM0e7S+eBN6w1RulgoAAACEi4kQtGLFCknS8OHDNXDgwBb3mThxoiRpz5492rJlS4/VFo9CF0fgZqkAAABAuIhcE1RSUqJzzjlHW7dulSTl5+frhBNO0LRp03TooYc223/z5s2SpBEjRrR6ztBtmzZt0rBhwyyuOpzNZkT0/B15367WEDodzuP1R+1riSVW9BXh6Kn16Glk0Ffr0VPr0dPIoK/WS5SeRiQE1dTUaN26derVq5eqq6v1zTff6JtvvtELL7yg6667TpdeemnY/g1T4fLz81s9Z1pamnr16qXy8nIVFRVFouwgu92mnJyMiL5HR2Rnp3fpuF4ZruDjgIyY+FpiSVf7itbRU+vR08igr9ajp9ajp5FBX60Xzz21NATl5eVp9uzZOv3003XIIYfI6XTK6/Vq5cqVuv/++/XFF1/onnvuUV5ens4666zgcdXV1ZKk1NTUNs+fmpqq8vJyVVVVWVl2wkkLuWFqDQsjAAAAAGEsDUETJkzQhAkTwl5zOBwaN26cnn76aU2fPl2ff/657rvvPv3gBz9o9X5B0eb3B1RWVh2V97bZjGCqLi2tUiDQ+UUgjJCFIyoqPSourrSsvnhlRV8Rjp5aj55GBn21Hj21Hj2NDPpqvVjoaVaWW3Z793JERKbDtcTpdGrOnDm6+OKLtWfPHn311VcaOXKkJMntdkuSamtr2zxHw/aG5bMjKRb+kAQCZpfqCF0Yocbjj4mvJZZ0ta9oHT21Hj2NDPpqPXpqPXoaGfTVevHc0x4dijn66KODj7dv3x58nJeXJ0kqLCxs9diamhqVl5dLknJzcyNUYWJwOUJWh2M6HAAAABAmJuajNaz0tnHjxlb3Cd02fPjwiNcUz0JHgrhPEAAAABCuR0PQF198EXw8aNCg4OPx48dLql8qe9euXS0e+/7770uS+vXrp6FDh0awyvgXukR2bR0hCAAAAAhlWQgyzbbnA3q9Xv35z3+WVL8U9pFHHhncNm7cOOXl5ck0Tc2fP7/ZseXl5Vq4cKEk6eyzz5ZhxO+a5D0hdCTI6wvIHwhEsRoAAAAgtlgWgnbu3Kkf//jH+te//qUdO3YEX/f5fPrkk080ffp0rV69WpJ0/fXXh60M53A4NGfOHEnSwoULNXfu3OCy2Vu3btWVV16poqIiZWdnN7vHEJoLDUESo0EAAABAKEtXh/vyyy/15ZdfSpJcLpfcbrcqKyvl9Xol1Yed66+/XmeffXazY6dOnaqvv/5aTz31lB566CE98sgjcrvdqqiokCRlZGTo4YcfVlZWlpUlJ6TQ6XCSVOvxKz3VEaVqAAAAgNhiWQjq27evbrvtNq1evVrr1q1TSUmJKioqlJqaquHDh2vs2LG64IILNGTIkFbPceutt+rEE0/UM888ozVr1qiqqkoDBw7UxIkTNXPmTA0YMMCqchNaWmr4t7Xa41NOlGoBAAAAYo1lISg1NVXTp0/X9OnTu3WeSZMmadKkSRZVlZzSm4agWm+UKgEAAABiT0wskQ1ruV1NQxD3CgIAAAAaEIISkNNhV4q98VtbRQgCAAAAgghBCSp0ShzT4QAAAIBGhKAE5Q4JQYwEAQAAAI0IQQkqNARVewhBAAAAQANCUIIKvS8Q0+EAAACARoSgBMV0OAAAAKBlhKAEle4KHQkiBAEAAAANCEEJKi1sJIjpcAAAAEADQlCCSmdhBAAAAKBFhKAEFbY6HNPhAAAAgCBCUIIKXR3O6wvI6/NHsRoAAAAgdhCCEpTblRL2nBXiAAAAgHqEoAQVOh1OIgQBAAAADQhBCSp0Opwk1RCCAAAAAEmEoITVfCSIZbIBAAAAiRCUsFKddtkMI/icFeIAAACAeoSgBGUYRthoECNBAAAAQD1CUAJzc8NUAAAAoBlCUAJL54apAAAAQDOEoAQWeq8gpsMBAAAA9QhBCcwdskw2I0EAAABAPUJQAksPWxiBEAQAAABIhKCEFj4SxHQ4AAAAQCIEJbT0NEaCAAAAgKYIQQksPWQkqKqGkSAAAABAIgQltIy0xhBU5wuozuuPYjUAAABAbCAEJbDQhREkpsQBAAAAEiEooYWOBElSJVPiAAAAAEJQIktvEoK4LggAAAAgBCU0RoIAAACA5ghBCSzFbpPLaQ8+r+JeQQAAAAAhKNFlhCyOwEgQAAAAQAhKeKHXBbE6HAAAAEAISnihN0xlJAgAAAAgBCW80MURWB0OAAAAIAQlvHRCEAAAABCGEJTgMtIaF0bgmiAAAACAEJTwuCYIAAAACEcISnCh1wRV1nhlmmYUqwEAAACijxCU4EKvCfIHTHm8/ihWAwAAAEQfISjBZYRMh5OYEgcAAAAQghJcesjCCJJUVcPiCAAAAEhuhKAEFzodTpIqaxkJAgAAQHIjBCW49NSmI0GEIAAAACQ3QlCCs9tsSnOF3CuIEAQAAIAkRwhKAqE3TK3khqkAAABIcoSgJBB2r6BqRoIAAACQ3AhBSSDT7Qw+rqipi2IlAAAAQPQRgpJAprtxJKiiihAEAACA5EYISgK9QkaCypkOBwAAgCRHCEoCmWEhiJEgAAAAJDdCUBLolR6+MIJpmlGsBgAAAIguQlASCJ0O5w+YqvawTDYAAACSFyEoCYROh5OkchZHAAAAQBIjBCWB0NXhJKmCxREAAACQxAhBSYCRIAAAAKARISgJOFJsSnOlBJ9X1DASBAAAgORFCEoSvbhhKgAAACCJEJQ0MtO5VxAAAAAgEYKSRmZa40hQOQsjAAAAIIkRgpJEr5CRIKbDAQAAIJkRgpJE6ApxLIwAAACAZEYIShKhCyOwRDYAAACSGSEoSYROh6uq8cofCESxGgAAACB6CEFJInQ6nCmpssYXvWIAAACAKCIEJYnMkOlwklTBMtkAAABIUoSgJNErZCRIkvZzXRAAAACSFCEoSWS4HbLbjODzsgpPFKsBAAAAoocQlCRshqHeGY2jQWWVhCAAAAAkJ0JQEsnKcAUfl1UyHQ4AAADJiRCURLLDQhAjQQAAAEhOhKAkkkUIAgAAAAhBySQrM+SaoAqmwwEAACA5EYKSSNORINM0o1gNAAAAEB2EoCQSGoL8AVOVNd4oVgMAAABEByEoiWRlhN8wtZR7BQEAACAJEYKSSFamK+w5y2QDAAAgGRGCkojblSJHSuO3nBXiAAAAkIwIQUnEMIywKXGEIAAAACSjiIegmTNn6tBDD9Whhx6qm2++uc19V65cqauvvloTJkzQyJEjdcopp+imm27Sxo0bI11m0ghfIY7pcAAAAEg+EQ1Br776qpYuXdqhfZ988klNmzZNb775pvbt26fU1FTt2bNH//nPf3TuuefqzTffjGSpSSMsBLEwAgAAAJJQxEJQWVmZ/vjHPyozM1PDhg1rc9/ly5frrrvuUiAQ0Pnnn6/ly5frs88+09KlSzV58mTV1dXphhtu0NatWyNVbtJoeq8gAAAAINlELATdddddKi4u1rXXXqucnJw2973vvvtkmqZOPvlk3XHHHcrOzpYk9evXTw888IAKCgrk8Xj0l7/8JVLlJo3skBXiSglBAAAASEIRCUEfffSRXnrpJR199NG64IIL2tx3y5YtWrNmjSTpiiuuaLbd6XRqxowZkqTFixerqqrK+oKTSFZm48II5ZV18vkDUawGAAAA6HmWh6Da2lr95je/UUpKiu644w7ZbG2/xfLlyyVJ6enpOu6441rcZ+LEiZIkj8ejlStXWltwkunbKy342JRUwnVBAAAASDIpVp/wz3/+s7Zv364ZM2bosMMOa3f/zZs3S5KGDRsmu93e4j45OTnq06ePSkpKtGnTpmAoiiSbzYj4e7T3vpGoITc7Nex5aXmt+vVxW/4+sSbSfU1G9NR69DQy6Kv16Kn16Glk0FfrJUpPLQ1Ba9eu1YIFCzRgwADNnj27Q8fs3btXkpSfn9/mfvn5+SopKVFRUVG362yP3W5TTk5GxN+nPdnZ6RE5Z4rdkM9vSpJq/WZMfK09KRJ9TXb01Hr0NDLoq/XoqfXoaWTQV+vFc08tmw7n9/v161//Ovh/t7tjowvV1dWSpNTU1Db3a9jONUHdY7MZys1q/N7sLa2JYjUAAABAz7NsJOiJJ57Q2rVr9d3vflennXaaVaeNCr8/oLKy6qi8t81mBFN1aWmVAgHT8vfIynBqd3F9mNy+p1zFxZWWv0es6Ym+Jht6aj16Ghn01Xr01Hr0NDLoq/VioadZWW7Z7d0by7EkBG3fvl1z585Venq6brvttk4d2zBiVFtb2+Z+DdvT03tm2C0W/pAEAmZE6sjp1Tjqtq+sJia+1p4Uqb4mM3pqPXoaGfTVevTUevQ0Muir9eK5p5aEoDvvvFM1NTW65pprlJmZ2WzKmt/vlyT5fL7gtrS0NNlsNuXl5UmSCgsL23yPhu25ublWlJzUcnqHhKD9bYdPAAAAINFYEoJ27twpSXrggQf0wAMPtLrfokWLtGjRIknSf/7zHx1++OEaNmyYpPpV4vx+f4srxBUXF6ukpESSNHz4cCtKTmp9Q0JQaYVHgYAZ16t7AAAAAJ0RkZuldsb48eMl1S94sHr16hb3WbZsmSTJ5XJp9OjRPVZbogqdDucPmCqr5F5BAAAASB6WjAS9/PLLbW6fPn26PvnkE51zzjm66667wrYNHTpUI0eO1Jo1azR//nyNGTMmbLvX69Xjjz8uSZo8eXKPXROUyEKnw0n1U+L69Gp7dT4AAAAgUUR9JEiSrr/+ehmGoaVLl+r2229XWVmZpPrrgK699lqtX79eLperw/ceQtuyM10yQma/FZdzXRAAAACSR0yEoPHjx+umm26SYRh67rnnNG7cOB1//PGaOHGi3nrrLTmdTt17770aMmRItEtNCCl2m7IzXcHnxSyOAAAAgCRi2X2CuuuSSy7RqFGjtGDBAq1evVplZWXq16+fxo4dq8svv1wjRoyIdokJJadXqkrK668FYoU4AAAAJJMeCUH/+Mc/OrTfmDFjml0ThMjo2ztNG3fslyQVldVEuRoAAACg58TEdDj0vPzstODjvaXVUawEAAAA6FmEoCSV16cxBJWUe+T1+aNYDQAAANBzCEFJKj/bHXxsStpbypQ4AAAAJAdCUJIKnQ4nEYIAAACQPAhBScqd6lBGmiP4vJAQBAAAgCRBCEpi+SHXBRWyOAIAAACSBCEoiYVeF1RYQggCAABAciAEJbG80GWyuVcQAAAAkgQhKImFjgSVlHtU52WZbAAAACQ+QlASC70mSGI0CAAAAMmBEJTE8rLcYc8LSwhBAAAASHyEoCTmTk1Rr3Rn8PmekqooVgMAAAD0DEJQkhuQ0zgatGsfK8QBAAAg8RGCklz/vunBx7uKGQkCAABA4iMEJbkBOY0haE9xtQKmGcVqAAAAgMgjBCW50OlwHq9fJeW1UawGAAAAiDxCUJILnQ4nSbuLuS4IAAAAiY0QlOR6pzvldqUEn+/ax3VBAAAASGyEoCRnGIb6922cErebxREAAACQ4AhBCFscgWWyAQAAkOgIQVD/kBC0u7hKJivEAQAAIIERgqABIYsjVNX6tL+qLorVAAAAAJFFCIIG5YavELejqDJKlQAAAACRRwiCsjNdYSvE7djL4ggAAABIXIQgyDAMDcrLCD7fvpeRIAAAACQuQhAkSYNzG0MQ0+EAAACQyAhBkCQNzAtfIc7nD0SxGgAAACByCEGQFD4S5PObKizhfkEAAABITIQgSJIGNlkhbjtT4gAAAJCgCEGQJKU6U5SblRp8zgpxAAAASFSEIAQNYnEEAAAAJAFCEIIGhyyT/W1hRRQrAQAAACKHEISgg/tlBh/vr6xTWaUnitUAAAAAkUEIQtDB+Zlhz7/dw2gQAAAAEg8hCEHZmS71cjuCz5kSBwAAgERECEKQYRg6KGRKHCNBAAAASESEIIQ5JDQEMRIEAACABEQIQpjQ64JKyj0qr66LYjUAAACA9QhBCBO6QpwkbWNKHAAAABIMIQhhcnqlKj01Jfh8KyEIAAAACYYQhDCGYWhI/17B51t3lUexGgAAAMB6hCA0M3RAYwjavGu/TNOMYjUAAACAtQhBaGbogN7BxxXVXu3bXxvFagAAAABrEYLQTOhIkFQ/GgQAAAAkCkIQmslIcyi/jzv4fAvXBQEAACCBEILQoqEhiyMQggAAAJBICEFo0bCBjSFoW2GFvL5AFKsBAAAArEMIQouGhSyO4POb+raQ+wUBAAAgMRCC0KJBeelyOezB5xt3lEWvGAAAAMBChCC0yG6zha0St3E7K8QBAAAgMRCC0KqCwVnBxxt3lCnATVMBAACQAAhBaFXBoMbrgqpqfdq9ryqK1QAAAADWIAShVUMH9JbdZgSfb9jBlDgAAADEP0IQWuVy2nVQfmbwOYsjAAAAIBEQgtCmESFT4jZsL5PJdUEAAACIc4QgtOnQkMURSso9KiqriV4xAAAAgAUIQWjToQdlyWi8LEhfbyuLWi0AAACAFQhBaJM71RF2XdC6b0ujWA0AAADQfYQgtOvwg7ODj7/+tpTrggAAABDXCEFo12EHNYag/VV12l1cHcVqAAAAgO4hBKFdIwb1li3kwqCvtzElDgAAAPGLEIR2pblSNGRA43VBX31DCAIAAED8IgShQ444uE/w8bpvS+UPBKJYDQAAANB1hCB0yJFDGkNQjcenrbsrolgNAAAA0HWEIHTI0AG9lOq0B5+v3VoSxWoAAACAriMEoUNS7LawpbIJQQAAAIhXhCB0WOiUuC27ylVd641iNQAAAEDXEILQYaEhKGCarBIHAACAuEQIQoflZaUpLzst+PzzTfuiWA0AAADQNYQgdJhhGDpmeN/g8y83F7NUNgAAAOIOIQidcuyIxhBUWePV5p3lUawGAAAA6DxCEDpl+KDeSk9NCT7/fCNT4gAAABBfCEHoFLvNpqOG5QSfr+a6IAAAAMQZQhA67eiQ64IKS6q1u7gqitUAAAAAnUMIQqeNHJIju80IPmeVOAAAAMQTQhA6zZ2aosMOygo+57ogAAAAxBNCELrkmBG5wcebdu5XRXVdFKsBAAAAOo4QhC45enjj4gimWX/PIAAAACAeEILQJX17p2lwXkbw+aoNRVGsBgAAAOg4QhC6LPTGqf/bUqLqWl8UqwEAAAA6hhCELjv+8PzgY58/oNUbGQ0CAABA7Eux8mSrVq3S0qVLtWbNGm3fvl3FxcXyeDzKysrSEUccobPOOktnnnmmDMNo9RxLlizRM888o7Vr16qyslJ5eXmaOHGiZs6cqf79+1tZLrppYN90DcrN0I6iSknSx+sKddIovkcAAACIbZaGoH/84x96/fXXg8/dbrdSUlJUVFSkpUuXaunSpfr3v/+tRx55RBkZGc2O/+Mf/6gFCxZIkmw2m9xut3bs2KFnn31WixYt0rx58zR69GgrS0Y3jT0iTzuW1oegr7aWqqK6TpluZ5SrAgAAAFpn6XS4sWPH6ve//71efvllrVq1SqtXr9bnn3+uDz74QHPmzJHdbtfHH3+su+++u9mxL7zwQjAAzZo1S5999plWrlypN954Q8cee6wqKip01VVXqayszMqS0U0nhEyJC5imVq5nShwAAABim6Uh6IILLtBPfvITHXbYYUpPTw++npubq//7v//T5ZdfLkl65ZVX5PV6g9u9Xq8efPBBSdL555+v2bNnB48fOnSo5s2bp9zcXJWWlurRRx+1smR0U25WmoYO6BV8/vFXhVGsBgAAAGhfjy6McNRRR0mSamtrtX///uDry5cv1969eyVJV1xxRbPjevfurQsuuECStGjRIpmm2QPVoqPGhowGbdheptIKTxSrAQAAANpm6TVB7Vm5cqWk+muFcnIab7a5YsUKSdLw4cM1cODAFo+dOHGiHnroIe3Zs0dbtmzRsGHDIlqrzdb64g099b7RqqGzTjgiXwsXb5QpyZT02fq9mnLCQdEuK0w89jXW0VPr0dPIoK/Wo6fWo6eRQV+tlyg9jXgIqq6u1u7du/Wf//xHjz/+uCTpoosuClshbvPmzZKkESNGtHqe0G2bNm2KaAiy223KyWm+cENPy85Ob3+nGJCTk6GRw/rqf5v3SZJWbijShWccEeWqWhcvfY0n9NR69DQy6Kv16Kn16Glk0FfrxXNPIxKCioqKNGHChGavOxwOTZs2TVdffXXY6w1T4fLz85sd0yAtLU29evVSeXm5ioq4+D7WTDx2YDAEbdhWpl1FlRqQG/0gCQAAADQVkRBkt9vVt29fSVJ5ebnq6upkGIYuuugizZgxQ3a7PWz/6upqSVJqamqb501NTVV5ebmqqqoiUXaQ3x9QWVl1RN+jNTabEUzVpaVVCgTi4/qnwwf1VordkM9fX++i9zfpvFOHR7mqRvHa11hGT61HTyODvlqPnlqPnkYGfbVeLPQ0K8stu717SxtEJAT16dNHH374oSQpEAho586dWrBggZ588km9+OKLmjt3rsaMGROJt7ZMLPwhCQTMmKijI9ypKTpmRK4++7p+VG/Zl7v1wwlDZLf16NobHRJPfY0X9NR69DQy6Kv16Kn16Glk0FfrxXNPI/4bqs1m0+DBg3XbbbfpxhtvVGlpqa699lrV1NQE93G73ZLqV41rS8P20OW3ETtOPqp/8PH+yjqt2VISxWoAAACAlvXoP9P/9Kc/ldPpVGFhod5///3g63l5eZKkwsLW7zFTU1Oj8vJySfX3HULsOfKQPsrOdAWff/Dl7ihWAwAAALSsR0OQy+VSVlaWJGnbtm3B1xtWetu4cWOrx4ZuGz48dq41QSObzdBJoxpHgz7ftE/lVXVRrAgAAABorkdDUFVVlUpLSyU1ToGTpPHjx0uqXyp7165dLR7bMHLUr18/DR06NMKVoqsmhEyJ8wdMLV+7J4rVAAAAAM1ZFoJ8Pl+7+zz55JPyer2SpOOPPz74+rhx45SXlyfTNDV//vxmx5WXl2vhwoWSpLPPPjvsHkOILXlZaTrsoKzg82Vf7pZpxucFcwAAAEhMloWgjRs36vzzz9dLL72kPXsa//XfNE1t2rRJd9xxhx566CFJ0pQpU1RQUBDcx+FwaM6cOZKkhQsXau7cucFls7du3aorr7xSRUVFys7O1qWXXmpVyYiQk48aEHy8a1+Vtuwuj2I1AAAAQDhLl8j+/PPP9fnnn0uqv/7H7XarurpaHo8nuM9pp52mu+++u9mxU6dO1ddff62nnnpKDz30kB555BG53W5VVFRIkjIyMvTwww8HrylC7Bp9aK6efjtFNZ760cH3Vu3UsAG9o1wVAAAAUM+yEDRkyBD96U9/0ooVK/S///1P+/btU1lZmZxOp4YOHaqjjjpKZ599tk466aRWz3HrrbfqxBNP1DPPPKM1a9aoqqpKAwcO1MSJEzVz5kwNGDCg1WMRO5wOu048sp8Wr9ohSfp4XaHOO3WYeme42jkSAAAAiDzLQlBqaqrOPPNMnXnmmd06z6RJkzRp0iSLqkK0TB4zKBiCfH5TS1bv1I9OZkELAAAARF+Prg6H5JHfx62jh+UEny9ZvVNenz+KFQEAAAD1CEGImNOPHxx8XFHt1Yq1rd8MFwAAAOgphCBEzGEHZ2tQbkbw+dufbWe5bAAAAEQdIQgRYxiGvnv8oODzHUVVWvdtaRQrAgAAAAhBiLBxR+Srl9sRfP7Wp9ujWA0AAABACEKEOVLsOvXYgcHnX24u1rd7KqJYEQAAAJIdIQgRd9roQXI6Gj9qL3+wNYrVAAAAINkRghBxvdxOfee4xmuDPt+0j9EgAAAARA0hCD1iytiDGA0CAABATCAEoUe0NBr0zZ7yKFYEAACAZEUIQo+ZMvYguRz24PNXPvgmesUAAAAgaRGC0GN6uZ06bXTjSnGfb9qnzbv2R7EiAAAAJCNCEHrUlBPCR4MWLt4o0zSjWBEAAACSDSEIPaqX26nvjT0o+HzzznJ9sm5vFCsCAABAsiEEocd9b+xBys50BZ8//94m1Xn9UawIAAAAyYQQhB7ncth13qnDgs+Lyz1689PtUawIAAAAyYQQhKgYe0S+hg7oFXz++vJvVVrhiWJFAAAASBaEIESFzTD00++MCD73eP3693ubolgRAAAAkgUhCFEzbGBvjTsyP/h8xdpCfbm5OIoVAQAAIBkQghBVPz51uNJcKcHnT735tWo8vihWBAAAgERHCEJUZWe6dP5pw4PPS8o9emHp5ihWBAAAgERHCELUnXxUfx12UFbw+burdmrD9rKo1QMAAIDERghC1BmGoYvPOEzOlMaP4xNvfC1PHfcOAgAAgPUIQYgJedlu/ejkocHnhSXVem7xhihWBAAAgERFCELMOP34wRoWcu+g97/YrU/WFUaxIgAAACQiQhBihs1maObZR4atFrfgv1+rqKwmilUBAAAg0RCCEFNys9J08RmHBZ/XePya98pa+fyBKFYFAACAREIIQsw5/rA8TTx6QPD5ll3l+teSTVGsCAAAAImEEISY9NPJIzSgb3rw+Tuf7dCyL3dFsSIAAAAkCkIQYpLLYdf//WikXE578LV/vLlem3buj2JVAAAASASEIMSsgX3TNfOsI2QceO7zm5r74v9UUl4b1boAAAAQ3whBiGnHjsjVjyY23j+ovKpOf3nhS9V4fFGsCgAAAPGMEISYd+b4g3X8YXnB59sKKzX3xf/J62PFOAAAAHQeIQgxzzAMzfj+4TqkX2bwtXXfluqx175SwDSjWBkAAADiESEIccHltGvOj49WfnZa8LVP1u3VwsUbZRKEAAAA0AmEIMSNXulOXXv+Meqd7gy+9s5nO/TSsi0EIQAAAHQYIQhxJTcrTdf85GiluRqXzn71o28JQgAAAOgwQhDizkH5mbp66lFyOho/vgQhAAAAdBQhCHHp0IOydc2Pj24WhP793maCEAAAANpECELcaikI/ffjbXr8tXXy+Vk+GwAAAC0jBCGuNQQhl6PxGqEP1+zR3Bf/J0+dP4qVAQAAIFYRghD3Dj0oWzdeeKwy0hzB177cXKx7F67W/kpPFCsDAABALCIEISEM6d9Lt0wfrb69U4OvbdlVrjsWfKZv91REsTIAAADEGkIQEka/Pm7dMn20BudlBF8rrfDozqdX6tN1hVGsDAAAALGEEISEkpXh0s0/O07HDO8bfK3OF9DDL63Rk6+uZcEEAAAAEIKQeNJcKZo1dZR+MP7gsNdfWLJJtzzyoUrKa6NUGQAAAGIBIQgJyWYYmnrKMM086wg5Uxo/5uu+KdFvHvtEX2zaF8XqAAAAEE2EICS0cUf2020XjVG/Pu7ga5U1Xv35+S+14L9fq7bOF8XqAAAAEA2EICS8QXkZun3G8Tr1uEFhry/9fJd++/gn2rijLDqFAQAAICoIQUgKqc4UXXvhcbr6J8co1dl4Y9Wislrd9fQq/ePN9aqu9UaxQgAAAPQUQhCShmEY+u7Yg3XHpWNVMKh38HVT0pLVO3XL3z/Wiq/2yDTN6BUJAACAiCMEIenkZafpxguP008mDZcjZNGE8qo6zX/lK93/z89VWFodxQoBAAAQSYQgJCWbzdD3xh6k3196go4c0ids29pvSvXrRz/Rv5dsYoocAABAAiIEIanlZbt17U+O1pU/PFK9053B133+gN74eJtunrdCi1fu4CarAAAACYQQhKRnGIZOODxff7h8nE47bqCMkG2VNV498/YG3TJ/hd77fKe8PsIQAABAvCMEAQe4U1M07fRD9dtLjteRh2SHbdu3v1ZP/Xe9fjV/ud5dtUNenz9KVQIAAKC7CEFAEwflZ+ra84/RNT85WgNz08O2lZR79PRbG3TT35brvx9vUxXXDAEAAMSdlGgXAMQiwzA0amiOjhzSRyvXF2nRh1u1o6gquL2ssk7/WrJJ//lgi04a2V+TxwxS/5z0Ns4IAACAWEEIAtpgMwwdf1ieRh+aq9Ub9mnRh1u1bW9lcHudN6Alq3dqyeqdGjmkj04bPUijhvaR3cYgKwAAQKwiBAEdYDMMjT40V8cV9NUXm4r15ifbtH57Wdg+a7aWaM3WEmVlOHXSqP46+aj+yst2R6dgAAAAtIoQBHSCYRg6ZkRfHTOir7YVVuidz3ZoxVeFYUtol1XW6bXl3+q15d/qsIOydNKo/jquIFdpLv64AQAAxAJ+KwO66KD8TM34weE6b9IwLV29U0u/2KWSck/YPl9vK9PX28q04L/rddSwHI09Il9HDcuRy2GPUtUAAAAgBAHd1Mvt1FknDdEPxh+itd+UaNkXu7R64z75A2ZwH58/oFUbirRqQ5FcDruOHp6jY0b01aihOUpPdUSxegAAgORDCAIsYrPVryg3amiOyqvrtGLNHn3wvz3aUVQZtp/H69cn6/bqk3V7ZTMMFQzurWOG10+x4xoiAACAyCMEARHQy+3U6SccpNNPOEg791Xp03WF+virQhWW1oTtFzDN4JS5he9uUv8ct0YNzdERh2SrYHCWUp38EQUAALAav2EBETawb7oGnjxUP5wwRNsKK/XJ14X6YlOxdu2rarbv7uJq7S6u1lufbpfdZmhI/146/OBsHXFItoYO6C1HCktvAwAAdBchCOghhmHo4H6ZOrhfpn586nDtLa3W55uK9fnGIm3Yvl8B0wzb3x8wtWnnfm3auV+LPvpGzhSbhg7opWEDe2vYwN4aPrC3MtK4nggAAKCzCEFAlORlu3X68W6dfvxgVdV69b8txfrf5mJ99W2p9lfWNdu/zhcITp1rkN/HreED64PRIf0yNbBvBqNFAAAA7SAEATEgPdWhcUf007gj+sk0Te0urta6b0u17ttSff1tqao9vhaPKyypVmFJtT783x5Jkt1maEDfdB2Un6GD8jN1cH6mBudlcI8iAACAEPxmBMQYw6gPMgP6pus7owcpEDC1bW+Fvv62TJt31U+Pa2mkSKqfQrd9b6W2760MBiNDUl4ftwbnpgfPO7BvuvL7uJViZ9QIAAAkH0IQEONsNkOH9OulQ/r1kiSZpqni8lpt2rlfm3eUa9PO/dpRVBl2X6JQphpHjLS+KPi63WYoLzutPhjl1Iej/D5pystyy53KjwYAAJC4+E0HiDOGYahv7zT17Z2mcUf0kyR5fX7t3FelbYWV+nZPhbYVVmj73krV+QKtnscfMIOr0a1UUdi2jDSH8rLT6v/LOvD/bLdys9LUy+2QYRgR/RoBAAAiiRAEJABHir1xtOjo+tcCAVO7S6q1rbA+FO3cV6Xd+6pUXO5p93yVNV5V1ni1ZVd5C+9lU59eqcrtnaqB+ZnKzU6T22FXn0yX+vZOVVaGSzYbIQkAAMQuQhCQoGw2o/4eRX3TNf7IfsHXazw+7S6u1s59ldq9r1o791Vp174qFZfXdui8Xl8gOL1uzdaSZtvtNkPZmS5lZbqUleFSdoar/nmG88D/67e5HHbLvlYAAIDOIAQBSSbNlaKhA3pp6IBeYa97vH7tK6vR3tIaFZbWaG9ZjYpKq1VYWqPi8lqZLV9y1Iw/YGrf/lrt2992qHK7UpSV6VJ2hlO9M1zqle5UL7dTmW6Heqc7lel2qld6/XMWcAAAAFYiBAGQJLkcdg3MzdDA3Ixm23z+wIFgU6Pi/bUqLq9V8X6P9lfXaW9pjYr313Q4JDWo9vhU7fFp176qdvdNT00JhqJebocy053q7XYqPc2h9LQUZaQ5lJ7qUHqaQxmpKUp1pcjGdUsAAKAVhCAA7Uqx29Svj1v9+riDr9lshnJy6gNT4d7y+nB0ICCVlNeqrLJOpRUelVV6VFrpUXlVXaeDUoOqWp+qan3aU1Ldof1thiF3akowFKWnOZQefO4Ifx7yOI3wBABAUiAEAei2FLtNuVlpys1Ka3UffyCg8ipvYzA68P+yCo/2V9WpvLpO5VV1qqj2trrcd0cFTDO4uENhJ44zJKW67Ep1psjtSlGqy640Z4rSXClKc9nr/++sH2lKa9iWmnJgn8btToeNFfQAAIhhhCAAPcJusyk7s36RhLaYpqmqWp8qDoSi8mrvgXAU8vzA46oar6prfepeZAp5b0k1Hr9qPH6VVrS/il5rbIahtANhKixAuVKU5qx/nOpKkcthV6rTLqfDJpejPlTlVtYp1Zmi2mqPHPb61x0OGyNUAABYiBAEIKYYhqGMA9PU+uekt7t/IGCq2uNTVa1XVTUN/68fBaqq9amqxlv/Wq2v/rWG12u9XZ6e125NB4JcVa3PsnM2BCWXwy6X0x587EixyZlikyPFJkeKPeSx7cC2+hDlsNvkPLB/wzHOFLtSgo8bz5FiNxjJAgAkNEtD0O7du/X222/r448/1rp161RUVCS73a78/HyNHTtW06ZNU0FBQZvnWLlypRYsWKBVq1aprKxMOTk5GjdunC677DKNGDHCynIBJACbrTE0KbvjxwVMU7UeX5Ow5FNNnU+1Hr+qPT7Venyq8fhUU+ev/3/I41qPr82b0VqtzhtQnTegCnkj/l6G1BiWHHY57DY5HAeCkt0mhyM8bDlTwsOVI6WFcOawBc/TEMicKbaQEGbn/lIAgB5jmKY1/xa6e/duTZo0SaGnc7vd8vl8qqurkySlpKTo5ptv1vTp01s8x5NPPqm7775bgUCg/l+DMzJUUVEhSXI6nbrvvvs0ZcoUK8ptk98fUElJ+ytWRULoxebFxZUKdPPaCNSjr9ajp/Wr5tWGBqQmIamm6TaPX7V1vgMByy+P98B/dX7LpvTFM5thKMVuKMVuq/9/ik0pNpvsdkMOu012u00OuyG73da4T+jjA/s3PYfDblPv3mly2G2qra2T3WaT3WaE/Wez1Z837HnwP9uB7YZSgttswf2SEX/+rUdPI4O+Wi8WetqnT7rs3bx9hmUjQX6/X6ZpasKECfrRj36k8ePHq2/fvvL7/frqq69011136bPPPtP/+3//T4cccohOPvnksOOXL1+uu+66S6Zp6vzzz9c111yj7Oxs7dmzR7///e/1zjvv6IYbblBBQYGGDBliVdkA0GUpdpsy0mz1o1DdYJqmvL6AvP6A3Ompqq3zqbCoUjUenzxev+oOBKVgaPL65akLyOP1y+vzy+sLqM4XqD+HL6C6A681vl7/3OeP7b/8A6apOp/ZoyNs3WVIwYAUFpiaBqyG4GWvf940TIVuaxa+QrcbzcNas3MF9ws/f0t1Nh7b8B62kGPr/2NqJIBEZNlIUEVFhbZv364jjjiixe11dXU677zztH79eo0bN04LFiwI2z516lStWbNGJ598sh599NFmx06dOlUbNmzQ97//fT3wwANWlNwqRoISD321Hj21XqR7Ggg0hq06r19ef0Beb3hQqmsnSNX56o8JniNsn/r9mgaySF17hZ5hGGoepmz1o2yGYUimKZthyDDqP8PBx4Yh48Bzm6Hwx0b9eRr2szV93mRb6LlbfK8DYc0W9r4HHrdzbpvtQD0N29T83E3rbvvr7UANzd5Xstttyu2bKYmfqVbi7yrrxUJPY2okKDMzs9UAJNVPZzv77LN17733as2aNWHbtmzZEnztiiuuaPHYGTNm6Oabb9bixYtVVVWl9PT2L5gGADSy2Yz6RRVkl7o5etVRpmnKfyB8hYWpA0HK620MTT5//WhV/f/bfuz31x/v95sH/h+6T+i+9c8DDaNtvkC3l2BPNqapA32MdiXJoWkQs9kkQw3hKzSINYao5oErPGAFH4cFxlbO18K5go8NQ4YtPJwaB/4vHXgshb1uKHwf24EXDYUcH3KMgl97Yw8awndDHQ3nDT9P/Quh7ylDshuGepXUyDCk8vJayTSD7xP+/o3naak2hfQr7LWwYw/Uf2BbQ+gNvqaQ14zw15rWgsjr0dXhXK76pXEDgfCpDsuXL5ckpaen67jjjmvx2IkTJ0qSPB6PVq5cGXwOAIhdRsh1Pmltr44eMU3/1dLnDygQMOX31wc0f+DA86b/+QMKmKH7mQf2CxzYbjbZHgg5tmFboMmxoeeqD3H+A+cI315fk6/hOH/4+QPt1In41fCv6nwfk1t4GJNCA15D+FMw8B3YHnys8KB34EHDsQ3/a7aPQgNt+HsoJPzlZqXp/847WoPyMiPag0jr0RD0ySefSFKzFeI2b94sSRo2bJjsdnuLx+bk5KhPnz4qKSnRpk2bIh6ConWxa+j7JusFt5FAX61HT61HTyOjaV9TZJPsknpmMKzHmaZZP3oTaBr2moc4v9kYsBr29YWFrMaA6PMfCG4BUwFTSktzKBAwVVlVp0CgPvQ1/N80FXwe/rj+2Pp9TAUCBx43HG+q/rHqt9Xvb8o8sF/jvi2cI/j+jceFniOslmbbDvQt2t884ADTlEyZavxQxs6nc3dxtf7xxjr96ucnxPXfVT0Wgr744gu98847kqTzzjsvbNvevXslSfn5+W2eIz8/XyUlJSoqKopMkQfY7bbgvxpGU3Y2U/4igb5aj55aj55GBn1FW0KDVFhwawiRDQEv0Bj4wgJWkzBYv5+a7Nf8tdDj/U3etyEcNu4X+h6tvWd4+Azdv9nXE2hpv/a/Tv+B4GmajcFbUvDYsG0KeS41O67pPg3vGTrqybU8saVvVpqk+P6Z2iMhqKysTNddd50CgYCOPvponXvuuWHbq6urJUmpqaltnqdhe1VVdBYtAAAAicswDqyMF+1C0ExoQJXCA5Wahqv6Aw68puDtW5oGLkn1o4AHThBoeM1sfB4W1kLqaDnMtXaOxu2mGgNqy+9RH0xNHfhazSZfc7OvP/x5cP/Qr1+hParfv7EfLfSzteMOnDMvO00nHzvI8u9xT4t4CKqtrdWsWbO0fft2ZWdn6/777291ylus8PsDKiurjsp722xGMFWXllbxLx8Woa/Wo6fWo6eRQV+tR0+tR08jo72+hq4vFvzt1JDCLqBR/E75igSbzZDLUd+taH1Ws7LcsbM6XEvq6uo0a9Ysffrpp8rMzNRjjz2mQYOaJ0e32y2pPjC1pWF7T6wMFws/fAIM/0YEfbUePbUePY0M+mo9emo9ehoZ9NV68dzT7kWoNtTV1enqq6/WsmXL5Ha79fe//11HHnlki/vm5eVJkgoLC9s8Z8P23Nxca4sFAAAAkDQiEoK8Xq9++ctfasmSJUpLS9P8+fN17LHHtrr/sGHDJNWvEuf3t3wjguLiYpWUlEiShg8fbn3RAAAAAJKC5SHI6/Vqzpw5evfdd5Wamqq//vWvOv7449s8Zvz48ZLqFzxYvXp1i/ssW7ZMUv29hkaPHm1t0QAAAACShqUhyOfz6brrrtM777wjp9Ophx9+OBhw2jJ06FCNHDlSkjR//vxm271erx5//HFJ0uTJk3vkmiAAAAAAicmyEOT3+3XDDTfozTfflNPp1Ny5czVhwoQOH3/99dfLMAwtXbpUt99+u8rKyiTVXwd07bXXav369XK5XJo9e7ZVJQMAAABIQpatDrdq1Sq9/vrrkurXGL/lllva3P/5559X//79g8/Hjx+vm266SXfffbeee+45LVy4UJmZmSovL5ckOZ1O3XvvvRoyZIhVJQMAAABIQpaFoEAgEHzs9Xq1b9++NvdvaQGESy65RKNGjdKCBQu0evVqlZWVqV+/fho7dqwuv/xyjRgxwqpyAQAAACQpy0LQ2LFjtX79+m6fZ8yYMRozZowFFQEAAABAcxG7TxAAAAAAxCJCEAAAAICkQggCAAAAkFQIQQAAAACSCiEIAAAAQFIhBAEAAABIKoQgAAAAAEmFEAQAAAAgqRCCAAAAACQVQhAAAACApEIIAgAAAJBUCEEAAAAAkgohCAAAAEBSIQQBAAAASCqEIAAAAABJhRAEAAAAIKkQggAAAAAkFUIQAAAAgKRCCAIAAACQVAhBAAAAAJKKYZqmGe0iYo1pmgoEotcWu70+m/r9gajVkIjoq/XoqfXoaWTQV+vRU+vR08igr9aLdk9tNkOGYXTrHIQgAAAAAEmF6XAAAAAAkgohCAAAAEBSIQQBAAAASCqEIAAAAABJhRAEAAAAIKkQggAAAAAkFUIQAAAAgKRCCAIAAACQVAhBAAAAAJIKIQgAAABAUiEEAQAAAEgqhCAAAAAASYUQBAAAACCpEIIAAAAAJBVCEAAAAICkQggCAAAAkFQIQQAAAACSCiEIAAAAQFIhBAEAAABIKoQgAAAAAEmFEAQAAAAgqRCCAAAAACSVlGgXgEalpaV69NFHtXjxYu3evVsul0sFBQU677zz9KMf/Sja5cWcF198Ub/61a/a3W/58uXq06dPi9uWLFmiZ555RmvXrlVlZaXy8vI0ceJEzZw5U/3797e65KirqanRJ598orVr1+qrr77S2rVrtWvXLknSjTfeqEsvvbTdc6xcuVILFizQqlWrVFZWppycHI0bN06XXXaZRowY0eaxPp9Pzz33nF5++WVt3bpVgUBAgwcP1hlnnKFLLrlEqamplnydPa07fZ0+fbo++eSTNs9/6qmnat68eW2+/xNPPKH//ve/2r59u2w2m4YOHaqzzz5bF154oex2e9e+sCjavXu33n77bX388cdat26dioqKZLfblZ+fr7Fjx2ratGkqKCho8xx8VsN1p6d8Tlu3atUqLV26VGvWrNH27dtVXFwsj8ejrKwsHXHEETrrrLN05plnyjCMVs/Rnb+LErGv3enpaaedpp07d7Z5/p/97Gf6zW9+0+r2ZPp9bObMmVq6dKkk6ZxzztFdd93V6r6J9jPVME3T7PF3RTObN2/Wz3/+cxUVFUmS3G636urq5PP5JElnnHGG7r//ftlsDN41aAhBNput1ZAjSa+99pqysrKavf7HP/5RCxYskCTZbDa53W5VVlZKkjIzMzVv3jyNHj06IrVHy8cff6yLLrqoxW0dCUFPPvmk7r77bgUCARmGoYyMDFVUVEiSnE6n7rvvPk2ZMqXFY6urq3XppZdq1apVwf3tdrtqamokScOGDdPTTz/d5vcyVnWnrw2/XLrdbrnd7hb3OfHEE3Xvvfe2uG3fvn2aNm2atm7dKklKS0uT3+9XXV2dJGnMmDF67LHH4uqX9t27d2vSpEkK/evJ7XbL5/MFv66UlBTdfPPNmj59eovn4LMarrs95XPaumuuuUavv/568Lnb7ZZpmsHPiySNHTtWjzzyiDIyMpod352/ixK1r93paUMIysjIaPXrnjp1qq699toWtyXT72OvvvqqrrvuuuDztkJQQv5MNRF1Ho/H/O53v2sWFBSY3/ve98wvv/wy+PrTTz9tHnnkkWZBQYE5d+7cKFcaW1544QWzoKDAnDRpUqePff75582CggKzoKDA/Mtf/mJWVlaapmmamzdvNs8//3yzoKDAHDt2rFlaWmpx1dG1YsUK8/jjjzd//vOfm3fffbf56quvmieddJJZUFBgPvroo20e+9FHH5mHHnqoWVBQYP761782S0pKTNM0zd27d5u/+MUvzIKCAnPUqFHmli1bWjz+xhtvNAsKCszjjjvOfO2110y/32+apml+8MEHwRouuugia7/gHtKdvk6bNi34OeyKn/3sZ2ZBQYF50kknmR9++KFpmqbp9/vN1157zTz22GPNgoIC81e/+lWXzh0t27dvNwsKCswZM2aYr7zyillUVGSapmn6fD7zyy+/NC+88MLgn9/333+/2fF8Vpvrbk/5nLbuueeeM//5z3+a69atC/5dYpqmuXfvXvORRx4xDz/8cLOgoMC87bbbmh3b3b+LErWv3enppEmTzIKCAvOFF17o9Psm0+9jpaWl5vjx483Ro0ebZ5xxhllQUGDedNNNLe6bqD9TCUEx4OmnnzYLCgrMo446yty2bVuz7X/729/MgoIC85hjjgl+8ND1EFRXV2dOmDAh+Ie5qbKysuAfynvvvdeqcmOCz+dr9lrDXxjt/bJ+7rnnmgUFBeall17abJvH4zHPPPNMs6CgwJwzZ06z7V9//XXwB+irr77abPuqVauCvwgsXbq0E19RbOhOX7vzy+WSJUuCfVu1alWz7YsWLTILCgrMww47zNy4cWOnzx8t5eXl5tq1a1vd7vF4zLPOOqvVvzj5rDbX3Z7yOe26+++/P/h3fF1dXfD17v5dlMx9ba2nptm9EJRMv4/ddNNNZkFBgfnMM88E/3y3FoIS9Wdq/I/lJYCXX35ZkvT9739fgwcPbrZ92rRpcrvdqq6u1jvvvNPT5SWc5cuXa+/evZKkK664otn23r1764ILLpAkLVq0KGz6SLzr6tzwLVu2aM2aNZJa7pnT6dSMGTMkSYsXL1ZVVVXY9oY+Dh48WN///vebHX/sscfqhBNOkCS98sorXaoxmqI1577hZ8fYsWN17LHHNtv+gx/8QIMGDVIgENCiRYt6urwuy8zM1BFHHNHqdqfTqbPPPluSgp/LBnxWW9adnnZXon5OO+qoo46SJNXW1mr//v3B17v7d1Ey97W1nnZXsvw+9tFHH+mll17S0UcfHfyMtSaRf6YSgqKsqqpKX375pSRp4sSJLe6Tnp6uMWPGSKr/4KJ7VqxYIUkaPny4Bg4c2OI+Dd+LPXv2aMuWLT1WW6xavny5pPrP4nHHHdfiPg0983g8WrlyZdi2hp6ffPLJrV4c3HB8w3uhfQ19be1nh2EYOvnkkyUlXl9dLpckKRAIhL3OZ7XrWutpdyXz51RS8DPmdruVk5MTfL27fxclc19b62l3JMvvY7W1tfrNb36jlJQU3XHHHe1e25TIP1MJQVG2ZcuW4L/utLXSUcOqG5s2beqRuuJJSUmJzjnnHB1zzDE65phjNGXKFP3617/W+vXrW9x/8+bNktTmSiah2+h5Y8+GDRvW6qhHTk5O8KLG0J6Zptmhnjd8/vft26fS0lJL6o4nixYt0qRJkzRy5EidcMIJuuCCC/T3v/89eIF0UyUlJSopKZHUsc9yon2OG1Yqa/pzk89q17XW01B8Tjumurpamzdv1p/+9Cc9/vjjkqSLLroo7JfA7vxdlIx97UhPQz3++OOaMGGCRo4cqXHjxunnP/+5nn32WXk8nhb3T5bfx/785z9r+/btuuiii3TYYYe1u38i/0xliewoaxgKl6T8/PxW92vYFro/6tXU1GjdunXq1auXqqur9c033+ibb77RCy+8oOuuu67ZylwNPWyr32lpaerVq5fKy8uDK8Qks470rGF7SUlJWM+qqqpUXV3d7vGh24qKipSdnd2dkuPOt99+K4fDobS0NJWXl2v16tVavXq1nn32Wf31r39t9pdVZ392VFVVqaqqSunp6ZH5AnrQF198EZyKct5554Vt47PaNW31NBSf09YVFRVpwoQJzV53OByaNm2arr766rDXu/N3UbL0tbM9DbVx40alpqYqNTVVpaWlWrFihVasWKHnnntO8+bN04ABA8L2T4bfx9auXasFCxZowIABmj17doeOSeSfqYSgKGv4cEhqcwnLtLQ0SWo21zKZ5eXlafbs2Tr99NN1yCGHyOl0yuv1auXKlbr//vv1xRdf6J577lFeXp7OOuus4HENPW9vydDU1FSVl5fTc3WuZ1L45zT0ccPnuK1jmx6T6E444QRNnTpVJ510kvr27SvDMFRWVqbXXntN999/v3bt2qXLLrtMixYtCvuLIfRnR1t9Dd0Wj78ENVVWVqbrrrtOgUBARx99tM4999yw7XxWO6+9nkp8TjvCbrerb9++kqTy8nLV1dXJMAxddNFFmjFjRrN/Re/O30XJ0tfO9lSSvvOd72jMmDE6/vjjg6MTe/fu1fPPP69HHnlEGzZs0MyZM/Xiiy/K6XQGj0v038f8fr9+/etfB//f2lL3TSXyz1SmwyFuTZgwQbNmzVJBQUHwB5nD4dC4ceP09NNP65hjjpEk3XfffZbPcQesMnv2bP3oRz9Sbm5ucFpHVlaWfvazn2nBggVyOBwqKirSE088EeVKo6+2tlazZs3S9u3blZ2drfvvvz8ubwQZSzraUz6n7evTp48+/PBDffjhh8GRtWnTpunJJ5/UmWeeqc8++yzaJcadrvT01ltv1ZQpU8LuOZOXl6df/OIX+vOf/yypfpTopZde6rGvIxY88cQTWrt2rb773e/qtNNOi3Y5MYEQFGWhSby2trbV/RpuKBVv/4oTLU6nU3PmzJFUf0HpV199FdzW0PO2+h26nZ53r2ehj0NvdNfasU2PSWYjR44MrqazZMmSsG2hPzva6mvotnjua11dnWbNmqVPP/1UmZmZeuyxxzRo0KBm+/FZ7biO9rQ9fE6bs9lsGjx4sG677TbdeOONKi0t1bXXXhv2dXbns5qMfe1IT9vTMEoktf1ZTbTfx7Zv3665c+cqPT1dt912W6eOTeSfqYSgKMvLyws+LiwsbHW/hm2h+6NtRx99dPDx9u3bg48bethWv2tqalReXi5Jys3NjVCF8aMjPQvdHtqz9PT04A/RjnzGmx6f7Bo+x6GfYanzPzvS09Pj6i/tUHV1dbr66qu1bNkyud1u/f3vf9eRRx7Z4r58VjumMz3tCD6nrfvpT38qp9OpwsJCvf/++8HXu/N3UbL3tbWedkTD8trd/azG0+9jd955p2pqajRz5kxlZmYGrxFr+M/v90uSfD5f8LWGGTSJ/DOVEBRlw4YNC04t2LBhQ6v7bdy4UVL9UpronmHDhklq7GlLQrfR88aebd68OfjDsqni4uLgakWhPTMMo0M9b/j89+3bNyEuNI+0Pn36BKd7dOSzHK+fY6/Xq1/+8pdasmSJ0tLSNH/+/BbvidKAz2r7OtvT7kiWz2lbXC6XsrKyJEnbtm0Lvt6dv4uSva+t9bQ7Evn3sZ07d0qSHnjgAR133HHN/mtY1nrRokXB1xpW2E3kn6mEoChzu93Bf0FbtmxZi/tUV1cH572eeOKJPVZbvPviiy+Cj0OneIwfP15S/R/oXbt2tXhsw78s9evXT0OHDo1glfGhoWdVVVVavXp1i/s0fH5dLpdGjx7d4vEffPBBqzefbTi+YV/Ua/gctzRNqaFXrf3sME1TH3zwQdi+8cTr9WrOnDl69913lZqaqr/+9a86/vjj2zyGz2rbutLTjkjmz2l7qqqqgsv+hk656u7fRcnc19Z62hEN9wJq+lnl97GWJfLPVEJQDGi4S/frr7+uHTt2NNv+zDPPqLq6Wm63W5MnT+7p8mJSa3+QGni93uAFkPn5+WHTPMaNG6e8vDyZpqn58+c3O7a8vFwLFy6UVP+9ae0eBMlk6NChGjlypCS12DOv1xu8b8PkyZObTbs466yzZBiGtm3bpjfeeKPZ8V988YU+/vhjSdIPf/hDq8uPWe19jr/66iu9/vrrkqRJkyY1297ws+Pjjz8OC/0N3njjDW3fvl02my1shcR44PP5dN111+mdd96R0+nUww8/3KG/IPmstq6rPeVz2jqfz9fuPk8++aS8Xq8khQXO7v5dlKh97U5P2/usvvfee8EQ09ZnNdF+H3v55Ze1fv36Vv874YQTJEnnnHNO8LXDDz9cUmL/TCUExYAf//jHOvjgg1VTU6MrrrhCa9askVQ/Z/vZZ58N/jJ/2WWXxeXUi0jYuXOnfvzjH+tf//pX2A8qn8+nTz75RNOnTw/+i8X1118fdkdkh8MRXDRh4cKFmjt3bnAJyK1bt+rKK68MrlPf9B5DiWD//v3BG+2VlJQE5/3W1NSEvV5XVxd23PXXXy/DMLR06VLdfvvtKisrk1Q/l/faa6/V+vXr5XK5Wrz3QEFBQfCH229+8xu98cYbwfddvny5Zs2aJan+l4KGO5zHm670df78+frVr36lZcuWqaKiIuxczz33nH7+85/L6/UqNzdXM2bMaPaep556qo4//niZpqnZs2cH77YdCAT0/9u7/5iqygeO45+rggi3wB9ohjiNlAqt5UrcKBGtCHQp/q4BNcxsuWouSx1rC0KjTW2pa6Y1AsGtIt10QqFXm25N1IANDRQ1TQVZCFe9oCJyv38wzpcb94Jfwa/Jeb82tnvPc57nnPtwued+OOc8T35+vj7++GNJLQe2++nSjVu3bunDDz/UL7/8Im9vb23YsMHtXCGe8F5tryt9yvvUs4qKCs2bN0/bt2/XxYsXjeVOp1MnT55Uamqq1q9fL0mKjo52mYSzq8eintqvXenTtLQ0paWl6fDhwy434v/999/6+uuvjXmFRo0a5XYoeL6PuddTP1Mtzs5iM/4vTp06pddff92YZMrPz0+NjY3GfzpiYmK0du1aly/zZnb+/HlNmTLFeN63b1/5+vrK4XAYfebl5aWlS5fqjTfecNvGypUrlZWVJallLgJfX1/jAG+1WrVp06Z2p3V7gsmTJxvXB3fks88+a3eQyMjI0Oeffy6n0ymLxaIHHnjAuGnX29tbq1evVnR0tNv2GhoatGDBAhUVFUlq+Z316tXLOFCFhIQoOzvbZVjT+8md9Ov69eu1YcMGo8xqtap37966cuWK8R/N4OBgbdiwwePM3jU1NYqPj9eff/4pqWUuhubmZmNW9GeeeUbffvttp3M8/JscPnxY8fHxklr+jv39/TtcPzc3V0OHDnVZxnvVVVf6lPepZ2VlZZoxY4bxvPVY1NDQYLw2qeXzYe3atW7nSunKsagn9mtX+nT58uXG0Netf/dOp9MlvD/xxBP66quv2n1mtDLj97GEhAQdOnRIcXFxSk9Pd7tOT/xMJQT9i9TV1Wnz5s2y2WyqqqpS3759FRoaqtmzZ7t8IKBlOMUff/xRxcXFKisrU21trRwOh3x8fBQcHKzw8HDNnz9fI0eO7LCdffv2KScnR0ePHlV9fb0CAwM1ceJEvfXWW+1mk+4puhKCJOnIkSPKzMxUcXGx7Ha7Bg4cqPDwcC1cuFCjRo3qsM2mpiZt3bpVO3bs0OnTp+V0OjVs2DDFxMQoKSnpvjpQ/9Od9GtFRYV27dql4uJinTt3TnV1dbp586b8/f01evRovfDCC4qLi+v0mvdr164pIyND+fn5On/+vCwWix555BFNnz5dr7322n03l05hYaESExNve32bzeb2XhTeq//VlT7lferZ9evXtWfPHh08eFClpaWqqamR3W6Xt7e3HnroIT355JN65ZVXFBER0WE7XTkW9bR+7UqflpSUqKCgQCUlJaqsrFRdXZ2am5sVEBCgsLAwvfzyy5o6daq8vLw63AezfR+7nRAk9bzPVEIQAAAAAFPpOefyAAAAAOA2EIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAOgG27ZtU2hoqEJDQ+/1rgAAOkEIAgAAAGAqhCAAAAAApkIIAgAAAGAqhCAAAAAAptLnXu8AAKDnuXXrlnbu3Km8vDz98ccfstvt8vPz0+jRozVt2jTNmjVLffq4HoIKCwuVmJgoSbLZbLJarfrmm2+0e/duXbx4UT4+PhozZowSExMVGRnZ4fZv3ryp3Nxc5efn68SJE3I4HPL399eYMWM0ffp0xcTEyGKxdNhGbW2tcnJydODAAZ09e1b19fUaNGiQgoODNWnSJMXGxmro0KEd1t+8ebNsNpuqqqrk6+ursWPH6s0339SECRNusycBAHeDxel0Ou/1TgAAeo6LFy/qnXfe0bFjxzyu89RTT2njxo0aMGCAsaxtCMrKytLy5ctVWVnptn5SUpKWLVvmtqy6uloLFy7U8ePHPW7/ueee05dffimr1eq2PC8vT8nJyWpoaPDYRlxcnNLT043n27Zt04oVKyRJu3btUlJSkqqrq9vVs1gsSk9P14wZMzy2DQC4uwhBAIBu43A4NGvWLJ05c0b9+/fXokWL9PzzzyswMFBXrlzRvn37tG7dOl29elXh4eH67rvv1KtXy5XZbUPQsGHDVFtbq3fffVcvvvii/Pz8VFpaqi+++EJlZWWSpLS0NM2ZM8dl+42NjZozZ47Ky8vVq1cvJSQkaPbs2Ro8eLD++usvZWVlaefOnZKkqKgobdy4sd1rsNlsWrx4sZxOpwIDA7Vo0SJFRERo4MCBunr1qsrKyrR79275+PgoNTXVqNc2BAUHB6u5uVnvvfeeJkyYIG9vbxUVFSktLc04K7R3717179+/+38JAIBOEYIAAN1m5cqVysrKUmBgoL7//nsFBQW1W6esrExz585VY2Oj1q1bp+joaEmuIchisSgzM1Ph4eEudR0Oh+bNm6eTJ08qICBA+/fvV9++fY3yzMxMrVq1SpKUnJxstNdWWlqatmzZIknauHGjoqKijLJr164pKipKdXV1Gj58uHJycjR48GC3r7Wpqcnlkr62IWjIkCHavn27Bg4c6FLn2LFjmjlzpiTpk08+0auvvuq2bQDA3cXACACAbtHQ0KDc3FxJ0vvvv+82AEnS448/rmnTpkmScVbmn6Kjo9sFIEmyWq364IMPJEl2u102m82lvHX7o0ePVkJCgtu2ly5dqoCAAEnSDz/84FK2Y8cO1dXVSWoJKZ4CkKR29zS1tXjx4nYBSJLCwsKMyVRLS0s91gcA3F2EIABAtygpKTHuoRk/frzq6+s9/nQWBF566SWP25k4caJ8fHwkSUVFRcbyy5cvq6KiQlJLiPI08IGPj49x9qdtfUn67bffJLWcyYmIiOj0NXe0j56MHDlSklRTU3PH7QMAuobR4QAA3eL06dPG445CTFu1tbVul4eEhHis06dPH40YMULl5eU6f/68sbyqqkqtV3g/+uijHW63tdxut8vhcBgDJJw7d06S9Nhjj93W/nvS0Rmkfv36SWq59A4AcG9wJggA0C2uXr36P9dpbGx0u9zX17fDeq3l9fX1xjKHw2E89vPz67B+23J3bXRWvzO9e/fuUn0AwN3FmSAAQLdoG1x+//13j8NP346OhqZuW942rLTd3u3W99RG22AEAOh5OBMEAOgWwcHBxuPWy8ru1KlTpzyWNTU16ezZs5JahtJuNXToUOM+oNZ7gzxpLQ8ICHAJT8OHD5cklZeX39mOAwDuC4QgAEC3GD9+vLy9vSW1TBbaFQUFBR7L9u/fb9xPM27cOGO5v7+/Ro0a1Wn969eva9++fe3qSzIGQ6iurjYGSQAA9DyEIABAt7BarZo7d66klvl6Dh482OH6N27c0IULF9yWFRQUqLCwsN3y+vp6rVmzRlLLWZwpU6a4lLdOnnr8+HHl5OS4bXvt2rWy2+2SpHnz5rmUTZs2TQMGDJAkpaSkdDiCW1NTk8cyAMC/GyEIANBtlixZopCQEDU2NmrBggVKSUnRkSNHdOnSJV2+fFlnz57Vnj17lJKSosjISP38889u23n44Yf19ttvKyMjQxcuXFBtba3279+v+Ph4nTx5UlLLfD9tJ0qVpPnz5xsju6WlpSk9PV0VFRWy2+06evSoPvroI2VmZkqSoqKiNGnSJJf6/fr108qVK2WxWHTmzBnNnDlT2dnZOnPmjK5cuaLKykrZbDatWLFCqamp3dx7AID/FwZGAAB0G6vVqqysLC1ZskSHDh3S1q1btXXrVo/re3l5uV2+atUqLVu2TOnp6UpPT29XnpSUZJz1acvb21ubNm3SwoULdfz4cWVkZCgjI6PdehEREVq9erXbbU+ePFlr1qxRcnKyqqur9emnn7pdLy4uzuPrAgD8uxGCAADdatCgQdqyZYt+/fVX7dy5U8XFxbp06ZJu3bqlBx98UCNGjNC4ceM0ZcoUPf30027bCAoK0rZt27R582bt3btXVVVV8vHx0dixY5WYmKjIyEiP2x8yZIh++ukn5ebmKi8vTydOnFB9fb38/f0VFham6dOnKzY21uNkqpI0depUPfvss8rOztaBAwd07tw53bhxQ4GBgQoKCtLkyZMVGxvb5b4CANwbFmfrzHIAANxDhYWFSkxMlCTZbDaXkd8AAOhO3BMEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQYHQ4AAACAqXAmCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmMp/APh2jCTWxIkvAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "image/png": { - "height": 424, - "width": 416 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "follicular_model.history[\"elbo_validation\"].plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "eiWLO9aRm_ua" - }, - "source": [ - "### Predict and plot assigned cell types" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "uDP7enWk6vzl" - }, - "source": [ - "Predict the soft cell type assignment probability for each cell." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 206 - }, - "id": "VbC-kp6I-5NM", - "outputId": "95d227e8-aa38-4f36-a5d1-2d772606c1c6" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
B cellsCytotoxic T cellsCD4 T cellsTfhother
01.000000e+009.676685e-206.941236e-161.600126e-173.570404e-15
11.000000e+001.331208e-218.170073e-181.016939e-196.024762e-17
21.000000e+001.138781e-261.044258e-221.005804e-241.051596e-21
31.000000e+001.409212e-449.456494e-381.897248e-402.415008e-34
43.182719e-175.300728e-139.995208e-014.792132e-042.067002e-18
\n", - "
" - ], - "text/plain": [ - " B cells Cytotoxic T cells CD4 T cells Tfh other\n", - "0 1.000000e+00 9.676685e-20 6.941236e-16 1.600126e-17 3.570404e-15\n", - "1 1.000000e+00 1.331208e-21 8.170073e-18 1.016939e-19 6.024762e-17\n", - "2 1.000000e+00 1.138781e-26 1.044258e-22 1.005804e-24 1.051596e-21\n", - "3 1.000000e+00 1.409212e-44 9.456494e-38 1.897248e-40 2.415008e-34\n", - "4 3.182719e-17 5.300728e-13 9.995208e-01 4.792132e-04 2.067002e-18" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions = follicular_model.predict()\n", - "predictions.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GFE_kr40qj6-" - }, - "source": [ - "We can visualize the probabilities of assignment with a heatmap that returns the probability matrix for each cell and cell type." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 782 - }, - "id": "8S79mmil3ZMn", - "outputId": "0d50b102-0cd8-45d2-8566-5b69378abf3d" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.\n", - " warnings.warn(msg)\n", - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.\n", - " warnings.warn(msg)\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABiYAAAYqCAYAAABUmtasAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOzdd3jX5b0//mcCBEgC4kC06lFAcK8W51FPqx5btVJUbD0VVJylauto7fbbYz11VawV90BLtfoV965KHa22LhzgAEE9DsQoyxBIAsnvD3/kK4VgQj58wng8rut9+fm83/d4vdNie+XJfd8ljY2NjQEAAAAAACiC0vYuAAAAAAAAWH0IJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABFI5gAAAAAAACKRjABAAAAAAAUjWACAAAAAAAoGsEEAAAAAABQNIIJAAAAAACgaDq2dwEUz9y5c/PMM89kwoQJefXVVzNhwoR88MEHSZIzzjgjxxxzTJvnuPPOOzNmzJhMnDgxtbW1WX/99bP33nvnuOOOS48ePdo8PgAAAAAAKzfBxGrk5ZdfzvHHH79cxl6wYEFOPfXUPPTQQ0mSjh07pqysLG+99Vauueaa3HXXXRk9enR69+69XOYHAAAAAGDlYCun1cwaa6yRXXfdNcccc0xGjBiRnj17FmTcSy+9NA899FA6deqUM888M+PGjcu4ceMyZsyY9OnTJ1VVVRk+fHjq6+sLMh8AAAAAACunksbGxsb2LoLiWLBgQTp06LDIvb322ivvv/9+m7Zymj59evbaa6/MnTs3p59++mKrMt59991885vfzLx58/LrX/86//Vf/7XM7wAAAAAAwMrNionVyL+GEoXy0EMPZe7cuSkvL8+QIUMWe77RRhtl//33T5Lcfffdy6UGAAAAAABWDoIJ2uwf//hHkmTHHXdMeXn5EtvsscceSZIXX3wxc+fOLVptAAAAAACsWAQTtNnkyZOTJP369Wu2Tf/+/ZMkDQ0NTe0BAAAAAFj9dGzvAvh/Ro0alVGjRrWqz7BhwzJs2LDlVFHLfPTRR0mSXr16Ndvm88+qqqqWe00AAAAAAKyYChpMNHzYv5DDrXaqq0/OtGnTWtmnejlV03I1NTVJkq5duzbbpkuXLk2f58yZs9xrAgAAAABgxVTYYCINhRxutVNZWbnUVQfN9QEAAAAAgJVFQYOJBY2CibZYEbZlWhbl5eWZNWvWUg+1njdvXtPnioqKYpQFAAAAAMAKqMArJhoLORwriXXXXTezZs1a6jZUn3/Ws2fPYpQFAAAAAMAKyFZOtFnfvn0zadKkTJo0qdk2EydOTJKUlpamb9++xSoNAAAAAIAVTIG3crJiYnW066675sEHH8xzzz2XuXPnLvEQ7CeffDJJsv322y/1kGwAAAAAAFZtpe1dACu/fffdN127ds2cOXPypz/9abHn7733Xu6///4kybe+9a1ilwcAAAAAwAqkoMFEQxpdbbiKYdasWZk+fXrT1dDw2fZbc+fOXeR+XV3dIv2GDh2azTbbLEOHDl1szLXWWitHH310kuTiiy/OTTfd1NR//PjxOeGEEzJv3rz07t07hxxyyHJ+QwAAAAAAVmQljY2F23/pkw82LNRQq6W1v/Tecp9jr732yvvvv/+F7c4555wcfPDBTd+HDh2aZ555JjvttFNGjx69WPsFCxbk1FNPzUMPPZQk6dSpU8rKyjJnzpwknx14PXr06PTu3btAbwIAAAAAwMqowIdfO2NiddWhQ4f84Q9/yJ133pkxY8bkjTfeSG1tbXr37p299947xx13XHr06NHeZQIAAAAA0M4KumLiw/e/VKihVkvrbfBBe5cAsEKpra1NfX19e5cBAG3WqVOndO7cub3LAACAFUKBV0wAQGHU1tZmr732Sm1tbXuXAgBt1rlz54wdO1Y4AQAAKXAwscBWTgAUSH19fWpra3PfffeloqKivcsBgGU2Z86cHHDAAamvrxdMAABACh1MyCUAKLCKiopUVla2dxkAAAAAFIitnAAAAAAAgKIpbe8CAAAAAACA1UeBz5goKeRwAAAAAADAKqawWzk5YwIAAAAAAFgKKyYAAAAAAICiEUwAAAAAAABFU+CtnAQTAAAAAABA86yYAAAAAAAAiqbAwURpIYcDAAAAAABWMbZyAgAAAAAAisYSBwAAAAAAoGicMQEAAAAAABRNYYOJRgswAAAAAACA5hX2jAk7QwEAAAAAAEthKycAAAAAAKBobOUEAAAAAAAUTYG3crJiAgAAAAAAaF6Bt3KyYgIAAAAAAGierZwAAAAAAICikSQAAAAAAABFU+AzJuQcAAAAAABA8wq8lZPDrwEAAAAAgOY5/BoAAAAAACiawm7l5PBrAAAAAABgKayYAAAAAAAAisYZEwAAAAAAQNEUdisnKyYAAAAAAIClKPCKCcEEAAAAAADQPEkCAAAAAABQNAXeyskZEwAAAAAAQPNs5QQAAAAAABRNYYMJO0MBAAAAAABLUditnBpt5QQAAAAAADTPigkAAAAAAKBoCrxiQjABAAAAAAA0r8ArJmzlBAAAAAAANM+KidXQjBkzcs011+TRRx/N1KlT07lz5/Tv3z+DBw/OoEGDlnncSZMmZfTo0fnnP/+ZDz/8MAsWLMjaa6+dbbbZJocccki+9rWvFe4lAAAAAABYKRU0mGDFN3ny5Bx55JGpqqpKkpSXl2fOnDl59tln8+yzz+axxx7LiBEjUlraupBpzJgx+fWvf536+vokSadOndKpU6d8+OGH+fDDD/Pwww9n4MCBOe+881o9NgAAAAAAq46C/oZ4QUpcbbiWt7q6ugwfPjxVVVXp06dPxowZk3HjxmXcuHE588wz06lTpzzwwAO5/PLLWzXulClTmkKJnXbaKXfeeWdeeeWVjBs3Lo899lgOPfTQJMndd9+dW2+9dXm8GgAAAAAAK4mCBhMNjaWuNlzL26233pp33nknXbp0yVVXXZVtttkmSVJWVpbDDz88J598cpLkmmuuyYwZM1o87v3335/6+vpUVFTk8ssvzxZbbJGSks+ClvXXXz9nn312BgwYkCR58MEHC/xWAAAAAACsTAq7YqKx1NWGa3m76667kiT7779/Ntpoo8WeDxkyJOXl5ampqckjjzzS4nE/+uijJMkmm2ySysrKJbZZGILU1NS0tmwAAAAAAFYhhV0xkRJXG67lac6cOXn55ZeTJHvuuecS21RUVDStbHjqqadaPPaGG26YJHn77bdTXV29xDavvPJKkmSrrbZq8bgAAAAAAKx6Cnr4dTH+1v+qbNSoURk1alSr+gwbNizDhg37wnZTpkxJY2NjkqR///7NtuvXr1+eeOKJvPnmmy2u4Vvf+lYuu+yyzJkzJ8OHD8/Pf/7zbL755ikpKcnUqVNz2WWX5bnnnss666yTE044ocXjAgAAAACw6iloMNHQuPwPcF6VVVdXZ9q0aa3u0xILt1tKkl69ejXbbuGzz7f/Ir169cpll12WU089Nc8880wGDRqUTp06pVOnTqmpqUnXrl0zaNCgnHrqqUudGwAAAACAVV9hV0wUdmeo1U5lZWWrf3Hf3JkO/+rzZzt06dKl2XZdu3ZN8tnWT62x22675Y9//GNOP/30TJo0KfX19amvr0+SzJ8/P3Pnzm31mAAAAAAArHqsmFiBtHRbphXR5Zdfnosvvjgbb7xxRo4cme233z5dunTJxIkTc+mll+ahhx7K008/nVGjRmXrrbdu73IBAAAAAGgnljisJsrLy5s+z5s3r9l2c+fOTfLZQdgtdd999+X3v/99evTokZtuuin/+Z//mZ49e6Zbt275yle+kmuvvTY77bRTZs+enbPPPnvZXwIAAAAAgJVeYVdMyDlWWOuuu27T52nTpjW7BdTCMy4+3/6LXH/99UmSQYMGZe21117seUlJSYYNG5Znnnkm48aNS1VVVXr27NmK6gEAAAAAWFUU9owJWzmtsPr27ZuSkpI0NjZm4sSJ6du37xLbTZo0KUmy6aabtnjsN998M0my0UYbNdtm4403bvr8/vvvCyYAAAAAAFZTBV3i0NBY4mrDtTyVl5dnu+22S5I8+eSTS2xTU1OT5557Lslnh1m3VGnpZ/81+uCDD5pt88knnzR9bumB3QAAAAAArHoKHEyUutpwLW8DBw5Mktx///157733Fnt+4403pqamJuXl5dlnn31aPO6WW26ZJLn33nvz6aefLrHNn//85yRJ9+7d07t379aWDgAAAADAKqKgvw1fkBJXG67l7dBDD83GG2+cuXPn5oQTTsj48eOTJHV1dbnpppty8cUXJ0mOPfbYrLnmmov0HTp0aDbbbLMMHTp0sXG/+93vJkk+/PDDHH300Rk3blzmz5+fxsbG/O///m9OP/303H///U3jdOjQYXm+JgAAAAAAK7DCHn7tjIkVWllZWS6//PIceeSRefPNN3PIIYekoqIidXV1qa+vT5Lst99+GT58eKvG3W+//TJ+/Phcc801efnll3PYYYelY8eO6dSpU+bOndvUbt999833v//9gr4TAAAAAAArlwIHE8t/OyLapm/fvrnnnnty9dVX59FHH83UqVPTtWvXbL/99hk8eHAGDRq0TOP++Mc/zte+9rXccsstGTduXD766KPMnz8/6667brbeeuscdNBB2XfffQv7MgAAAAAArHQKG0wUYTsi2m7NNdfMGWeckTPOOKPFfUaPHv2FbQYMGJABAwa0pTQAAAAAAFZxljgAAAAAAABFU9AVEwucMQEAAAAAACyFMyYAAAAAAICiKXAwYcUEAAAAAADQPIdfAwAAAAAARWPFBAAAAAAAUDTOmAAAAAAAAIrGigkAAAAAAKBonDEBAAAAAAAUjb2XAAAAAACAorGVEwAAAAAAUDSCCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIpbDARwQQAAAAAANA8KyYAAAAAAICiEUwAAAAAAABFI5gAAAAAAACKprS9CwAAAAAAAFYfVkwAAAAAAABFU9BgolEwAQAAAAAALEVhV0xEMAEAAAAAADTPVk4AAAAAAEDR2MoJAAAAAAAoGismAAAAAACAorFiAgAAAAAAKBorJgAAAAAAgKIpbe8CAAAAAACA1UeBt3Iq5GgAAAAAAMCqprBbOcVWTgAAAAAAQPMcfg0AAAAAABSNw68BAAAAAICiccYEAAAAAABQNLZyAgAAAAAAikYwAQAAAAAAFI0zJgAAAAAAgKIpbe8CAAAAAACA1YfDrwEAAAAAgKJxxsRqaMaMGbnmmmvy6KOPZurUqencuXP69++fwYMHZ9CgQW0au6GhIXfffXfuvffevP7665k5c2Z69OiRDTfcMDvvvHOOPPLIrLXWWoV5EQAAAAAAVjqCidXM5MmTc+SRR6aqqipJUl5enjlz5uTZZ5/Ns88+m8ceeywjRoxIaWnrd/maPn16hg8fnhdffDFJUlpamm7duuXjjz9OVVVVxo0blz322EMwAQAAAACwGitsMFHIwSi4urq6DB8+PFVVVenTp0/OP//8bLPNNqmrq8utt96ac845Jw888ED69euXE088sVVjz507N0ceeWQmTpyYPn365Ec/+lH22GOPlJWVpa6uLm+99VYefvjhrLnmmsvp7QAAAAAAWBlYMbEaufXWW/POO++kS5cuueqqq7LRRhslScrKynL44Yenuro6I0aMyDXXXJPvfve7rQoRLrrookycODG9e/fOzTffnDXWWKPpWVlZWTbbbLNsttlmBX8nAAAAAABWLq3fr2dpGl1tupazu+66K0my//77N4USnzdkyJCUl5enpqYmjzzySIvHnTFjRv785z8nSX72s58tEkoAAAAAAMDnFTSYaGwscbXhWp7mzJmTl19+OUmy5557LrFNRUVFBgwYkCR56qmnWjz2gw8+mLq6uvTo0SN77LFH24sFAAAAAGCVVeCtnAo5GoU0ZcqUNP7//wH179+/2Xb9+vXLE088kTfffLPFY48bNy5Jstlmm2X+/Pm59tprc8899+Tdd99N165ds8UWW+SQQw7JgQcemJIS230BAAAAAKzOChpM0DajRo3KqFGjWtVn2LBhGTZs2Be2++ijj5o+9+rVq9l2C599vv0Xeeedd5Ik5eXlGTJkSF566aWUlpamW7du+fTTT/OPf/wj//jHP/Loo49mxIgR6dChQ4vHBgAAAABg1eLw6xVIdXV1pk2b1uo+LVFTU9P0uUuXLs2269q1a5LPtn5qqVmzZiVJHn/88TQ0NOR73/tejj322HTr1i2zZ8/OFVdckWuvvTYPPvhgNt988wwfPrzFYwMAAAAAsGop7IoJwUSbVFZWLnU1Q3N92tvCLaIaGhryzW9+M6eeemrTs+7du+eMM87Iu+++m7/85S+57rrrcswxx6SsrKy9ygUAAAAAoB05Y2IF0tJtmZZFeXl50+d58+Y1G2jMnTs3yWcHYbfU59seeeSRS2wzbNiw/OUvf8ns2bMzYcKE7LDDDi0eHwAAAACAVUdpQUdrdLXpWo7WXXfdps9L2y5q4bPPt2/N2H369Flim8/fnzp1aovHBgAAAABg1VLQYKKxscTVhmt56tu3b0pKPptj4sSJzbabNGlSkmTTTTdt8dj9+vVrVS0L6wAAAAAAYPVjxcSKdC1H5eXl2W677ZIkTz755BLb1NTU5LnnnkuS7Lbbbi0e+/Ntp0yZssQ2n7+/wQYbtHhsAAAAAABWLVZMrEDX8jZw4MAkyf3335/33ntvsec33nhjampqUl5enn322afF4+60005NYcP111+/xDbXXXddkqRnz57ZaqutWlk5AAAAAACrCismVqRrOTv00EOz8cYbZ+7cuTnhhBMyfvz4JEldXV1uuummXHzxxUmSY489NmuuueYifYcOHZrNNtssQ4cOXWzcDh065Ec/+lGS5L777stFF12UTz/9NEkye/bsXHDBBXn44YeTJCeffHI6dOiw3N4RAAAAAIAVW8f2LoDiKSsry+WXX54jjzwyb775Zg455JBUVFSkrq4u9fX1SZL99tsvw4cPb/XY+++/fyZPnpyRI0fmiiuuyNVXX51u3bpl9uzZaWhoSJIMGzYs3/nOdwr6TgAAAAAArFwKHEw41HhF17dv39xzzz25+uqr8+ijj2bq1Knp2rVrtt9++wwePDiDBg1a5rFPPvnk7Ljjjhk9enReeumlzJw5M2uttVa22267DBkypFXnVgAAAAAAsGoqbDBRhO2IaLs111wzZ5xxRs4444wW9xk9enSL2u2yyy7ZZZddlrU0AAAAAABWcYIJAAAAAACgaAocTNjKCQAAAAAAaF5Bg4lGKyYAAAAAAIClsJUTAAAAAABQNLZyAgAAAAAAiqagwUSJFRMAAAAAAMBSlLZ3AQAAAAAAwOrDGRMAAAAAAEDROGMCAAAAAAAoGismAAAAAACAohFMAAAAAAAARSOYAAAAAAAAisYZEwAAAAAAQNEUNJgosWICAAAAAABYCls5AQAAAAAARVPa3gUAAAAAAACrD8EEAAAAAABQNM6YAAAAAAAAiqbAZ0yUFHQ4AAAAAABg1eLwawAAAAAAoGgEEwAAAAAAQNE4YwIAAAAAACgaKyYAAAAAAICiEUwAAAAAAABFU9reBQAAAAAAAKsPZ0wAAAAAAABFU+CtnEoKOhwAAAAAALBqccYEAAAAAABQNLZyAgAAAAAAisaKCQAAAAAAoGismAAAAAAAAIrGigkAAAAAAKBoBBMAAAAAAEDRlLZ3AQAAAAAAwOrDGRMAAAAAAEDRWDEBAAAAAAAUjTMmAAAAAACAorGVEwAAAAAAUDRWTAAAAAAAAEUjmFgNzZgxI9dcc00effTRTJ06NZ07d07//v0zePDgDBo0qGDz3H///Tn11FObvr/xxhsFGxsAAAAAgJWTrZxWM5MnT86RRx6ZqqqqJEl5eXnmzJmTZ599Ns8++2wee+yxjBgxIqWlbTsXfdasWfmf//mfQpQMAAAAAMAqpG2/ff5Xja42XctZXV1dhg8fnqqqqvTp0ydjxozJuHHjMm7cuJx55pnp1KlTHnjggVx++eVtnuu8887Lxx9/nO23377thQMAAAAAsMoobDDBCu3WW2/NO++8ky5duuSqq67KNttskyQpKyvL4YcfnpNPPjlJcs0112TGjBnLPM8//vGP3Hbbbdl+++1z6KGHFqR2AAAAAABWDQUNJkoaXW25lre77rorSbL//vtno402Wuz5kCFDUl5enpqamjzyyCPLNEdtbW3OPPPMdOzYMf/93//d5i2hAAAAAABYtdjKaUW6lqM5c+bk5ZdfTpLsueeeS2xTUVGRAQMGJEmeeuqpZZpn5MiReeedd3LEEUdk8803X7ZiAQAAAABYZQkmVqRrOZoyZUoaGz+bpH///s2269evX5LkzTffbPUcr7/+eq677rpssMEG+cEPfrBshQIAAAAAsErrWMjBirEd0aps1KhRGTVqVKv6DBs2LMOGDfvCdh999FHT5169ejXbbuGzz7dviQULFuQXv/hF5s+fn1/96lfp2rVrq/oDAAAAALB6KGgwsbz/1v+qrrq6OtOmTWt1n5aoqalp+tylS5dm2y0MFObMmdOqOkaPHp3x48dn3333zde+9rVW9QUAAAAAYPUhmFiBVFZWLnU1Q3N92tt7772Xiy++OBUVFfnlL3/Z3uUAAAAAALACs5XTCqSl2zIti/Ly8qbP8+bNazbQmDt3bpLPDsJuqV//+tepqanJz3/+81YHKwAAAAAArF6smFhNrLvuuk2fp02b1mwwsXArqc+3X5pHHnkkTz75ZPr375+DDz54sS2g6urqmj4vfNapU6eUlZW1qn4AAAAAAFYNhQ0mWGH17ds3JSUlaWxszMSJE9O3b98ltps0aVKSZNNNN23RuO+9916SZOLEiRkwYMBS2375y19OkhxxxBH5xS9+0dLSAQAAAABYhZQWcrCSRldbruWpvLw82223XZLkySefXGKbmpqaPPfcc0mS3XbbbfkWBAAAAADAaslWTquRgQMH5sUXX8z999+f73//+9lwww0XeX7jjTempqYm5eXl2WeffVo05lFHHZWjjjqq2ee33357fvaznyVJ3njjjWWuHQAAAACAVUNBV0yk0dWmazk79NBDs/HGG2fu3Lk54YQTMn78+CSfnQNx00035eKLL06SHHvssVlzzTUX6Tt06NBsttlmGTp06PIvFAAAAACAVVZBV0yUFHIwCq6srCyXX355jjzyyLz55ps55JBDUlFRkbq6utTX1ydJ9ttvvwwfPrydKwUAAAAAYFVlK6fVTN++fXPPPffk6quvzqOPPpqpU6ema9eu2X777TN48OAMGjSovUsEAAAAAGAVVtLY2FiwOGG7Uy4q1FCrpZd+f2p7lwCwwqiurs5Xv/rVPPbYY6msrGzvcgBgmfnfNAAAWJQVEwAAAAAAQNEIJgAAAAAAgKIpbe8CAAAAAACA1UdBV0yUWDEBAAAAAAAsha2cAAAAAACAorFiAgAAAAAAKBorJgAAAAAAgKKxYgIAAAAAACgaKyYAAAAAAICiEUwAAAAAAABFYysnAAAAAACgaErbuwAAAAAAAGD1YSsnAAAAAACgaAq8lZNkAgBgdVFbW5v6+vr2LgNWeHPmzFnkn8DSderUKZ07d27vMgCA5ciKCQAAWq22tjZ77bVXamtr27sUWGkccMAB7V0CrBQ6d+6csWPHCicAYBXm8GsAAFqtvr4+tbW1ue+++1JRUdHe5QCwipgzZ04OOOCA1NfXCyYAYBVmxQQAAMusoqIilZWV7V0GAAAAKxErJgAAAAAAgKKxYgIAAAAAACgaKyYAAAAAAICiKW3vAgAAAAAAgNWHrZwAAAAAAICisZUTAAAAAABQNAVeMSGZAAAAAAAAmmfFBAAAAAAAUDTOmAAAAAAAAIqmsCsmGgo5GgAAAAAAsKqxYgIAAGAVVFtbm/r6+vYuA1plzpw5i/wTViadOnVK586d27sMgJWCMyYAAABWMbW1tdlrr71SW1vb3qXAMjnggAPauwRotc6dO2fs2LHCCYAWKOyKCQAAANpdfX19amtrc99996WioqK9ywFY5c2ZMycHHHBA6uvrBRMALVDgrZwsmQAAAFhRVFRUpLKysr3LAACARdjKCQAAAAAAKBqHXwMAAAAAAEVjxQQAAAAAAFA0zpgAAAAAAACKxooJAAAAAACgaJwxAQAAAAAAFI0VEwAAAAAAQNEUdsUEK4UZM2bkmmuuyaOPPpqpU6emc+fO6d+/fwYPHpxBgwa1erza2to88cQTefLJJ/Pyyy/nf//3f1NXV5cePXpkiy22yKBBg7L//vunpKSk8C8DAAAAAMBKpbDBRIMlEyu6yZMn58gjj0xVVVWSpLy8PHPmzMmzzz6bZ599No899lhGjBiR0tLSFo/5ve99L0899VTT906dOqVz586pqqpKVVVVnnjiidx666259NJLU1FRUfB3AgAAAABg5dHy3z63RKOrTddyVldXl+HDh6eqqip9+vTJmDFjMm7cuIwbNy5nnnlmOnXqlAceeCCXX355q8adP39+Ntxww5xyyim566678sorr+T555/PU089leOPPz4dOnTI008/nTPPPHM5vRkAAAAAACuLggYTJY2utlzL26233pp33nknXbp0yVVXXZVtttkmSVJWVpbDDz88J598cpLkmmuuyYwZM1o87g9/+MM89NBDGT58eDbffPOmLZvWXnvtnH766TnllFOSJPfee28++OCDwr4UAAAAAAArlQKvmGh0teVazu66664kyf7775+NNtposedDhgxJeXl5ampq8sgjj7R43AEDBqRjx+Z3BRs8eHDT5wkTJrSiYgAAAAAAVjVWTKxA1/I0Z86cvPzyy0mSPffcc4ltKioqMmDAgCRZ5MyItiorK2v6vGDBgoKNCwAAAADAyscZEyvStRxNmTIljf//qoz+/fs3265fv35JkjfffLNgcz/zzDNNn5c2NwAAAAAAq77m999ZBiVF2I5oVTZq1KiMGjWqVX2GDRuWYcOGfWG7jz76qOlzr169mm238Nnn27fF/Pnzc/HFFydJvvzlL6dPnz4FGRcAAAAAgJVTQYOJNBR0tNVOdXV1pk2b1uo+LVFTU9P0uUuXLs2269q1a5LPtn4qhPPOOy+vv/56OnXqlF/+8pcFGRMAAAAAgJVXYYMJ2qSysnKpqxma67OiuvHGG/PHP/4xSfLTn/40W221VTtXBAAAAABAe7OV0wqkpdsyLYvy8vKmz/PmzWs20Jg7d26Szw7Cbovbb789v/nNb5Ik3//+9zNkyJA2jQcAAAAAwKqhsCsm5BIrrHXXXbfp87Rp05oNJhZuJfX59q1111135Re/+EUaGxtz9NFH54c//OEyjwUAAAAAwKqlwMGEZGJF1bdv35SUlKSxsTETJ05M3759l9hu0qRJSZJNN910mea555578rOf/SwNDQ0ZOnRofvKTnyxzzQAAAAAArHpKCzlYSaOrLdfyVF5enu222y5J8uSTTy6xTU1NTZ577rkkyW677dbqOe6777785Cc/yYIFC/Kd73zHYdcAAAAAACzGionVyMCBA/Piiy/m/vvvz/e///1suOGGizy/8cYbU1NTk/Ly8uyzzz6tGvuBBx7Ij3/84yxYsCCDBw/Of//3fxeydAAAAFjl1NbWpr6+vr3LoADmzJmzyD9ZNXTq1CmdO3du7zJglVTYw68bCjkahXbooYfmhhtuyDvvvJMTTjgh5513XrbeeuvU1dVlzJgxufjii5Mkxx57bNZcc81F+g4dOjTPPPNMdtppp4wePXqRZ4888kh+9KMfZcGCBTn44IPzm9/8JiUlJUV7LwAAAFjZ1NbWZq+99kptbW17l0IBHXDAAe1dAgXUuXPnjB07VjgBy4EVE6uRsrKyXH755TnyyCPz5ptv5pBDDklFRUXq6uqa/obGfvvtl+HDh7dq3HPOOSfz589Pkjz22GPZY489mm179NFH55hjjln2lwAAAIBVQH19fWpra3PfffeloqKivcsB/sWcOXNywAEHpL6+XjABy0GBg4mCjsZy0Ldv39xzzz25+uqr8+ijj2bq1Knp2rVrtt9++wwePDiDBg1q9ZiNnwukpk+fvtS2NTU1rR4fAAAAVlUVFRWprKxs7zIAoKgKG0ywUlhzzTVzxhln5Iwzzmhxn3/dvunzxo4dW4iyAAAAAABYDRT2jAlbOQEAAAAAAEvhjAkAAAAAAKBoChtMNBR0NAAAAAAAYBVjKycAAAAAAKBobOUEAAAAAAAUjWACAAAAAAAoGmdMAAAAAAAAReOMCQAAAAAAoGhK27sAAAAAAABg9eGMCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIpbDDRUNDRAAAAAACAVUxBg4kSKyYAAAAAAIClsJUTAAAAAABQNAXeykkwAQAAAAAANM+KCQAAAAAAoGhK27sAAAAAAABg9WHFBAAAAAAAUDSCCQAAAAAAoGgcfg0AAAAAABRNgVdMNBR0OAAAAAAAYNViKycAAAAAAKBobOUEAAAAAAAUjRUTAAAAAABA0QgmAAAAAACAoilt7wIAAAAAAIDVhxUTAAAAAABA0RT48OuGgg4HAAAAAACsWqyYAAAAAAAAikYwAQAAAAAAFE2Bt3ISTAAAAAAAAM0raDDR2OiMCQAAAAAAoHlWTAAAAAAAAEXjjAkAAAAAAKBoStu7AAAAAAAAYPVR4K2cnDEBAAAAAAA0z1ZOAAAAAABA0RQ0mGi0YgIAAAAAAFgKKyZWQzNmzMg111yTRx99NFOnTk3nzp3Tv3//DB48OIMGDWrT2HfeeWfGjBmTiRMnpra2Nuuvv3723nvvHHfccenRo0dB6gcAAAAAYOVV4DMmBBMrusmTJ+fII49MVVVVkqS8vDxz5szJs88+m2effTaPPfZYRowYkdLS1p2LvmDBgpx66ql56KGHkiQdO3ZMWVlZ3nrrrVxzzTW56667Mnr06PTu3bvg7wQAAAAAwMqjdb99/iKNDa62XMtZXV1dhg8fnqqqqvTp0ydjxozJuHHjMm7cuJx55pnp1KlTHnjggVx++eWtHvvSSy/NQw89lE6dOuXMM89sGnfMmDHp06dPqqqqMnz48NTX1y+HNwMAAAAAYGVR0GCisaHR1YZrebv11lvzzjvvpEuXLrnqqquyzTbbJEnKyspy+OGH5+STT06SXHPNNZkxY0aLx50+fXquu+66JMkPfvCDHH744SkrK0uSbLPNNrnqqqvSpUuXvPXWWxkzZkyB3woAAAAAgJWJFRMr0rWc3XXXXUmS/fffPxtttNFiz4cMGZLy8vLU1NTkkUceafG4Dz30UObOnZvy8vIMGTJksecbbbRR9t9//yTJ3XffvYzVAwAAAACwKihsMMEKa86cOXn55ZeTJHvuuecS21RUVGTAgAFJkqeeeqrFY//jH/9Ikuy4444pLy9fYps99tgjSfLiiy9m7ty5LR4bAAAAAIBVi62cVqBreZoyZUoaGz+bo3///s2269evX5LkzTffbPHYkydPXqTvkiycs6Ghoak9AAAAAACrn44FHa0I2xGtykaNGpVRo0a1qs+wYcMybNiwL2z30UcfNX3u1atXs+0WPvt8+5aO3ZJxk6SqqqrFYwMAAAAAsGopaDDxcMOthRxutXPJJZdk2rRprepTXV3donY1NTVNn7t06dJsu65duyb5bOunllo49sK+S/L5OVszNgAAAAAAq5bCrpigTSorK5e66qC5PgAAAAAAsLIQTKxAWrot07L4/KHU8+bNazbQWHgwdUVFRavGnjVr1lIPtZ43b17T59aMDQAAAADAqqWgh1+z4lp33XWbPi9tu6iFzz7fvqVjt2TcJOnZs2eLxwYAAAAAYNUimFhN9O3bNyUlJUmSiRMnNttu0qRJSZJNN920VWN/vu+SLJyztLS0qT0AAAAAAKsfwcRqory8PNttt12S5Mknn1xim5qamjz33HNJkt12263FY++6665Jkueee67Z7ZwWzrn99tsv9ZBsAAAAAABWbYKJ1cjAgQOTJPfff3/ee++9xZ7feOONqampSXl5efbZZ58Wj7vvvvuma9eumTNnTv70pz8t9vy9997L/fffnyT51re+tYzVA6ubysrKPPfcc82eiQO0L39GYcXmzyis+Pw5hRWbP6OwfAkmViOHHnpoNt5448ydOzcnnHBCxo8fnySpq6vLTTfdlIsvvjhJcuyxx2bNNddcpO/QoUOz2WabZejQoYuNu9Zaa+Xoo49Oklx88cW56aabUldXlyQZP358TjjhhMybNy+9e/fOIYccsjxfEQAAAACAFVxJY2NjY3sXQfFMnjw5Rx55ZKqqqpIkFRUVqaurS319fZJkv/32y4gRI1JaumhmNXTo0DzzzDPZaaedMnr06MXGXbBgQU499dQ89NBDSZJOnTqlrKwsc+bMSfLZgdejR49O7969l+frAQAAAAC0i9tvvz0/+9nPvrDd008/nbXWWmux+x999FFGjRqVJ554Iu+//35KS0vzb//2b9l3331z1FFHpby8fInjzZ8/P88++2wmTJiQCRMm5NVXX80777yTxsbGHH744TnzzDOXWk9VVVWeffbZvPrqq039Z86cmSQZM2ZMttlmmy9++VbqWPARWaH17ds399xzT66++uo8+uijmTp1arp27Zrtt98+gwcPzqBBg5Zp3A4dOuQPf/hD7rzzzowZMyZvvPFGamtr07t37+y999457rjj0qNHj4K+CwAAAADAiqa0tHSJwcPnn/+rZ599NieddFJTIFBRUZGGhoa89tpree2113LnnXfmj3/8Y9Zbb73F+n744Yc56qijlrnem2++OSNHjlzm/stCMLEaWnPNNXPGGWfkjDPOaHGfJa2SWJJBgwYtc7gBAAAAALCyW3/99TN27NgWt582bVpOPPHEzJo1K1tttVXOOuusbL311mlsbMxzzz2XX/ziF3nnnXfyve99L7fddls6dOiw2BgVFRXZfPPNs9VWW2WrrbbK9ddfn9dee61F85eUlGT99dfPlltuma222irrrrtufvnLX7a4/mUhmAAAAAAAgHYyatSozJo1K+Xl5bnyyivTs2fPJJ8FBjvuuGMuvfTSfOtb38prr72Wu+66KwcffPAi/b/0pS/l+eefT0lJSdO92267rcXzDx8+PCeddFLT9/fee6+Nb/TFHH4NAAAAAADt5PHHH0+SHHjggU2hxOf169cve+65Z5LkjjvuWOx5aWnpIqFEay1pBcbyJpgAAAAAAIB28sEHHyRJ+vTp02ybvn37Jkmee+65zJs3ryh1LU+2cgIAAAAAgAKZPn16DjrooLz11ltJkl69emWnnXbKkCFDstlmmzXbr6Gh4QufNTQ0ZMqUKdlyyy0LW3SRCSYAAAAAAFjljRo1KqNGjWpVn2HDhmXYsGGt6jN37ty89tpr6d69e2pqavL222/n7bffzm233ZbTTz89xxxzzCLtv/SlL2XKlCmZNGlSs2NOnDix6fNHH30kmIAVSW1tbfbaa6/U1ta2dym0g1/93/ntXQLwBUZu2q+9SwAAgOWiwxb927sE4Asc8L31Mm3atFb1qa6ubnHbddddNyeffHL23XffbLLJJikrK0t9fX2ef/75jBgxIi+99FLOP//8rLvuujnwwAOb+u2xxx6ZMmVK7rvvvpx44onZcMMNFxn3lVdeyd///vdlqmlFJZhglVJfX5/a2trcd999qaioaO9ylrs5c+bkgAMOyK233pry8vJ2qaGmpiaHHnpobrjhhqXWUFdXl/nzCxMc1NXVZfjw4YuNd0D5yv8vZVjVjWzvAoClK3EEHazQGpvf3gFofwtem/jFjYB2VVm5aXr16tXKPpUtbrv77rtn9913X+Rep06dsssuu+RPf/pThg4dmhdffDG/+93vcsABB6S09LP//33UUUfltttuS3V1dY455pj8/Oc/z0477ZQFCxbkb3/7W84+++x07Ngx9fX1SdLUb2UmmGCVVFFR0ap/aazsevbs2W7vuzCh3XjjjYtWQ3V1debPn5//+3//b7797W833S/Nyv8vZQBoV37pCQDAKmxZtmUqlLKyspxyyik56qij8uGHH+bVV1/N1ltvneSzrZxGjhyZk08+OW+//XaOP/74RfqWl5fnjDPOyP/8z/8kSbp37170+gtNMAGstFaHVTEAAAAArBq22267ps/vvvtuUzCRJLvuumvuv//+3HjjjXn66adTVVWVioqKDBgwIEcffXQ++OCDprabbLJJMcteLgQTAAAAAADQztZdd92ceuqpOfXUUxd79vDDDyf5bOeUfz2DYmVk3xMAAAAAAFjOXnrppabPrQkXGhsbc++99yZJvvWtbxW8rvYgmAAAAAAAgDZobGxc6vP6+vpcfPHFSZJevXplq622avHYo0ePzquvvprKysoMHTq0TXWuKGzlBAAAAAAAbfD+++/n1FNPzaGHHprddtutaUXE/Pnz88ILL2TEiBEZN25ckuRHP/pRSksXXTNw4YUXZsCAAdl+++2zxhprJEneeeedjB49On/6059SUlKSX/3qV1lvvfWWOP+nn36a+vr6pu8LP9fW1mb69OlN97t27ZquXbsu0rehoSEzZ85s+j579uymz9XV1Yv079Gjx2K1LwvBBAAAAAAAtNHLL7+cl19+OUnSuXPnlJeXp7q6uikk6NSpU370ox9l4MCBi/W97777ctVVVyVJysvL09jYmLlz5yZJunTpkl/+8pcZNGhQs3N///vfzzPPPLPY/TFjxmTMmDFN30866aScfPLJi7T54IMPsvfeey9x3KOOOmqR748++mhBzrgQTAAAAAAAQBuss846+eUvf5lx48bltddey/Tp0/Ppp5+mS5cu2XTTTbPzzjvnsMMOS+/evZfY//vf/34ee+yxvP766/n4449TUlKSfv36ZY899sjhhx++Shx4/XmCCQAAAAAAaIMuXbpk6NChy3wGxODBgzN48OBlnn/06NHL3HfDDTfMG2+8scz9l4XDrwEAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABFI5gAAAAAAACKRjABAAAAAAAUjWACAAAAAAAoGsEEAAAAAABQNB3buwAAAAAAAFjZTZ06NQ8//HD++c9/5rXXXktVVVU6dOiQXr16Zeedd86QIUPSv3//xfrdfvvt+dnPftbiecaOHZsNNthgkXvPPfdcJkyYkFdffTUTJkzIlClTsmDBgnz1q1/NlVdeudTx3nrrrTz88MN59tln88Ybb2T69Onp1KlTNtxww+y2224ZOnRoNtxwwxbX1xKCCQAAAAAAaIOpU6fma1/7WhobG5vulZeXZ/78+Xn77bfz9ttv57bbbstPf/rTDB06dJG+Xbp0yTrrrLPU8WfOnJn58+enZ8+e6dWr12LPDz/88GWq+/nnn893v/vdRe5VVlZm3rx5mThxYiZOnJj/+3//b84999x8/etfX6Y5lkQwAQAAAAAAbbBgwYI0NjZm9913z6BBg7LrrrtmnXXWyYIFC/Lqq6/m3HPPzXPPPZezzz47m2yySfbYY4+mvvvvv3/233//Zseurq7O7rvvnvnz52fgwIHp2HHxX+t36dIl/fv3z5Zbbpmtt946Dz74YP72t799Yd3z589Phw4dss8++2TgwIHZaaed0r1799TX1+f555/P//zP/2TixIk5/fTT06dPn/Tr12/ZfkD/QjABAAAAAABtsMYaa+SOO+7Illtuucj9Dh06ZJtttsmoUaMyePDgvPHGG7nmmmsWCSa+yAMPPJC5c+cmSQ455JAltnnhhRfSoUOHpu/PP/98i8beeOON88ADD2TjjTde5H6nTp2yyy675MYbb8z++++fqqqqjBo1Kr/97W9bXPfSOPwaAAAAAADaoFu3bouFEp9XVlaWgQMHJknGjx/fqrFvv/32JMn222+fvn37LrHN50OJ1lhvvfUWCyU+r3v37vnP//zPJK2ve2kEEwAAAAAAsJx17tw5SdLQ0NDiPm+//XZeeOGFJMnBBx+8XOr6IstS9xcRTAAAAAAAwHL2zDPPJEn69+/f4j633XZbks/OkDjggAOWS11fZFnq/iLOmAAAAAAAYJU3atSojBo1qlV9hg0blmHDhrV57pdeeimPPPJIkmTw4MEt6rNgwYLceeedSZJ99903lZWVba6jtR588MFMmDAhScvrbgnBBAAAAAAAq7zq6upMmzat1X3aaubMmTn99NPT0NCQ7bbbrsVbMv3tb3/LRx99lKT5Q6+Xp3fffTf/5//8nyTJ17/+9ey2224FG1swAQAAAADAKq+ysjK9evVqdZ+2mDdvXk466aS8++67WXPNNTNixIgWH1S98NDrDTfcMDvvvHOb6mitGTNm5IQTTsjMmTOz8cYb5+yzzy7o+IIJAAAAAABWeYXalqml6urqctJJJ+XZZ59Nt27dcu2112bDDTdsUd+ZM2dm7NixSZKDDjooJSUly7PURcyePTtHH310Jk+enPXXXz/XXXddunfvXtA5HH4NAAAAAAAFVFdXlx/84Ad58sknU15enquvvjpbbbVVi/vfe++9qaurS2lpaQ466KDlWOmiPv300xx99NF59dVX07Nnz1x//fUtDlNaQzABAAAAAAAFUl9fnx/+8If561//mq5du+aqq67KDjvs0KoxbrvttiTJLrvskg022GB5lLmY6urqHHPMMXnllVey9tpr54Ybbsgmm2yyXOYSTAAAAAAAQAHU19fnlFNOydixY9OlS5dcfvnl2XHHHVs1xuuvv55XX301SVp8UHZbVVdX59hjj81LL72UHj16ZNSoUenbt+9ym08wAQAAAAAAbTR//vycfvrpeeSRR1JWVpZLL700u+66a6vHWbhaonv37tl3330LXeZi5syZk2OPPTbjxo1Ljx49cv3112ezzTZbrnM6/BoAAAAAANpgwYIF+fGPf5yHHnooZWVlGTlyZHbfffdWj1NfX5977rknSbL//vunc+fOLeo3Z86c1NbWNn2vq6tL8llYMn369Kb7nTt3TkVFRdP3uXPn5oQTTsi4ceOyxhpr5LrrrssWW2zR6rpbSzABAAAAAABt8MILL+T+++9PkjQ2NubnP//5UtuPGTMm66+//mL3//rXv2bGjBlJkkMOOaTF8//mN7/JHXfcsdj9v/3tb4us2jjooINy7rnnNn1/6KGH8uyzzyZJamtrc/zxxy91nr///e8trmlpBBMAAAAAANAGDQ0NTZ/r6+vz8ccfL7X9ggULlnj/9ttvT5L069cv2267beEKbMbn6543b17mzZu33OdMBBMAAAAAANAmO++8c9544402j3PFFVcsU79zzz13kZUQLXXwwQcX7YDtz3P4NQAAAAAAUDSCCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABFI5gAAAAAAACKpmN7FwAAAAAAACu7uXPn5plnnsmECRPy6quvZsKECfnggw+SJGeccUaOOeaYJfa7/fbb87Of/azF84wdOzYbbLBB0/f33nsve++99xf2u/jii/ONb3xjsfs//elPc8cddyy1b79+/XLvvfe2uMYvIpgAAAAAAIA2evnll3P88ce3ul+XLl2yzjrrLLXNzJkzM3/+/PTs2TO9evVqtt2aa66ZDh06LPFZ586dlzpH586d061bt2bHLSTBBAAAAAAAFMAaa6yRLbfcMltuuWW22mqrnHPOOamqqlpqn/333z/7779/s8+rq6uz++67Z/78+Rk4cGA6dmz+1/pjxozJhhtuuEy177///jn33HOXqW9rCSaAlVZNTU17lwAAAAAASZIBAwbkmWeeWeTehRde2OZxH3jggcydOzdJcsghh7R5vBWBw6+BlU5dXV2S5NBDD23nSgAAAADgM81todRWt99+e5Jk++23T9++fZfLHMUmmABWOvX19UmS66+/vn0LAQAAAIDl6O23384LL7yQJDn44IPbuZrCsZUTsNKqqKho7xIAAAAAYLm57bbbknx2QPYBBxzwhe1POeWUvPPOO5k7d27WWmutbLfddjnkkEPy1a9+9Qv7Pv3009l3333zwQcfpHPnztl4442z5557ZsiQIV94OHdrCSYAAAAAAFjljRo1KqNGjWpVn2HDhmXYsGHLqaKlW7BgQe68884kyb777pvKysov7PPKK6+ksrIyHTp0yLRp0/KXv/wlf/nLX/KNb3wjF1xwQcrKyprt++GHH6Zjx46pqKjIp59+mgkTJmTChAn585//nN///vfZddddC/VqggkAAAAAAFZ91dXVmTZtWqv7tJe//e1v+eijj5Is/dDrzp0757vf/W4OOOCAbL755k0BxqRJk3L11VfnrrvuyoMPPpju3bvnN7/5zWL9t9xyy2y77bb56le/mvXWWy+lpaWprq7O2LFjc/7556eqqirf//73c/vtt6d3794FeTfBBAAAAAAAq7zKysr06tWr1X3ay8JDrzfccMPsvPPOzbbr2bNn/s//+T+L3e/Xr1/OP//8rLXWWhk1alRuvfXWDBs2LH369Fmk3RFHHLFY38rKygwcODBf+cpXctBBB2XWrFkZOXJkLrzwwja+1WcEEwAAAAAArPLac1um1po5c2bGjh2bJDnooINSUlKyzGP94Ac/yJ///OfMmzcvjz322GLBxNJssMEGOfzww3PZZZflscceS0NDQ0pLS5e5loXaPgIAAAAAAFAw9957b+rq6lJaWpqDDjqoTWOVl5dn0003TZK8++67re6/3XbbJflsW6uZM2e2qZaFBBMAAAAAALACue2225Iku+yySzbYYIN2rqbwBBMAAAAAALCCeP311/Pqq68mSQ4++OA2j1dTU5M333wzyWfnVbTWSy+9lCSpqKhIjx492lxPIpgAAAAAAIAVxsLVEt27d8++++77he0bGxuX+vySSy7JvHnzUlJSkq9+9aut6vvBBx/kpptuSpJ89atfLcj5EonDrwEAAAAAoCBmzZqVBQsWNH1vaGhIksydOzfTp09vul9ZWZmysrLF+tfX1+eee+5Jkuy///7p3LnzF845dOjQ7L777vnqV7+aTTfdNB07fvZr/zfffDPXXnttbr/99iTJ4MGD07dv30X63nXXXXn00UfzrW99K1/+8pez1lprJUnmzJmTv/71r7ngggsyc+bMlJeX56STTmrNj2KpBBMAAAAAAFAABx10UN5///3F7l9yySW55JJLmr6fc845S9ym6a9//WtmzJiRJDnkkENaNOcHH3yQiy66KBdddFE6duyYysrK1NbWZu7cuU1tvvnNb+bMM89crG9DQ0P+8pe/5C9/+UuSzw7KLisry+zZs5tClbXXXjsjRoxInz59WlRPSwgmAAAAAABgBbBwdUO/fv2y7bbbtqjPj3/84zz99NN55ZVXUlVVlZkzZ6Zjx47ZeOONs/322+fggw/OLrvsssS+O++8c0455ZS88MILeeuttzJjxoxUV1ene/fu2XTTTfMf//Ef+fa3v12wsyUWEkwAAAAAAEABjB07tk39r7jiilb32W+//bLffvst03wbbLBBhg8fvkx928Lh1wAAAAAAQNEIJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABFI5gAAAAAAACKRjABAAAAAAAUjWACAAAAAAAoGsEEAAAAAABQNB3buwAAAAAAAFjZzZ07N88880wmTJiQV199NRMmTMgHH3yQJDnjjDNyzDHHfOEYzz//fG644Ya88MILmTlzZtZee+3ssssuOfbYY9OvX78l9qmurs7YsWPz1FNPZfz48Xn//fdTX1+ftddeO9tuu20GDx6c//iP/1jqvPX19bntttty3333ZeLEiamurk6XLl2y8cYbZ4899siRRx6ZtdZaq/U/lGYIJgAAAAAAoI1efvnlHH/88cvc//rrr895552XhoaGlJSUpLKyMh9++GHuvPPO3H///fnd736Xr3/964v1O/jgg/POO+80fS8rK0unTp3y4Ycf5sMPP8xf/vKXHHjggTn33HPTsePikcDMmTNz7LHH5pVXXmm6161bt8yZMycTJkzIhAkTcvPNN+eqq67Kdtttt8zv93m2cgIAAAAAgAJYY401suuuu+aYY47JiBEj0rNnzxb1e/rpp3PuueemoaEh3/nOd/L000/nueeey+OPP5599tkndXV1+fGPf5y33nprsb7z589P//7987Of/SwPPvhgXnnllYwbNy5//etfc+ihhyZJ7rnnnvzhD39Y4ty//e1v88orr6RTp04588wz88ILL+S5557LSy+9lMsuuyy9evXKzJkz88Mf/jDz589f9h/O51gxAQAAAAAAbTRgwIA888wzi9y78MILW9T3d7/7XRobG7PHHnvkrLPOarq/3nrr5aKLLsohhxySiRMn5g9/+EMuuuiiRfqee+652XHHHVNSUrLI/S996Us5++yzU1pamltuuSWjR4/OiSeemM6dOze1qaurywMPPJAkOeGEE3L44Yc3PSsrK8vee++d8vLyHHXUUZk6dWpeeumlfOUrX2nZD2QprJgAAAAAAIA26tChwzL1mzJlSsaPH5/ks3DgX5WVleXoo49Okjz66KOZM2fOIs932mmnxUKJzxs8eHCSpKamJpMnT17k2axZs1JXV5ck2XrrrZfYf5tttmn6XFNT80Wv0yKCCQAAAAAAaCdPP/10kqSioiJf/vKXl9hmzz33TJLU1tbm+eefb9X4n18hsWDBgkWerbPOOunatWuSNIUj/2rh2RMdO3bMZptt1qq5m2MrJwAAAAAAVnmjRo3KqFGjWtVn2LBhGTZs2HKq6DMLVzH07du32VUXa6+9dtZaa61Mnz49b775ZlNQ0RILt5fq1KlTevfuvcizkpKSHHroofnjH/+YK6+8MmuttVYGDRqUioqK1NfX54knnsh///d/J0mOP/74rLvuusvyiotpt2CitrY29fX17TU9q6h/XcYEAAAAAJAk1dXVmTZtWqv7LG8fffRRkqRXr15LbderV69Mnz49VVVVLR67uro6V155ZZLkG9/4RiorKxdrc/rpp+eTTz7Jfffdl7POOitnnXVWunXrljlz5qShoSH9+/fPKaeckoMPPrgVb7V07RJM1NbWZq+99kptbW17TA8AAAAAwGqmsrLyC3/5v6Q+y9vCcxu6dOmy1HYLn7f0L2c3Njbmpz/9aaqqqrLGGmvk9NNPb3bcc889N3369Mmll16ahoaGfPrpp03P586dm9mzZ6exsXGpZ1m0RrsEE/X19amtrc19992XioqK9iiBVdScOXNywAEHtHcZAAAAAMAKphjbMq1ILrjggjz88MMpLS3NOeeck/XXX3+J7d55550MHz48b731Vv7rv/4rhx12WDbaaKN8/PHHGTt2bC655JKcc845mTBhQi644IKC1NauZ0xUVFQUJXECAAAAAIAVUXl5eZJk3rx5S2238HlL/rL/yJEjc+2116akpCRnnXVW9t577yW2W7BgQU488cRMnjw5J554Yn7wgx80Pdtoo41y5JFHpn///hk2bFjuvvvuDBw4MHvssUdLX61ZpW0eAQAAAAAAWCYLD5T+ovMvFj7v2bPnUttdccUVueSSS5Ikv/zlL3PooYc22/Zvf/tbJk2alCQ5+uijl9hm1113zZZbbpkkefjhh5c6d0sJJgAAAAAAoJ307ds3STJ58uQsWLBgiW0++eSTTJ8+PUmy6aabNjvWVVddlYsuuihJ8pOf/CRDhgxZ6tyTJ09Okqy11lpL3d1o4403TpK8//77Sx2vpQQTAAAAAADQTnbdddckn52fO27cuCW2efLJJ5MknTt3zle+8pUltrn22mtz4YUXJklOO+20ZldAfF5p6WcRwYwZMzJ37txm23388cdJCncYuGACAAAAAADaSZ8+fbL11lsn+WzFw7+qr6/PddddlyTZZ599lnjGxPXXX5/zzz8/SXLyySfnhBNOaNHcW2yxRZKksbExN9988xLbTJw4MS+88EKSZPvtt2/RuF9EMAEAAAAAAAUwa9asTJ8+velqaGhIksydO3eR+3V1dYv0+9GPfpSSkpI8/vjj+fWvf52ZM2cm+excidNOOy1vvPFGOnfunJNPPnmxOf/0pz/lnHPOSZKceOKJOemkk1pc74477pj+/fsnSUaMGJHLL788M2bMSJLU1NTkvvvuy9FHH5358+ene/fuOeigg1r9M1mSjgUZBQAAAAAAVnMHHXTQEs9huOSSS5oOpE6Sc845JwcffHDT91133TU/+clPct555+XPf/5zbr755nTr1i2zZ89OkpSVleWCCy5I7969Fxv77LPPbvp8yy235JZbbmm2vl/84hfZf//9m76XlpbmD3/4Q44++uh88MEH+f3vf5/f//73qaioSE1NTRobG5Mk3bp1yyWXXJIePXq0/IexFIIJAAAAAABoZ8OGDcs222yTG264IePGjcvMmTOz3nrrZeedd85xxx2Xfv36LbHfwvAg+X9nQTRn3rx5i93r3bt37rnnnvz5z3/O2LFjM3ny5FRXV6dr167ZeOONs/vuu2fo0KHp1atX217wcwQTAAAAAABQAGPHjm1T/wEDBmTAgAGt6vPGG2+0ac7ks0OtjzvuuBx33HFtHqslnDEBAAAAAAAUjWACAAAAAAAoGsEEAAAAAABQNIIJAAAAAACgaAQTAAAAAABA0QgmAAAAAACAohFMAAAAAAAARSOYAAAAAAAAikYwAQAAAAAAFI1gAgAAAAAAKBrBBAAAAAAAUDSCCWCl1bFjx5SVlbV3GQAAAABAKwgmgJVWWVlZbrnllvYuAwAAAABoBcEEsFKzYgIAAAAAVi4d27sAAAAAAABY2b3wwgt5/PHHM378+Lz77rv55JNPUltbmx49emTLLbfMgQcemG9+85spKSlpdoy//vWvufHGGzNhwoRUV1dn3XXXzZ577pnjjz8+66+//hL7/POf/8wRRxzxhfWNGTMm22yzTbPPn3/++dxwww154YUXMnPmzKy99trZZZddcuyxx6Zfv35f/ANoBcEEAAAAAAC00ejRo3P//fc3fS8vL0/Hjh1TVVWVxx9/PI8//nhuvfXWXHbZZamsrFys/29/+9vccMMNSZLS0tKUl5fnvffey0033ZR77rknV155Zb7yla8stYZ11lmn2WedOnVq9tn111+f8847Lw0NDSkpKUllZWU+/PDD3Hnnnbn//vvzu9/9Ll//+te/6EfQYoIJAAAAAABoo5133jm77rprtt1222y00UapqKhIklRVVWXMmDG55JJL8s9//jPnnXdefvOb3yzS97bbbmsKJU466aQcffTRqaioyJQpU/Lzn/8848aNy4knnpgHH3wwPXr0aLaGv//9762u++mnn865556bxsbGfOc738mpp56aNddcMx9++GF+85vf5JFHHsmPf/zj9O/fP7179271+EvijAkAAAAAAGijww47LN/+9rez+eabN4USSdKzZ88MHz48xx13XJLk7rvvTn19fdPz+vr6/P73v0+SfOc738nJJ5/c1L9Pnz658sor07Nnz8yYMSPXXHNNwev+3e9+l8bGxuyxxx4566yzsuaaayZJ1ltvvVx00UXp379/amtr84c//KFgcwomAAAAAABgOdt2222TJPPmzcusWbOa7j/99NP56KOPkiQnnHDCYv3WWGONHHbYYUmSe+65J42NjQWracqUKRk/fnyzc5eVleXoo49Okjz66KOZM2dOQeYVTAAAAAAAwHL2/PPPJ/ns7Im111676f4//vGPJMmmm26aDTbYYIl999xzzyTJhx9+mClTphSspqeffjpJUlFRkS9/+ctLnbu2trbpHdrKGRMAAAAAAKzyRo0alVGjRrWqz7BhwzJs2LBlnrOmpiZTp07NnXfemeuuuy5JcsQRR6SkpKSpzeTJk5Mk/fr1a3aczz97880307dv3yW2+853vpNJkyZl/vz5WWeddfLlL385hx12WAYMGLDE9gvn7tu3bzp06LDENmuvvXbWWmutTJ8+PW+++WZTUNEWggkAAAAAAFZ51dXVmTZtWqv7tFZVVVV23333xe536tQpQ4YMyQ9+8INF7i/cxqlXr17Njtm1a9d07949s2fPTlVVVbPtXnzxxXTv3j319fV5//338/777+eee+7JEUcckZ///OeLBCItnXvh8+nTpy917tYQTAAAAAAAsMqrrKz8wl/AL6lPa3Xo0CHrrLNOkmT27Nmpq6tLSUlJjjjiiBx99NGLrUyoqalJknTp0mWp43bp0iWzZ89e7JyH7t2755hjjsl+++2Xfv36pUuXLmloaMj48eNzySWX5Iknnsgf//jHrL322vne9763zHMnKdgZE4IJAAAAAABWeW3dlqml1lprrfz9739PkjQ0NOT999/PDTfckOuvvz633357Ro4c2ezWSstiiy22yBZbbLHIvdLS0my77ba56qqr8sMf/jAPPfRQrrzyynz3u99N9+7dCzb3snL4NQAAAAAALAelpaXZaKON8stf/jJnnHFGZsyYkdNOOy1z585talNeXp4kmTdv3lLHWvi8oqKixfOXlJTkRz/6UZLPVkcsPOy6GHMvjWACAAAAAACWs//6r/9KWVlZpk2blieeeKLp/rrrrpskSz3/Yu7cuZk9e3aSpGfPnq2a99/+7d+y5pprJknefffdRZ61ZO7PP2/t3M0RTAAAAAAAwHLWuXPn9OjRI0nyv//7v033+/btmySZNGlSs30//2zTTTctWE0L5548eXIWLFiwxDaffPJJpk+fXtC5BRMAAAAAALCczZkzJzNmzEjy/7ZQSpJdd901yWfhwAcffLDEvgtXWKy33nrp06dPq+Z99913m+bdcMMNF3m2cO45c+Zk3LhxS+z/5JNPJvksWPnKV77SqrmbI5gAAAAAAIA2mD9//he2uf7661NfX58k2XHHHZvu77LLLll33XXT2NiYq666arF+s2fPzs0335wkGThwYEpKShZ53tjYuNR5f/e73yVJunbt2hRELNSnT59svfXWSbLEuevr63PdddclSfbZZx9nTAAAAAAAwIpg0qRJ+c53vpM77rgjH374YdP9xsbGvPnmmznrrLNyySWXJEm+/vWvp3///k1tOnXqlFNOOSVJcvPNN2fkyJGpqalJkrz11lv53ve+l6qqqqy55po55phjFpv7gAMOyPXXX58pU6akoaGhad5XXnkl3/ve9/Lggw8mSU444YSsscYai/X/0Y9+lJKSkjz++OP59a9/nZkzZyb57FyJ0047LW+88UY6d+6ck08+ue0/qP9fx4KNBAAAAAAAq6kXX3wxL774YpLPtj0qLy9PTU1Namtrm9rstddeOe+88xbre8ghh+T111/PH//4x1xyySW57LLLUl5enk8//TRJUllZmUsvvbTpjIrPmzx5cs4555ycc8456dSpUyorKxeZt6SkJMOGDcvw4cOXWPeuu+6an/zkJznvvPPy5z//OTfffHO6devWdNh2WVlZLrjggvTu3bstP55FCCYAAAAAAKANevfunQsvvDD/+Mc/8sorr+Tjjz/OzJkzU1ZWlj59+mTbbbfNwIED8+///u/NjvGLX/wiu+22W2688caMHz8+c+bMyQYbbJA999wzxx9/fL70pS8tsd9vfvObvPDCC5kwYUI+/vjjzJ49O2VlZdl0003zla98Jd/+9rebtmtqzrBhw7LNNtvkhhtuyLhx4zJz5syst9562XnnnXPcccelX79+bfr5/CvBBAAAAAAAtEGXLl3yzW9+M9/85jfbNM7Xvva1fO1rX2tVn29/+9v59re/3aZ5k2TAgAEZMGBAm8dpCWdMAAAAAAAARSOYAAAAAAAAikYwAQAAAAAAFI1gAgAAAAAAKBrBBAAAAAAAUDSCCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoOrZ3AQAAAAAAsLKbOnVqHn744fzzn//Ma6+9lqqqqnTo0CG9evXKzjvvnCFDhqR///6L9WtsbMzzzz+fxx57LC+88EImT56c6urqVFRUpE+fPtlnn31y2GGHpbKycqnzjxs3LjfeeGNeeOGFVFVVpaSkJD179sz222+f//qv/8qAAQMW6/PPf/4zRxxxRIvfcfTo0dlpp51a3L45ggkAAAAAAGiDqVOn5mtf+1oaGxub7pWXl2f+/Pl5++238/bbb+e2227LT3/60wwdOnSRvldccUV+//vfN30vLS1NZWVlZs+enXHjxmXcuHG56aabcvXVV6dv375LnH/kyJEZOXJk0/xdunRJkrz33nt57733cu+99+aEE07Iaaedtki/Tp06ZZ111lnqu82ePTt1dXUpKytbYrCyLAQTAAAAAADQBgsWLEhjY2N23333DBo0KLvuumvWWWedLFiwIK+++mrOPffcPPfcczn77LOzySabZI899mjqO3/+/HTr1i0DBw7Mfvvtl+222y5lZWWpqanJAw88kPPPPz/vv/9+TjjhhNx3333p3LnzInM//fTTueSSS5IkX//613Paaadlk002SZJMmTIlv/vd7/Loo4/myiuvzI477rjI3F/+8pfz97//vdn3amxszN577533338/e+21V3r06FGQn5czJgAAAAAAoA3WWGON3HHHHbn22mtz4IEHNq1C6NChQ7bZZpuMGjUqm222WZLkmmuuWaTvPvvsk7Fjx+bMM8/MjjvumLKysiSfrbg45JBDcsUVVyRJ3n333TzwwAOLzX333XcnSTbeeOOMGDGiKZRIkj59+uTiiy/ORhttlCR56KGHWvVe//jHP/L+++8nSQ4++OBW9V0awQQAAAAAALRBt27dsuWWWzb7vKysLAMHDkySjB8/fpFnW2yxRbp3795s3x122CGbbrrpEvsmyUcffZQk2XzzzdOx4+KbJHXq1ClbbLFFkqSmpuYL3mRRt912W5KkV69e2X333VvVd2kEEwAAAAAAsJwt3IKpoaGhoH033HDDJMnrr7+e+fPnL/a8vr4+r732WpJkq622avGc1dXVefjhh5MkgwYNSocOHVpdd3MEEwAAAAAAsJw988wzSdLqA6SnT5+eiRMnNtv329/+dkpKSvLOO+/ktNNOyzvvvNP0bMqUKTnllFPy7rvvpk+fPvnud7/b4nnvvffezJs3L0lht3FKHH4NAAAAAMBqYNSoURk1alSr+gwbNizDhg1r89wvvfRSHnnkkSTJ4MGDW9V35MiRqa+vT2VlZb7xjW8s9nyrrbbK+eefnzPPPDMPPfRQHnrooXTp0iVJMm/evKyxxho5/PDDc8opp6Rr164tnvf2229PknzlK19Z5NyKQhBMAAAAAACwyquurs60adNa3aetZs6cmdNPPz0NDQ3ZbrvtWrX64OGHH85NN92UJDn11FPTo0ePJbYbOHBg1ltvvfz4xz/Ohx9+2LTSIUnq6uoyd+7czJ07d6lnWXze5MmT89JLLyVJDjnkkBbX21KCCQAAAAAAVnmVlZXp1atXq/u0xbx583LSSSfl3XffzZprrpkRI0a0+KyGl19+OWeccUYaGxvz9a9/PUOGDFliu/nz5+fss8/On//852y99db57W9/23TY9WuvvZYRI0bk9ttvz1NPPZWbbropG2ywwRfOvfDQ6/Ly8iWu0mgrwQQAAAAAAKu8Qm3L1FJ1dXU56aST8uyzz6Zbt2659tprmw6q/iKvvfZajj322NTU1GS33XbL7373u2bbXnfddfnzn/+c3r1756abbmo6KDtJ/v3f/z1f+cpX8q1vfStvv/12LrzwwowYMWKpcy9YsCB33313kuQb3/hGKioqWlRzazj8GgAAAAAACqiuri4/+MEP8uSTT6a8vDxXX311ttpqqxb1ff3113PUUUdl1qxZ2XHHHXPZZZelrKys2fbXX399kuTwww9fJJRYqEuXLk2rLR599NE0NjYudf4nnngiVVVVSZbPNk6JYAIAAAAAAAqmvr4+P/zhD/PXv/41Xbt2zVVXXZUddtihRX0nTpyYYcOGZebMmdlhhx1y5ZVXLvXA6hkzZuSTTz5Jkvzbv/1bs+023njjJJ9tLfXxxx8vtYaF2zhtsskmGTBgQIvqbi3BBAAAAAAAFEB9fX1OOeWUjB07Nl26dMnll1+eHXfcsUV9J02alKOOOirTp0/PNttsk2uuueYLt1EqLf1/v+J///33m223MLxIstQxp0+fnsceeyxJctBBB7Wo7mUhmAAAAAAAgDaaP39+Tj/99DzyyCMpKyvLpZdeml133bVFfSdPnpyjjjoqn3zySbbaaqtcd911LTp4e4011mg6zHrMmDGZP3/+Ym0WLFiQW265JUnSv3//lJeXNzve3Xffnfr6+pSWlgomAAAAAABgRbVgwYL8+Mc/zkMPPZSysrKMHDkyu+++e4v6vv322znyyCPz8ccfZ4sttsh1112X7t27t3ju7373u0mSCRMm5Hvf+17eeOONNDQ0pKGhIa+//nqOP/74jBs3Lkly1FFHLXWs22+/Pclnh2b36tWrxTW0VsflNjIAAAAAAKwGXnjhhdx///1JksbGxvz85z9favsxY8Zk/fXXT5JceeWVTYdNv/feeznggAOa7bfDDjtk5MiRi9wbNmxYXnvttdx777158skn8+STTzYdll1XV9fUbujQoUs9zHrChAl54403kiy/Q68XEkwAAAAAAEAbNDQ0NH2ur6//wgOmFyxY0PS5sbGx6fOnn36aTz/9tNl+s2bNWuxehw4dcuGFF+ab3/xm7rjjjrz88stNZ0p86Utfyvbbb59vf/vbX7it1MLVEj169Mjee++91LZtJZgAAAAAAIA22HnnnZtWG7TWueeem3PPPbfNNXzta1/L1772tWXu/6tf/Sq/+tWv2lxHSzhjAgAAAAAAKBrBBAAAAAAAUDSCCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABF07G9CwAAAAAAgFXR8ccfn8cffzxJctBBB+Xcc89d5HljY2Oef/75PPbYY3nhhRcyefLkVFdXp6KiIn369Mk+++yTww47LJWVlUscv7q6OmPHjs1TTz2V8ePH5/333099fX3WXnvtbLvtthk8eHD+4z/+o9n6LrnkkowcOXKp71BeXp5x48a18s2XTjABAAAAAAAFdu+99zaFEs254oor8vvf/77pe2lpaSorKzN79uyMGzcu48aNy0033ZSrr746ffv2Xaz/wQcfnHfeeafpe1lZWTp16pQPP/wwH374Yf7yl7/kwAMPzLnnnpuOHZuPAzp16pQ11lhjic+6du36BW/aeoIJAAAAAAAooJkzZ+a3v/1tunXrlnXXXTeTJ09eYrv58+enW7duGThwYPbbb79st912KSsrS01NTR544IGcf/75ef/993PCCSfkvvvuS+fOnRfr379//xxyyCH5j//4j/Tu3TtJ8sEHH+Syyy7LrbfemnvuuSdf+tKXctpppzVb7w477JDRo0cX7gfwBZwxAQAAAAAABXTuuefmk08+yWmnnZa111672Xb77LNPxo4dmzPPPDM77rhjysrKkny2fdIhhxySK664Ikny7rvv5oEHHljiPHfffXeOOuqoplAiSb70pS/l7LPPzne+850kyejRo1NbW1vIV2wTwQQAAAAAABTIU089lTvuuCPbbbddDjvssKW23WKLLdK9e/dmn++www7ZdNNNkyTjx49f7PlOO+2UkpKSZvsPHjw4SVJTU9Psqo32IJgAAAAAAIACmDdvXs4888x07NgxZ511VkpL2/4r+IXbNzU0NCxz3yRZsGBBm2spFGdMAAAAAABAAVx88cV59913c/TRR2fzzTdv83jTp0/PxIkTkyT9+/dvdf9nnnkmyWeHW39+q6d/NWnSpBxwwAF5991306FDh2ywwQbZbbfdMnTo0Gy00UbLVvxSCCYAAAAAAFjljRo1KqNGjWpVn2HDhmXYsGEtajthwoTccMMN+dKXvpSTTz55WUpczMiRI1NfX5/Kysp84xvfaFXf6urqXHnllUmSb3zjG6msrGy27YwZMzJr1qx069Yt1dXVmTRpUiZNmpRbbrklZ599dg488MA2vce/EkwAAAAAALDKq66uzrRp01rdpyUWLFiQX/3qV03/LC8vX5YSF/Hwww/npptuSpKceuqp6dGjR4v7NjY25qc//Wmqqqqyxhpr5PTTT19iu4033jhnnHFG9tlnn2ywwQbp2LFjamtr87e//S0XXHBB3nrrrfz0pz/Neuutlx133LHN77SQYIJV0pw5c9q7hKJYXd4TAAAAANqqsrIyvXr1anWflhg1alQmTJiQ//zP/8xee+21LOUt4uWXX84ZZ5yRxsbGfP3rX8+QIUNa1f+CCy7Iww8/nNLS0pxzzjlZf/31l9hu4MCBi93r3Llz9t577wwYMCCDBw/O//7v/+bCCy/MzTffvEzvsiSCCVYpnTp1SufOnXPAAQe0dykAAAAAwAqkNdsytca7776bkSNHpqKiIr/85S/bPN5rr72WY489NjU1Ndltt93yu9/9rlX9R44cmWuvvTYlJSU566yzsvfeey9THWussUZOOOGE/OIXv8iLL76Y6dOnZ6211lqmsf6VYIJVSufOnTN27NjU19e3dylFMWfOHCEMAAAAALSjc845J3Pnzs2pp56abt26LbbLyYIFC5Ik8+fPb3rWtWvXlJaWLjbW66+/nqOOOiqzZs3KjjvumMsuuyxlZWUtruWKK67IJZdckiT55S9/mUMPPXRZXytJst122yX5bGuo9957TzABzencuXM6d+7c3mUAAAAAAKuB999/P0ly0UUX5aKLLmq23T333JN77rknSXLnnXdmiy22WOT5xIkTM2zYsMycOTM77LBDrrzyynTt2rXFdVx11VVN8//kJz9p9fZPxbR4JAMAAAAAABTNpEmTctRRR2X69OnZZpttcs0116SioqLF/a+99tpceOGFSZLTTjstRx99dEHqeumll5IkJSUl2XDDDQsyZmLFBAAAAAAALLO77rprqc+HDh2aZ555JgcddFDOPffcxZ5Pnjw5Rx11VD755JNstdVWue6661p86HaSXH/99Tn//POTJCeffHJOOOGEFvVrbGxMSUlJs88//fTTXHXVVUk+29KpUNs4JVZMAAAAAABAu3j77bdz5JFH5uOPP84WW2yR6667Lt27d29x/z/96U8555xzkiQnnnhiTjrppBb3ffbZZzNs2LDcc889mTZtWtP9urq6PPbYYznssMPyzjvvpEOHDjn99NNb/lItYMUEAAAAAAC0gyuvvDJVVVVJkvfeey8HHHBAs2132GGHjBw5cpF7Z599dtPnW265Jbfcckuz/X/xi19k//33b/re2NiYp556Kk899VSSzw7k7ty5c6qrqzN//vwkSXl5ef7nf/4nO+20U+tfbikEEwAAAAAA0A4aGxubPn/66af59NNPm207a9aspfb/+OOPlzrXvHnzFvnev3//nHHGGXnhhRfy5ptvZsaMGamurk5FRUU23njj/Pu//3v+67/+K7169Wrp67SYYAIAAAAAAJaT0aNHN/vs3HPPXeK5Ey31xhtvLHPfNddcM8ccc0yOOeaYZR5jWTljAgAAAAAAKBrBBAAAAAAAUDSCCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABF07G9CwAAAAAAgJXdCy+8kMcffzzjx4/Pu+++m08++SS1tbXp0aNHttxyyxx44IH55je/mZKSkkX61dTU5I477sj48ePz+uuvp6qqKjNnzkynTp2y0UYbZdddd82QIUOy0UYbLXHe22+/PT/72c++sL6nn346a6211hKfffTRRxk1alSeeOKJvP/++yktLc2//du/Zd99981RRx2V8vLy1v9AlkIwAQAAAAAAbTR69Ojcf//9Td/Ly8vTsWPHVFVV5fHHH8/jjz+eW2+9NZdddlkqKyub2k2dOjVnnXVW0/cOHTqksrIys2fPzhtvvJE33ngjN998c84999zst99+zc5fWlrabPCw8PmSPPvssznppJMyc+bMJElFRUUaGhry2muv5bXXXsudd96ZP/7xj1lvvfVa+qP4QoIJAAAAAABoo5133jm77rprtt1222y00UapqKhIklRVVWXMmDG55JJL8s9//jPnnXdefvOb3zT1q6yszPHHH58dd9wxm222WdZZZ5106NAh9fX1eeGFF3LBBRfklVdeyU9+8pNsvfXWza6cWH/99TN27NhW1Txt2rSceOKJmTVrVrbaaqucddZZ2XrrrdPY2Jjnnnsuv/jFL/LOO+/ke9/7Xm677bZ06NBh2X9An+OMCQAAAAAAaKPDDjss3/72t7P55ps3hRJJ0rNnzwwfPjzHHXdckuTuu+9OfX190/NevXrl9NNPz5577plevXo1/fK/U6dO2XnnnXPdddelvLw8tbW1ueeeewpa86hRozJr1qyUl5fnyiuvzNZbb50kKSkpyY477phLL700HTp0yGuvvZa77rqrYPMKJgAAAAAAYDnbdtttkyTz5s3LrFmzWtyve/fu2WSTTZJ8tsKhkB5//PEkyYEHHpiePXsu9rxfv37Zc889kyR33HFHweYVTAAAAAAAwHL2/PPPJ/ns7Im11167xf2mT5+et956K0ma3cZpWX3wwQdJkj59+jTbpm/fvkmS5557LvPmzSvIvM6YAAAAAACA5aCmpiZTp07NnXfemeuuuy5JcsQRR6SkpGSp/RoaGvLJJ5/kpZdeyh/+8IfMnTs33bt3z8EHH9xsn+nTp+eggw5qCjF69eqVnXbaKUOGDMlmm232hfN90bOGhoZMmTIlW2655VLHagnBBAAAAAAAq7xRo0Zl1KhRreozbNiwDBs2rFV9qqqqsvvuuy92v1OnThkyZEh+8IMfNNv3zDPPzC233LLY/U022SQXXXRR1lprrWb7zp07N6+99lq6d++empqavP3223n77bdz22235fTTT88xxxyzWJ8vfelLmTJlSiZNmtTsuBMnTmz6/NFHHwkmAAAAAACgJaqrq1t9RkN1dXWr5+nQoUPWWWedJMns2bNTV1eXkpKSHHHEETn66KObDrdekm7dumWdddbJ/PnzM3PmzCRJ796984tf/KLZQGDdddfNySefnH333TebbLJJysrKUl9fn+effz4jRozISy+9lPPPPz/rrrtuDjzwwEX67rHHHpkyZUruu+++nHjiidlwww0Xef7KK6/k73//e5t+HkvijAkA/j/27jSs6mp///jNPG3FCSkFy/E44JRTVGYOHXMoBS3NoUQ7ViaVnhxKs/KYkKVmkKX/EofS7KikaJaZhplTCmqi4lgKTggi87z/D7zYP4lpb8Bted6v6/Lqu79rfdZaez84D7jPWgsAAAAAAOCOZzAY5OnpadE/g8Fg8Ty1atXSL7/8ol9++UWHDh3S1q1bNWLECC1dulT9+/fX/v37S62dNGmSfvnlF+3du1dRUVFauHChbG1t9dxzz2ny5MnKy8srVvPQQw9p/PjxatasmRwdHSXd2J1x//3364svvlC7du0kSR988EGxI5tGjRolg8Gg7OxsjRkzRpGRkcrMzFRaWpq+++47vfjii7K3/7/9Dba2VRMpsGMCAAAAAAAAAHDHq8ixTJVla2srb29vTZ8+XV5eXgoKCtLEiRP1/fffy8XFpcxaNzc39ezZU507d9YTTzyh9evXq1WrVnr22WfNnt/R0VGvvvqqRo0apUuXLuno0aPy8fExtderV0+hoaEKDAzU77//rrFjxxapd3V11eTJk/Xuu+9KkqpXr27Bty8dOyYAAAAAAAAAALjFnn76aTk6Oury5cvasWOH2XXVqlUzXXq9Zs0ai+dt27at6fn8+fPF2n19ffXtt9/qhRdeUNu2bVWvXj01bdpUTz/9tNavX69mzZqZ+t57770Wz18SdkwAAAAAAAAAAHCLOTk5qUaNGrpy5YrOnTtnUa2np6ckWVxnrrp162rChAmaMGFCsbYffvhBkuTh4VHsDoqKYscEAAAAAAAAAAC3WHp6uq5duybpxhFJlijc6WBpnSQdOnTI9GxpsGA0GrVx40ZJ0oABAyyeuzQEEwAAAAAAAAAAVEJJl1L/2dKlS5WbmytJ6tSpk9m1SUlJWrduXbE66UZwUJbc3FwtWLBA0o1dF61atSp3nTdbsWKFjh49KoPBoJEjR1pUWxaCCQAAAAAAAAAAKuHkyZMaMmSIwsPDdenSJdN7o9GoU6dOaebMmQoJCZEk9e7du8i9Da+//rqCgoJ08OBBZWdnm96npaXp22+/1ZAhQ3T16lU5ODjoxRdfLDJvfHy8nnzySX399deKi4szvc/Ly9O+ffs0cuRIRUdHS5Jee+012doWjwTmzp2ryMhIXb9+3fTujz/+0KxZszR79mzZ2NjozTff1F133VXJX+n/cMcEAAAAAAAAAACVdPDgQR08eFDSjfskXF1dlZGRUSRs6NGjh957770idenp6dqwYYOWLl0qW1tbGQwGSVJqaqppR4S7u7uCg4PVokWLYvMePnxYhw8fLjJvWlqaaXeGg4ODXnvtNT3xxBMlrnvTpk1avHixpBtHRRmNRmVmZkqSnJ2dNX36dA0cOLCCv0rJCCYAAAAAAAAAAKiEhg0bau7cudqzZ49+++03Xb16VcnJyXJ0dFSjRo3Upk0bPfHEE3rwwQeL1b788stq06aN9u3bp3PnzikxMVG5ubmqVauWGjdurK5du2rw4MGqVatWsdo6depo+vTpio6O1rFjx5SUlKTU1FQ5OzurSZMm6tKli4YOHaqGDRuWuvZx48bpp59+0vHjx3X16lXZ2NioadOm6tq1q4YPH15lF17fjGACAAAAAAAAAIBKcHZ2Vv/+/dW/f3+La5s3b67mzZvrhRdeqNC8I0eOrNT9D4MHD9bgwYMrXF8R3DEBAAAAAAAAAACshmACwN+ag4PD7V4CAAAAAAAAAAsQTAD4W3N0dLzdSwAAAAAAAABgAYIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1RBMAAAAAAAAAAAAqyGYAAAAAAAAAAAAVkMwAQAAAAAAAAAArIZgAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNXY3+4FAAAAAAAAAADwd/aPf/zD7L6BgYEaP358kXcjR47Uvn37yqx75JFHtGjRIrPnefvtt7Vq1SpJUufOnbVixYoS+yUkJOjXX3/V0aNHFRMTo6NHjyo5OVmStGbNGrVu3drsOc1FMAEAAAAAAAAAQCXUqVOnzPbMzEylp6dLknx8fErt5+rqKldX1xLbqlevbvZ6Dhw4oK+++sqsvl999ZVCQ0PNHrsqEEwAAAAAAAAAAFAJv/zyS5ntkydP1vr16+Xh4aGuXbuW2m/06NEKDAys1FpycnL05ptvys7OTs2bN9eRI0fK7G9jY6O7775bLVu2VKtWrVS3bl1Nnz69UmsoD8EEgL+c7Oxs5ebmltqekZFhxdUAAAAAAAAAFZeWlqYtW7ZIkgYMGCA7O7tbOt+iRYt0+vRpPffcc0pMTCw3mHjxxReLHC0VFxd3S9cnEUwA+IvJzs5Wjx49lJ2dfbuXAgAAAAAAAFTa5s2blZmZKUny9/e/pXOdOnVKixYtUv369TV+/Hi988475dbc6qCkJAQTAP5ScnNzlZ2drU2bNsnNza3EPgkJCXryySetvDIAAAAAAADAcmvXrpUktW/fXo0bN75l8xiNRk2fPl25ubmaMWOGXFxcbtlclUUwAeAvyc3NTQaDocS2wouCAAAAAAAAgL+yM2fOKDo6WpI0aNCgcvtHRERo3bp1SkhIkKurqxo1aqSePXvq6aefLvVvZYVWrlyp6Oho9e7dW4888khVLP+WIZgAAAAAAAAAANzxwsLCFBYWZlFNQECAAgICKjznunXrJEkuLi7q06dPuf3/+OMPOTg4yMXFRSkpKYqOjlZ0dLRWrlypTz75RM2bNy+x7tKlS5o7d64MBoOmTZtW4fVaC8EEAAAAAAAAAOCOl5aWpsuXL1tcU1H5+flav369JKl3795l7njo3LmzBg0apAcffFB16tSRjY2NkpOTtWnTJs2bN08XLlzQc889p4iICNWsWbNY/TvvvKP09HRNnz5dnp6eFV6ztRBMAAAAAAAAAADueAaDweI/2pd3fFJZdu7cqStXrkgq/9LrwMDAYu9q1Kih4cOHq23btho6dKgSEhIUFhamiRMnFum3efNmbdu2TT4+Pho+fHiF12tNBBMAAAAAAAAAgDteZY9lslThpdfe3t7q3Llzhcfx8fFR3759tX79em3fvr1IMJGSkqJ3331XdnZ2mjlzpmxtbSu9bmv4e6wSAAAAAAAAAIC/iWvXrmnbtm2SJD8/P9nY2FRqvLZt20qSzp8/X+R9SEiIEhISNHjwYN17771KT08v8i8vL0/SjWOlCt/l5+dXai1VgR0TAAAAAAAAAABUoYiICOXm5srW1rbcY5wqIz4+XpK0evVqrV69utR+Bw4c0H333SdJ+vjjj9WrV69btiZzsGMCAAAAAAAAAIAqtG7dOkmSr6+v7r777kqPd+jQIUmSl5dXpcf6K2DHBAAAAAAAAAAAVeTYsWM6duyYJGnQoEHl9jcajWUe9XT06FF9++23kqTu3bsXaVu4cGGZY0+dOlXh4eHq3LmzVqxYUe5arIVgAgAAAAAAAACAKlJ46bW7u7tZRyYtXrxYv//+u/r27at27dqpWrVqkqTr16/r22+/1bx585SbmysPDw+NHj26ytdbUFCg5ORk0+eUlBTTc1pampKSkkyfa9SoUSUXbBNMAAAAAAAAAABQBXJychQRESFJ6tevn5ycnMyqWbdunen4J4PBIDs7O6WkpMhoNEqSvL29FRoaqpo1a1b5mi9cuKCePXuW2DZq1Kgin3/88ccqOU6KYAIAAAAAAAAAgCqwfft20+4Dcy+9fuyxx5Sfn6/o6GidP39e165dU3Z2tmrXrq1mzZqpV69e8vPzk6ur6y1cuXURTAAAAAAAAAAAUAV69+6t2NhYi2qaNm2qV1999ZasJzg4WMHBwWX28fLysnjNlVX5w6AAAAAAAAAAAADMRDABAAAAAAAAAACshmACAAAAAAAAAABYDcEEAAAAAAAAAACwGoIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1RBMAAAAAAAAAAAAqyGYAAAAAAAAAAAAVkMwAQAAAAAAAAAArIZgAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGrsb/cCAAAAAAAAAAC4E40dO1aRkZGSJD8/PwUHB5tVFxcXp8cff1wZGRmSpOXLl6tLly7F+qWlpWnbtm3atWuXjhw5ovj4eOXm5qp27dpq06aNBg8erG7dulXdF6oiBBMAAAAAAAAAAFSxjRs3mkIJS7311lumUKIs/v7++uOPP0yfHR0d5eDgoEuXLunSpUvasmWLHn/8cQUHB8ve/q8TB3CUEwAAAAAAAAAAVSg5OVmzZ89WtWrV1LhxY4tqv/nmG+3cuVPt2rUrt29eXp6aNWum119/Xd99951+++03RUdHa/v27XryySclSREREfroo48q8jVuGYIJAAAAAAAAAACqUHBwsBITEzVx4kTVrl3b7LqkpCQFBwerWrVqmjp1qlnzbNiwQaNGjVLDhg1N7+vVq6dZs2ZpyJAhkqQVK1YoOzvb8i9yixBMAAAAAAAAAABQRXbt2qXw8HC1bdtWQ4cOtah29uzZunbtmiZMmCAPD49y+3fu3Fk2Njaltg8ePFiSlJGRodOnT1u0lluJYAIAAAAAAAAAgCqQlZWlGTNmyN7eXjNnzpStrfl/gv/5558VERGhtm3b6umnn66S9Tg5OZme8/Pzq2TMqkAwAQAAAAAAAABAFViwYIHOnz+vZ555Rs2bNze7LiMjQ2+99VaFAo2y7Nu3T5Lk4OBQ5Kin2+2vcw03AAAAAAAAAAC3SFhYmMLCwiyqCQgIUEBAgFl9Y2JitGzZMtWrV0+BgYEWzbNgwQLFx8dr9OjRFgUaZUlLS9OiRYskSY899pgMBkOVjFsVCCYAAAAAAAAAAHe8tLQ0Xb582eIac+Tn5+vNN980/dfV1dXsOX777TetWLGiQoFGaYxGo6ZOnaqEhAS5u7vr3//+d5WMW1UIJgAAAAAAAAAAdzyDwSBPT0+La8wRFhammJgYPfroo+rRo4fZ4+fl5Wn69OnKz8/X9OnTLQo0yvL+++/rhx9+kK2trYKCgnT33XdXybhVhWACAAAAAAAAAHDHs+RYJkucP39eoaGhcnNz0/Tp0y2qXbJkiY4fP65evXqpZ8+eVbKe0NBQff7557KxsdHMmTOrbNyqRDABAAAAAAAAAEAFBQUFKTMzUxMmTFC1atWUnp5epD0/P1/Sjd0RhW0uLi66evWqQkND5ezsrIkTJxary8rKKvKcnp4uOzs7OTs7l7qWTz/9VCEhIZKk6dOn68knn6yS71jVCCYAAAAAAAAAAKig+Ph4SdL8+fM1f/78UvtFREQoIiJCkvTNN99IkrKzsyVJffv2LXOOsWPHSpKaN2+u9evXl9hn8eLFpvmnTJmiESNGmP8lrMz2di8AAAAAAAAAAABU3Oeff665c+dKkiZOnKjRo0ff5hWVjR0TAAAAAAAAAABUUGk7GAqNHDlS+/btk5+fn4KDg4u0xcbGlloXFxdnuh9i+fLl6tKlS4n9li5dqjlz5kiSAgMD9fzzz1uy/NuCHRMAAAAAAAAAAPwNffHFFwoKCpIkvfTSSxo/fvxtXpF52DEBAAAAAAAAAMDf0KxZs0zPq1ev1urVq0vtO23atHLvsrAWggkAAAAAAAAAAP6GjEaj6fnq1atl9s3KyrrVyzEbwQQAAAAAAAAAALfIihUrKlTn5eVV5h0UUtl3VPyVcccEAAAAAAAAAACwGoIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1RBMAAAAAAAAAAAAqyGYAAAAAAAAAAAAVkMwAQAAAAAAAAAArIZgAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZjf7sXAAAAAAAAAADAncBoNOrbb79VeHi4jh07puvXr8vBwUFeXl7y9fXVyJEj5e3tXayuR48eio+PL3Ps4cOHa8aMGVU67+1CMAEAAAAAAAAAQCVlZ2crMDBQkZGRpndubm7Kzs7WiRMndOLECa1evVrz5s1Tz549SxzDYDDI2dm51LZbNa+1EUwAAAAAAAAAAFBJn376qSkcCAwM1PDhw1WzZk3l5+frwIEDmjlzpk6ePKlJkyZp69atqlWrVrExpk2bJn9/f6vPa23cMQEAAAAAAAAAQCWtX79ekuTn56fx48erZs2akiQ7Ozt17txZCxculCSlp6dr586df/t5K4NgAgAAAAAAAACASkpISJAk+fj4lNjeoEED1ahRQ5KUkZHxt5+3MggmAAAAAAAAAACoJC8vL0nSkSNHSmw/d+6ckpOTJUmtWrX6289bGQQTAAAAAAAAAABU0pAhQyRJ4eHhCg0N1bVr1yRJ+fn52rdvn8aNGydJGjBggFq3bl3iGEuWLNFDDz0kHx8f3X///Xr22We1cuVKZWdn39J5rY3LrwEAAAAAAAAAd7ywsDCFhYVZVBMQEKCAgACz+o4cOVIXL17UsmXLFBISopCQEBkMBmVlZSkvL0/e3t6aMmWKRo0aVeoYJ0+elLOzs5ydnXXt2jXt2bNHe/bs0apVq7Ro0SLVq1fvlsxrbQQTAAAAAAAAAIA7Xlpami5fvmxxjbns7Ow0ZcoUNWzYULNnz1Z2dnaR+qysLKWkpCgvL0+Ojo5Fanv27KmOHTuqU6dOqlWrliTpypUrWrNmjRYuXKgTJ05o7NixWrduXbHaysx7uxBMAAAAAAAAAADueAaDQZ6enhbXmCsxMVHjx49XVFSU+vXrp9GjR6thw4ZKSUnRnj17NHfuXH3yySeKiorSkiVLZG//f3+enzZtWrHx6tatq3Hjxukf//iHxo0bp5MnTyo8PNx0dFNVzHu73P4VAAAAAAAAAABwi1lyLFNFTJ48WVFRURo4cKDee+8903s3Nzf5+fmpdevW8vPz0969e7VmzRoNHTrUrHELd1Ps379f27dvLxZM3Kp5byUuvwYAAAAAAAAAoBJOnz6tnTt3SpJGjx5dYp8mTZrokUcekST98MMPFo3fpk0bSdL58+etOu+tQjABAAAAAAAAAEAlnDp1yvTcoEGDUvvdc889kqT4+Pi/9byVRTABAAAAAAAAAEAl2Nr+35/aL1y4UGq/xMRESZbdXSFJhw8fliR5eXlZdd5bhWACAAAAAAAAAIBKaNGihel51apVJfZJSEgwHaXUrl0703uj0Vjm2D/99JP2798vSerevXuVzXs7EUwAAAAAAAAAAFAJXl5e6tatmyTpiy++UFBQkC5fvixJys7O1o4dOzRixAilpqbKwcFBw4YNM9XOmjVLs2bN0q+//qrMzEzT+4SEBC1atEgvv/yyJKlp06by9/evsnlvJ/vbvQAAAAAAAAAAAP7ugoKCFBAQoNjYWC1dulRLly6Vq6ursrKyVFBQIElydHRUUFCQGjVqZKpLT09XeHi4VqxYIRsbG1WrVk1Go1GpqammPi1bttTChQvl6OhYZfPeTgQTAAAAAAAAAABUUu3atbVmzRqtWbNG33//vWJjY5WamionJyfVq1dPvr6+GjFihBo2bFikbujQoapVq5YOHjyoCxcu6Nq1ayooKFDdunXVqlUrPfbYY+rXr58cHByqdN7biWACAAAAAAAAAIAq4OjoqGHDhll0ZFK7du0qffdDRea9nbhjAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrsb/dCwAAAAAAAAAA4E5gNBr17bffKjw8XMeOHdP169fl4OAgLy8v+fr6auTIkfL29i5SExISotDQULPniI2NLfJ57969euaZZ8qtW7NmjVq3bl1mn19//VVff/21Dhw4oISEBLm6usrT01MdOnTQU089pRYtWpi9zrIQTAAAAAAAAAAAUEnZ2dkKDAxUZGSk6Z2bm5uys7N14sQJnThxQqtXr9a8efPUs2dPUx9XV1fVqVOnzLETExNlNBrl4+NTZr+yxnFwcCi1LT8/X2+//ba+/vpr07vq1asrPT1dsbGxio2NlYeHB8EEAAAAAAAAAAB/FZ9++qkplAgMDNTw4cNVs2ZN5efn68CBA5o5c6ZOnjypSZMmaevWrapVq5YkacyYMRozZkyp4547d07//Oc/JUn+/v5lruGXX36p0NqnT5+udevWqXr16nr11VfVr18/1ahRQwUFBbp48aIiIyPl4eFRobFLQjABAAAAAAAAAEAlrV+/XpLk5+en8ePHm97b2dmpc+fOWrhwoR599FGlp6dr586deuKJJ8wad926dTIajXJyclL//v2rfN1bt27VunXr5OjoqGXLlqlly5amNltbW9WvX1/Dhg2r0jm5/BoAAAAAAAAAgEpKSEiQpFKPW2rQoIFq1KghScrIyDBrzIKCAn3zzTeSpF69esnd3b3S6/yzhQsXSpJGjhxZJJS4lQgmAAAAAAAAAACoJC8vL0nSkSNHSmw/d+6ckpOTJUmtWrUya8zdu3fr4sWLkso/xqkiTp8+rZiYGEnS448/XuXjl4ZgAgAAAAAAAACAShoyZIgkKTw8XKGhobp27ZqkGxdL79u3T+PGjZMkDRgwQK1btzZrzLVr10qS7r77bj3wwANmreG+++5TmzZt1KNHD7322mvav39/qf2jo6Ml3bgYu2nTptq4caOGDh2q9u3bq3379vLz89OiRYvM3uFhLu6YAAAAAAAAAADc8cLCwhQWFmZRTUBAgAICAszqO3LkSF28eFHLli1TSEiIQkJCZDAYlJWVpby8PHl7e2vKlCkaNWqUWeOlpKRo69atkqSBAwfK1rb8fQYHDx5U9erVlZubq/j4eMXHxysiIkLPPPOM3njjDdnY2BTp/8cff0iS3N3dFRwcrBUrVkiSqlevrszMTB09elRHjx5VRESElixZorp165q19vIQTAAAAAAAAAAA7nhpaWm6fPmyxTXmsrOz05QpU9SwYUPNnj1b2dnZReqzsrKUkpKivLw8OTo6ljvexo0blZ2dLRsbGw0aNKjUftWrV9eYMWPUp08fNW3aVM7OziooKNCRI0cUEhKiHTt2aPny5apdu7ZeeOGFIrXXr1+XJCUlJWnFihXq3r27pk2bJm9vb+Xk5GjTpk165513dPLkSU2ZMsXiYKc0BBMAAAAAAAAAgDuewWCQp6enxTXmSkxM1Pjx4xUVFaV+/fpp9OjRatiwoVJSUrRnzx7NnTtXn3zyiaKiorRkyRLZ25f95/l169ZJkjp16iRvb+9S+7Vo0UItWrQo8s7W1lZt2rTR4sWL9corr+j777/XokWLNGzYMFWvXt3Uz2g0SrpxyXb9+vX10UcfmUITR0dH+fn5KS0tTbNmzdKuXbt0+PBhtWnTxuzfpDQEEwAAAAAAAACAO54lxzJVxOTJkxUVFaWBAwfqvffeM713c3OTn5+fWrduLT8/P+3du1dr1qzR0KFDSx3r5MmT+u233ySpzN0S5bGxsdFrr72m77//XhkZGdq9e7d69+5dZG2Fhg0bVuJOjqFDh2ru3LnKzMzU7t27qySY4PJrAAAAAAAAAAAq4fTp09q5c6ckafTo0SX2adKkiR555BFJ0g8//FDmeIW7Jdzc3IoECRXRoEED1axZU5J0/vz5Im033xnRqFGjEusdHBxMOzYuXrxYqbUUIpgAAAAAAAAAAKASTp06ZXpu0KBBqf3uueceSVJ8fHypffLy8rRhwwZJUt++feXi4lJFqyyuadOmFvX/8+XZFUUwAQAAAAAAAABAJdja/t+f2i9cuFBqv8TEREll313x008/6erVq5Ikf3//Sq/t/PnzunbtmiTJy8urSFuHDh3k7OwsSTpz5kyJ9bm5uaadFvXr16/0eiSCCQAAAAAAAAAAKuXmy6dXrVpVYp+EhATTEU7t2rUrdazCY5waNmyo++67r9y5Cy+wLs0HH3wgSXJxcZGvr2+RNldXV/3zn/+UJK1cuVI5OTnF6letWqXMzExJUrdu3cpdjzkIJgAAAAAAAAAAqAQvLy/TH+2/+OILBQUF6fLly5Kk7Oxs7dixQyNGjFBqaqocHBw0bNiwEsdJTExUZGSkJPN3S/Tr109Lly7VmTNnVFBQIOlGWPHbb7/phRde0HfffSdJev755+Xu7l6s/uWXX5arq6vi4+P18ssvm3ZH5OTk6JtvvtG8efMkSf3797f46KfS2FfJKAAAAAAAAAAA/A8LCgpSQECAYmNjtXTpUi1dulSurq7KysoyBQaOjo4KCgoq9aLpDRs2KC8vT3Z2dho4cKBZ854+fVpBQUEKCgqSg4ODDAaDMjIylJ2dLenGvRABAQF68cUXS6z39vbWhx9+qFdeeUXbt2/X9u3b5e7uroyMDOXm5kqSOnfurHfeecfCX6R0BBMAAAAAAAAAAFRS7dq1tWbNGq1Zs0bff/+9YmNjlZqaKicnJ9WrV0++vr4aMWKEGjZsWOoYhcc4de3aVXXr1jVr3v/85z+KiopSTEyMrl69qpSUFDk6OqpJkybq0KGDnnrqKfn4+JQ5Rrdu3bRhwwZ99tln2rlzp65cuSIXFxe1bdtWAwYMkL+/v+ztqy5OIJgAAAAAAAAAAKAKODo6atiwYaUe1VSeiIgIi2ueeuopPfXUUxWa72YNGjTQzJkzKz2OObhjAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrsb/dCwAAAAAAAAAA4E6SmJio5cuXKzIyUnFxccrNzVWdOnXUokUL9ejRQ/7+/iXWbd++XV9++aViYmKUlpamunXr6uGHH9bYsWN19913l1iTlJSkrVu3avfu3Tp69KguXboko9EoDw8P3XfffXr66ad13333lbvmEydO6PPPP9eePXuUmJioGjVq6L777tOzzz6rDh06VOr3+DOCCQAAAAAAAAAAqsiPP/6oqVOnKiUlRZLk5OQke3t7xcXFKS4uTrGxsSUGE7Nnz9ayZcskSba2tnJ1dVVcXJxWrlypiIgILVq0qMSAoGvXrsrLyzN9dnFxkY2NjWm+iIgIjRkzRpMmTSp1zd9++60mT56s3NxcSVK1atV09epVff/99/rhhx/0+uuv65lnnqnU73IzjnICAAAAAAAAAKAK7Nq1S6+88opSUlI0YMAAbdy4UYcPH1ZUVJR+/fVXLV68WP379y9Wt3btWlMoMX78eO3fv18HDhzQ5s2b1b59e6Wmpuqll15ScnJysdq8vDy1b99e//nPf7R9+3YdPHhQ0dHR+vbbb9WzZ08ZjUZ99tlnWr16dYlrPn36tKZMmaLc3Fz16tVLkZGR2r9/v3bv3q0hQ4aooKBAQUFB2rdvX5X9TgQTAAAAAAAAAABUUnp6ut544w3l5ubqueee05w5c9S0aVNTe/Xq1dWtWze98sorRepyc3P14YcfSpKGDBmiwMBAubm5SZIaNWqkRYsWycPDQ9euXdNnn31WbN7ly5frq6++0lNPPaV69epJkmxsbNS4cWN9/PHH6tq1qyTp//2//1fiuhcsWKCcnBw1a9ZMH374oe666y5JUs2aNTVz5kw99NBDKigo0AcffFC5H+gmBBMAAAAAAAAAAFRSeHi4Ll68KE9Pz2LhQ1l2796tK1euSJKef/75Yu3u7u4aOnSoJCkiIkJGo7FIe5cuXUod28bGRoMGDZIknT9/XtevXy/SnpaWpm3btkmSxowZIwcHh2JjFK7p0KFD+uOPP8z9WmUimAAAAAAAAAAAoJI2bNggSerdu7ccHR3NrtuzZ48kqUmTJqpfv36JfR5++GFJ0qVLl3TmzBmL1uXk5GR6zs/PL9J24MAB070ShTsr/qxDhw6mHRy7du2yaO7SEEwAAAAAAAAAAFAJ2dnZOnr0qCSpVatWOnPmjF577TU9+OCD8vHxUffu3TV16lSdOnWqWO3p06clqcixT392c1tJY5Sl8G4IDw8P1axZs0hb4Vi1a9dW7dq1S6y3s7NTo0aNKjR3aeyrZBQAAAAAAAAAAP7CwsLCFBYWZlFNQECAAgICyu0XHx9v2nlw9uxZvf3228rMzJSTk5OcnJx04cIFhYeHa9OmTZozZ4769Oljqi08xsnT07PU8V1cXFS9enWlpKQoISHB7PXHx8frq6++kiQNGjRINjY2RdrNmbuw/bfffrNo7rIQTAAAAAAAAAAA7nhpaWm6fPmyxTXmSElJMT0vXrxYtWvX1oIFC9S1a1fZ2trq+PHjmjZtmo4cOaKpU6eqZcuWuueeeyRJGRkZkiRnZ+cy53B2dlZKSorS09PNWlNOTo4mTJigzMxMeXl56V//+lexPpbMLcnsuctDMAEAAAAAAAAAuOMZDIZydwaUVGOOgoKCIs/BwcF66KGHTO+aN2+uTz75RL1791ZGRoaWLl2qt956y6K1WKKgoEBTp07VoUOH5OzsrPnz55v9XayBYAIAAAAAAAAAcMcz91imiii8HFq6cYn1zaFEobp166p///76+uuvi1wi7erqKknKysoqc47C9pvnKonRaNT06dO1adMmOTg46KOPPlKbNm1K7FvVc5uLYAK4A1TVFqq/29wAAAAAAADAX0HdunVNz4UXRZeksO3SpUtFao8ePVrmMVOZmZmm46I8PDxK7Wc0GvXWW29p7dq1sre314cffqhu3bqVu+7yjrgqbC9rbksQTAB/Yw4ODnJyclK/fv1u91IAAAAAAACA/1k1a9aUh4eH2ZdD33wJdePGjfXTTz/p5MmTpfa/ua1Jkyal9nvnnXe0evVq2dnZ6f3331evXr3KXEfhWImJiUpKSlKtWrWK9cnPz9eZM2fKndsSBBPA35iTk5O2bdum3Nzc27aG9PR0ghEAAAAAAAD8z3vggQe0fv160x/xS1LYVr9+fdM7X19fff755zp9+rQuXLigevXqFavbsWOHJOmuu+4qdUfGzJkztWrVKtna2iooKEh9+/Ytd80dOnSQo6OjcnJytGPHDg0cOLBYn6ioKNOpKQ888EC5Y5rDtkpGAXDbODk5yWAw3LZ/VXWuHAAAAAAAAPB35ufnJ0k6deqUfv7552LtV65c0caNGyWpyPFK999/v+rWrSuj0ajFixcXq0tJSdFXX30lSXriiSeK7LYoNGvWLH355ZeysbHRu+++qwEDBpi1ZoPBoO7du0uSwsLCSvw/QBeuqV27drrnnnvMGrc8BBMAAAAAAAAAAFSSr6+vHn74YUnS66+/rsjISBUUFEiSjh8/rnHjxikjI0M1atTQqFGjTHUODg569dVXJUlfffWVQkNDlZGRIUk6e/asXnjhBSUkJKhmzZoaM2ZMsXnfe+89rVixQjY2NvrPf/4jf39/i9b9yiuvyNHRUcePH9fEiRNN90kkJyfr7bff1o4dO2RjY6N///vflv4kpeIoJwAAAAAAAAAAqsAHH3ygUaNG6ejRoxo7dqycnZ1lb2+vtLQ0SZK7u7tCQ0OLXJYtSYMGDdLx48e1fPlyhYSEaOHChXJ1dVVqaqqkGzsbPv74Y9WoUaNI3YULF7RkyRJJkq2trT788EN9+OGHpa4vJCRE9913X5F3jRs31nvvvafJkydry5Yt2rJli6pXr67U1FQZjUbZ2trq9ddfV+fOnSv56/wfggkAAAAAAAAAAKqAu7u7Vq9erS+//FIbN27U2bNnlZubq3vvvVfdunXTmDFj5OnpWWLttGnT9MADD+jLL7/UkSNHlJ6ervr16+vhhx/W2LFjS7x7onBHhnTjkuqrV6+Wub7S7qrt27evmjRpos8++0x79uxRUlKS6tSpo/bt22vUqFHq0KGDBb9C+QgmAAAAAAAAAACoIo6OjgoICFBAQIDFtd27dzfd+WAOLy8vxcbGWjxPSZo1a6Y5c+ZUyVjl4Y4JAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1RBMAAAAAAAAAAAAqyGYAAAAAAAAAAAAVkMwAQAAAAAAAAAArIZgAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKzG/nYvAAAAAAAAAACAO4HRaNS3336r8PBwHTt2TNevX5eDg4O8vLzk6+urkSNHytvbu0hNRkaGwsPDdeTIER0/flwJCQlKTk6Wg4ODvL295evrqxEjRhSrK5SZmal9+/YpJiZGR48eVUxMjC5cuCBJmjx5ssaMGVPmmuPi4nTgwAFT/dGjR5Weni5J2r17t2rVqlUFv0xRBBMAAAAAAAAAAFRSdna2AgMDFRkZaXrn5uam7OxsnThxQidOnNDq1as1b9489ezZ09Tn4sWLmjlzpumznZ2dDAaDUlJSFBsbq9jYWH311VcKDg5Wnz59is17+PBhjR07tsLrDg0NVXh4eIXrK4JgAgAAAAAAAACASvr0009NoURgYKCGDx+umjVrKj8/XwcOHNDMmTN18uRJTZo0SVu3bjXtRDAYDBo7dqw6deqkf/zjH6pTp47s7OyUm5urqKgovf/++/rtt980ZcoU+fj4lLhzwt3dXS1btlTLli3VqlUrBQUFKSEhwax129jYqEGDBmrVqpVatmwpSZo7d24V/SolI5gAAAAAAAAAAKCS1q9fL0ny8/PT+PHjTe/t7OzUuXNnLVy4UI8++qjS09O1c+dOPfHEE5IkT09P/fvf/y42noODg7p06aIlS5aoW7duysjIUEREhMaNG1ekX8eOHbVv374i7ywJFmbNmiU7OzvT571795pdW1Fcfg0AAAAAAAAAQCUV7lDw8fEpsb1BgwaqUaOGpBv3SpirevXquvfeeyVJly9fLtZ+c6hQEZWtrwiCCQAAAAAAAAAAKsnLy0uSdOTIkRLbz507p+TkZElSq1atzB43KSlJZ8+elaRSL8D+uyGYAAAAAAAAAACgkoYMGSJJCg8PV2hoqK5duyZJys/P1759+0xHMA0YMECtW7cuc6yCggIlJCRo69atGjVqlDIzM1W9enX5+/vf2i9hJdwxAQAAAAAAAAC444WFhSksLMyimoCAAAUEBJjVd+TIkbp48aKWLVumkJAQhYSEyGAwKCsrS3l5efL29taUKVM0atSoUseYMWOGVq9eXez9vffeq/nz55suzP67I5gAAAAAAAAAANzx0tLSSryjobwac9nZ2WnKlClq2LChZs+erezs7CL1WVlZSklJUV5enhwdHUsco1q1aqpTp47y8vJMxz41bNhQ06ZNU8uWLS1a+18ZwQQAAAAAAAAA4I5nMBjk6elpcY25EhMTNX78eEVFRalfv34aPXq0GjZsqJSUFO3Zs0dz587VJ598oqioKC1ZskT29sX/PD9p0iRNmjRJkpSenm6qe+655zRgwADNnj27xLq/m7//NwAAAAAAAAAAoByWHMtUEZMnT1ZUVJQGDhyo9957z/Tezc1Nfn5+at26tfz8/LR3716tWbNGQ4cOLXM8Nzc39ezZU507d9YTTzyh9evXq1WrVnr22Wdv2XewFi6/BgAAAAAAAACgEk6fPq2dO3dKkkaPHl1inyZNmuiRRx6RJP3www9mj12tWjXTpddr1qyp3EL/IggmAAAAAAAAAACohFOnTpmeGzRoUGq/e+65R5IUHx9v0fiFR1CdO3euAqv76yGYAAAAAAAAAACgEmxt/+9P7RcuXCi1X2JioiTL7q6QpPPnz0uSXF1dK7C6vx6CCQAAAAAAAAAAKqFFixam51WrVpXYJyEhwXSEU7t27Uzv8/Lyyhw7KSlJ69atkyR16tSpkiv9a+DyawAAAAAAAAAAKsHLy0vdunVTZGSkvvjiC9nZ2Wn06NHy9PRUdna29u7dq3fffVepqalycHDQsGHDTLWvv/66atWqpT59+qhFixZycnKSJKWlpWnHjh2aP3++rl69KgcHB7344oslzn/9+nXl5+ebPhcUFEiSMjMzlZSUZHpvMBjk6OhYpDY3N1epqammzzc/X79+vUjfWrVqWfrTlIhgAgAAAAAAAACASgoKClJAQIBiY2O1dOlSLV26VK6ursrKyjIFBY6OjgoKClKjRo1Mdenp6dqwYYOWLl0qW1tb0zFPqampMhqNkiR3d3cFBwcX2ZlxMz8/vxLvrQgJCVFISEiRNRZepF0oKipKzzzzTInjPvbYY0U+x8bGlvczmIVgAgAAAAAAAACASqpdu7bWrFmjNWvW6Pvvv1dsbKxSU1Pl5OSkevXqydfXVyNGjFDDhg2L1L388stq06aN9u3bp3PnzikxMVG5ubmqVauWGjdurK5du2rw4MFVtlvhr4BgAgAAAAAAAACAKuDo6Khhw4YVOaqpPM2bN1fz5s31wgsvVHjebdu2Vbi2S5cuVbYTwlxcfg0AAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWQzABAAAAAAAAAACshmACAAAAAAAAAABYDcEEAAAAAAAAAACwGoIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1djf7gUAAAAAAAAAAPB39o9//MPsvoGBgRo/fny5/eLi4vT4448rIyNDkrR8+XJ16dKlWL+0tDRt27ZNu3bt0pEjRxQfH6/c3FzVrl1bbdq00eDBg9WtW7dS59mxY4d2796tI0eO6MKFC0pKSlJeXp6pftCgQWXWVwTBBAAAAAAAAAAAlVCnTp0y2zMzM5Weni5J8vHxMWvMt956yxRKlMXf319//PGH6bOjo6McHBx06dIlXbp0SVu2bNHjjz+u4OBg2dsXjwRCQ0N16NAh02eDwSBJunjxoi5evKjvv/9e/fv313vvvVdifUUQTAAAAAAAAAAAUAm//PJLme2TJ0/W+vXr5eHhoa5du5Y73jfffKOdO3eqXbt2OnjwYJl98/Ly1KxZM9POhoYNG0qSLly4oIULF+q///2vIiIiVK9ePU2cOLFYfa9evTRs2DC1bt1a9evXl7Ozs6QbOzaWL1+uZcuWaePGjWratKleeOGFctduDu6YAAAAAAAAAADgFklLS9OWLVskSQMGDJCdnV2Z/ZOSkhQcHKxq1app6tSp5Y4fHBysDRs2aNSoUaZQQpLq1aunWbNmaciQIZKkFStWKDs7u1j92LFjNXDgQDVu3NgUSkiSl5eX3njjDfXv31+StHbt2vK/rJkIJgAAAAAAAAAAuEU2b96szMxMSTeOXSrP7Nmzde3aNU2YMEEeHh7l9u/cubNsbGxKbR88eLAkKSMjQ6dPnzZz1f+nbdu2kqTLly9bXFsaggkAAAAAAAAAAG6Rwp0G7du3V+PGjcvs+/PPPysiIkJt27bV008/XSXzOzk5mZ7z8/Mtrj9w4IAkydvbu0rWI3HHBAAAAAAAAAAAt8SZM2cUHR0tSRo0aFCZfTMyMvTWW2/J3t5eM2fOlK1t1ewr2LdvnyTJwcGhyFFPZUlLS9O5c+e0cuVKfffdd5KkZ599tkrWIxFMAAAAAAAAAAD+B4SFhSksLMyimoCAAAUEBFR4znXr1kmSXFxc1KdPnzL7LliwQPHx8Ro9erSaN29e4TlvlpaWpkWLFkmSHnvsMRkMhlL7Hjx40HQfxc1cXFw0fvx4PfXUU1WyJolgAgAAAAAAAADwPyAtLc3iexLS0tIqPF9+fr7Wr18vSerdu3eZocBvv/2mFStWqF69egoMDKzwnDczGo2aOnWqEhIS5O7urn//+99l9ndwcFCdOnUkScnJycrLy5ODg4PGjRtXYmBRGQQTAAAAAAAAAIA7nsFgkKenp8U1FbVz505duXJFUtmXXufl5Wn69OnKz8/X9OnT5erqWuE5b/b+++/rhx9+kK2trYKCgnT33XeX2b9Vq1b65ZdfJN0IVc6ePatFixZp7ty5Wr16tRYvXlzuHRnmIpgAAAAAAAAAANzxKnssk6UKL7329vZW586dS+23ZMkSHT9+XL169VLPnj2rZO7Q0FB9/vnnsrGx0cyZMy0e187OTk2aNNH7778vd3d3rVixQpMmTdLatWtlY2NT6fVVze0ZAAAAAAAAAABAknTt2jVt27ZNkuTn51fqH/OvXLmi0NBQOTs7a+LEiUpPTy/yLysry9Q3Kyur2LuSfPrppwoJCZEkTZ8+XU8++WSlvsuoUaMkSTExMYqJianUWIXYMQEAAAAAAAAAQBWKiIhQbm6ubG1tyzzGKTExUdnZ2ZKkvn37ljnm2LFjJUnNmzc33V3xZ4sXL9b8+fMlSVOmTNGIESMqsvwibj7+6ty5c/Lx8an0mOyYAAAAAAAAAACgCq1bt06S5OvrW+7dDlXl888/19y5cyVJEydO1OjRo6tk3PPnz5ue3dzcqmRMdkwAAAAAAAAAAFBFjh07pmPHjkmSBg0aVGbfFi1aKDY2ttT2uLg40/0Qy5cvV5cuXUrst3TpUs2ZM0eSFBgYqOeff96stebl5cnevuyY4LPPPpMkOTg4qF27dmaNWx52TAAAAAAAAAAAUEUKL712d3dXr169bvl8X3zxhYKCgiRJL730ksaPH2927U8//aQxY8bou+++U2Jioul9fn6+jhw5ogkTJpi+z8iRI+Xu7l4la2bHBAAAAAAAAAAAVSAnJ0cRERGSpH79+snJyemWzzlr1izT8+rVq7V69epS+06bNq3YXRY7d+7Uzp07JUmurq5ycnJSWlqacnNzTX2GDBmi1157rcrWTDABAAAAAAAAAEAV2L59u5KTkyWpzEuvq5LRaDQ9X716tcy+WVlZRT536tRJ7777rvbu3atjx47p6tWrSklJkbOzsxo1aqT27dvL399fbdu2rdI1E0wAAAAAAAAAAFAFevfuXeadEZby8vIqd7zKzOfu7q7Bgwdr8ODBFR6jIrhjAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYA/K05ODjI0dHxdi8DAAAAAAAAgJkIJgD8rTk5OSkiIuJ2LwMAAAAAAACAmQgmAPztOTk53e4lAAAAAAAAADCT/e1eAAAAAAAAAAAAf2f/+Mc/zO4bGBio8ePHmz4bjUYdOHBAP/30k6KionT69GmlpaXJzc1NjRo1Uq9evTR06FAZDIYyx83Ly9OqVau0fv16nT17VgUFBfL29lafPn0UEBAgZ2fnctd2/vx5ffHFF/r555918eJFSVLdunXl4+OjPn36qFevXmZ/z7IQTAAAAAAAAAAAUAl16tQpsz0zM1Pp6emSJB8fnyJtn376qT788EPTZ1tbWxkMBqWkpCg6OlrR0dFauXKl/t//+39q3LhxieNnZGRozJgxioqKkiQ5OjrKzs5OsbGxio2NVUREhL744gvVqlWr1DWuXr1a7777rrKzsyVJLi4ukqTff/9dv//+uxITEwkmAAAAAAAAAAD4K/jll1/KbJ88ebLWr18vDw8Pde3atUhbXl6eqlWrpieeeEJ9+vRR27Zt5ejoqIyMDG3evFlz5sxRfHy8nn/+eW3atKnEY83feecdRUVFyWAw6D//+Y8ee+wx2dra6pdfftGUKVN0+vRpTZgwQcuWLStxfeHh4ZoxY4ZsbGwUEBCg4cOHy9vbW5KUlJSkffv26cKFCxX8dYojmAAAAAAAAAAA4BZJS0vTli1bJEkDBgyQnZ1dkfZevXrp2WefVfXq1Yu8d3V11aBBg9SoUSMNHTpU58+f1+bNmzVw4MAi/WJjY7V+/XpJ0syZM9W3b19T24MPPqiQkBANHTpUe/bs0Y4dO/Twww8Xqb948aL+85//SJJmzJihYcOGFWmvVauWHnvssYr/ACXg8msAAAAAAAAAAG6RzZs3KzMzU5Lk7+9frL1FixbFQombtW/fXk2aNJEkHTlypFh7RESEjEajvL29i4QSN9d37txZkrRhw4Zi7cuXL1d6erpat25dLJS4VQgmAAAAAAAAAAC4RdauXSvpRkBQ2h0R5Sk8vqmgoKBY2549eyRJXbt2lY2NTYn1hbskdu/eXaytMKzo379/hdZWERzlBAAAAAAAAAC444WFhSksLMyimoCAAAUEBFR4zjNnzig6OlqSNGjQoAqNkZSUpBMnTkiSmjVrVqTNaDTq9OnTkqSmTZuWOkZh3dWrV3Xt2jXVrFlTknT+/HldvXpVktSqVSsdPnxYn376qQ4cOKCMjAzddddd6tq1q5577jnVq1evQusvCcEEAAAAAAAAAOCOl5aWpsuXL1tcUxnr1q2TJLm4uKhPnz4VGiM0NFS5ubkyGAzF7npIT09XRkaGJMnT07PUMW5uS0hIMAUTv//+u+n93r179cknnygvL0+urq6yt7fXuXPn9OWXX2rDhg369NNP1bFjxwp9hz8jmAAAAAAAAAAA3PEMBkOZf7wvraai8vPzTZdS9+7du0Jj/fDDD1q5cqUkacKECapRo0aR9vT0dNOzi4tLqeM4OzuXWJOSkmJ6/vjjj3XPPffo3XffVYcOHWQ0GnXgwAG9/vrrOnfunAIDA/Xdd9/J3d3d4u/xZwQTAAAAAAAAAIA7XmWPZbLUzp07deXKFUklX3pdnsOHD2vy5MkyGo3q3bu3RowYUdVLLHJnhY2NjT7++GPTPRg2Njbq2LGjQkJC5Ofnp6SkJP33v//Vc889V+l5ufwaAAAAAAAAAIAqVnjptbe3tzp37mxR7bFjx/Tcc88pIyNDDzzwgD744IMS+7m5uZmeMzMzSx0vKyurxJqbnx966KESL+du3ry5fH19JZV8eXZFEEwAAAAAAAAAAFCFrl27pm3btkmS/Pz8ZGNjY3bt8ePHNWrUKF2/fl2dOnXSwoUL5ejoWGJfNzc3ubq6SlKZ92fc3Obh4WF6rlu3rum5UaNGpdYXtl28eNG8L1EOggkAAAAAAAAAAKpQRESEcnNzZWtra9ExTidOnFBAQICSk5PVvn17LVq0qMy7I2xsbEy7HE6ePFnmuJJUp04d08XXktS4cWPZ2pofE1gSsJSFYAIAAAAAAAAAgCq0bt06SZKvr6/uvvtus2pOnjypUaNGKSkpSa1bt9Znn31W5Kil0hQes7Rz504ZjcYS+/z8889F+hZycXHRfffdJ0k6c+ZMqXMUttWvX7/8L2IGggkAAAAAAAAAAKrIsWPHdOzYMUnSoEGDzKo5ffq0Ro0apcTERLVq1UpLliyRwWAwq/bxxx+XjY2Nzp07p82bNxdrP3TokPbu3StJGjBgQLH2gQMHSroRbJw6darE71N4t0S3bt3MWlN5CCYAAAAAAAAAAKgihZdeu7u7q1evXuX2//333/Xss8/q6tWratGihZYsWaLq1aubPV+zZs1MgcOMGTO0efNmFRQUSLpxWfX48eMlSffff7+6du1arN7Pz0/NmjVTfn6+xo8fr6ioKFPb/v379fLLL6ugoEDe3t5mBy3lsa+SUQAAAAAAAAAA+B+Xk5OjiIgISVK/fv3k5ORUbs2iRYuUkJAgSYqLi1O/fv1K7du+fXuFhoYWe//WW2/p3LlzioqK0quvvionJyfZ2toqMzNT0o27JObPn1/imPb29vrkk0/0zDPP6OzZs3r66adNF2pnZGRIku6++259+umncnZ2Lvf7mINgAgAAAAAAAACAKrB9+3YlJydLktmXXt98L0RqaqpSU1NL7Xv9+vUS37u6umrFihVauXKlNmzYoDNnzshoNKpZs2bq06ePRo8eXWao4OXlpQ0bNigsLExbtmxRXFycqb5Xr14aNWqU3N3dzfo+5iCYAAAAAAAAAACgCvTu3VuxsbEW1QQHBys4OLjSc9vb2+uZZ57RM888U6F6g8GgwMBABQYGVnot5eGOCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWQzAB4G/HwcGhyH8BAAAAAAAA/H3Y3+4FAIClHB0di/wXAAAAAAAAuN0yMzO1b98+xcTE6OjRo4qJidGFCxckSZMnT9aYMWPMGufXX3/V119/rQMHDighIUGurq7y9PRUhw4d9NRTT6lFixZF+vfo0UPx8fFmje3v76+goCDT57179+qZZ54x8xtKK1asUOfOnc3uXxqCCQAAAAAAAAAAKunw4cMaO3Zshevz8/P19ttv6+uvvza9q169utLT0xUbG6vY2Fh5eHgUCyZq1qyp7OzsUsfNyclRSkqKJMnHx6dIm4ODg+rUqVPmulJSUpSTkyNHR0c1a9bM0q9VIoIJAAAAAAAAAACqgLu7u1q2bKmWLVuqVatWCgoKUkJCglm106dP17p161S9enW9+uqr6tevn2rUqKGCggJdvHhRkZGR8vDwKFa3du3aMsddsGCBFi5cKEdHR/Xv379I23333adffvml1Fqj0aiePXsqPj5ePXr0UI0aNcz6LuUhmAAAAAAAAAAAoJI6duyoffv2FXk3d+5cs2q3bt2qdevWydHRUcuWLVPLli1Nbba2tqpfv76GDRtm8ZoKCgr0zTffSJJ69uwpd3d3i+r37NljOibK39/f4vlLw+XXAAAAAAAAAABUkp2dXYVrFy5cKEkaOXJkkVCisvbs2WO652LQoEEW1xfuxvD09NRDDz1UZesimAAAAAAAAAAA4DY5ffq0YmJiJEmPP/54lY5dGCzcddddevDBBy2qTUtL0w8//CBJGjhwYKWClz/jKCcAAAAAAAAAwB0vLCxMYWFhFtUEBAQoICDgFq3ohujoaEk3LqJu2rSpNm7cqC+++EKxsbGSpHvvvVePPfaYRo4cKVdXV7PHTU1N1datWyXdCBZsbS3bp7Bx40ZlZWVJqtpjnCSCCQAAAAAAAADA/4C0tDRdvnzZ4ppb7Y8//pB04+Ls4OBgrVixQpJUvXp1ZWZm6ujRozp69KgiIiK0ZMkS1a1b16xxKxssrFu3TpLUoUMH3XvvvRbXl4VgAgAAAAAAAABwxzMYDPL09LS45la7fv26JCkpKUkrVqxQ9+7dNW3aNHl7eysnJ0ebNm3SO++8o5MnT2rKlClm7/ooDBY6deqke+65x6I1nT59WocOHZJUsbspykMwAQAAAAAAAAC441njWKaKMBqNkqSCggLVr19fH330kRwdHSVJjo6O8vPzU1pammbNmqVdu3bp8OHDatOmTZljnjp1SocPH5ZUsd0ShXdTuLq66rHHHrO4vjxcfg0AAAAAAAAAwG3i5uZmeh42bJgplLjZ0KFD5eLiIknavXt3uWNWJljIz8/Xhg0bJEmPPfZYkfVVFYIJAAAAAAAAAABuk5vvjGjUqFGJfRwcHOTt7S1JunjxYpnj5eXlmYKFPn36WHRhtiTt2LFDCQkJkm7NMU4SwQQAAAAAAAAAALdN06ZNLepvY2NTZntkZKSuXr0qqWLBQuFui3vvvVcdO3a0uN4cBBMAAAAAAAAAANwmHTp0kLOzsyTpzJkzJfbJzc3V+fPnJUn169cvc7zCS6/vvfdedejQwaK1JCUl6aeffpIk+fn5WVRrCYIJAAAAAAAAAABuE1dXV/3zn/+UJK1cuVI5OTnF+qxatUqZmZmSpG7dupU6VlJSkiIjIyVVbLfEhg0blJubK1tbW4IJAAAAAAAAAAD+6q5fv66kpCTTv4KCAklSZmZmkfd/Dh9efvllubq6Kj4+Xi+//LJpd0ROTo6++eYbzZs3T5LUv3//Mo9+KgwW7OzsNGDAAIvXX7jb4sEHH5Snp6fF9eayv2UjAwAAAAAAAADwP8TPz0/x8fHF3oeEhCgkJMT0OSgoSP7+/qbP3t7e+vDDD/XKK69o+/bt2r59u9zd3ZWRkaHc3FxJUufOnfXOO++UOX/h/RAPPfSQxcFCTEyMYmNjJd26S68LEUwAAAAAAAAAAHCbdevWTRs2bNBnn32mnTt36sqVK3JxcVHbtm01YMAA+fv7y96+9D/pHzlyRCdOnJCkIqGHuQp3S9SoUUM9e/as2JcwE8EEAAAAAAAAAABVYNu2bZWqb9CggWbOnFmhWh8fH9OOh4p488039eabb1a43hLcMQEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWQzABAAAAAAAAAACshmACAAAAAAAAAABYDcEEAAAAAAAAAACwGoIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1djf7gUAAAAAAAAAAPB3l5mZqX379ikmJkZHjx5VTEyMLly4IEmaPHmyxowZU+4YBw4c0LJlyxQVFaXk5GTVrl1b999/v5577jk1bdq0xJq0tDRt27ZNu3bt0pEjRxQfH6/c3FzVrl1bbdq00eDBg9WtW7dS59yxY4d2796tI0eO6MKFC0pKSlJeXp6pftCgQWXWVwTBBAAAAAAAAAAAlXT48GGNHTu2wvVLly7Ve++9p4KCAtnY2MhgMOjSpUv65ptv9O233+qDDz5Q7969i9X5+/vrjz/+MH12dHSUg4ODLl26pEuXLmnLli16/PHHFRwcLHv74pFAaGioDh06ZPpsMBgkSRcvXtTFixf1/fffq3///nrvvfdKrK8IjnICAAAAAAAAAKAKuLu7y9fXV2PGjNG8efPk4eFhVt3u3bsVHBysgoICDRkyRLt379b+/fsVGRmpXr16KScnR5MmTdLZs2eL1ebl5alZs2Z6/fXX9d133+m3335TdHS0tm/frieffFKSFBERoY8++qjEuXv16qX33ntP3377rQ4dOqQDBw7ot99+048//qhnn31WkrRx40Z99tlnFfxVimPHBAAAAAAAAAAAldSxY0ft27evyLu5c+eaVfvBBx/IaDSqa9eumjlzpun9XXfdpfnz52vQoEE6ceKEPvroI82fP79IbXBwsDp16iQbG5si7+vVq6dZs2bJ1tZWq1ev1ooVK/TSSy/JycmpSL/Sdnl4eXnpjTfeUGJiojZu3Ki1a9fqhRdeMOv7lIcdEwAAAAAAAAAAVJKdnV2F6s6cOaMjR45Ikp5//vli7Y6Ojho9erQk6ccff1R6enqR9s6dOxcLJW42ePBgSVJGRoZOnz5t8fratm0rSbp8+bLFtaUhmAAAAAAAAAAA4DbZvXu3JMnNzU333XdfiX0efvhhSVJ2drYOHDhg0fg375DIz8+3eH2F83l7e1tcWxqCCQAAAAAAAAAAbpPCXQyNGzcudddF7dq1VatWLUnSqVOnLBq/8HgpBwcHNWzY0KyatLQ0HT16VNOnT9d3330nSab7JqoCd0wAAAAAAAAAAO54YWFhCgsLs6gmICBAAQEBt2hFN1y5ckWS5OnpWWY/T09PJSUlKSEhweyx09LStGjRIknSY489JoPBUGrfgwcPasiQIcXeu7i4aPz48XrqqafMnrc8BBMAAAAAAAAAgDteWlqaxfckpKWl3aLV/J+MjAxJkrOzc5n9Ctv/fMdEaYxGo6ZOnaqEhAS5u7vr3//+d5n9HRwcVKdOHUlScnKy8vLy5ODgoHHjxpUYWFQGwQQAAAAAAAAA4I5nMBjK3ZVQUs3f1fvvv68ffvhBtra2CgoK0t13311m/1atWumXX36RdOMuirNnz2rRokWaO3euVq9ercWLF6tx48ZVsjaCCQAAAAAAAADAHc8axzJVhKurqyQpKyurzH6F7W5ubuWOGRoaqs8//1w2NjaaOXOmevbsadGa7Ozs1KRJE73//vtyd3fXihUrNGnSJK1du1Y2NjYWjVUSLr8GAAAAAAAAAOA2qVu3riSVe8xUYbuHh0eZ/T799FOFhIRIkqZPn64nn3yyUusbNWqUJCkmJkYxMTGVGqsQwQQAAAAAAAAAALdJ4fFIp0+fVn5+fol9EhMTlZSUJElq0qRJqWMtXrxY8+fPlyRNmTJFI0aMqPT6bj7+6ty5c5UeTyKYAAAAAAAAAADgtvH19ZV041Lr6OjoEvv8/PPPkiQnJyd16NChxD6ff/655s6dK0maOHGiRo8eXSXrO3/+vOnZnGOkzEEwAQAAAAAAAADAbdKoUSP5+PhIurHj4c9yc3O1ZMkSSVKvXr1KDAeWLl2qOXPmSJICAwP1/PPPmzV3Xl5euX0+++wzSZKDg4PatWtn1rjlIZgAAAAAAAAAAKAKXL9+XUlJSaZ/BQUFkqTMzMwi73NycorUvfbaa7KxsVFkZKTefvttJScnS7pxr8TEiRMVGxsrJycnBQYGFpvziy++UFBQkCTppZde0vjx481e708//aQxY8bou+++U2Jioul9fn6+jhw5ogkTJmjt2rWSpJEjR8rd3d2i36M09lUyCgAAAAAAAAAA/+P8/PwUHx9f7H1ISIjpQmpJCgoKkr+/v+mzr6+vpkyZovfee0+rVq3SV199pWrVqiklJUWS5OjoqPfff18NGzYsNvasWbNMz6tXr9bq1atLXd+0adPUt2/fIu927typnTt3SpJcXV3l5OSktLQ05ebmmvoMGTJEr732Wnlf32wEEwAAAAAAAAAA3GYBAQFq3bq1li1bpujoaCUnJ+uuu+5Sly5d9K9//UtNmzYtsc5oNJqer169WuYcWVlZRT536tRJ7777rvbu3atjx47p6tWrSklJkbOzsxo1aqT27dvL399fbdu2rfwXvAnBBAAAAAAAAAAAVWDbtm2Vqu/YsaM6duxoUU1sbGyF53N3d9fgwYM1ePDgCo9REdwxAQAAAAAAAAAArIZgAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDV2N/uBQAAAAAAAAAAcCdJTEzU8uXLFRkZqbi4OOXm5qpOnTpq0aKFevToIX9/f1PfvLw87d69Wzt27NDBgwf1+++/KyMjQ9WqVVOzZs3Ut29f+fv7y9HRscw5MzMzFRYWpu+++07nz5+Xra2tGjVqpCeeeELDhg2TnZ1dqbUZGRlauXKltm7dqtOnTys9PV1ubm5q3LixevTooeHDh8vNza3Kfh+CCQAAAAAAAAAAqsiPP/6oqVOnKiUlRZLk5OQke3t7xcXFKS4uTrGxsUWCibffflv//e9/TZ/t7Ozk6uqqa9euae/evdq7d69WrVqlzz77TB4eHiXOefXqVY0YMUJnz56VJLm4uCgnJ0eHDx/W4cOH9d133+nzzz+Xs7Nzsdq4uDgFBATo3LlzkiQbGxsZDAalpqYqOjpa0dHR+uqrrxQWFqZ77rmnSn4jjnICAAAAAAAAAKAK7Nq1S6+88opSUlI0YMAAbdy4UYcPH1ZUVJR+/fVXLV68WP379y9Sk5eXpzp16uhf//qX/vvf/+rw4cPav3+/fv31V02ePFkuLi46fvy4AgMDZTQaS5z31Vdf1dmzZ+Xh4aGwsDAdPHhQhw4d0vz58+Xm5qb9+/dr5syZJdZOmTJF586dk7u7uz744AMdOnRI+/fv16FDh/Tee+/JYDAoPj5eU6ZMqbLfiR0TAAAAAAAAAABUUnp6ut544w3l5ubqueee06RJk4q0V69eXd26dVO3bt2KvH/66af19ttvF9vNUL16dY0ZM0Z33XWXJk6cqOjoaB04cEAdO3Ys0u+nn37Sr7/+KkkKCQlR+/btJUm2trbq27evCgoK9O9//1vh4eEaPXq0mjRpYqqNj4/X/v37JUlTp07V448/bmpzcnLSwIEDlZubq+nTpys6OlqXL1+Wp6dnJX8pdkwAAAAAAAAAAFBp4eHhunjxojw9PfXKK6+YXde2bdsSj1gq1KdPH9P9DkeOHCnWvn79eklSly5dTKHEzfr16ycvLy8VFBQoIiKiSFtCQoLp2cfHp8T527RpY3pOT08v45uYj2ACAAAAAAAAAIBK2rBhgySpd+/e5V5UbQlbW1s5ODhIkvLz84u179mzR5L08MMPl1hvY2Ojrl27SpJ2795dpM3Ly8v0XFLoIUmHDx+WdGMHR4MGDSxcfckIJgAAAAAAAAAAqITs7GwdPXpUktSqVSudOXNGr732mh588EH5+Pioe/fumjp1qk6dOmXx2LGxsUpOTpYkNWvWrEhbUlKSkpKSJElNmzYtdYzCtj/PX6dOHfXs2VOSFBwcrIiICGVnZ5u+0zfffKPg4GDZ2Nho8uTJsrevmtshuGMCAAAAAAAAAHDHCwsLU1hYmEU1AQEBCggIKLdffHy8cnNzJUlnz57V22+/rczMTDk5OcnJyUkXLlxQeHi4Nm3apDlz5qhPnz5mr2HevHmSbuxuuP/++4u0XblyxfRc1t0PhW3p6elKT083HQ0lSe+++67S09O1Z88evfbaa7KxsVG1atWUmpoqo9Go9u3ba+zYserRo4fZay4PwQQAAAAAAAAA4I6Xlpamy5cvW1xjjpSUFNPz4sWLVbt2bS1YsEBdu3aVra2tjh8/rmnTpunIkSOaOnWqWrZsqXvuuafccZcuXaqffvpJkjR9+nTTkU6FMjIyTM8uLi6ljnNz25+DiZo1a+qTTz7RnDlztGrVKhmNxiLfJz09vcjnqkAwAQAAAAAAAAC44xkMhjJ3FZRWY46CgoIiz8HBwXrooYdM75o3b65PPvlEvXv3VkZGhpYuXaq33nqrzDF//PFHzZkzR5I0evRode/e3aK1m+vw4cN66aWXlJycrPHjx6tfv366++67dfHiRW3atEmLFy/WlClT9Pvvv+vVV1+tkjkJJgAAAAAAAAAAdzxzj2WqiJt3IDRp0qRIKFGobt266t+/v77++mvt2rWrzPF27typV199Vfn5+Ro4cKAmT55cYj9XV1fTc2ZmZqnj3dx281rT0tL0/PPPKykpSbNnz9agQYNMbY0aNVJgYKDuvvtuTZs2TYsXL1b//v3VpEmTMtduDi6/BgAAAAAAAACgEurWrWt6btSoUan9CtsuXbpUap/du3frpZdeUk5Ojvr27avZs2fLxsam3HnLOqaqsM3Nza1IMLFhwwYlJSWpRo0aRUKJmw0ePFg1atRQfn6+tm3bVuocliCYAAAAAAAAAACgEmrWrCkPDw+z+5cWNOzZs0cvvviisrKy9Oijj+r999+XnZ1dqePUqlVLtWrVkiSdPHmy1H6FbX/e7XD69GlJkre3d5nrLbwPIy4ursx+5iKYAAAAAAAAAACgkh544AFJ0pkzZ0rtU9hWv379Ym379u3TCy+8oMzMTHXv3l3z58+XvX35tzH4+vpKkn7++ecS241Go3bu3Fmkb6HCgOTChQtlznH16lVJ5t+5UR6CCQAAAAAAAAAAKsnPz0+SdOrUqRJDgitXrmjjxo2SpG7duhVp279/v55//nllZmaqa9eu+uijj+Tg4GDWvE888YQkae/evTp06FCx9s2bN+v8+fOytbXV448/XqStZcuWkqTExERt2bKlxPF37Nih+Ph4SVK7du3MWlN5CCYAAAAAAAAAAKgkX19fPfzww5Kk119/XZGRkSooKJAkHT9+XOPGjVNGRoZq1KihUaNGmeqio6M1duxYZWRk6KGHHtLHH38sR0dHs+d95JFH1KlTJxmNRgUGBmr37t2SpIKCAm3evFlvvvmmpBvByZ+Pcurdu7fq1KkjSXrjjTe0atUqpaamSpJSU1P15ZdfasKECZKkBg0aqHv37hX4ZYorfx8IAAAAAAAAAAAo1wcffKBRo0bp6NGjGjt2rJydnWVvb6+0tDRJkru7u0JDQ4tcWj1//nylp6dLko4cOaIePXqUOn6fPn00ffr0Yu8//PBDjRgxQmfPntWoUaPk4uKigoICZWdnS5I6duyoGTNmFKtzc3NTSEiIXnzxRSUnJ+vtt9/W22+/LYPBYFqzdOOS7Y8//tjsXRzlIZgAAAAAAAAAAKAKuLu7a/Xq1fryyy+1ceNGnT17Vrm5ubr33nvVrVs3jRkzRp6enkVqjEaj6Tk5ObnM8W8OC25Wp04dhYeHKywsTJs3b1ZcXJzs7e3VrFkzDRgwQMOGDSv1Eu377rtPmzZt0pdffqkdO3bojz/+UEZGhqpVq6ZGjRrpkUce0fDhw+Xu7m7Zj1EGggkAAAAAAAAAAKqIo6OjAgICFBAQYFb/FStWVMm8Li4uGjdunMaNG2dxbZ06dfTKK6/olVdeqZK1lIc7JgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWQzABAAAAAAAAAACshmACAAAAAAAAAABYjf3tXgCAO1d2drZyc3MtqklPT79FqwEAAAAAAADwV0AwAeCWyM7OVo8ePZSdnX27lwIAAAAAAABYVWJiopYvX67IyEjFxcUpNzdXderUUYsWLdSjRw/5+/sX6d+jRw/Fx8eXOebw4cM1Y8aMYu//8Y9/mL2uwMBAjR8/vtj7pKQkrVixQpGRkfr999+VnZ2tatWqqWnTpurTp48GDx4sR0dHs+cpD8EEgFsiNzdX2dnZ2rRpk9zc3MyuS09PV79+/W7hygAAAAAAAIBb58cff9TUqVOVkpIiSXJycpK9vb3i4uIUFxen2NjYYsFEIYPBIGdn51LbSlKnTp0y15OZmWk6pcTHx6dYe0xMjJ577jklJSVJkmxtbeXm5qZr165p37592rdvn77++mstWbJEtWrVKnMucxFMALil3NzcSv0fTQAAAAAAAOBOsmvXLr3yyivKzc3VgAED9K9//UtNmzaVJKWkpCg6OloHDx4stX7atGmlhhal+eWXX8psnzx5stavXy8PDw917dq1SFteXp5efvllJSUlqV69enrrrbf04IMPysHBQWlpaVq7dq3mzJmjY8eO6d1339XcuXMtWltpCCYAAAAAAAAAAKik9PR0vfHGG8rNzdVzzz2nSZMmFWmvXr26unXrpm7dulltTWlpadqyZYskacCAAbKzsyvSHhUVpbi4OElScHCwunTpYmozGAx69tlnde3aNX3yySfasmWLCgoKZGtrW+l1VX4EAAAAAAAAAAD+x4WHh+vixYvy9PTUK6+8cruXI0navHmzMjMzJanEnRgJCQmm55KOeZKkNm3aSLpxdHtubm6VrItgAgAAAAAAAACAStqwYYMkqXfv3lV6UXRlrF27VpLUvn17NW7cuFi7l5eX6fnIkSMljnH48GFJUpMmTeTk5FQl6yKYAAAAAAAAAACgErKzs3X06FFJUqtWrXTmzBm99tprevDBB+Xj46Pu3btr6tSpOnXqVJnjLFmyRA899JB8fHx0//3369lnn9XKlSuVnZ1t8ZrOnDmj6OhoSdKgQYNK7NO6dWu1bNlSkvT6668rMjLStCsiLS1Ny5Yt02effSYHBwdNmTLF4jWUhjsmAAAAAAAAAAB3vLCwMIWFhVlUExAQoICAgHL7xcfHm/6gf/bsWb399tvKzMyUk5OTnJycdOHCBYWHh2vTpk2aM2eO+vTpU+I4J0+elLOzs5ydnXXt2jXt2bNHe/bs0apVq7Ro0SLVq1fP7LWvW7dOkuTi4lLqfLa2tgoJCdFLL72k48ePa+zYsbK1tZWbm5tSU1Nla2srX19fvfTSS+rQoYPZc5eHYAIAAAAAAAAAcMdLS0vT5cuXLa4xR0pKiul58eLFql27thYsWKCuXbvK1tZWx48f17Rp03TkyBFNnTpVLVu21D333GOq6dmzpzp27KhOnTqpVq1akqQrV65ozZo1WrhwoU6cOKGxY8dq3bp1Zh0TlZ+fr/Xr10u6cbSUwWAota+Xl5fCwsL01ltvmS64Tk1NlSQVFBQoIyPD9LmqcJQTAAAAAAAAAOCOZzAY5OnpadG/sv6gf7OCgoIiz8HBwerWrZtsbW/8Cb558+b65JNP5OrqqqysLC1durRI/bRp09S7d29TKCFJdevW1bhx47RgwQJJN3ZThIeHm7WenTt36sqVK5JKvvT6ZpGRkXr00Ue1e/duvfHGG9q6dasOHjyoiIgIDR8+XIcOHdILL7yg//73v2bNbQ52TAAAAAAAAAAA7njmHstUEW5ubqbnJk2a6KGHHirWp27duurfv7++/vpr7dq1y+yxC3dT7N+/X9u3b9eQIUPKrSm89Nrb21udO3cutV9cXJzGjx+v3NxchYWFydfX19TWrFkzzZgxQ+7u7lq4cKGCgoLUs2fPIuFJRbFjAgAAAAAAAACASqhbt67puVGjRqX2K2y7dOmSReO3adNGknT+/Ply+167dk3btm2TJPn5+cnGxqbUvqtWrVJOTo5atmxZJJS42ZgxYyRJ6enp2r17t0XrLg3BBAAAAAAAAAAAlVCzZk15eHiY3b+ssKCyIiIilJubK1tb23KPcTp9+rSkGzsrSmMwGFSnTh1JNy75rgoEEwAAAAAAAAAAVNIDDzwgSTpz5kypfQrb6tevb9HYhw8flnTjouryrFu3TpLk6+uru+++u8y+hQHJhQsXSu2Tk5Njutz75iOrKoNgAgAAAAAAAACASvLz85MknTp1Sj///HOx9itXrmjjxo2SpG7dupneG43GMsf96aeftH//fklS9+7dy+x77NgxHTt2TJI0aNCgctfcsmVLSVJMTIwp/PiztWvXKicnR5LUrl27csc0B8EEAAAAAAAAAACV5Ovrq4cffliS9PrrrysyMlIFBQWSpOPHj2vcuHHKyMhQjRo1NGrUKFPdrFmzNGvWLP3666/KzMw0vU9ISNCiRYv08ssvS5KaNm1a7tFMhZdeu7u7q1evXuWuedCgQXJyclJ+fr5eeuklffvtt6Y1JCUl6eOPP9a7774rSerUqZNatWpl5q9RNvsqGQUAAAAAAAAAgP9xH3zwgUaNGqWjR49q7NixcnZ2lr29vdLS0iTdCAxCQ0OLXJadnp6u8PBwrVixQjY2NqpWrZqMRqNSU1NNfVq2bKmFCxfK0dGx1LlzcnIUEREhSerXr5+cnJzKXW+9evX0wQcfaNKkSbpy5YomTJggGxsbubq6Kj093dSvcePGmjt3rsW/R2kIJgAAAAAAAAAAqALu7u5avXq1vvzyS23cuFFnz55Vbm6u7r33XnXr1k1jxoyRp6dnkZqhQ4eqVq1aOnjwoC5cuKBr166poKBAdevWVatWrfTYY4+pX79+cnBwKHPu7du3Kzk5WZLK3Vlxs3/+859q0aKFvvjiC+3evVvnz59XVlaWatSooaZNm+rRRx/VkCFD5OzsbPHvURqCCQAAAAAAAAAAqoijo6MCAgIUEBBgVv927dpVyd0NvXv3VmxsbIVqvb299frrr1d6DebijgkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWQzABAAAAAAAAAACshmACAAAAAAAAAABYDcEEAAAAAAAAAACwGoIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1RBMAAAAAAAAAAAAqyGYAAAAAAAAAAAAVkMwAQAAAAAAAAAArMb+di8AAAAAAAAAAIA70dixYxUZGSlJ8vPzU3BwsFl1cXFxevzxx5WRkSFJWr58ubp06VJq/+joaH355ZeKiopSQkKCbGxs5OHhoXbt2unpp59Wx44dS6ybOnWqwsPDy1xL06ZNtXHjRrPWbS6CCQAAAAAAAAAAqtjGjRtNoYSl3nrrLVMoUZ7Q0FCFhobKaDRKkpydnSXdCDfi4uK0ceNGPf/885o4cWKpYzg5OalatWolttWsWdPC1ZePYAIAAAAAAAAAgCqUnJys2bNnq1q1aqpbt65Onz5tdu0333yjnTt3ql27djp48GCZfXfv3q2QkBBJUu/evTVx4kTde++9kqQzZ87ogw8+0I8//qhFixapU6dO6tq1a4nj9O3b1+zdHFWBOyYAAAAAAAAAAKhCwcHBSkxM1MSJE1W7dm2z65KSkhQcHKxq1app6tSp5fbfsGGDJOmee+7RvHnzTKGEJDVq1EgLFiyQt7e3JOn777+37EvcQgQTAAAAAAAAAABUkV27dik8PFxt27bV0KFDLaqdPXu2rl27pgkTJsjDw6Pc/leuXJEkNW/eXPb2xQ9IcnBwUIsWLSTJ7KOhrIFgAgAAAAAAAACAKpCVlaUZM2bI3t5eM2fOlK2t+X+C//nnnxUREaG2bdvq6aefNqvGy8tLknT8+HHl5eUVa8/NzdWxY8ckSa1atTJ7LbcawQQAAAAAAAAAAFVgwYIFOn/+vJ555hk1b97c7LqMjAy99dZbFgcaTz31lGxsbPTHH39o4sSJ+uOPP0xtZ86c0auvvqrz58+rUaNGGjZsWKnj7N69W//85z/l4+OjDh06yN/fXx9++KGuXr1q9newBJdfAwAAAAAAAADueGFhYQoLC7OoJiAgQAEBAWb1jYmJ0bJly1SvXj0FBgZaNM+CBQsUHx+v0aNHWxRotGrVSnPmzNGMGTP0/fff6/vvv5ezs7OkG7s33N3dNXz4cL366qtycXEpdZxLly7J3t5ebm5uSk1NVUxMjGJiYrRq1Sp9+OGH8vX1tej7lIdgAgAAAAAAAABwx0tLS9Ply5ctrjFHfn6+3nzzTdN/XV1dzZ7jt99+04oVKyoUaEjSE088obvuukuTJk3SpUuXlJWVZWrLyclRZmamMjMzVb169WK1LVu2VJs2bfTII4/orrvukq2trdLS0rRt2zbNmTNHCQkJGjdunNatW6eGDRtavLbSEEwAAAAAAAAAAO54BoNBnp6eFteYIywsTDExMXr00UfVo0cPs8fPy8vT9OnTlZ+fr+nTp1sUaBTWz5o1S6tWrZKPj49mz55tuuz62LFjmjdvntatW6ddu3Zp5cqVql+/fpH6Z555ptiYBoNBTzzxhDp06CA/Pz9dv35doaGhmjt3rkVrKwvBBAAAAAAAAADgjmfJsUyWOH/+vEJDQ+Xm5qbp06dbVLtkyRIdP35cvXr1Us+ePS2ee8mSJVq1apUaNmyolStXysnJydT24IMPqkOHDhowYIB+//13zZ07V/PmzTN77Pr162v48OFauHChfvrpJxUUFFh0mXdZuPwaAAAAAAAAAIAKCgoKUmZmpsaOHatq1aopPT29yL/8/HxJN3Y3FL4rKCjQlStXFBoaKmdnZ02cOLFY3c1HMmVlZRV7J0lLly6VJA0fPrxIKFHI2dlZI0aMkCT9+OOPMhqNFn23tm3bSrpxpFVycrJFtWVhxwQAAAAAAAAAABUUHx8vSZo/f77mz59far+IiAhFRERIkr755htJUnZ2tiSpb9++Zc4xduxYSVLz5s21fv16SdK1a9eUmJgoSWrQoEGptffcc4+kG+HG1atX5eHhUd5XuuXYMQEAAAAAAAAAwN/MzccqFYYjJSkMLyTJzc3NojkOHTpkqqtRo4ZlCywDOyYAAAAAAAAAAKigwh0MpRk5cqT27dsnPz8/BQcHF2mLjY0ttS4uLs5078Ty5cvVpUuXIu3u7u6qX7++4uPjtWbNGj311FOyty/6J//8/HytXr1aktSsWbMil2sbjUbZ2NiUOv+FCxe0cuVKSdIjjzxSZfdLSOyYAAAAAAAAAADgb2nYsGGSpJiYGL3wwguKjY1VQUGBCgoKdPz4cY0dO1bR0dGSpFGjRhWpXb9+vQIDA7V161YlJSWZ3qenp2vjxo16+umnlZycLFdXV40fP75K182OCQAAAAAAAAAA/oYCAgJ07Ngxbdy4UT///LN+/vlnOTo6SpJycnJM/UaOHKlBgwYVqS0oKNCWLVu0ZcsWSZKrq6scHR2VkpKigoICSVLt2rU1b948NWrUqErXTTABAAAAAAAAAMDfkJ2dnebOnav+/fsrPDxchw8fNt0pUa9ePbVr105PPfWUfH19i9V26dJFr776qqKionT27Fldu3ZNaWlpql69upo0aaJu3brpqaeeqtK7JQoRTAAAAAAAAAAAcIusWLGiQnVeXl5l3kFxs+7du6t79+4WjV+/fn29+OKLFVlapXHHBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWY3+7FwAAAAAAAAAAwJ1o7NixioyMlCT5+fkpODi4WJ+RI0dq3759ZY7zyCOPaNGiRcXe5+Xl6ddff1VMTIxiYmJ09OhR/fHHHzIajRo+fLhmzJhh8ZpTU1PVp08fJSQkSJKCgoLk7+9v8ThlIZgAAADA/2fvzuOirvf+/z9nWEZgQEXQQqlcU8S0TM02yyVzOXWh7WaKmS1qJz3HzHIpOymVRh6tTlZOZqnlSqh1WixatCg1TUg7bgWaiiIiA8wMy+8Pv8xPYnEGhhmlx/124wYz7+314XZdXl3z5P1+AwAAAAA8bN26dc5QwhXBwcEKDg6utC0sLKzS9w8fPqyRI0fWpLwqvfjii85Qoq4QTAAAAAAAAAAA4EE5OTmaNWuWQkND1bRpU+3du/esY0aNGqXx48e7vVZISIjat2+vjh07qmPHjnr77bf1yy+/1KRs/fDDD/rggw/UpUsX/fTTTzWawxUEEwAAAAAAAAAAeFBCQoKOHz+uGTNm6KOPPnIpmKiJqKgobdmyRQaDwfneqlWrajSX3W7XtGnT5Ofnp2eeeUa33nqrp8qsgMuvAQAAAAAAAADwkE2bNmnNmjXq3Lmz7rrrrjpdy2g0lgslauOVV17R/v37NWLECLVv394jc1aFYAIAAAAAAAAAAA8oLCzU9OnT5e/vr5kzZ8poPD8+gv/111/11ltvqXnz5jU6TspdHOUEAAAAAAAAAIAHzJs3TxkZGRo1apTbuw6Sk5O1evVqZWVlKTg4WK1atVKfPn109913y2w211HFUklJiaZOnSqHw6Hp06crKCioztYqQzABAAAAAAAAAKj3LBaLLBaLW2Pi4+MVHx/vUt+0tDQtXrxYUVFRNdp18NtvvykgIEBBQUHKzc3Vtm3btG3bNi1dulSvvfZanR2v9O6772r79u3q37+/brjhhjpZ488IJgAAAAAAAAAA9V5eXp6OHDni9hhXFBcXa9q0ac7vwcHBLq/RvXt3DR06VNdcc40iIiJkMBiUk5Oj9evX66WXXtKhQ4c0evRoJScnq3Hjxm7VfzZ//PGHEhMTFRISoqeeesqjc1eHYAIAAAAAAAAAUO+ZzWY1a9bM7TGusFgsSktLU79+/dS7d2+31qhsd0WjRo00bNgw5wXaWVlZslgsmjhxoltzn83TTz+t/Px8PfXUU27/bmqDYAIAAAAAAAAAUO+5cyyTOzIyMrRgwQKFhIRo6tSpHp07NjZWAwcOVFJSkr744guPBhPr16/Xl19+qY4dO2rYsGEem9cV58eV4AAAAAAAAAAAnINmz56tgoICjRkzRqGhobJareW+iouLJUlFRUXO90pKSlyev3PnzpJOByCeYrfb9dxzz8lgMOiJJ55QYWFhhbrP7Gu1WpWfn++x9dkxAQAAAAAAAABADR08eFCSlJiYqMTExCr7JScnKzk5WZK0du1adejQwSv1VaawsFDHjx+XJA0fPrzavjNmzNCMGTMUGhqqH3/80SPrs2MCAAAAAAAAAIBz1Pbt2yVJLVq08HElnsOOCQAAAAAAAAAAaigpKana9uHDhys1NVVxcXFKSEgo11ZaWiqDwVDl2PT0dG3YsEGSdOONN9a+2P8nLCxMu3fvrrbPpZdeKun0UVVDhgzx2NoSwQQAAAAAAAAAAD6xcOFCHThwQAMHDlSXLl0UGhoqSTp58qQ2bNigl156SQ6HQ5GRkRo1alSlc5w6dUoOh8P5uuxnm82m7Oxs5/tBQUEKCgqqw6dxHcEEAAAAAAAAAAA+YLfbtXr1aq1evVqSZDab5efnp9zcXJWWlkqSoqOjtWDBAjVu3LjSOR555BGlpqZWeH/lypVauXKl8/W4ceM0fvz4OngK9xFMAAAAAAAAAADgAzfffLOKi4u1bds2ZWRk6MSJE7LZbGrSpInatWunvn37Ki4uTsHBwb4u1aMIJgAAAAAAAAAAqCNLliypsq1t27Z67LHH6mz+2jjbHRS1YayzmQEAAAAAAAAAAP6EYAIAAAAAAAAAAHgNwQQAAAAAAAAAAPAaggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABeQzABAAAAAAAAAAC8hmACAAAAAAAAAAB4DcEEAAAAAAAAAADwGoIJAAAAAAAAAADgNQQTAAAAAAAAAADAawgmAAAAAAAAAACA1/j7ugAAAAAAAAAAAM5nl156qct9x48fr3HjxlXatmXLFi1evFhbt25VTk6OmjRpoquuukqjR49W27ZtKx2TmZmpPn36nHXdefPm6eabb67wflZWln744Qelp6crLS1N6enpysnJkSStXLlSnTp1cvnZXEUwAQAAAAAAAABALURERFTbXlBQIKvVKkmKjY2ttM/bb7+t559/XiUlJTIYDDKbzTp8+LDWrl2rDRs2aM6cOerfv3+16zRu3Fh+fn6VtplMpkrfX758uRYsWFDtvJ5GMAEAAAAAAAAAQC18++231bY//vjjSkpKUmRkpK677roK7Zs3b1ZCQoJKS0t15513asKECWrcuLEOHz6sZ599Vp999pkmTZqkdu3aqWXLllWus3LlSrVo0cKt2g0Ggy688ELFxMSoY8eOatq0qaZOnerWHO4imAAAAAAAAAAAoI7k5eXpk08+kSTdeuutle5omDNnjkpLS3Xddddp5syZzvcvuOACJSYmaujQofr111/173//W4mJiR6t7+GHHy53tFRmZqZH568Ml18DAAAAAAAAAFBHPvroIxUUFEiShgwZUqF937592rlzpyTpwQcfrNAeGBioUaNGSZI+//xz55FQnlLV0U91iWACAAAAAAAAAIA6smrVKknS5ZdfrtatW1do37x5syQpJCREV1xxRaVzXH/99ZIkm82mLVu21FGl3kMwAQAAAAAAAABAHdi3b5+2bdsmSRo6dGilffbu3StJat26dZW7F5o0aaLw8HBJ0p49e6pc77HHHlO3bt0UGxur66+/XuPHj9eXX35ZiyeoG9wxAQAAAAAAAACo9ywWiywWi1tj4uPjFR8fX+M1V69eLUkKCgrSgAEDKu1z9OhRSVKzZs2qnatZs2bKzs5WVlZWlX1+/vlnmc1m+fn56ciRI/rkk0/0ySef6Oabb9aLL76owMDAGj6JZxFMAAAAAAAAAADqvby8PB05csTtMTVVXFyspKQkSVL//v1lNpsr7Zefny9JatCgQbXzlbX/+Y4Jk8mke+65R4MGDVL79u2d6/zvf//TG2+8oaSkJH388ccKCwvTs88+W+Pn8SSCCQAAAAAAAABAvWc2m8+6K6GyMTX1zTffOHdDVHbptadERkZqxowZFd5v27atXnjhBYWHh8tisWjFihWKj49Xq1at6qwWVxFMAAAAAAAAAADqvdoey+Suskuvo6Oj1b179yr7BQcHS5IKCwurna+sPSQkxK06Hn30US1btkyFhYX68ssvz4lggsuvAQAAAAAAAADwoBMnTmjjxo2SpLi4OBkMhir7Nm3aVJLOesxUWXtkZKRbtQQHB6tNmzaSpIyMDLfG1hWCCQAAAAAAAAAAPCg5OVkOh0NGo/Gsxzi1bt1akrR3714VFxdX2uf48ePKzs6WJGfIcD4jmAAAAAAAAAAAwINWr14tSerZs6cuvPDCavv27NlT0ulLrbdt21Zpn6+//lrS6Yuuu3bt6lYt+fn52rNnjySpRYsWbo2tKwQTAAAAAAAAAAB4yC+//KJffvlFkjR06NCz9m/VqpViY2MlSQsXLqzQ7nA4tGjRIklS3759K9wxUVpaWu388+fPV2FhoQwGg2644QZXHqHOEUwAAAAAAAAAAOAhZZdeN2zYUH379nVpzD//+U8ZDAalpKTo6aefVk5OjqTT90pMnDhRu3fvlslk0vjx4yuMHT58uP7zn/9o165dKioqcr6/Z88eTZkyxRlq3Hbbbc5jo85UUlKi7Oxs51dubq6zLS8vr1xbSUmJy7+H6vh7ZBYAAAAAAAAAAP7i7Ha7kpOTJUmDBg2SyWRyaVzPnj01efJkPf/881q2bJmWL1+u0NBQZ0gQGBioF198US1btqww9tChQ0pMTFRiYqL8/f1lNptls9lUUFDg7DN48GBNnz690rUPHTqkPn36VNo2cuTIcq8///xzjxwHRTABAAAAAAAAAIAHfPHFF87dDme79PrP4uPj1alTJy1evFjbtm1TTk6OLrjgAvXo0UMPPPCA2rZtW+m4SZMmafPmzfr555+VlZWlnJwc+fv76+KLL1aXLl00ZMgQXXXVVbV9NI8imAAAAAAAAAAAwAP69++v3bt313j8lVdeqSuvvNKtMQMGDNCAAQNqvGaLFi1qVXNNcMcEAAAAAAAAAADwGoIJAAAAAAAAAADgNQQTAAAAAAAAAADAawgmAAAAAAAAAACA1xBMAAAAAAAAAAAAryGYAAAAAAAAAAAAXkMwAQAAAAAAAAAAvIZgAgAAAAAAAAAAeA3BBAAAAAAAAAAA8BqCCQAAAAAAAAAA4DUEEwAAAAAAAAAAwGsIJgAAAAAAAAAAgNcQTAAAAAAAAAAAAK8hmAAAAAAAAAAAAF7j7+sCAAAAAAAAAAA4n1166aUu9x0/frzGjRtX7r3MzExt2bJFaWlpSk9PV3p6uqxWqyRp8+bNCg8Pd2luu92uFStW6OOPP9aePXt06tQphYeH65JLLtFVV12lUaNGqUGDBpWO/fXXX/XWW2/pu+++0/Hjx9WoUSNdccUVGjFihLp27ery87mCYAIAAAAAAAAAgFqIiIiotr2goMAZNMTGxlZoX7BggdasWVOrGg4cOKCHHnpI+/fvlyT5+/srODhYR44c0ZEjR/T9999ryJAhuuCCCyqM3bBhgx5//HE5HA5JUmhoqI4dO6b//ve/+vTTTzVlyhTdd999tarvTAQTAAAAAAAAAADUwrfffltt++OPP66kpCRFRkbquuuuq9BuMBh00UUXqWPHjoqJiZEkzZ071+X1jx49quHDh+vo0aPq0qWLHnvsMXXv3l1+fn4qLCzUr7/+qv/+978KDAysMHbv3r2aPHmyHA6H+vbtq2nTpumCCy7QiRMnlJiYqPfff1+zZ89W+/bt1b17d5drqg7BBAAAAAAAAAAAdSQvL0+ffPKJJOnWW2+Vn59fhT7/+te/yr3//fffu7XGM888o6NHj+rKK6+UxWIpF0A0aNBAl112mS677LJKx86bN092u13t2rXTyy+/rICAAElS48aNNXPmTB08eFDffPON5syZow8++MCtuqrC5dcAAAAAAAAAANSRjz76SAUFBZKkIUOGVNqnsrDCVb/++qs+++wzSdLTTz9d6a6IquTl5Wnjxo2SpPvvv98ZSpzpwQcflCRt375dv/32W43rPBPBBAAAAAAAAAAAdWTVqlWSpMsvv1ytW7f2+PwffvihJKl9+/Zq27atW2O3bNnivFeisiOmJKlr164KCQmRJG3atKkWlf7/CCYAAAAAAAAAAKgD+/bt07Zt2yRJQ4cOrZM1yuaPiYnRqVOn9MILL6hv376KjY1Vz5499eCDDyolJaXSsXv27JEkNWnSRE2aNKm0j5+fn1q1alWuf21xxwQAAAAAAAAAoN6zWCyyWCxujYmPj1d8fHyN11y9erUkKSgoSAMGDKjxPNU583ilIUOG6Pfff5e/v79CQkJ04sQJffnll/ryyy8VHx+vJ554otzYo0ePSpKaNWtW7RrNmjXTzz//rKysLI/UTDABAAAAAAAAAKj38vLydOTIEbfH1FRxcbGSkpIkSf3795fZbK7xXNU5efKkJGnt2rUyGo168skndccddygoKEhZWVl68cUXlZSUJIvFopiYGN1yyy3Osfn5+ZJOX5BdnbJ2q9XqkZoJJgAAAAAAAAAA9Z7ZbD7rzoDKxtTUN99849yRUNWl155QWloqSSopKdEDDzygESNGONsiIyP1/PPPa8+ePUpLS9Prr79eLpjwFYIJAAAAAAAAAEC9V9tjmdxVdul1dHS0unfvXmfrhISEKCcnR5I0cuTICu0Gg0Hx8fH65z//qT179ujo0aNq2rSpJCk4OFiSVFhYWO0aZe1ll2DXFpdfAwAAAAAAAADgQSdOnNDGjRslSXFxcTIYDHW2VlnI0KhRI4WHh1fap+zyakk6fPhwhbFnO+KqrD0yMrJWtZYhmAAAAAAAAAAAwIOSk5PlcDhkNBrr9BgnSWrbtm2Nx7Zp00aSdPz4cWVnZ1fap7i4WPv27SvXv7YIJgAAAAAAAAAA8KDVq1dLknr27KkLL7ywTte6+uqrJUk5OTlVhgtlwYIkNW/e3Plz165dFRgYKEn66quvKh27detW56XXZWvVFsEEAAAAAAAAAAAe8ssvv+iXX36RJA0dOrTO1+vXr5/z7geLxVKhvbS01Pl+p06d1KRJE2eb2WzWjTfe6BzrcDgqjF+4cKEkqUuXLrr44os9UjPBBAAAAAAAAAAAHlJ26XXDhg3Vt29fl8Y4HA5lZ2c7v06dOuVsO3nyZLm2P2vYsKEefvhhSdKiRYv0zjvvOC+rzsrK0hNPPKG0tDQZDAY9+uijFcb//e9/V2BgoHbt2qWJEyc675PIycnR008/ra+++koGg0H/+Mc/3PtFVMPfYzMBAAAAAAAAAPAXZrfblZycLEkaNGiQTCaTS+O2bt2q++67r9K2m2++udzr3bt3V+gzevRo7du3T6tXr9Zzzz2n559/XmazWSdPnlRpaamMRqOeeOIJXX/99RXGtm7dWs8//7wef/xxffLJJ/rkk08UFhamU6dOOcdOmTJF3bt3d+lZXEEwAQAAAAAAAACAB3zxxRfKycmRpDq/9PpMBoNBs2fP1o033qj3339faWlpysvLU9OmTdWtWzeNHDlSnTp1qnL8wIED1aZNG7355pv67rvvlJ2drYiICF1++eUaOXKkunbt6tF6CSYAAAAAAAAAAPCA/v37V7qj4Wx69OhRo3F/dtNNN+mmm26q0dh27drphRdeqHUNruCOCQAAAAAAAAAA4DUEEwAAAAAAAAAAwGsIJgAAAAAAAAAAgNcQTAAAAAAAAAAAAK8hmAAAAAAAAAAAAF5DMAEAAAAAAAAAALyGYAIAAAAAAAAAAHgNwQQAAAAAAAAAAPAaggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABeQzABAAAAAAAAAAC8xt/XBQAAAAAAAAAAUB+NGTNGKSkpkqS4uDglJCSUay8pKdGqVav0888/Kz09XVlZWcrOzpafn58uvPBCdevWTcOGDdOll15a7ToFBQWyWCz6+OOPlZGRIaPRqFatWumWW27RPffcIz8/P5drPnXqlAYMGKCsrCxJ0uzZszVkyBA3n7x6BBMAAAAAAAAAAHjYunXrnKFEVRwOh6ZOnep8bTAYFBYWpry8PO3bt0/79u3TypUrNXnyZI0YMaLSOY4dO6Z7771X+/fvlyQFBQXJbrdrx44d2rFjhz7++GO99dZbatCggUt1v/jii85Qoq5wlBMAAAAAAAAAAB6Uk5OjWbNmKTQ0VK1bt66yn9Fo1H333adXXnlFX3zxhXbu3KnU1FT9/PPPWrlypa699loVFxdr9uzZ2rJlS6VzPPbYY9q/f78iIyNlsVj0008/afv27UpMTFRISIh+/PFHzZw506W6f/jhB33wwQfq0qVLTR7bZQQTAAAAAAAAAAB4UEJCgo4fP66JEyeqSZMmVfYLCAjQU089pb59+yoqKkr+/qcPOfLz81OnTp302muvqUWLFiotLdXq1asrjP/yyy/1ww8/SJLmz5+vq6++WtLpwGPgwIHOQGLNmjXas2dPtTXb7XZNmzZNfn5+euaZZ2r03K4imAAAAAAAAAAAwEM2bdqkNWvWqHPnzrrrrrtqNVdgYKA6dOggSTpy5EiF9qSkJElSjx49dPnll1doHzRokFq0aKGSkhIlJydXu9Yrr7yi/fv3a8SIEWrfvn2t6j4bggkAAAAAAAAAADygsLBQ06dPl7+/v2bOnCmjsXYfwRcWFio9PV2SFB0dXaH9u+++kyRdf/31lY43GAy67rrrJEmbN2+ucp1ff/1Vb731lpo3b67x48fXqmZXcPk1AAAAAAAAAAAeMG/ePGVkZGjUqFE13nVQWlqqEydOaPfu3Xr11Vd18OBB+fv7a9iwYeX6ZWdnKzs7W5LUtm3bKucra6vqKKeSkhJNnTpVDodD06dPV1BQUI3qdgfBBAAAAAAAAACg3rNYLLJYLG6NiY+PV3x8vEt909LStHjxYkVFRdVo18HChQs1d+7cCu83bdpUCQkJatOmTbn3jx496vy5WbNmVc5b1ma1WmW1WhUSElKu/d1339X27dvVv39/3XDDDW7XXRMEEwAAAAAAAACAei8vL6/SexrONsYVxcXFmjZtmvN7cHCw2/UFBwcrIiJCxcXFysnJUWlpqSIjIzVlyhRdddVVFfrn5+c7f65ul8OZbX8OJv744w8lJiYqJCRETz31lNs11xTBBAAAAAAAAACg3jObzdXuLKhqjCssFovS0tLUr18/9e7duybl6d5779W9994rSbLZbPrpp5/00ksvacKECbr22ms1b948l+tx1dNPP638/Hw99dRTbv9uaoNgAgAAAAAAAABQ77lzLJM7MjIytGDBAoWEhGjq1KkemdNkMqlHjx5asmSJ7rnnHn3zzTf697//rSeffNLZ58xdGQUFBVXOdWbbmbsl1q9fry+//FIdO3ascH9FXavdleAAAAAAAAAAAPyFzZ49WwUFBRozZoxCQ0OddzmUfRUXF0uSioqKnO+VlJS4NHdgYKDuueceSdLKlSvLtTVt2tT5c3VHVJW1hYSEOIMJu92u5557TgaDQU888YQKCwsr1F3GbrfLarWWOzqqttgxAQAAAAAAAABADR08eFCSlJiYqMTExCr7JScnKzk5WZK0du1adejQwaX5z7y8+vjx42rSpIkkKTw8XOHh4crOztb//vc/9erVq9Lx//vf/ySp3OXZhYWFOn78uCRp+PDh1a4/Y8YMzZgxQ6Ghofrxxx9dqvls2DEBAAAAAAAAAMA5KiMjw/nzny/V7tmzpyTp66+/rnRsaWmpvvnmm3J9zwXsmADgEWdu76rsNQAAAAAAAFAfJSUlVds+fPhwpaamKi4uTgkJCeXaioqK5O9f9cf0BQUFeu+99yRJsbGxCgoKKtd+yy23aP369fr++++1fft2de7cuVz7Rx99pIyMDBmNRv3tb39zvh8WFqbdu3dXW/ell14q6fRRVUOGDKm2r7sIJgDUSkBAgEwmkwYNGuTrUgAAAAAAAIDzyksvvaTc3FwNHjxYnTp1ct4BUVhYqO+//17z5s3Tr7/+KkkaN25chfE33HCDunXrph9++EHjx4/X888/r549e6qkpET//e9/NW3aNElSXFxcuaOcfI1gAkCtmEwmbdy4UQ6Ho9z7VquVsAIAAAAAAACohsPh0IoVK7RixQoZDAaZzWb5+fkpNzfXeUF2gwYN9NRTT+nGG2+sdI6XX35Z9957r/bv36+RI0cqKChIJSUlstlskqQrr7xS06dP99ozuYJgAkCtmUwmmUwmX5cBAAAAAAAAnFeGDx+uqKgoff/999q/f7+OHTumvLw8hYWFqWXLlurZs6duu+02NW/evMo5IiIitGbNGlksFn300UfKzMyUv7+/2rVrp1tvvVX33HOP/Pz8vPhUZ0cwAQAAAAAAAABAHVmyZEmVbRdddJHi4+MVHx9fqzWCgoL0yCOP6JFHHqnVPGc62x0UtWGss5kBAAAAAAAAAAD+hGACAAAAAAAAAAB4DcEEAAAAAAAAAADwGoIJAAAAAAAAAADgNQQTAAAAAAAAAADAawgmAAAAAAAAAACA1xBMAAAAAAAAAAAAryGYAAAAAAAAAAAAXkMwAQAAAAAAAAAAvIZgAgAAAAAAAAAAeA3BBAAAAAAAAAAA8BqCCQAAAAAAAAAA4DUEEwAAAAAAAAAAwGsIJgAAAAAAAAAAgNf4+7oAAAAAAAAAAADqozFjxiglJUWSFBcXp4SEhAp9MjMztWXLFqWlpSk9PV3p6emyWq2SpM2bNys8PLzaNX788Ufn2LS0NO3bt0/FxcW64YYb9Prrr7tdc1FRkYYMGaLdu3dLksaNG6fx48e7PU91CCYAAAAAAAAAAPCwdevWOUOJ6ixYsEBr1qyp8TrDhg2r8djKvPXWW85Qoq4QTAAAAAAAAAAA4EE5OTmaNWuWQkND1bRpU+3du7fKvgaDQRdddJE6duyomJgYSdLcuXNdXqtBgwZq166dYmJiFBsbq48//ljffPNNjeo+cOCAXnnlFTVv3lw2m03Hjh2r0TxnQzABAAAAAAAAAIAHJSQk6Pjx45oxY4Y++uijaoOJf/3rX/Lz83O+/v77791aa+vWreXGb9myxf2C/59p06bJZrNpxowZeuaZZ2o8z9lw+TUAAAAAAAAAAB6yadMmrVmzRp07d9Zdd9111v5nhgo1UdvxZVasWKHU1FTdfPPN6tWrl0fmrArBBAAAAAAAAAAAHlBYWKjp06fL399fM2fOlNF4fnwEn5WVpRdeeEFms1lPPfVUna93fvxWAAAAAAAAAAA4x82bN08ZGRm677771L59e1+X47Jnn31Wubm5mjhxopo2bVrn63HHBAAAAAAAAACg3rNYLLJYLG6NiY+PV3x8vEt909LStHjxYkVFRWn8+PE1KdEnPv/8c/33v/9Vp06ddPfdd3tlTYIJAAAAAAAAAEC9l5eXpyNHjrg9xhXFxcWaNm2a83twcHBNSvS6vLw8zZw5U35+fl49eopgAgAAAAAAAABQ75nNZjVr1sztMa6wWCxKS0tTv3791Lt375qU5xNz587V4cOHNXLkSMXExHhtXYIJAAAAAAAAAEC9586xTO7IyMjQggULFBISoqlTp3p8/rqydetWLVu2TBdeeKEeffRRr65NMAEAAAAAAAAAQA3Nnj1bBQUFmjBhgkJDQ2W1Wsu1FxcXS5KKioqcbUFBQV47NqkqzzzzjEpLSzVx4kRJqlB3aWmpJMnhcDjbQkJCPLI2wQQAAAAAAAAAADV08OBBSVJiYqISExOr7JecnKzk5GRJ0tq1a9WhQwev1FeVsronTZpUbb/XX39dr7/+uiTphx9+UFhYWK3X9m0kAwAAAAAAAAAA/lLYMQEAAAAAAAAAQA0lJSVV2z58+HClpqYqLi5OCQkJXqrq7H788cdq23v37q2DBw9q3LhxGj9+vEfXJpgAAAAAAAAAAMBHHA6HTp065Xx95s8nT54s1zc8PLzCeKvVKpvN5nxtt9slnb7TIjs72/m+yWTy2B0RtUUwAQAAAAAAAACAj2zdulX33XdfpW0333xzude7d++u0OfZZ5/VmjVrKrz/zTffqGfPns7X59KODe6YAAAAAAAAAAAAXsOOCQAAAAAAAAAA6siSJUuqbe/Ro0elOyFclZCQUCc7ITZu3OjxOcuwYwIAAAAAAAAAAHgNwQQAAAAAAAAAAPAaggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABeQzABAAAAAAAAAAC8hmACAAAAAAAAAAB4DcEEAAAAAAAAAADwGoIJAAAAAAAAAADgNQQTAAAAAAAAAADAawgmAAAAAAAAAACA1xBMAAAAAAAAAAAAr/H3dQEAAAAAAAAAAJzvtm7dqpSUFO3cuVMZGRk6fvy4bDabGjVqpJiYGP3tb3/T4MGDZTAYKozdu3evtm3bprS0NKWnp2vXrl0qLCxUcHCwtm3b5tL6KSkpWrlypbZv367s7Gz5+/urWbNm6t69u4YNG6b27dtXOTY7O1tLlixRSkqKDhw4IJvNptDQULVt21YDBgzQbbfdpsDAwBr/bv6MYAIAAAAAAAAAgFpasmSJNmzY4HwdHBwsf39/ZWVlKSUlRSkpKVqxYoVeffVVmc3mcmOffvpppaam1mjd0tJSTZs2TStWrCi3tsPh0IEDB3TgwAGtWrVKU6dO1T333FNhfFpamkaPHq3s7GxJktFoVEhIiE6cOKHU1FSlpqbqgw8+0KJFixQeHl6jGv+Mo5wAAAAAAAAAAKilHj166Nlnn1VSUpK2bt2qbdu26aefftI333yjxx57TH5+fvr+++/1/PPPVxjr5+enNm3a6JZbbtGUKVMUHx/v8rqrVq1yhhL33HOPvvrqK23btk07duzQqlWr1LVrVxUXF+tf//qX9uzZU25sUVGRHn30UWVnZysqKkqvv/66duzYoR9//FFbtmzRk08+KX9/f/3yyy967rnnavcLOgM7JgAAAAAAAAAAqKW77rqr0vcjIyP18MMPq7CwUP/5z3/04Ycfavr06QoICHD2eeutt+Tn5+d8vXr1apfXTUpKkiR1795dM2bMcL5vNBoVGxur119/Xddff73y8/P16aefqk2bNs4+W7duVWZmpiQpISFBPXr0cLaZzWaNGDFCJ06c0GuvvaZPPvlEJSUlMhprv9+BHRMAAAAAAAAAANSxyy67TJJUWFiokydPlms7M5RwV1ZWliQpNja20vbQ0FC1bNlSkpSfn1/p2OrGl9XtcDjkcDhqXOeZCCYAAAAAAAAAAKhjW7ZskXT6/ocmTZp4bN4WLVpIknbu3Flp+6lTp7R//35JUseOHSsdW934HTt2SJLatGkjk8lU63olggkAAAAAAAAAAOpEfn6+9u7dq7lz52rRokWSpPvuu08Gg8Fja5QdIZWamqpnnnlGR44ckXT6Uuy0tDQ9+OCDys/PV/fu3XXTTTeVG9upUyfFxMRIkqZMmaKUlBTnroi8vDwtXrxYb775pgICAjR58mSP1cwdEwAAAAAAAACAes9ischisbg1Jj4+3q2LqKXTxyNde+21Fd4PCAjQvffeq0cffdSt+c6mb9++mjRpkhITE7V06VItXbpUwcHBzqOXIiMj9dBDD2ns2LEV7ocwGo2aP3++xo4dq127dmnMmDEyGo0KCQnRqVOnZDQa1bNnT40dO1Zdu3b1WM0EEwAAAAAAAACAei8vL8+5m8CdMe7y8/NTRESEJCk3N1d2u10Gg0H33XefRo0aVav7JKoyevRoXXTRRZo6dapOnjxZ7i4Ju90uq9Uqm82mwMDACmNbtGghi8WiGTNmOC+4PnXqlCSppKRE+fn5zteeQjABAAAAAAAAAKj3zGazmjVr5vYYd4WHh+vbb7+VdPqD/YMHD2rx4sV6++23tXr1ai1YsEBXXnml2/NWJT8/X48//rg+/fRTXXPNNRo7dqzatWunwsJC/fTTT5ozZ46WLFmi77//XkuXLlVoaGi58SkpKZo4caIMBoOefPJJ9e7dWxEREcrIyNDy5cu1bNkyPfTQQ3r22Wd1++23e6RmggkAAAAAAAAAQL1Xk2OZastoNCo6OlpTp05VixYtNHv2bE2cOFH//e9/FRQU5JE1EhIS9Omnn6p79+566623nPdXhIaGql+/frriiis0aNAg/frrr1q4cKH+8Y9/OMdmZmZq3Lhxcjgcslgs6tmzp7OtXbt2mj59uho2bKhXX31Vs2fPVp8+fRQeHl7rmrn8GgAAAAAAAACAOnb33XcrMDBQR44c0VdffeWROfPy8rRy5UpJp4OXyi7VbtKkif7v//5PkvTpp5+Wa1u2bJnsdrtiYmLKhRJnuv/++yVJVqtVmzdv9kjdBBMAAAAAAAAAANQxk8mkRo0aSZJ+//13j8x54MABFRcXS5IuuuiiKvtdfPHFkqSDBw+We3/v3r2SpOjo6CrHms1m550Zfx5fUwQTAAAAAAAAAADUMavVqhMnTkiSgoODPTKn0fj/f8RfXWhw/PhxSRXvzCjbYXHo0KEqx9rtduXm5kqSQkJCalzrmQgmAAAAAAAAAACohaKiorP2efvtt+VwOCRJ3bp188i6rVq1kslkknT6WKbK5Ofna+3atZKkzp07l2uLiYmRJKWlpWnHjh2Vjl+1apXsdrskqUuXLh6ommACAAAAAAAAAIBa+d///qc777xTa9as0eHDh53vl5aWas+ePZo5c6bmz58vSerfv7/atWtXbrzdbld2drbzKz8/39l25vsnT54sN65BgwYaOnSoJOmLL77QpEmT9Pvvv6u0tFQOh0Nbt27V8OHDlZGRIUkaMWJEufFDhw6VyWRScXGxxo4dqw0bNqigoMC57iuvvKLnnntO0ukwpWPHjp74dcnfI7MAAAAAAAAAAPAX9tNPP+mnn36SdPo+ieDgYOXn58tmszn79O7dW88//3yFsevWrdOUKVMqvJ+fn1/uUurmzZtr48aN5fo8/vjj2rdvn7777jt9+OGH+vDDDxUUFCSHw+HcyWE0GvXPf/6zwgXXCrn/XAAAgLpJREFUUVFRmjNnjiZNmqSjR49qwoQJMhgMCg4OltVqdfZr3bq15s6d6/4vpQoEEwAAAAAAAAAA1ELLli01d+5cfffdd/r555917Ngx5eTkKDAwUK1atdJll12mW265Rddcc43H1w4KCpLFYtG6deu0bt06paenKycnR35+fmrevLm6du2qYcOGKTY2ttLxN910kzp06KB3331XmzdvVkZGhgoLC9WoUSO1bdtW/fr105133qkGDRp4rGaCCQAAAAAAAAAAaqFBgwYaPHiwBg8eXKPxQ4YM0ZAhQ2q8vtFo1C233KJbbrmlRuOjo6Mr3bFRV7hjAgAAAAAAAAAAeA3BBAAAAAAAAAAA8BqCCQAAAAAAAAAA4DUEEwAAAAAAAAAAwGsIJgAAAAAAAAAAgNcQTAAAAAAAAAAAAK8hmAAAAAAAAAAAAF5DMAEAAAAAAAAAALyGYAIAAAAAAAAAAHgNwQQAAAAAAAAAAPAaggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABe4+/rAgAAAAAAAAAAqI/GjBmjlJQUSVJcXJwSEhKq7LtlyxYtXrxYW7duVU5Ojpo0aaKrrrpKo0ePVtu2basc9+OPPyotLU3p6elKS0vTvn37VFxcrBtuuEGvv/56leMyMzPVp08fl58lISFBcXFxLvevDsEEAAAAAAAAAAAetm7dOmcocTZvv/22nn/+eZWUlMhgMMhsNuvw4cNau3atNmzYoDlz5qh///6Vjh02bFiN6vPz81NERES1faxWqwoKCiRJsbGxNVqnMgQTAAAAAAAAAAB4UE5OjmbNmqXQ0FA1bdpUe/furbLv5s2blZCQoNLSUt15552aMGGCGjdurMOHD+vZZ5/VZ599pkmTJqldu3Zq2bJlhfENGjRQu3btFBMTo9jYWH388cf65ptvzlrjhRdeqG+//bbaPsOGDdOPP/6oTp06Vbtrw13cMQEAAAAAAAAAgAclJCTo+PHjmjhxopo0aVJt3zlz5qi0tFTXXXedZs6cqcaNG0uSLrjgAiUmJqpdu3ay2Wz697//Xen4rVu3asWKFXrmmWd0++23KzIy0iPP8Ntvv+nHH3+UJA0ZMsQjc5YhmAAAAAAAAAAAwEM2bdqkNWvWqHPnzrrrrruq7btv3z7t3LlTkvTggw9WaA8MDNSoUaMkSZ9//rmsVmuFPn5+fh6ouqLVq1dLkkwmkwYPHuzRuQkmAAAAAAAAAADwgMLCQk2fPl3+/v6aOXOmjMbqP4LfvHmzJCkkJERXXHFFpX2uv/56SZLNZtOWLVs8W3AVSkpKlJSUJEnq16+fwsLCPDo/d0wAAAAAAAAAAOo9i8Uii8Xi1pj4+HjFx8e73H/evHnKyMjQqFGj1L59+7P2L7t7onXr1lXufGjSpInCw8OVnZ2tPXv2OIOKuvTtt9/qjz/+kCQNHTrU4/MTTAAAAAAAAAAA6r28vDwdOXLE7TGuSktL0+LFixUVFaXx48e7NObo0aOSpGbNmlXbr1mzZsrOzlZWVpbL9dRG2TFOUVFRuuqqqzw+P8EEAAAAAAAAAKDeM5vNZw0AKhvjiuLiYk2bNs35PTg42KVx+fn5kqQGDRpU26+svbI7Jjzt5MmT+uyzzyRJcXFxZz2OqiYIJgAAAAAAAAAA9Z67xzK5w2KxKC0tTf369VPv3r3rZA1vWbdunex2uwwGg+Li4upkDS6/BgAAAAAAAACghjIyMrRgwQKFhIRo6tSpbo0t21lRWFhYbb+y9pCQkJoV6YayY5y6d++u6OjoOlmDHRMAAAAAAAAAANTQ7NmzVVBQoAkTJig0NLTCcUvFxcWSpKKiImdbUFCQjEajmjZtKklnvfuirD0yMtLT5Zfz66+/aufOnZKkIUOG1Nk6BBMAAAAAAAAAANTQwYMHJUmJiYlKTEyssl9ycrKSk5MlSWvXrlWHDh3UunVrSdLevXtVXFwsPz+/CuOOHz+u7OxsSVKbNm08XX45q1atknT6bo3+/fvX2Toc5QQAAAAAAAAAgA/07NlT0ulLrbdt21Zpn6+//lqSZDKZ1LVr1zqrxeFw6MMPP5QkDRw4UEFBQXW2FjsmAAAAAAAAAACooaSkpGrbhw8frtTUVMXFxSkhIaFcW6tWrRQbG6udO3dq4cKFuvLKK8u1OxwOLVq0SJLUt2/fOr1jIiUlxbkzY+jQoXW2jsSOCQAAAAAAAAAAfOaf//ynDAaDUlJS9PTTTysnJ0fS6XslJk6cqN27d8tkMmn8+PGVjrdarcrOznZ+2e12SafvtDjz/T/fffFnZcc4tW7dWl26dPHY81WGHRMAAAAAAAAAAPhIz549NXnyZD3//PNatmyZli9frtDQUOXm5kqSAgMD9eKLL6ply5aVjn/22We1Zs2aCu9/8803zqOiJFW6Y6PMsWPH9NVXX0mq20uvyxBMAAAAAAAAAADgQ/Hx8erUqZMWL16sbdu2KScnRxdccIF69OihBx54QG3btq3T9T/88EMVFRXJz89Pt956a52uJRFMAAAAAAAAAABQZ5YsWeJSvyuvvLLCHROuSEhIqHInhKtGjRqlUaNG1WoOd3DHBAAAAAAAAAAA8BqCCQAAAAAAAAAA4DUEEwAAAAAAAAAAwGsIJgAAAAAAAAAAgNcQTAAAAAAAAAAAAK8hmAAAAAAAAAAAAF5DMAEAAAAAAAAAALyGYAIAAAAAAAAAAHgNwQQAAAAAAAAAAPAaggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABe4+/rAgAAAAAAAAAAqI/GjBmjlJQUSVJcXJwSEhIq9Bk+fLhSU1OrneeGG27Q66+/XmX7d999p6VLl2rr1q3KyclRWFiYYmNjddddd6l3795VjsvKytIPP/yg9PR0paWlKT09XTk5OZKklStXqlOnTi48pfsIJgAAAAAAAAAA8LB169Y5QwlXBAcHKzg4uNK2sLCwKsc9//zzWrRokSTJYDAoLCxMOTk5SklJUUpKiu666y4988wzlY5dvny5FixY4HKNnkIwAQAAAAAAAACAB+Xk5GjWrFkKDQ1V06ZNtXfv3rOOGTVqlMaPH+/WOkuXLnWGEvHx8XrwwQfVuHFj5efna/ny5Zo7d66WL1+uSy65RPHx8RXGGwwGXXjhhYqJiVHHjh3VtGlTTZ061a0aaoJgAgAAAAAAAAAAD0pISNDx48c1Y8YMffTRRy4FE+4qKipy7nbo37+/nnjiCWdbcHCwRo0apRMnTmjhwoV65ZVXdNtttyk0NLTcHA8//LDGjRvnfJ2ZmenxOivD5dcAAAAAAAAAAHjIpk2btGbNGnXu3Fl33XVXna2Tlpam48ePSzq926Iy999/vyTp1KlT+vTTTyu0+/n51Vl91SGYAAAAAAAAAADAAwoLCzV9+nT5+/tr5syZMhrr7iP4gwcPOn9u1apVpX0aNWqkJk2aSJK+/fbbOqvFXRzlBAAAAAAAAACo9ywWiywWi1tj4uPjK72boSrz5s1TRkaGRo0apfbt27u1VnJyslavXq2srCwFBwerVatW6tOnj+6++26ZzeZqxxYXF5+17X//+59b9dQlggkAAAAAAAAAQL2Xl5enI0eOuD3GVWlpaVq8eLGioqLcvsRakn777TcFBAQoKChIubm52rZtm7Zt26alS5fqtddeqxB0NG/e3Pnznj171K1btwpzZmVlKScnR5J09OhRt2uqKwQTAAAAAAAAAIB6z2w2q1mzZm6PcUVxcbGmTZvm/B4cHOzyGt27d9fQoUN1zTXXKCIiQgaDQTk5OVq/fr1eeuklHTp0SKNHj1ZycrIaN27sHNexY0eFh4crOztbr7/+eqXBxH/+8x/nz+6ELHWNYAIAAAAAAAAAUO+5eyyTOywWi9LS0tSvXz/17t3brbGV7a5o1KiRhg0b5rxAOysrSxaLRRMnTnT28ff310MPPaRZs2bp66+/1uOPP64HH3xQF110kbKysrR06VK99957CggIkMPhqNP7Ltx17lQCAAAAAAAAAMB5JiMjQwsWLFBISIimTp3q0bljY2M1cOBASdIXX3xRoX3EiBEaNmyYJCkpKUkDBw5UbGysbrzxRr3xxhuKjY3VkCFDJElhYWEera02CCYAAAAAAAAAAKih2bNnq6CgQGPGjFFoaKisVmu5r7LLp4uKipzvlZSUuDx/586dJZ0OQCozffp0vfPOO7rlllvUpk0bRUVF6YorrtCUKVO0dOlS2Ww2SVLLli1r+aSew1FOAAAAAAAAAADU0MGDByVJiYmJSkxMrLJfcnKykpOTJUlr165Vhw4dPFZDjx491KNHj0rb0tLSJEldunTx2Hq1xY4JAAAAAAAAAADOUdu3b5cktWjRwu2xu3bt0v/+9z9J0q233urRumqDHRMAAAAAAAAAANRQUlJSte3Dhw9Xamqq4uLilJCQUK6ttLRUBoOhyrHp6enasGGDJOnGG290q67CwkI9/fTTkqR+/fqpTZs2bo2vSwQTAAAAAAAAAAD4wMKFC3XgwAENHDhQXbp0UWhoqCTp5MmT2rBhg1566SU5HA5FRkZq1KhRFcbv3r1bn376qfr27atWrVopMDBQDodDqampeumll7Rz5041a9ZMM2bMqHT9kpIS5eTkOF/n5uY6f87Ly1N2drbzdaNGjWQ0euYQJoIJAAAAAAAAAAB8wG63a/Xq1Vq9erUkyWw2y8/PT7m5uSotLZUkRUdHa8GCBWrcuHGF8Tk5OZo/f77mz58vg8GgsLAwWa1WFRUVSZJat26t//znP4qMjKx0/UOHDqlPnz6Vto0cObLc688//7xGx0lVhmACAAAAAAAAAAAfuPnmm1VcXKxt27YpIyNDJ06ckM1mU5MmTdSuXTv17dtXcXFxCg4OrnR869at9dBDD+n7779XZmamcnJyFBYWprZt22rAgAG67bbbFBAQ4OWnOjuCCQAAAAAAAAAA6siSJUuqbGvbtq0ee+yxGs8dERGhCRMm1Hh8ixYttHv37hqPrynPHAgFAAAAAAAAAADgAoIJAAAAAAAAAADgNQQTAAAAAAAAAADAawgmAAAAAAAAAACA1xBMAAAAAAAAAAAAryGYAHDes9vtvi4BAAAAAAAAgIsIJgCc9xwOh69LAAAAAAAAAOAiggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABeQzABAAAAAAAAAAC8hmACAAAAAAAAAAB4jb+vCwAAAAAAAAAA4HxXUFCg1NRUpaWlKT09XWlpaTp06JAk6fHHH9f9999f7fjs7GwtWbJEKSkpOnDggGw2m0JDQ9W2bVsNGDBAt912mwIDAyuM6927tw4ePOhSjUOGDNHs2bPLvZeenq6NGzfqhx9+0J49e5STk6MGDRro4osv1g033KB7771X4eHhLv4WXEMwAQAAAAAAAABALe3YsUNjxoyp0di0tDSNHj1a2dnZkiSj0aiQkBCdOHFCqampSk1N1QcffKBFixZVCAkaN24sm81W5dx2u125ubmSpNjY2HJtH374oSZNmuR8bTAYFBoaqry8PKWlpSktLU1Lly7VggULdOWVV9bo2SpDMAEAAAAAAAAAgAc0bNhQMTExiomJUceOHTV79mxlZWVVO6aoqEiPPvqosrOzFRUVpRkzZuiaa65RQECA8vLytGrVKr3wwgv65Zdf9Nxzz2nu3Lnlxq9atara+efNm6dXX31VgYGBGjx4cIW1TSaTBg0apIEDB6pr164KDg6WzWbT119/rVmzZungwYN6+OGH9fHHH6tJkyY1+8X8CcEEAAAAAAAAAAC1dOWVVyo1NbXce38OESqzdetWZWZmSpISEhLUo0cPZ5vZbNaIESN04sQJvfbaa/rkk09UUlIio9G166NLSkq0du1aSVKfPn3UsGHDcu1dunTRZ599pqZNm5Z732QyqW/fvrr00ks1ePBg5ebmavny5Ro7dqxL654Nl18DAAAAAAAAAFBLfn5+NRp35o6KPx+1VOayyy6TJDkcDjkcDpfn/u6775z3XAwdOrRCe6tWrSqEEmeKjo52BiU7d+50ed2zIZgAAAAAAAAAAMBHWrRo4fy5qg//d+zYIUlq06aNTCaTy3OXHfN0wQUX6JprrqlRfWXrlZSU1Gh8ZTjKCQAAAAAAAABQ71ksFlksFrfGxMfHKz4+vo4qOq1Tp06KiYlRenq6pkyZohkzZujqq68ud8fEm2++qYCAAE2ePNnleU+dOqXPPvtMkvR///d/Lh//dCaHw6GtW7dKktq1a+f2+KoQTAAAAAAAAAAA6r28vDwdOXLE7TF1zWg0av78+Ro7dqx27dqlMWPGyGg0KiQkRKdOnZLRaFTPnj01duxYde3a1eV5161bp8LCQknSkCFDalTbO++8o2PHjsnPz09xcXE1mqMyBBMAznt2u93XJQAAAAAAAOAcZzab1axZM7fHeEOLFi1ksVg0Y8YM5wXXp06dknT6CKX8/Hzna1etXr1aktStWzddfPHFbte0fft2vfzyy5KkESNGqFWrVm7PURWCCQDnvaKiIl+XAAAAAAAAgHOcN45lqqmUlBRNnDhRBoNBTz75pHr37q2IiAhlZGRo+fLlWrZsmR566CE9++yzuv3228863549e5z3UtRkt0RGRobGjh0ru92uyy+/XBMnTnR7juoQTAAAAAAAAAAA4COZmZkaN26cHA6HLBaLevbs6Wxr166dpk+froYNG+rVV1/V7Nmz1adPH4WHh1c7Z9ml18HBwbr55pvdqufQoUMaMWKEsrKydOmll+r1119XQECA+w9WDfdvuwAAAAAAAAAAAB6xbNky2e12xcTElAslznT//fdLkqxWqzZv3lztfEVFRfrwww8lSQMGDFBwcLDLtRw+fFj33XefDh48qDZt2ujtt99Ww4YNXR7vKoIJAAAAAAAAAAB8ZO/evZKk6OjoKvuYzWZFRERIkg4ePFjtfCkpKTp27JgkaejQoS7XceTIEd13333KyMjQJZdcIovFctadGTVFMAEAAAAAAAAAgI8YDAZJp49Qqordbldubq4kKSQkpNr5yi69vuSSS9S1a1eXaigLJX777TdFR0dr8eLFatq0qUtja4JgAgAAAAAAAAAAH4mJiZEkpaWlOS+s/rNVq1bJbrdLkrp06VLlXNnZ2UpJSZHk+m6JrKwsjRgxQgcOHFDz5s31zjvv6IILLnDjCdxHMAEAAAAAAAAAgAecPHlS2dnZzq+SkhJJUkFBQbn3y0IG6XSAYDKZVFxcrLFjx2rDhg0qKCiQdDpoeOWVV/Tcc89Jkrp166aOHTtWuf6HH34oh8MhPz8/3XrrrWetNzs7WyNHjtT+/fsVFRWld955R1FRUbX5FbjEv85XAAAAAAAAAADgLyAuLq7SOyDmz5+v+fPnO1/Pnj1bQ4YMkSRFRUVpzpw5mjRpko4ePaoJEybIYDAoODhYVqvVOaZ169aaO3duteuvWrVKknTttdeqWbNmZ6136dKl2rNnjyQpJydHd955Z5V9L7jgAuf8tUUwAQAAAAAAAACAD910003q0KGD3n33XW3evFkZGRkqLCxUo0aN1LZtW/Xr10933nmnGjRoUOUcO3fu1K+//ipJztDjbEpLS50/5+fnKz8/v8q+JpPJxac5O4IJAOe9gIAAX5cAAAAAAAAAaOPGjTUeGx0drSlTptR4fGxsrHbv3u3WmPHjx2v8+PE1XrOmuGMCwHmPYAIAAAAAAAA4fxBMAAAAAAAAAAAAryGYAAAAAAAAAAAAXkMwAQAAAAAAAAAAvIZgAgAAAAAAAAAAeA3BBAAAAAAAAAAA8BqCCQDnPbvd7usSAAAAAAAAALiIYALAec1ms+nEiRO+LgMAAAAAAACAi/x9XQAAVMdms8nhcJR7z2q1SpIOHjyoESNGqKio6HTfUkeF8QAAwHUGPz9flwCgGqXFxb4uAUB1DPz9LwC4imACgFdVFjScqSx0yMrK0okTJ3THHXdU2X/YsGHlXu8v4kgnAABqgw89AQCoOf+mEb4uAQDOGwQTQCXO9uH5+cxut8tqtTp3GdSVsoBh165datCggSTJ4XDo4Ycfdmnt22+/3e010+wXuD0GgHcZ/AN8XQKAavi1vtjXJQCoRtHuPb4uAUA1io4c9XUJAHDeIJgA/sRms6l3796y2Wy+LqVeeOihh7y21sK2rby2FoCaqp+hL1BfOJqG+roEANW4cWWBr0sAUI0vOwX5ugQAOG8QTAB/4nA4ZLPZtH79eoWEhPi6HI+yWq0aNGiQ3nvvPQUGBtb5ena73e2dJ3a7XY888kid7+gAAAAVGb7e5usSAFRjSpNffV0CgGp8qc6+LgEAzhsEE0AVQkJCZDabfV1GnWjevPk5+2x5eXkqKiqqNhgqC1hWrFih4OBgZWRkeHVnBgAAAAAAAICaI5gAcE5yJRiKjIyU2WxWfn6+l6oCAAAAAAAAXDdmzBilpKRIkuLi4pSQkFBpv+zsbC1ZskQpKSk6cOCAbDabQkND1bZtWw0YMEC33XZbpSegZGdn67PPPtPmzZuVnp6uw4cPq7S0VJGRkbriiit0991364orrqiyvieeeEJr1qyp9hnatm2rdevWufHUZ0cwAeC8ZrPZCCYAAAAAAABwzlm3bp0zlKhOWlqaRo8erezsbEmS0WhUSEiITpw4odTUVKWmpuqDDz7QokWLFB4eXm7sddddV+5I9KCgIBkMBmVmZiozM1PJycm6//77NWnSpGprMJlMCg2t/M65xo0bn/UZ3EUwAcArbDabS/dNWK1Wl+e02+3q378/F5UDAAAAAADgnJKTk6NZs2YpNDRUTZs21d69eyvtV1RUpEcffVTZ2dmKiorSjBkzdM011yggIEB5eXlatWqVXnjhBf3yyy967rnnNHfu3ArjL7/8cg0ZMkTXXnutoqKiVFpaqn379mnu3Ln6/PPP9eabb+qiiy7SnXfeWWW9AwcOrHI3R10gmABQ52w2m3r37u3xAKHsovL//Oc/3DEBAAAAAACAc0ZCQoKOHz+uGTNm6KOPPqoymNi6dasyMzOdY3r06OFsM5vNGjFihE6cOKHXXntNn3zyiUpKSmQ0Gp193nnnnXJjJMlgMKh169Z65ZVX9MADD+jrr7/WG2+8UW0w4W3nRDDh6l9SA97gzl/swzVlAUJ1F1qXKbvY2h1BQUG1KQ8AAAAAAADwmE2bNmnNmjXq3Lmz7rrrLn300UdV9s3KynL+HBsbW2mfyy67TNLpz9gcDodMJpOz7c+hxJkMBoOGDh2qr7/+WhkZGTp58qQaNmzo7uPUCZ8HE3X1l9QAzj2uXGgNAAAAAAAAnK8KCws1ffp0+fv7a+bMmeV2N1SmRYsWzp937txZadCwY8cOSVKbNm3KhRKuOLN/cXGxW2Prks+DCXf+khrwhpr8xT58KyAgwNclAAAAAAAAAJo3b54yMjI0atQotW/f/qz9O3XqpJiYGKWnp2vKlCmaMWOGrr766nJ3TLz55psKCAjQ5MmT3a4nNTVVkhQZGVntJdabN2/WTTfdpEOHDslkMuniiy/W9ddfr3vvvVcRERFur3s2Pg8myvCX1ADOVN2RWn9uI5gAAAAAAADA2VgsFlksFrfGxMfHKz4+3qW+aWlpWrx4saKiojR+/HiXxhiNRs2fP19jx47Vrl27NGbMGBmNRoWEhOjUqVMyGo3q2bOnxo4dq65du7pV+8GDB7V8+XJJ0tChQ2UwGKrse/jwYfn7+zvXTUtLU1pampYtW6aXX35ZPXv2dGvtszlnggkAkE6HDCaTiV0rAAAAAAAA8Ki8vDwdOXLE7TGuKC4u1rRp05zfg4ODXV6jRYsWslgsmjFjhvOC61OnTkmSSkpKlJ+f73ztKrvdrgkTJqigoEAtWrTQAw88UGm/mJgYXXbZZbrhhht0wQUXyGg0Ki8vTxs3btQLL7ygrKwsPfLII1q9erVatmzpVg3VIZgAcE4xmUzauHGjHA5HlX04bgsAAAAAAADuMpvNatasmdtjXGGxWJSWlqZ+/fqpd+/ebq2RkpKiiRMnymAw6Mknn1Tv3r0VERGhjIwMLV++XMuWLdNDDz2kZ599VrfffvtZ5yspKdETTzyh7du3q0GDBkpMTKzyOe67774K75nNZt1yyy3q2rWr4uLidPLkSS1YsEBz585167mqQzAB4JxjMpncvsgHAAAAAAAAqI47xzK5IyMjQwsWLFBISIimTp3q1tjMzEyNGzdODodDFoul3JFJ7dq10/Tp09WwYUO9+uqrmj17tvr06aPw8PAq5ystLdXUqVO1fv16BQQE6N///rcuu+yyGj1X8+bNNWzYML366qv68ssvVVJSctbLvF3lmVkAAAAAAAAAAPgLmj17tgoKCjRmzBiFhobKarWW+youLpYkFRUVOd8rKSmRJC1btkx2u10xMTFV3uNw//33Szp9isjmzZurrKO0tFQzZszQqlWr5O/vr5dfflm9evWq1bN17txZ0ukjrXJycmo115nYMQFUobrLl89X9fGZAAAAAAAAAF86ePCgJCkxMVGJiYlV9ktOTlZycrIkae3aterQoYP27t0rSYqOjq5ynNlsVkREhI4dO+ZcqzLPPPOM3n//ffn5+enFF19U3759a/I4XkEwAfwJly8DAAAAAAAA8AaDwSBJOnToUJV97Ha7cnNzJUkhISGV9pk5c6aWLVsmo9Go2bNna+DAgR6pb/v27c51GzVq5JE5JYIJoAJXLl8+X9XXS6P9/fmnDAAAAAAAAL6RlJRUbfvw4cOVmpqquLg4JSQklGuLiYnRxo0blZaWph07dlR6H8SqVatkt9slSV26dKnQ/q9//UvvvfeeDAaDnnvuOd16660u1V1aWuoMRipz6NAhLV26VJJ0ww03eOx+CYlgAqgUly+fXwIDA31dAgAAAAAAAOC2oUOH6o033pDNZtPYsWM1ZcoU3XjjjQoKClJ2draWLVum1157TZLUrVs3dezYsdz4559/XkuWLJHBYNCzzz6rIUOGuLx2UlKSPv/8c91666264oornJdqW61WffHFF3rxxReVk5Oj4OBgjRs3znMPLYIJAAAAAAAAAAB8IioqSnPmzNGkSZN09OhRTZgwQQaDQcHBweXui23durXmzp1bbuyhQ4e0aNEiSZLRaNTLL7+sl19+ucq15s+fryuuuML5uqSkRJ988ok++eQTSVJwcLACAwOVm5vrvJy7SZMmeumll9SqVStPPbIkggkAAAAAAAAAAHzmpptuUocOHfTuu+9q8+bNysjIUGFhoRo1aqS2bduqX79+uvPOO9WgQYNy48rCA0kqLi7WsWPHql3nz0fX9+jRQ4899pi2bt2q/fv368SJE8rLy1NYWJjatGmjXr166Y477vDo3RJlCCYAnLfOTI0BAAAAAACAc9GSJUvO2ic6OlpTpkxxa94WLVpo9+7dNS1LzZs318MPP1zj8bVBMAHAJTabrcYXgns6QAgICJDJZNIdd9zh0XkBAAAAAAAA1D2CCQBnZbPZ1Lt3b9lsNl+XIun05eQbN25UTk6OBg0a5OtyAAAAAAAAALiBYALAWTkcDtlsNq1fv14hISFuj7darR4PEEwmU41qAQAAAAAAAOBbBBMAXBYSEiKz2ezrMgAAAAAAAACcx4y+LgAAAAAAAAAAAPx1EEwAAAAAAAAAAACvIZgAAAAAAAAAAABeQzABAAAAAAAAAAC8hsuvgb8gq9Vap/0BAAAAAAAAoCoEE8BfSEBAgEwmkwYNGuTrUgAAAAAAAAD8RRFMAH8hJpNJGzdulMPhcGuc1WolzAAAAAAAAADgEQQTwF+MyWSSyWTydRkeFRAQIKORK3MAAAAAAACA8wGf5AE47wUGBuquu+7ydRkAAAAAAAAAXEAwAaBeuPDCC31dAgAAAAAAAAAXcJQTgHqhSZMmvi4BAAAAAAAAkCQdP35c77zzjlJSUpSZmSmHw6GIiAh16NBBvXv31pAhQ5x98/PztWbNGu3cuVO7du1SVlaWcnJyFBAQoOjoaPXs2VP33nuvoqOj3aphzJgxSklJkSTFxcUpISGh0n7Dhw9XampqtXPdcMMNev31191avzoEEwDOe3a7XSUlJb4uAwAAAAAAANDnn3+uJ554Qrm5uZJO3/nq7++vzMxMZWZmavfu3eWCiT/++EMzZ850vvbz85PZbFZubq52796t3bt3a/ny5UpISNCAAQNcqmHdunXOUMJVwcHBCg4OrrQtLCzMrbnOhmACgNdYrdYq22w2m4qKiiq8X1paKoPBUOF9u92ukydPSpIGDBig4uJiNVZLzxULAMBfkYGTXoFzWYn4YxwAAM51mzZt0t///nc5HA7deuuteuCBB9S2bVtJUm5urrZt26affvqp3Biz2awxY8aoW7duuvTSSxURESE/Pz85HA5t3bpVL774on7++WdNnjxZsbGxZ905kZOTo1mzZik0NFRNmzbV3r17Xap91KhRGj9+fI2e210EEwBcVl2wcKY/hwx2u12BgYEaNGhQndRVXFxcJ/MCAPBX439BU1+XAKAavzgKfV0CAACohtVq1ZNPPimHw6HRo0dr0qRJ5drDwsLUq1cv9erVq9z7zZo10z/+8Y8K8wUEBKhHjx5atGiRevXqpfz8fCUnJ+uRRx6pto6EhAQdP35cM2bM0EcffeRyMOFNBBMAzqqkpKROgwUAfx3+rdnZBJzLShsE+LoEANVYmNXr7J0A+JDd1wUA8LE1a9bojz/+ULNmzfT3v//dY/OGhYXpkksuUXp6uo4cOVJt302bNmnNmjXq3Lmz7rrrLn300Uceq8OTCCYAVMtms2nAgAGy2/kPLAC197d1P/i6BADVWNMhwtclAKjG7kc6+boEANX62dcFAPCxDz/8UJLUv39/BQYGemze7Oxs7d+/X5KqPcapsLBQ06dPl7+/v2bOnCmj8dw9qpVgAkC1HA6HbDab1q9fr5CQEJfG2O12ORyOcq/Ljnb6c9uZfYqLi2W32/WPf/yj0vsmAJz/ugXt93UJAKqR3CzG1yUAqEbJT7t9XQKAapT6ugAAPmWz2ZSeni5J6tixo/bt26dXX31Vmzdv1smTJxUZGakePXpo9OjRatOmzVnnKykp0fHjx7V9+3b9+9//VkFBgcLCwspdmv1n8+bNU0ZGhkaNGqX27du7/QzJyclavXq1srKyFBwcrFatWqlPnz66++67ZTab3Z6vOgQTAFwSEhLi0j9ANptN/fv3l81mq9V6ZUHImUGGzWZTTk6OxowZQ3ABnKeyij37HzIAPKxRmK8rAFCNkiNHfV0CAADnNYvFIovF4taY+Ph4xcfHn7XfwYMHnZ9h7d+/X08//bQKCgpkMplkMpl06NAhrVmzRuvXr9cLL7ygAQMGVDrP9OnT9f7771d4/5JLLlFiYqLCw8MrHZeWlqbFixcrKiqqxhdY//bbbwoICFBQUJDzou5t27Zp6dKleu2112oUdlSFYAKAR9Vkh8WZrFZrubssAgMDFRgYKLvdrri4OI6UAs5z1hKTr0sAUI3SAD9flwAAAADUmby8vLPe0VDZGFfk5uY6f164cKGaNGmiefPm6brrrpPRaNSuXbv01FNPaefOnXriiScUExOjiy++uMI8oaGhioiIUFFRkXJyciRJLVu21FNPPaWYmMp3OBcXF2vatGnO78HBwW49Y/fu3TV06FBdc801ioiIkMFgUE5OjtavX6+XXnpJhw4d0ujRo5WcnKzGjRu7NXdVCCYAL7LZbJUeY3Qus1qtNRrn6g4LqfzvJSAgoMqLtg0GQ41qAXDuKCk9d8+3BCCJ/1sLAACAesxsNqtZs2Zuj3FFSUlJuZ8TEhJ07bXXOt9r3769XnvtNfXv31/5+fl6++23NWPGjArzTJo0SZMmTZJ0+nO57777TnPnztXo0aN16623atasWfL3L/+xvsViUVpamvr166fevXu79XySKt1h0ahRIw0bNsx5iXZWVpYsFosmTpzo9vyVIZgAvMRms6l37961PuKovnHn91JayomdwPmui+mgr0sAUI2SX/b6ugQA1fBr1MjXJQCoRvH/+8tmAOcuV49lqokzTw5p06ZNuVCiTNOmTTV48GB98MEH2rRpk0tz9unTR927d9ctt9yipKQkdezYUSNGjHD2ycjI0IIFCxQSEqKpU6d65mHOEBsbq4EDByopKUlffPEFwQRwvqntEUe+8uejlTytst9L2ZorVqyodOuZzWZTQUGBjh07pr///e91VhsAz7vQj//0AM5lBj+OcgLOZXzoCQDAuatp06bOn1u1alVlv7K2w4cPuzx3aGiohgwZogULFmjlypXlgonZs2eroKBAEyZMUGhoaIXTT4qLiyVJRUVFzragoCAZja6faNC5c2clJSUpIyPD5TFnw6cDgJe5c8TRX0llv5fIyMhKf1d/3mUxZ84c/fOf//RKnQBqJ8DAh57Auaz0//0/LQAAAADc07hxY0VGRiorK8ul/u4eWV52BNXvv/9e7v2DB0+fTJCYmKjExMQqxycnJys5OVmStHbtWnXo0MGt9T2NYALAeadsl8WaNWt0xx136PHHH/d1SQBcVKKSs3cC4DMGI3dMAOcyDjYFAODcdvXVVyspKUn79u2rsk9ZW/Pmzd2au2y3grsXW3vC9u3bJUktWrTw2JwEEwDOW40bN9Z///tf9e/fv9wFQwDOXUZx+TVwList4WNPAAAAoKbi4uKUlJSkPXv26Ouvv9Z1111Xrv3o0aNat26dJKlXr17O94uKiipcaH2m7OxsrV69WpLUrVu3cm1JSUnV1jR8+HClpqYqLi5OCQkJFdpLS0ur3b2Rnp6uDRs2SJJuvPHGatdyB8EEAJf8+Xy62vbzlLCwMK1bt079+/f36roAasZkCPB1CQCqUVrk8HUJAAAAwHmrZ8+euv766/XVV19pypQpeu6553TdddfJaDRq165dmjp1qvLz89WoUSONHDnSOW7KlCkKDw/XgAED1KFDB5lMJklSXl6evvrqKyUmJurYsWMKCAjQww8/7NGaFy5cqAMHDmjgwIHq0qWLQkNDJUknT57Uhg0b9NJLL8nhcCgyMlKjRo3y2LoEEwCqFRAQIJPJVKcXYNdWkyZN9Mwzz+jlv73t61IAAAAAAADwFzZnzhyNHDlS6enpGjNmjBo0aCB/f3/l5eVJkho2bKgFCxaUuyzbarXqww8/1Ntvvy2j0ei8c/XUqVMqLS11jktISPD43RB2u12rV6927sgwm83y8/NTbm6uc+3o6GgtWLBAjRs39ti6BBMAqmUymbRx40Y5HK79BaXVavVJiBEQwF9hAwAAAAAAwLcaNmyo999/X++9957WrVun/fv3y+Fw6JJLLlGvXr10//33Oy+yLvPoo4/qsssuU2pqqn7//XcdP35cDodD4eHhat26ta677jrddtttCg8P93i9N998s4qLi7Vt2zZlZGToxIkTstlsatKkidq1a6e+ffsqLi7O43dbEEwAOCuTyeTcQnauKigo8HUJAAAAAAAAgAIDAxUfH6/4+HiX+rdv317t27fXQw895PFalixZUm1727Zt9dhjj3l83bPhBkoA9cKpU6d8XQIAAAAAAAAAFxBMAKgXvH3pNgAAAAAAAICaIZgAUC/s37/f1yUAAAAAAAAAcAHBBIB6gR0TAAAAAAAAwPmBy68B1AlXgwJPBQrn+uXcAAAAAAAAAE4jmADgUQEBATKZTBo0aJDX1wUAAAAAAABw7iOYAOBRJpNJGzdulMPhcKm/1Wr1SIhBMAEAAAAAAACcHwgmAHicyWTy+tFKDRo08Op6AAAAAAAAAGrGp8EEl9UC8BTumAAAAAAAAADODz4JJnx1Bj2A+iswMNDXJQAAAAAAAABwgU+CiTPPoPfU+fIA/trYMQEAAAAAAACcH3x2lJMvzqAHUH9x+TUAAAAAAABwfjD6ugAA8AQ/Pz9flwAAAAAAAADABQQTAOqF4uJiX5cAAAAAAAAAwAU+O8oJADzJbrf7ugQAAAAAAABAknT8+HG98847SklJUWZmphwOhyIiItShQwf17t1bQ4YMqXLs559/rrVr12rHjh06fvy4QkNDFRUVpe7du+uee+5RdHR0uf4FBQVKTU1VWlqa0tPTlZaWpkOHDkmSHn/8cd1///1nrTc7O1tLlixRSkqKDhw4IJvNptDQULVt21YDBgzQbbfdpsDAwNr9Us5AMAGgXvDkP4wAAAAAAABATX3++ed64oknlJubK+n0fcv+/v7KzMxUZmamdu/eXWkwUVBQoAkTJuiLL76QJBkMBoWGhurkyZPKzs7Wzp071b59+wrBxI4dOzRmzJga15uWlqbRo0crOztbkmQ0GhUSEqITJ04oNTVVqamp+uCDD7Ro0SKFh4fXeJ0zEUwAqBciIiJ8XQIAAAAAAAD+4jZt2qS///3vcjgcuvXWW/XAAw+obdu2kqTc3Fxt27ZNP/30U4VxJSUlevjhh7V582Y1a9ZM//jHP9S3b1+FhISoqKhIGRkZ+uKLLxQVFVXpug0bNlRMTIxiYmLUsWNHzZ49W1lZWWett6ioSI8++qiys7MVFRWlGTNm6JprrlFAQIDy8vK0atUqvfDCC/rll1/03HPPae7cubX6/ZQhmABQL5SWlvq6BAAAAAAAAPyFWa1WPfnkk3I4HBo9erQmTZpUrj0sLEy9evVSr169KoxdsmSJNm/erMaNG2v58uXlAgh/f3+1bNlSLVu2rHTdK6+8UqmpqeXeczVA2Lp1qzIzMyVJCQkJ6tGjh7PNbDZrxIgROnHihF577TV98sknKikpkdFY+6urufwaQL2Ql5fn6xIAAAAAAADwF7ZmzRr98ccfatasmf7+97+7PK6oqEhvvPGGJGn8+PFV7oqoip+fn1v9z3TmrorY2NhK+1x22WWSJIfDIYfDUeO1zkQwAeCcYLValZeXp7y8PFmtVl+XAwAAAAAAALjlww8/lCT179/frftQN23apKysLBkMBg0ePLiuyqtUixYtnD/v3Lmz0j47duyQJLVp00Ymk8kj63KUEwCfCggIkMlk0qBBg2o1j6f+UQQAAAAAAADcZbPZlJ6eLknq2LGj9u3bp1dffVWbN2/WyZMnFRkZqR49emj06NFq06ZNubHbtm2TJDVv3lyhoaF67733tHLlSu3fv1/+/v5q06aN/va3v+mOO+5QQECAR+vu1KmTYmJilJ6erilTpmjGjBm6+uqry90x8eabbyogIECTJ0/22LoEEwB8ymQyaePGjeW2gVmt1loHFQAAAAAAAMCZLBaLLBaLW2Pi4+MVHx9/1n4HDx50fr61f/9+Pf300yooKJDJZJLJZNKhQ4e0Zs0arV+/Xi+88IIGDBjgHPvbb79Jkho3bqzx48frs88+k8FgUFhYmKxWq7Zt26Zt27Zpw4YNeuONNxQcHOzWM1THaDRq/vz5Gjt2rHbt2qUxY8bIaDQqJCREp06dktFoVM+ePTV27Fh17drVc+t6bCYAqCGTySSz2ez8CgkJcXuOkpKSOqgMAAAAAAAA9UVeXp6OHDni1per95rm5uY6f164cKHMZrMWLlyon376SVu2bFFSUpJiY2Nlt9v1xBNPOMMISTp58qQkKS0tTZ999pmGDh2qb775Rqmpqfrxxx81efJk+fn56ccff9SsWbM8+0vR6eOcLBaLbrrpJkmnP2c7deqU8+f8/Hzna08hmAAAAAAAAAAA1Htms1nNmjVz68tsNrs095l/NFtSUqKEhAT16tVLRuPpj+Dbt2+v1157TcHBwSosLNTbb7/t7F9aWuocd/nll2vWrFmKiIiQJAUFBWnUqFG67777JJ2+YPvo0aOe+HU4paSkqF+/ftq8ebOefPJJffbZZ/rpp5+UnJysYcOGafv27XrooYe0YsUKj63JUU4A6gVPbmEDAAAAAABA/ePqsUw1ceYJIG3atNG1115boU/Tpk01ePBgffDBB9q0aVOlY0eMGFHp/PHx8bJYLCoqKlJqaqrHLsnOzMzUuHHj5HA4ZLFY1LNnT2dbu3btNH36dDVs2FCvvvqqZs+erT59+ig8PLzW67JjAgAAAAAAAACAWmjatKnz51atWlXZr6zt8OHDbo09c/fGH3/8Uataz7Rs2TLZ7XbFxMSUCyXOdP/990s6fS/s5s2bPbIuwQSAeiE7O9vXJQAAAAAAAOAvqnHjxoqMjHS5v8FgcP7ctm1bt9Y6c2xt7d27V5IUHR1dZR+z2ew8WurgwYMeWZdgAsA5zWazKS8vr9yX1Wqt0K+oqMgH1QEAAAAAAACnXX311ZKkffv2VdmnrK158+bO96655poK7X925kXcZ46trbKQ49ChQ1X2sdvtzsu9zzx2qjYIJgCcs+x2u3r37q0bbrih3NegQYMq9PXUP4oAAAAAAABATcTFxUmS9uzZo6+//rpC+9GjR7Vu3TpJUq9evZzvR0dHq2vXrpKkxYsXVzr3okWLJEkmk0lXXXWVx2qOiYmRJKWlpWnHjh2V9lm1apXsdrskqUuXLh5Zl2ACwDnL4XDIZrNp/fr1+vLLL51f69evr9CXHRMAAAAAAADwpZ49e+r666+XJE2ZMkUpKSkqKSmRJO3atUuPPPKI8vPz1ahRI40cObLc2H/+85/y8/PTtm3b9NRTT+nYsWOSpIKCAlksFi1ZskSSNHLkSDVu3LjC2idPnlR2drbzq2zdgoKCcu+XBQxlhg4dKpPJpOLiYo0dO1YbNmxQQUGBpNNHp7/yyit67rnnJEndunVTx44dPfK78vfILD5ms9nkcDh8XQZQrcqOH4JrQkJCnJf7VKXsH1sAAAAAAADAV+bMmaORI0cqPT1dY8aMUYMGDeTv7+88hqlhw4ZasGBBuQuvJemKK67QM888o6efflorV67UqlWr1LBhQ+Xl5Tn/IHfgwIF69NFHK103Li6u0vsf5s+fr/nz5ztfz549W0OGDHG+joqK0pw5czRp0iQdPXpUEyZMkMFgUHBwcLnPM1u3bq25c+fW/BfzJ+d9MGGz2dS7d2/ZbDZflwLAh4KCgnxdAgAAAAAAAP7iGjZsqPfff1/vvfee1q1bp/3798vhcOiSSy5Rr169dP/996tZs2aVjr399tvVsWNHLVq0SKmpqcrOzpbZbFZsbKxuu+02DRgwoE5qvummm9ShQwe9++672rx5szIyMlRYWKhGjRqpbdu26tevn+688041aNDAY2ue98HEmUe9cMY8zmVWq7XSuxHgGQEBAb4uAQAAAAAAAFBgYKDi4+MVHx/v9tiYmBjNmTPH7XEbN250e8yZoqOjNWXKlFrN4Y7zPpgo48pRLwDqLz8/P1+XAAAAAAAAAMAFXH4NoF4oLCz0dQkAAAAAAAAAXEAwAaBe4CgnAAAAAAAA4PxAMAGgXoiIiPB1CQAAAAAAAABcQDABoF7gKCcAAAAAAADg/EAwAaBeyMvL83UJAAAAAAAAAFxAMAGgXmjQoIGvSwAAAAAAAADgAoIJAPWC2Wz2dQkAAAAAAAAAXEAwAaBeKCoq8nUJAAAAAAAAAFxAMAGgXnA4HL4uAQAAAAAAAIALCCYA1AtBQUG+LgEAAAAAAACACwgmANQLHOUEAAAAAAAAnB8IJgDUCydOnPB1CQAAAAAAAABcQDABoF5o3Lixr0sAAAAAAAAA4AJ/XxcAAFWxWq0u9yWYAAAAAAAAwLlmzJgxSklJkSTFxcUpISGhXHtJSYlWrVqln3/+Wenp6crKylJ2drb8/Px04YUXqlu3bho2bJguvfTSSuffvXu3Pv30U+3cuVP79+/XiRMnZLVaFRYWpnbt2unmm2/W0KFDFRgYWGWN2dnZWrJkiVJSUnTgwAHZbDaFhoaqbdu2GjBggG677bZqx9cEwQSAc05AQIBMJpPuuOMOl/rbbDaNGTNGZrWo48oAAAAAAAAA16xbt84ZSlTF4XBo6tSpztcGg0FhYWHKy8vTvn37tG/fPq1cuVKTJ0/WiBEjKoxPTk7WG2+84XzdoEEDmUwmZWdn67vvvtN3332npUuX6q233lLTpk0rjE9LS9Po0aOVnZ0tSTIajQoJCdGJEyeUmpqq1NRUffDBB1q0aJHCw8Nr+quogKOcAJxzTCaTNm7cqPXr17vU3+FwyOFw1HFVAAAAAAAAgGtycnI0a9YshYaGqnXr1lX2MxqNuu+++/TKK6/oiy++0M6dO5Wamqqff/5ZK1eu1LXXXqvi4mLNnj1bW7ZsqTA+JiZGU6dO1cqVK/Xjjz9q+/bt2rp1q3744QdNnz5dQUFB+vXXX/XEE09UGFtUVKRHH31U2dnZioqK0uuvv64dO3boxx9/1JYtW/Tkk0/K399fv/zyi5577jmP/n4IJgCck0wmk0JCQnxdBgAAAAAAAOC2hIQEHT9+XBMnTlSTJk2q7BcQEKCnnnpKffv2VVRUlPz9Tx9y5Ofnp06dOum1115TixYtVFpaqtWrV1cYP3DgQA0fPlydOnVSaGio8/2wsDANGzZMTz75pCTp22+/1eHDh8uN3bp1qzIzM5313nDDDQoICJAkmc1mjRgxQg888IAk6ZNPPlFJSUktfiPlEUwAOO/Z7XZflwAAAAAAAABIkjZt2qQ1a9aoc+fOuuuuu2o1V2BgoDp06CBJOnLkiNvjL7vsMufPfx6flZXl/Dk2Nrba8Z4+sYRgAsB5j2OcAAAAAAAAcC4oLCzU9OnT5e/vr5kzZ8porN1H8IWFhUpPT5ckRUdHuz3+zOOfWrQofz/rma937txZ6fgdO3ZIktq0aSOTyeT2+lUhmAAAAAAAAAAAwAPmzZunjIwM3XfffWrfvn2N5igtLVV2drY2b96sBx54QAcPHpS/v7+GDRvm0ni73a7ff/9dCxcu1PPPPy9JGjx4cIUjpTp16qSYmBhJ0pQpU5SSkuL8A+C8vDwtXrxYb775pgICAjR58uQaPUtV/D06GwD4AEc5AQAAAAAA4GwsFossFotbY+Lj4xUfH+9S37S0NC1evFhRUVEaP3682/UtXLhQc+fOrfB+06ZNlZCQoDZt2lQ7vlOnThU+JzMajbrllls0c+bMCv2NRqPmz5+vsWPHateuXRozZoyMRqNCQkJ06tQpGY1G9ezZU2PHjlXXrl3dfp7qEEwAOK/ZbDbdeeedvi4DAAAAAAAA57i8vDy372nIy8tzqV9xcbGmTZvm/B4cHOx2fcHBwYqIiFBxcbFycnJUWlqqyMhITZkyRVddddVZx0dGRspms8lqtaqgoECS9H//93965JFHFBQUVOmYFi1ayGKxaMaMGc4Lrk+dOiVJKikpUX5+vvO1JxFMADivORwOdkwAAAAAAADgrMxms5o1a+b2GFdYLBalpaWpX79+6t27d03K07333qt7771X0uk/xv3pp5/00ksvacKECbr22ms1b968auvZuHGj8+cjR47ogw8+0JtvvqmPPvpIL7zwgm666aYKY1JSUjRx4kQZDAY9+eST6t27tyIiIpSRkaHly5dr2bJleuihh/Tss8/q9ttvr9FzVYZgAgAAAAAAAABQ77lzLJM7MjIytGDBAoWEhGjq1KkemdNkMqlHjx5asmSJ7rnnHn3zzTf697//rSeffNKl8c2aNdP48ePVvn17jRs3TpMnT1bnzp3LBTOZmZkaN26cHA6HLBaLevbs6Wxr166dpk+froYNG+rVV1/V7Nmz1adPH4WHh3vk+bj8GgAAAAAAAACAGpo9e7YKCgo0ZswYhYaGymq1lvsqLi6WJBUVFTnfKykpcWnuwMBA3XPPPZKklStXul1bv3791Lx5c+Xn52v9+vXl2pYtWya73a6YmJhyocSZ7r//fkmS1WrV5s2b3V6/KuyYAHDeslqtvi4BAAAAAAAAf3EHDx6UJCUmJioxMbHKfsnJyUpOTpYkrV27Vh06dHBp/rJdDlarVcePH1eTJk3cqq9p06Y6ePCgfv/993Lv7927V5IUHR1d5Viz2ayIiAgdO3bM+ZyeQDAB4LxTdqfEoEGDfFwJAAAAAAAAULcyMjKcP9fkUu3MzMxKxxoMBknSoUOHqhxrt9uVm5srSQoJCXF77aoQTAA47zgcDknSihUrFBwcrEGDBsnfn3/OAAAAAAAA4H1JSUnVtg8fPlypqamKi4tTQkJCubaioqJqP9cqKCjQe++9J0mKjY1VUFCQs620tFSlpaUyGqu+sWHt2rXKysqSJHXv3r1cW0xMjDZu3Ki0tDTt2LFDl112WYXxq1atcv6RcJcuXap9TnfwSR6A81ZwcLBHk1oAda9Erp2hCcBHDFxBB5zTSvm/owAA1DcvvfSScnNzNXjwYHXq1Mn5WVdhYaG+//57zZs3T7/++qskady4ceXGnjp1SnfffbfuueceXX/99WrRooVzF0RGRoZWrVqlN998U5J02WWX6frrry83fujQoXrjjTdks9k0duxYTZkyRTfeeKOCgoKUnZ2tZcuW6bXXXpMkdevWTR07dvTYcxNMADjvBAQElPsunU6XAZz7jOJDT+CcxoeeAAAAgFc5HA6tWLFCK1askMFgkNlslp+fn3Jzc50XZDdo0EBPPfWUbrzxxgrj9+zZo5kzZ0o6/VmZ2WxWYWGhCgoKnH0uv/xyvfrqqxV2VkRFRWnOnDmaNGmSjh49qgkTJshgMCg4OLjc3a6tW7fW3LlzPfrc50wwUdNLbLn8FvjrCQwMdH4v20oG4PzAjgngHMeOCeDcRngIAEC9M3z4cEVFRen777/X/v37dezYMeXl5SksLEwtW7ZUz549ddttt6l58+YVxprNZi1YsEDfffedtm3bpqNHjyonJ0f+/v6Kjo5WbGysBgwYoJtuusm5k+LPbrrpJnXo0EHvvvuuNm/erIyMDBUWFqpRo0Zq27at+vXrpzvvvFMNGjTw6HP7PJgICAiQyWTiElsAAAAAAAAAQL2zZMmSKtsuuugixcfHKz4+3u15jUaj+vXrp379+tWmPEVHR2vKlCm1msNdPg8mTCaTNm7c6LzM1l1Wq5VQA/iLslqtzi1tkmTwD6imN4BzgaO02NclAKgOf40NAAAAwAt8HkxIp8MJk8nk6zIAnKP+fGRbYWGhAgMDK4SSpUU1CzgBeM/JEpuvSwBQDb/QUF+XAKAaxadO+boEAAAAjzgnggkAqExVR735+fmpuPj//6trg8Gg0tJSb5cHoAYCOL8eOKeVFrOrCQAAAEDdI5gAznM2m63GR6FVp7S0tMpLcbwpOTm53PPZ7XbdcccdKi4udgYShBLA+SOfo5yAc5ohMNDXJQCoTn6+rysAAADwCIIJwMv+fCxRbdjtdg0ePFh2u91jc5YxGo3l7m84F1UIJHp29k0hAFx23boevi4BQDWaDWJXE3AuC3tvs69LAFANg5+fr0sAgPMGwQTgJVUdS+QJK1asUHBwcK3nsdvtuvPOO2W328/5UKJSm7f7ugIAZ9H5+Wa+LgFANY581dLXJQAAcN7iSEQAcB3BBOAlJpNJGzdu9OixS2U7Jm6//XaPzSmdDjr8/f0r1Gq32xUfH+/RZzgfdmYA8Jyrwvf5ugQA1fg8M8rXJQAAAAD4CyCYALzIZDLJZDJ5dM4vvvjCY0GBq0FHbXdolN1fUXZfRHXBBBdbA/XL69/f4OsSAFTD1DfA1yUAqMZFX/u6AgAAAM8gmADOc54OO6oLOjy1Q8PPz0/FLm5xLS0tZVcFUI9cdFGWr0sAUI38by/0dQkAAAAA/gLqZTBhs9k8etQM4A02m01FRUUem69sV4Knvf/++7Wq0263a8SIEW6NIZQA6o8CO3+NDZzLigM9/98OAAAAAPBn9S6YsNls6t27t2w2m69LAeBl/he18HUJAM6i0aD/+boEANXif0cBAKipf+3/0dclAMB5o94FEw6HQzabTevXr1dISIivywFc5skdE3a7XXfeeafsdrtH5jtfFP2e6esSAJzF3sSevi4BQHUM3OsEnMtaP/adr0sAUI2pLa/0dQkAzuJTDuU4Z9S7YKJMSEiIzGazr8sAXObp/3l151Jsm82mv/3tbz4PMrhLAqj/AnI5JgY4l9miOQ4VAAAAQN2rt8EE4E3n+70mRUVFstvtHtlpZLfbXf5d2O123XHHHc7+hBJA/XfBd+fvv5XAX8Flg3b4ugQA1djl6wIAAAA8hGACqCXuNfn/2e12DR482K2dF0aj8ax9DAaDSks5WgKoD4qC/XxdAoBqHLNzFCpwbvtrHdUKAEB9MGbMGKWkpEiS4uLilJCQUK599erVmjJlisvzbdy4Uc2bN6/wflFRkZYtW6akpCTt379fJSUlio6O1oABAxQfH68GDRpUOt/8+fO1YMGCatcMDg7Wtm3bXK7RFQQTQC3Vh3tNygKFQYMGeWS+FStWKDg4uMIald174couCUIJoP7IaXX2MBKA7xzNuMjXJQCoxiU64esSAACAG9atW+cMJarSoEEDRUREVNsnJydHRUVFioyMVLNmzSq05+fn6/7779fWrVslSYGBgfLz89Pu3bu1e/duJScn691331V4eHiVawQEBKhhw4aVtgUFBVVbX00QTAAecr7fa+LOnRRVKQs4br/99ir7nBla/FUv6Qb+yozFvq4AQHWMfhyrCAAAAHhCTk6OZs2apdDQUDVt2lR79+6ttN/AgQM1cODAKufJy8vTtddeq6KiIt1yyy3y96/4kf4zzzyjrVu3ymw269lnn9XNN98so9Gob7/9VpMnT9bevXs1YcIELV68uMp1Lr/8ci1ZssT9B60hggmgHjhX7rgIDAzUunXrKq2l7D6JP4cWlR3lxCXYwP/X3n2HR1WtfR//pU5IowrSBSQIAqJSRECUIkpAAQXpHOQoUvSIR5AmCojAw6EoyFFAikFBuqE/QqgiRKQpEQxICT1IQvrMJJn3j7wzT0ImIXUmhO/nuriczN5rr3vG2bP37HuvdRdf7gnOjgBAdrxKJDk7BAAAAKBYmDZtmv7++2999NFH2rp1a5aJibvZunWrEhMTJUmvvPJKpuWnT5/WDz/8IEmaNGlShiRHixYtNHfuXPXs2VMHDx7U3r179cwzz+QpjoJGYgK4x93rNS7sJSDympRwf6h6fsMBUMge3B3p7BAAZOPRwXn7sQTAMY47OwAAAJAjBw4c0Pr16/XYY4+pZ8+e2rp1a563tW7dOklSo0aNVKtWrUzLN27cKIvFoqpVq9odefH444+radOmCg0NVXBwMIkJAAXDWTUuclPo2lEjIJLPXyj0PgDkT0rbJ50dAoBsGFycPwITQHbcnB0AAAC4i6SkJE2YMEHu7u6aNGmS3dlCcur8+fO2uhHdunWzu87BgwclSa1atZKLi4vddZ555hmFhobq559/znMsBY3EBFBMOLrGRVxcnEwm010TIndLYHz77beSpOTk5Gz7M5lMGjJkyF3XA1C0uSRTzB4oygyuHGeBoo3EBAAARd1nn32miIgIvf7663rkkUfyta21a9dKSiuQHRgYmGm5xWKxTRFVu3btLLcTEBAgSbp586aioqJUunTpTOuEh4crMDBQERERcnNzU+XKlfX000+rX79+qlq1ar5ehz0kJgDkS04SIvYKa8fHxyswMFADBw6k+DVwH/GMuOXsEABko7XvKWeHACAb+/SYs0MAAOCetmTJEi1ZsiRXbQYOHKiBAwfmaN2TJ09q2bJlqlSpkt5+++28hGiTkpKiDRs2SJKef/55u9ff4uPjlZCQVsyxQoUKWW4r/bLIyEi7iYmoqCjdvn1bfn5+iouLU3h4uMLDw/X999/rk08+UefOnfP1eu5EYgL3hcIsDh0fH18o2y1ODAaDDAZDhuc8PDzk6emplJSUu7Z3c3PLtJ6Li4ssFu68Bu45qey3QFHmqsKfehEAAABwlri4OF2/fj3XbXIiJSVFH374oe2/3t7eeQnRZv/+/bpx44Yk+0WvpYzXJUuUKJHltry8vOy2kaTq1atr1KhRateunSpXrix3d3cZjUbt379fM2bM0Llz5zR69Gg9+OCDatKkSX5eUgYkJlDs3evFoYsrg8GgXbt2yWQyZTn/nfR/U0HdmZggKQHcmyx+WZ8oAXC+K8mZ75wCAAAAigtfX99sRxZk1SYnlixZopMnT6p9+/Zq06ZNXsLLwFr0ukqVKmrWrFm+t5eVl156KdNzBoNBbdu2VePGjfXqq6/q4sWLmjlzplauXFlg/ZKYQLFX2MWhrVMSIffsjaSw586poEwmkwIDAwttFAyAwmM5Q5F6oCjr4H3N2SEAyMYiPeTsEAAAuKflZlqm3IiIiNC8efPk4+Oj8ePH53t70dHRCgkJkSR17do1y5t601/rTExMzHJ7SUlJdtvcTcmSJTV48GCNGzdOx44d061bt1SmTJkct88OiQncNxxdHBoFx14CY/fu3YqLi1N0dLT69OlDUWzgXsFUTkCR5qqsRzECAAAAsG/q1KlKTEzUiBEj5Ofnl2m6JOtMIMnJybZlJUqUkKurq93tbdq0SSaTSa6ururatWuW/fr4+Mjb21sJCQnZTlGVftkDDzyQ49clSY89llbjymKx6NKlSyQmAOCll15iii7gXuNm/6QLQNFgpsYEAAAAkGuXL1+WJM2ePVuzZ8/Ocr2NGzdq48aNkqQNGzaobt26dtdbu3atJOmpp55S5cqVs9yei4uLatWqpd9++03h4eFZrvfnn39KksqVK2e38LUzkJgAcM8xGo2Kjo6W0WjU8uXL1bdvX2eHBCCHLCamYAOKMm8XD2eHAAAAANzXTp06pbCwMElSt27d7rp+8+bN9dtvv2n//v2yWCx2p33at2+fbd3cOn78uKS0JEiVKlVy3T4rJCYA3FPuLGY+cOBAubq6KjWVOzwBAAAAAADgeD/88EO2y/v166fQ0FB17dpV06ZNy3Zd62gJf39/Pf/883ftu3Pnzlq4cKEuXryorVu3qmPHjhmWHz9+XIcOHZIkvfzyyxmWZZXIsIqNjdWCBQskpU3pVFDTOEkS8ykAuKdYi5mvWrXK9rebm5uTowIAAAAAAADyx2w226Z66tixY6aaq/YEBATYEg4TJkzQ1q1bbTfw/vzzzxo+fLiktGmhWrVqlaHtL7/8ooEDB2rjxo0Z6lCYTCbt3r1bPXv21IULF+Tm5qZ///vfBfIarRgxAeCeVKpUKXl6espkMmn27Nm2L1kARZuLK4V1gaIslRoTAAAAgNPs2rVLUVFRkqRXXnklx+0++ugjXbx4UUeOHNG7774rg8EgV1dXJSYmSpJq1aplt/aFxWLRgQMHdODAAUlpBbkNBoPi4uKUnJwsSfL29taUKVPUtGnT/L68DIpNYsJazfzOiueAozjrs3e/fuY9PT21bds2vfDCCyQlgHtIqjnZ2SEAyIaBGhMAAACA06xbt06SVLt2bTVs2DDH7by9vRUUFKTvvvtOwcHB+uuvv2SxWBQQEKAXX3xRr7/+ury8vDK1CwgI0KhRo3TkyBGdOXNGUVFRiouLk4+Pj6pXr64WLVqoV69eqlChQoG9Rqt7PjHh4eEhg8GgwMBAZ4eC+xSfQefx9/fXrl27FBERod69ezs7HAAAAAAAACCToKCgHK335Zdf5rkPd3d39e/fX/37989xm9KlS2vQoEEaNGhQnvvNq3s+MWEwGBQSEiKz2Swp7e5xLhDDke78DDra/f6ZNxgM8vT0pPg1AAAAAAAAcI+45xMTUtqFyZwUAgEKC59B5zEajXrttdecHQYAAMVCioVEPwAAAIDCVywSEwDuX2az2WmjVQDkHsWvAQAAAAAAiQkAAOAwlpQUZ4cAIBseLvw8AAAAAFD4XJ0dAAAAAAAAAAAAuH+QmAAAAAAAAAAAAA5DYgIAAAAAAAAAADgMiQkAAAAAAAAAAOAwJCYAAAAAAAAAAIDDkJgAAAAAAAAAAAAOQ2ICAAAAAAAAAAA4DIkJAAAAAAAAAADgMO7ODgBAwYiPjy8W/RmNRpnNZof3CwAAAAAAAMAxSEwA9zgPDw8ZDAYFBgY6O5R8MxqNatOmjYxGo7NDAQAAAAAAAFBISEwA9ziDwaCQkJBsRxkUhvj4+AJPhpjNZhmNRm3evFk+Pj4O6xcAAAAAAADIryNHjmjPnj36/fffFRERob///ltGo1GlSpVSvXr11LlzZ3Xq1EkuLi6Z2rZp00aXL1/Odvt9+vTRhAkTslweFRWlRYsWaefOnbp69aoMBoMCAgL06quvqkuXLnbbpKamau3atfrtt98UFhamyMhI3bp1S25ubqpYsaKaNGmiPn36qE6dOrl6L+6GxARQDBgMBhkMBmeHUWB8fHzk6+t71/WMRiNTOwEAAAAAAKBICAoK0pYtW2x/e3t7y93dXZGRkdqzZ4/27Nmj1atXa/78+Vle+/L19ZWXl1eWy7Jy9uxZDRgwQJGRkba+4+Pj9csvv+iXX37R7t27NWvWLLm6Ziw7bTabNX78eNvfLi4u8vf3V1xcnP766y/99ddfWrNmjT744AMNGDAgx+/F3ZCYAHBPMplM6tChA9M+AQAAAAAAoEho1qyZmjdvroYNG6pq1aq2GUEiIyO1Zs0azZ07V4cOHdL06dM1efJku9sYN26cunXrlqt+TSaThgwZosjISNWsWVP/8z//owYNGshkMmn16tWaOnWqtm7dqtq1a2vYsGEZ2rq6uqp///5q1qyZ6tWrp/Lly8vd3V0pKSkKCwvTnDlztH//fk2dOlX169fXk08+mbc35w6ud18FAIoe67RPq1atcnYoAAAAAAAAgHr27KkePXrokUceyTBN+QMPPKAhQ4bojTfekCQFBwcX6LTsq1ev1oULF+Tl5aUFCxaoQYMGkiRPT0/16dNHb7/9tiRp0aJFioqKytDWw8ND48aNU7t27VSpUiW5u6eNZXBzc1ODBg303//+V1WqVJHFYtG6desKLGYSEwDuaVnVogAAAAAAAACKkoYNG0qSkpKSdPv27QLb7g8//CBJ6tixo6pWrZpped++feXt7a2EhATt2LEjV9v29PRU3bp1JUnXr1/Pf7D/X7Gdyol552HFZ6F4M5lMzg4BAAAAAAAAuKtff/1VUlr9h7JlyxbINuPj43XixAlJ0jPPPGN3HR8fHzVu3Fh79+7VgQMH1L179xxvPykpSWFhYZJkN+mRV8UuMeHh4SGDwaDAwEBnhwLAAZKTk50dAgAAAAAAAGBXQkKCrl69qg0bNmjx4sWSpP79+8vFxcXu+osXL9asWbMUHR0tX19f1alTRx06dNArr7wig8GQaf2//vpLFotFkhQQEJBlHLVr19bevXt15syZu8ZssVgUFRWl06dPa/78+bp8+bLc3d3Vp0+fnLzkHCl2iQmDwaCQkJACnaML97b4+HgSVQAAAAAAAMB9bsmSJVqyZEmu2gwcOFADBw7MVZvIyEi1bNky0/MeHh7q27ev3nnnnSzbhoeHy8vLS15eXoqKitLBgwd18OBBrVixQl999ZUqVaqUYf0bN27YHleoUCHL7VqXpV//TgsWLNDMmTMzPV++fHlNmzZNDz/8cJZtc6vYJSaktOSEvewRAAAAAAAAAOD+FBcXl+s6CXFxcbnux83NTeXKlZMkxcTEyGQyycXFRf3799frr78uNze3TG3atm2rxo0bq0mTJipTpoyktCTCmjVrNH/+fP3555968803tW7dOnl6etraJSQk2B57eXllGVOJEiUkZT/tvbe3t8qVK6eUlBRFR0fLYrHogQce0JgxY/TUU0/l7k24i2KZmAAAAAAAAAAAID1fX99sRxVk1Sa3ypQpo59++kmSlJqaqsuXL2vZsmVaunSp1q1bp3nz5qlx48YZ2owbNy7TdsqXL6+hQ4eqTp06Gjp0qMLDw7V+/Xq99tpruY4pJ/r27au+fftKkoxGo44dO6ZZs2ZpxIgRatmypT777LM8vR/2kJgAAAAAAAAAABR7eZmWKb9cXV1VtWpVjR8/XlWqVNHUqVP13nvvafv27bZRDHdjHU1x+PBh7dq1K0Niwtvb2/Y4KSkpy8RBYmKipLRC2DlhMBjUrFkzBQUFqXfv3tq/f78+//xzjR07Nkft78a1QLYCAAAAAAAAAACy1KtXL3l6eur69evau3dvrto2bNhQkhQREZHh+fLly9seZzdNlXVZ+vVzwtPTU71795YkrVmzJldts0NiAgAAAAAAAACAQmYwGFSqVClJ0sWLFwtkm7Vq1ZKLi4sk6c8//8xyvfDwcEnKUwFr6/RX8fHx+vvvv/MQZWYkJgAAAAAAAAAAKGTx8fGKioqSlHEKppw4ceKEJKlKlSoZnvf29tZjjz0mSdq3b5/dtgkJCTp8+LAk6emnn85Vv1LGURq5jTsrJCYAFCij0ai4uLg8/YuPj3d2+AAAAAAAAECuJScn33WdpUuXymw2S5KaNGlie95isWTbbvfu3bbEwnPPPZdp+UsvvSRJ2rJliy5dupRp+bfffquEhAR5e3urXbt2uYo7MTFR3377rSSpfv36Oa6LcTcUvwZQYIxGo9q0aSOj0VjofZHEAAAAAAAAQFERHh6ujz/+WD179lTz5s314IMPSkpLOpw9e1bfffedvvvuO0lShw4dFBAQYGv7ySefyMXFRR06dMhw8T8yMlLr1q3TF198IUmqXbu2unXrlqnv7t27a9myZbpw4YIGDx6s6dOnq379+jKZTFqzZo0+++wzSdI///lPlS5dOkPbWbNmKSYmRp06dVKDBg1sxbGTkpJ06NAhffbZZ7YpooYPH15g7xeJCQAFxmw2y2g0avPmzbYvsdyIj49XYGBgtut4eHjIYDCoR48eeQ0TAAAAAAAAKHDHjh3TsWPHJKXVk/D29lZCQkKGm3jbtGmj6dOnZ2gXHx+v9evXKygoSC4uLvLz85PFYlFsbKxtnXr16mn+/Pny9PTM1K+np6f++9//asCAATpz5oxeeeUV+fj4yGQy2UZovPjiixoyZEimtmazWatXr9bq1avl4uIiX19fubm5KSYmRqmpqZIkLy8vjRs3zu5ojbwiMQGgwPn4+MjX17dQtm0wGBQSEqLo6Oi7JjEAAAAAAAAAR6hRo4ZmzpypgwcP6rffftPNmzcVHR0tT09P1axZUw0bNtRLL72kFi1aZGrbs2dPlSlTRseOHdOVK1cUFRWl1NRUlS9fXo8++qheeOEFBQYGysPDI8v+a9WqpY0bN2rhwoXauXOnrl69qhIlSqhRo0Z69dVX1aVLF7vt+vXrp0qVKunQoUM6d+6cbt68qbi4OPn7+6tGjRpq3ry5Xn31VVWuXLmg3ipJJCYA3IMMBoNtRIa7O19jAAAAAAAAcC4vLy916tRJnTp1ynXbRo0aqVGjRvmOoXTp0ho1apRGjRqV4zbVqlXTwIEDNXDgwHz3nxsUvwZwT7M3fA0AAAAAAABA0UViAgAAAAAAAAAAOAyJCQAAAAAAAAAA4DAkJgAAAAAAAAAAgMOQmAAAAAAAAAAAAA5DYgIAAAAAAAAAADiMu7MDAHBvi4+Pt/sYAAAAAAAAAOwhMQEgTzw8PGQwGBQYGOjsUAAAAAAAAADcQ0hMAMgTg8GgkJAQmc1m23Px8fFOS1S4uLg4pV8AAAAAAAAAuUNiAkCeGQwGGQwGZ4chSXJzc3N2CAAAAAAAAABygOLXAIqFyZMnOzsEAAAAAAAAADnAiAkARU52RbRNJpPMZrMSEhIkSceOHZObm5vGjBmj0qrhqBABACiWUpXq7BAAZMeFewuBIs3CcRQAcorEBIAiw2QySVKu6lSMGzeusMIBUAjcSpZ0dggAsnEjJcHZIQDIDhc9AQBAMUFiAkCRs2HDBpUqVcr2t8lkUqdOnWyJCw8PjwxFtwHcQyhUDxRpJovF2SEAAAAAuA+QmABQZHh6ekpKSzykZzabZTKZtH79evXo0UOpqWl3irm5uSklJcXhcQLIOxeDp7NDAJCNBAvTxAAAAAAofCQmADiU0WjMcrSDyWSSp6dnllM5RUREaObMmUpOTpbZbNaYMWMKM1QAhSGVKSiAoszDhRETAAAAAAofiQkABS6r4tV3TsmUW++8805+wgJQBFgSk5wdAoBsnDdTBwYoytwrPujsEABkI/nqNWeHAAD3DBITuG/cebHcaDQqOTnZSdFkZLFY5JKLeddNJlO+Y8/NNkwmU46mTIqPj5ebm1uuilcXpLOzmjulXwA5V3vZbWeHACAb73/W0NkhAMhG+asHnB0CgOy4MCUiAOSUi8VChTsUb0ajUW3atJHRaHR2KChkpY/UcHYIAO4i4ZWnnB0CgGzceoQLKkBRVuKGsyMAkJ2yC0keAkXdj6mrnR0C/j8SEwAAAAAAAAAAwGG4JQoAAAAAAAAAADgMiQkAAAAAAAAAAOAwJCYAAAAAAAAAAIDDkJgAAAAAAAAAAAAOQ2ICAAAAAAAAAAA4DIkJAAAAAAAAAADgMCQmAAAAAAAAAACAw5CYAAAAAAAAAAAADkNiAgAAAAAAAAAAOAyJCQAAAAAAAAAA4DAkJgAAAAAAAAAAgMOQmAAAAAAAAAAAAA5DYgIAAAAAAAAAADgMiQkAAAAAAAAAAOAwJCYAAAAAAAAAAIDDkJgAAAAAAAAAAAAOQ2ICAAAAAAAAAAA4DIkJAAAAAAAAAADgMCQmAAAAAAAAAACAw5CYAAAAAAAAAAAADkNiAgAAAAAAAAAAOAyJCQBAsdSvXz/VqVNHc+fOzbSsTp06qlOnjg4dOuSEyIDiwWw266uvvlKnTp3UsGFD23516dIlXbp0KcPfAJBTWR2jDx06ZFsG3Ms4RuYP5/goDOyXgHO4OzsAAIDzjR49WuvXr8/0vIuLi3x8fFStWjW1bNlS/fr1U/ny5Z0QIYCCkp+Lejt37lSVKlUkSZMnT9b3338vSTIYDCpXrpwkyc3NTSkpKfkPFCggJpNJmzZt0u7du/X7778rKipKycnJKlWqlOrUqaOWLVuqc+fOKlu2bIZ2c+fO1bx58zI85+rqKh8fH/n5+alatWqqV6+e2rZtq8aNG+cptjfffFN79uyRJHXt2lXTpk3Lcdusjt05MXz4cL399tt5aoviKa/7SV7FxMRo2bJlkqQBAwbI39+/QLab3qFDhxQaGqrKlSurW7duBb79om7dunUaM2ZMnto2bdpUQUFBBRwR4Bzr1q3T5cuX1bRpUzVr1szZ4QBIh8QEAMDGw8NDJUuWtP2dnJys6OhohYWFKSwsTCtWrNCiRYvUqFEj5wUJIF+sCYQ7xcbGymg0ZvoeSM/NzU2SFBcXp7Vr10qSxowZowEDBsjFxcW2Hneaoaj4+eefNXbsWF25csX2nJeXlwwGg27cuKEbN25o3759mjNnjkaMGKEBAwZk2oarq6vKlClj+zshIUFXrlzRlStXdPDgQS1evFi1a9fW5MmT9fjjj+c4tk2bNtmSEnnh6+trd382m826ffu2JKl06dK2/TY9b2/vPPeL4qcg9pPciomJsSX+unbtWiiJidDQUM2bN09NmzYtUokJDw8P1ahRw/a4sHh5eWV5zL9586aktO8RLy+vTMuzOg8A7kXr169XaGiohg8fTmICKGJITAAAbB5//PFMd0cZjUbt3LlTEydOVHR0tEaNGqXt27dnuAgJ4N7x008/2X3eeve1ve+BO/31119KTk6WJHXv3p3vAxRJW7Zs0ciRI5WcnKwqVapo8ODBevbZZ20j/4xGow4fPqwNGzZo06ZN2rFjh90LrhUrVlRISEiG50wmk8LCwrRjxw59//33Cg8PV58+fTRjxgwFBgbeNbbo6Gh9+umn8vPzU/ny5XX27Nlcv77x48dr/PjxmZ4/dOiQ+vfvL0las2aNbZQTYE9B7SfIuQoVKmjbtm2F3k/Hjh3VsWNHu8usoyfHjRtXpJI2AID7CzUmAADZMhgM6tixo8aOHStJunDhQp4uoAAoPpKSkmyPfXx8nBgJYN/Zs2c1duxYJScn6+mnn1ZwcLB69OiRYTpCg8GgFi1aaMaMGVq7dq2qV6+e4+17enqqUaNGev/997Vx40bVrVtXKSkpGj16tMLDw+/aftq0afr777/13nvvFdjUOEBuFfZ+AgAAkB1GTAAAcqRu3bq2xwkJCXnaRkpKijZu3KjNmzcrLCxMt2/fVqlSpVSlShU9++yz6tKlix588MFM7c6fP68lS5bo4MGDunbtmlxdXVWtWjW1b99eAwYMkJ+fX55f152uXLmir7/+WgcOHNCVK1eUmpqqMmXK6MEHH9RTTz2lbt268aMc9y1781Wnr1mR1Rz5169f1xdffKG9e/fq5s2bKlu2rJ599lm98847XJRFoZg9e7YSExP1wAMPaM6cOXdNoNWrV0+TJk3KU18PPvigvvjiC3Xq1EkJCQn64osvNGfOnCzXP3DggNavX6/HHntMPXv21NatW/PUryPFxsbqu+++U0hIiM6dO2d7b2vWrKkOHTooMDDQ7vRQP//8s1auXKmjR4/q1q1b8vb2Vp06ddSlSxd16dLF7jRTeXXkyBEFBQXp6NGjunnzpjw8PFSmTBlVr15drVq1Uvfu3eXr61tg/RUH+dlPLBaL2rZtq8uXL2vMmDH6xz/+kWW7Tz75REFBQWrSpImWL1+ufv36KTQ01La8bdu2Gda3dyw5e/asvv76ax08eFCRkZEyGAx6+OGH9eKLL6pXr17y9PS0rXvp0qUM2wwNDc1UX+mbb77JMKWLxWLR5s2btW7dOp08eVLx8fEqVaqUnnjiCfXr109NmjTJ0H7Dhg364IMP5OrqqqCgILt1ZlavXq3x48fLzc1N33zzjW2d9PGlr92UntFo1OrVq7V9+3aFh4crLi5OZcuWVbVq1dSuXTu99NJLKl26tP033Ak4x4cj7d27VytXrtTx48d1+/Zt+fv7q0GDBurevbvatWtnW+/O89Z58+Zlqh11+vRpu33k9dw1JiZG33zzjUJCQnThwgWZTCZVqFBBTz/9tAYNGmT3M2ataWWt7RIcHKxVq1YpPDxc0dHR+uKLLzK8LqA4ITEBAMiRU6dOSUqba7tq1aq5bn/z5k0NGzZMx44dk5RWWNvf31+xsbE6evSojh49KrPZnKkY5+rVqzVx4kSZzWZJUokSJWQ2m3Xq1CmdOnVK69ev15IlS1StWrX8vUBJf/zxh/r166fY2FhJkru7u7y9vXXt2jVdu3ZNx44dk7+/vwYNGpTvvoB7kXW+6vRz2Kefv9reRb8///xTY8eOVVRUlHx8fGSxWHTt2jWtXLlSBw4c0Nq1awtlbnHcv27cuKEdO3ZIkvr165fjudJdXfM+mNxaXHf58uXasWOHEhMTVaJEiUzrJSUlacKECXJ3d9ekSZPy1aejHD9+XMOGDVNkZKSktGOjr6+vbty4ocuXL2vfvn2qVq1ahou8ycnJmjhxolatWmV7ztfXVzExMQoNDVVoaKi2bNmi+fPny2Aw5DvGtWvXaty4cbJYLJLSvqtcXFx06dIlXbp0ST/99JMaN26sBg0a5Luv4iK/+4mLi4u6d++uOXPmaM2aNVkmJkwmkzZu3ChJevXVVyWl1S8oXbq0oqKiJGWuhXLnsWTDhg0aN26cbQpBPz8/JSUl2c4fN2zYoEWLFtkuFrq5ualcuXJKSEhQQkKC3dpJ6Ws7GI1GjRgxQjt37rS19/X11c2bN7V9+3Zt375db731lkaMGGFr06VLF+3du1ebN2/WqFGj9MMPP2S4iH7+/Hl9+umnkqTBgwfbTVxk5fz58xo8eLDOnz8vKe099/f3161bt3Tt2jWFhobKz8+vyEzBxDk+HMVisejjjz/WypUrJf3fZy0qKkq7d+/W7t271bVrV02ZMkVubm6289bbt2/LbDbL29s7RzWW8nrueuLECQ0ZMsRWw8XDw0Pu7u6KiIjQ999/r+DgYM2ePVvPPfdcln1bE7murq7y8/O7J84TgPwgMQEAyJbJZFJISIimTp0qSXr55ZdzfYeWyWTSkCFDdOLECXl7e+v9999X586dbSd0Fy5c0Pbt2zP9aNyzZ48+/PBDGQwGvfXWW7bpBZKTk3XixAlNmTJFv//+u4YPH64NGzbk+8Rt2rRpio2NVcOGDTVhwgTVr19fLi4uMhqNunDhgrZt22b3bi/gfmGdrzr9HPZZ1aywGj16tOrWratx48YpICBAJpNJwcHBmjhxoi5evKgFCxbo/fffd0T4uE8cOnTIdoH6zjuxC1Pr1q21fPlymc1mHTt2TM2bN8+0zmeffaaIiAi9/vrreuSRRxwWW15dunRJb7zxhm7fvq3q1atr9OjRatmypTw9PZWcnKywsDAFBwdnKp47e/ZsrVq1ShUrVtS7776rdu3aydfXV4mJibZziv3792v69OmaMGFCvmJMTEzUlClTZLFY1K1bNw0fPlyVK1eWJMXFxenUqVMKDg62myi6nxXEfvLKK69o3rx5Cg8P17Fjx9SoUaNM6/zv//6voqOj5e/vrxdeeEFS2l3L6UcNZFcL5cSJE7akxNNPP60PP/xQNWvWlNls1rZt2/Txxx8rLCxMI0aM0LJly+Ti4qKKFSvqp59+st2FfLfaSTNmzNDOnTvl6uqqESNGqHfv3rbExOeff67vv/9eX375pR566CF17drV1m7ixIk6evSoLl++rI8//lgzZ86UlFaA/v3331dCQoIaNWqkYcOG5fg9jYmJ0aBBg3Tp0iWVK1dOo0aNUvv27eXt7a3U1FSdOXNGmzdvLjIJfc7x4UhLly61JSX+8Y9/aPDgwSpTpoxiY2O1ZMkSffHFF1q/fr2qVKmi4cOH285braO0Xn/99UwJMnvycu567do1vfHGG4qOjlbXrl31z3/+UzVr1pSrq6suXryozz77TJs2bdJ7772njRs32v3O+/333/XLL7/o7bffVv/+/eXv76+4uDgZjcaCeQOBIojEBADA5ujRo2rRooXt7+TkZEVHR0uSKlWqpKFDh2ro0KG53u66det04sQJubm5aeHChZnuGqtevbrefPPNDM+lpKRo8uTJslgsmjZtml588UXbMnd3dz3xxBP6+uuv1alTJ50+fVo7duzQ888/n+vY0rPe6TVu3LgMd1UaDAYFBAQoICAgX9sH7kfly5fXwoULbdNseHp66tVXX9Uff/yh5cuXa+vWrSQmUKDOnDkjKe2zVrNmTYf1m36qmIiIiEyJiZMnT2rZsmWqVKlSji6MFAWzZs3S7du3VaFCBa1cuVJlypSxLXN3d1fDhg3VsGHDDG0uXryoxYsXy8/PT0uXLtVDDz1kW1aiRAkFBgaqUqVK6tWrl1atWqWhQ4dmGHmVW+Hh4YqPj5e3t7c++eSTTHfeN27cOFd3q98vCmI/KV++vJ577jn9+OOPWrNmjd3ExJo1ayRJnTp1ypTAyok5c+YoOTlZAQEB+uqrr2zHEg8PD9sF8DfffFOHDh3S3r171bp161xt/+rVq/ruu+8kSf/6178ynI+WK1dOkyZNUkxMjLZu3arZs2erc+fOcndPu4zi5+enGTNmqF+/ftq0aZNatWqlLl26aO7cufrtt9/k4+OjGTNm2NbPiYULF+rSpUvy9vbW8uXLVaNGDdsyV1fXInc+yjk+HCUxMVHz58+XJPXo0SPDFE1+fn565513lJSUpK+//loLFy5U3759VapUqTz1lZdz1zlz5ig6Olq9e/fWRx99lGFZtWrVNHPmTN2+fVv79u3T0qVLNX78+Ez9JiQkaPDgwRo+fLjtOV9fX6YhRLHGmCAAgI3ZbNbNmzdt/6xJCSntrsPY2FiZTKZcb3f9+vWSpBdffDHHFwdCQ0MVERGhypUrZ/jBkl6pUqX0zDPPSJL279+f67juZB2Cf+PGjXxvC0Caf/zjHxnm/rayzpV76dKlPNetAeyxHrv8/f0dOgVC+gsg6Y+fUtqFuA8//ND235xMJeFsCQkJ2r59uyRp2LBhGZIS2Vm/fr1SU1PVrl27DEmJ9B5//HFVqVJFZrNZhw4dylec1gs2ZrPZNjUQ7q6g9pMePXpIkrZs2ZLpuzwiIkIHDx6UJHXv3j3X2759+7YOHDggSXrzzTftHktat26txx57TJK0efPmXPexfft2paSkyNfXVwMHDrS7jjWReP36df3yyy8ZljVu3Nh24X3y5Mlav369Fi5cKEkaP358rqchsp4z9+vXL0NSoqjiHB+O8tNPPykmJkaurq5ZjkJ666235OnpqaSkJNtUdXmR23PXpKQk2/dPdtOBderUSVLWn2k3N7ds6/UAxREjJgAANtaCW1YWi0WxsbE6cuSIZs2apaCgIB05ckTLly/P8UUVs9ms33//XZJydRfb0aNHJaX9gEg/iuNO1pPCq1ev5njbWWndurXWrFmjDz74QEePHlXbtm3VsGFDuyemAHImqzndy5cvb3scGxt7T1yoBfJqyZIlOnnypNq3b682bdo4O5wc+e2332xz+j/77LM5bmc9fm/fvl379u3Lcj1rnZorV67kPUil3ZH90EMP6fz58+rRo4d69+6tVq1aqXbt2szN7QAtW7ZU5cqVdfnyZW3ZssVWR0JKq/1hsVj06KOPql69ernedlhYmG26qaeffjrL9Zo3b67jx4/r5MmTue7D2uaJJ57Ist5JrVq1VKFCBV2/fl0nT57MNBrq7bff1oEDB3TixAmNHj1akvTCCy/kugbEpUuXbLVccjvywxk4x4cjWT9rNWrUyHLaLX9/f9WvX19HjhzRyZMnM3wf5UZuz11///132817r732WpbbtdZTyeozXa1atRzfBAAUFyQmAABZshYUe/bZZ1W3bl0FBgbq5MmTCgoK0uDBg3O0jdu3b9subFSqVCnHfVt/mFlHcdxNUlJSjredlVGjRunChQv65ZdftHjxYi1evFgeHh5q0KCB2rRpo+7du+d5SDBwv/Lx8bH7fPoLQNYfakBBsH5Px8TEyGKxyMXFxSH9ph8lkf5YERERoXnz5snHx8fu1A1F1d9//y0pbWqVChUq5Lid9fhtLTx8N/k9fru5uWnWrFkaPny4Ll++rBkzZmjGjBny9fVVkyZN9OKLL6pjx44Zih2j4PYTV1fXDEWwrRcCU1JSbHfT5/Xi4K1btySlTdtkLWxtj/UipfUzm5c+7vYZf/DBB3X9+nW7fbi7u+vTTz+13Q1dtmxZTZo0KdexpN+2tU5KUcY5PhwpN/uqlLfvA6vcnrtaP9OS8vWZJimB+xGJCQBAjlSoUEGtWrXSli1btHnz5hwnJvIqJSVFUtpdcEuXLi3UvqxKliyp5cuXKzQ0VCEhIfr1118VFhamI0eO6MiRI1q0aJG++uoru3MoAwCKhocfflhSWlHWs2fP2v4ubKdOnbI9rlq1qu3x1KlTlZiYqBEjRsjPz0/x8fEZ2lmPd8nJybZlJUqUuGfv9re+nn/96195qkuVF48++qi2b9+uHTt26KefftKvv/6qc+fOadeuXdq1a5cWLVqkoKAgLjymU5D7ibUI9tGjR3X27FnVqlVL+/fv17Vr11SiRAl17ty5oMIuslavXm17HB0drTNnzujJJ590YkRFF+f4KG5SU1MlpSUp8zJyyyp9jSTgfnFvnu0CAJyiYsWKktLu/sypUqVK2e5SzM10DdZCmAUxfDu3mjZtqtGjR2v16tUKDQ3VzJkzValSJUVHR2vkyJEOjwcAkHPNmjWz3f29c+dOh/W7Z88eSWl3d6e/uHX58mVJ0uzZs/XEE09k+vfrr79KkjZu3Gh77vTp0w6LOyvW43BycrKuX7+e63aOPn57enqqY8eOmjJlirZt26Z9+/Zp5MiRMhgM+vPPPzVjxgyHxlPUFeR+Yi2CLf1fsWvrfzt06GCb3z+3rHcPm83mbO9+vnbtmiRlO6ribn3c7TOeXR/79+/XN998I0kKCAhQSkqKRo4cqbi4uFzFkr4IvPV7oyjjHB+OVBD7amGx9pXb4yUAEhMAgFywnmi5u+d8wJ27u7vq168vSdq9e3eO2z3++OOSpPPnz+vcuXM5D7KA+fj4qFOnTpoyZYok6eLFi075IQUAyJny5curbdu2kqSgoCBbLYO7sd7xmBeXL1+2TVvTvn17lShRIs/bKirq169vu+i4a9euHLezHr/37dtnuzPaGcqXL69//vOftoLG+S2yXdwU9H5iLYK9YcMGXbt2zfaZyarodfoRQdY6EneqV6+eLXny888/ZxmTdZn1fNPK2jar7advc/ToURmNRrvrnD171nYOfGcfUVFRGj16tCwWi7p166agoCBVqFBBly9f1sSJE7Ps157KlSvb5rDPzTmzs3COD0eyftbOnTuX5cX/mJgY24iF9PtqTr4L8qNBgwa24+W9sO8CRQmJCQBAjkRFRenAgQOS0qZMyA1r8b9t27bp8OHDOWrz1FNP2ebX/fTTT7O9uGE2mzNNjZFbycnJ2V6USj+naFY/XAEARcO7774rLy8vRUZG6t13373rMSIsLEwTJkzIU1/Xrl3TsGHDlJCQIE9PTw0bNizD8h9++EGnT5/O8l/Tpk0lSV27drU9V7du3TzFUpC8vb3VoUMHSdL8+fNt83vfTdeuXeXq6qqrV69q0aJF2a6b04vh2bEWHM2Kl5eXJI7d9hTkfmItgn3r1i299957MpvNqlGjhho3bmx3fV9fX9vj2NhYu+uULFnSVhx54cKFdv9f79mzR8ePH5ckBQYG2u0jJiYmy9f0/PPPy83NTbGxsVq2bJnddebOnSspbe76O1/P+PHjFRkZqerVq2v8+PEqVaqUpk+fLhcXFwUHB2vz5s1Z9m2P9Zx5+fLlTr1on1Oc48NRWrRooZIlSyo1NVXz58+3u86XX34po9EoLy8vW+JVytl3QX74+Pjk6nhZEMc+oLggMQEAyJbFYtHJkyc1fPhw20lW//79c7WNrl276rHHHlNKSorefPNNffvttxl+hJ4/f15z5szRihUrbM95eHjoo48+kqurq/bu3avXX39dR48etf2wSE1N1ZkzZ7RgwQJ16NBBf/zxR75e57Vr19ShQwd99dVXOn36tO1HksVi0fHjx213vT300EOqXr16vvoCABSu2rVra8qUKXJzc9OBAwf08ssva/Xq1RkKVBqNRh04cEAjR47UK6+8ogsXLuR4+yaTSSdOnNDMmTP10ksv6Y8//pCbm5umTZvmsJoWjvDee++pZMmSun79unr16qWQkBDbxeHk5GQdO3ZMY8eOtV0YlqSaNWtq0KBBkqRZs2bp448/zvDeGo1GHTlyRJ9++qnat2+f7xg3b96sPn36aPXq1RmmvzGZTNq2bZsWL14sSXrmmWfy3VdxU5D7ibUItiTb9GTZFb329/e3FbHdsGFDlhen//Wvf8nd3V2nTp3SkCFDdP78eUlpF6w3bdqk9957T1La1FStWrXK0DYgIEBS2oiH9J/R9CpWrKjevXtLkubMmaNFixbZLoT//fffmjBhgrZu3SopLZGTftTw999/rx07dsjd3V3/+c9/bAVzmzdvbhup8/HHH+dqmqNBgwapSpUqSkhIUL9+/RQcHKzExERJaee+p06d0pQpU/Tjjz/meJuFiXN8OEqJEiVsdYtWrlyp6dOnKzo6WlJacvPzzz/X119/LUl64403MtQUql27tqS0kXw3btwolPjef/99lSlTRteuXVOPHj20ffv2DEWur169qrVr16pnz5769ttvCyUG4F5E8WsAgM3Ro0dtd6ZZxcXF2U6qXF1d9c4776hNmza52q6Hh4fmz5+vIUOG6MSJE5o0aZImT56skiVLymg02n5wDR8+PEO71q1ba8aMGRo3bpwOHjyonj17ytPTU97e3oqPj5fZbLatax2imx8XL17UrFmzNGvWLLm7u8vX1zdDPyVLltSMGTMKpC8AQOHq1KmTSpcurbFjxyoiIkLjx4+XlHYHvaenZ4Y7J318fPTCCy/Y3c7Vq1czHBsTExOVkJCQYUqI2rVra/LkybYpSoqLypUra8GCBRo6dKjOnz+vIUOG2D0+vvzyyxnaWe+YX7p0qVasWKEVK1bI29tbHh4eio2NzVAoNL8sFosOHz5su1vbYDCoRIkSun37tu3/UZ06dfTvf/87330VRwW1n0j/VwQ7OTlZHh4e6tq1a7Z99+jRQ3PnztWyZcu0cuVKlS1bVi4uLurQoYM++OADSVLDhg01ZcoUjRs3Tvv377fVrEhKSrJ9/urWravZs2dnOj9r2rSpHnroIZ0/f149evRQqVKlbMmDWbNm2WrBjBw5UpcvX1ZISIhmzJihWbNmydfXVzExMbbP0FtvvZXh9Zw7d05Tp06VJA0bNkwNGzbM0PeIESN08OBBhYWF6YMPPtCyZctyVNDe399fixYt0uDBg3XhwgWNHDlSbm5u8vPzU0JCgi0xWBRGVUmc48OxBgwYoHPnzmnlypVavHixli5dKj8/vwzHlS5dumjIkCEZ2r388stavHixzp8/r9atW6ts2bLy9PSUJIWEhBRIbBUrVtTixYs1bNgwRURE6J133rHtu0lJSRmSFK1bty6QPoHigMQEAMDGbDbr5s2bGZ4rUaKEHnroITVu3Fi9evXKNLduTpUrV04rVqzQhg0btHnzZv3xxx+Ki4tT6dKl9cgjj6hNmzaZLmxIaT+YmzRpouXLl2vfvn2KiIhQbGys/Pz8VL16dT3xxBNq3769nnzyyTzFZVWhQgXNnz9fBw8e1LFjx3Tt2jVFRUXJw8NDDz/8sFq2bKkBAwbogQceyFc/AADHadGihX788UcFBwdrz549OnnypG7duqXExESVL19ederUUevWrdW5c+cMd1eml5qaajs2uri4yNvbWxUqVFD16tX16KOPqm3btllOV1McNGrUSNu2bdM333yjkJAQXbhwQYmJiapQoYJq1aql559/PtNFWVdXV40ZM0adO3fWd999p8OHD+v69etKSEhQ2bJl9fDDD6tZs2bq2LFjvuNr06aNpk+frp9//llhYWGKjIxUTEyMSpYsqdq1a+v555+3XfSEfQWxn0hpdSsaNWqkw4cP67nnnrtr8dmhQ4fKx8dHwcHBOn/+vG1kQVRUVIb1unTpovr16+vrr7/WoUOHdOPGDRkMBj366KPq2LGjevXqZff/r7u7u5YuXarPP/9cBw8eVGRkpO0O6/RT9hgMBs2fP1+bNm3SunXrFBYWpvj4eJUrV05PPPGE+vbta5tyTUo7X/73v/+txMREPfnkkxo8eHCmvj09PfWf//xH3bp1U2hoqBYuXGh3PXtq1Kih4OBgrVy5Utu3b9fZs2dt8VSrVk3t27fP9U1ChYlzfDiKi4uLJk6cqDZt2mjFihU6ceKE7fu+QYMGeu2119SuXbtM7WrWrKmlS5dqwYIFOnHihG7dulUoNZDq1q2rzZs3a9WqVdqxY4f+/PNPxcXFyWAwKCAgQPXr19dzzz2nZ599tsD7Bu5VLpbCqv4CAAAAAADuCzExMWrVqpWSkpK0YMEC7goGAADZosYEAAAAAADIl3Xr1ikpKUmVK1fOVO8BAADgTiQmAAAAAABAnp09e1ZffvmlJKl///45qqcAAADub0zlBAAAAAAAcq1Xr166dOmSIiMjZbFY9PDDD2v9+vXU9AAAAHfFbQwAAAAAACDXrl+/rhs3bqhUqVIKDAzU4sWLSUoAAIAcYcQEAAAAAAAAAABwGEZMAAAAAAAAAAAAhyExAQAAAAAAAAAAHIbEBAAAAAAAAAAAcBgSEwAAAAAAAAAAwGFITAAAAAAAAAAAAIchMQEAAAAAAAAAAByGxAQAAAAAAAAAAHAYEhMAAAAAAAAAAMBhSEwAAAAAAAAAAACHITEBAAAAAAAAAAAchsQEAAAAAAAAAABwGBITAAAAAAAAAADAYUhMAAAAAAAAAAAAhyExAQAAAAAAAAAAHOb/AWkfUQnCBCdRAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "image/png": { - "height": 789, - "width": 787 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "sns.clustermap(predictions, cmap=\"viridis\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "k-VAntUjrFev" - }, - "source": [ - "We then create a UMAP plot labeled by maximum probability assignments from the CellAssign model. The left plot contains the true cell types and the right plot contains our model's predictions." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "id": "oEWd5XnwC9tE" - }, - "outputs": [], - "source": [ - "follicular_bdata.obs[\"cellassign_predictions\"] = predictions.idxmax(axis=1).values" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 519 - }, - "id": "GMohUntlOMzl", - "outputId": "c405106a-0db8-474b-dde9-a073d2b286bd" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDQAAAZnCAYAAACcaycKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOzddXTd9f3H8ed1i3vSWNM0dXcv0AJFixQYQzbc+bGxjTHBxmBjwIaMDcZgyIDhLVIo0Ja6S9qmksbd7br9/rjpTW5yY21S4/04h3Nyv3Y/9yZb7/d1P5/3W+H1er0IIYQQQgghhBBCnEKUJ3oAQgghhBBCCCGEEH0lgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQohOnn/+eYYNG8aZZ57ZaV9JSQnDhg1j2LBhbNq06QSMTgghhBBCCAk0hBBC9LNrr72WYcOG8cADD5zooQghhBBCiNOYBBpCCCGEEEIIIYQ45UigIYQQQgghhBBCiFOOBBpCCCGEEEIIIYQ45ahP9ACEEEL0zOPx8Pnnn7N8+XKys7Opr6/HaDSSkJDApEmTWLRoEVOmTOl0XnV1NW+99RZr1qyhuLgYq9VKTEwMkydP5rrrrmPs2LH9Nsbnn3+eF154wf/4448/5uOPPw445pJLLuHJJ5/kuuuuY9OmTYwbN47//e9/3V73xRdf5LnnnkOr1bJmzRoiIiIAeOCBB/j444+ZOnUqb775Jtu2beP1119nx44dNDY2Ehsby9y5c7nttttISEjo9jnsdjvvv/8+K1as4ODBgzQ3NxMaGsqoUaO49NJLWbRoEQqF4ujeGCGEEEIIMSAk0BBCiJNceXk5d955J3v37g3Y7nA4aGhoYP/+/bz99tscOHAgYP+XX37Jgw8+iMVi6XS9ZcuWsWzZMu655x7uvPPOAX8NHS1ZsoRNmzaxa9cucnNzyczMDHqc1+v1hyILFizwhxkdvf/++zz00EO43W7/ttLSUt555x2WLVvGK6+8wsSJE4Oee+jQIW677TZKSkoCttfV1bFmzRrWrFnD0qVLefbZZzEYDEfxaoUQQgghxECQJSdCCHESa2pq4rrrrmPv3r0olUquvPJK3nnnHTZs2MD69ev573//y1133UVSUlLAeatXr+a+++7DYrEwadIkXnjhBVavXs2mTZt4//33ueiiiwB47rnn+PDDD/tlrLfeeivbt29n0qRJAFx44YVs37494L9HH30UgLPPPpvw8HCAbp9/8+bNFBcXA3D55ZcHPaawsJBHHnmEYcOG8corr7Bhwwa++eYbfvWrX2E0GmlpaeH222+ntra207kVFRVce+21lJSUMGjQIB599FG++uorNm/ezBdffMHdd9+NVqtl5cqVPPzww8fy9gghhBBCiH4mgYYQQpzEnnnmGYqKigB4+umnefTRR5k4cSJRUVFER0czadIk7r77blasWOE/x2638+CDD+L1ernwwgt5++23WbhwIQkJCURERDB27FieeuopbrrpJv917Xb7MY9Vq9ViMplQqVQAqNVqTCZTwH9arRYAnU7nD1WWLl2Ky+UKes2PPvoIgKSkJGbMmBH0mMrKSgYPHsxbb73F3LlziYqKIiUlhRtuuIEXX3wRhUJBQ0NDwHKYIx599FHq6+sZOnQoH3/8MVdeeSXp6emEh4czZMgQ7rrrLv95n3zyCXv27Dm2N0kIIYQQQvQbCTSEEOIk1dLS4p+9cMEFF3Deeed1eaxa3baC8PPPP6empgaDwcBDDz3UZe2Hu+66C6PRSG1tLWvXru3fwffCkiVLAKipqWHVqlWd9re0tPDVV18BcOmll6JUdv1P1v3334/JZOq0febMmSxcuBCATz/9NCA4KS4u5rvvvgPgwQcf9M8Y6WjevHlMnToVgGXLlvXilQkhhBBCiONBAg0hhDhJbdu2DYfDAfhu6Htr/fr1AIwfPx6lUonZbA76n8fjYfDgwQBkZ2f3/wvowbBhw/xFSYMtO/nyyy+xWq0oFIpuX7/RaGT27Nld7j/77LMBMJvNAXVGNm7ciNfrRafTMXbs2C7fJ7PZzIgRI4AT8z4JIYQQQojgpCioEEKcpI4sNQH8N9S9kZeXB8CGDRu6LITZUV1dXd8G10+WLFnC7t27+f7776mpqSEmJsa/70jIMX36dAYNGtTlNdLS0vzLXIJpX3C0tLSUUaNGAW3vk91u99f96MmJep+EEEIIIURnMkNDCCFOUi0tLf6fgy2n6M15vXVkJsjxdt5552E0GnG5XHz66af+7Xl5eezYsQPouhjoEUajsdf7zWaz/+fm5uY+j/dEvU9CCCGEEKIzmaEhhBAnqZCQEP/PZrMZnU7Xq/OO3MCfffbZPP/88wMytv4SEhLCokWL+PDDD/noo4+48cYbgbZioOHh4f4aGF3p2Ja2u/3tg6Ej71NERASbNm06qvELIYQQQogTR2ZoCCHESSo1NdX/c05OTq/PS0lJAQKXrJzMrrjiCgByc3PZuXMnbrfbP1vjggsu6DHIKSwsxO12d7k/NzfX/3P7pStH3qfGxkYaGhqOdvhCCCGEEOIEkUBDCCFOUpMmTfLfzH/88ce9Pu9IgcwDBw4E3MwfL0c6rnQXMrQ3fvx4srKyAN/MjDVr1lBVVQXAZZdd1uP5Foul2y4tX3/9NeCbnXHkeQBmzZoFgNfr5csvv+zVWIUQQgghxMlDAg0hhDhJhYSE+OtHfPbZZ/4WpsG0b0d60UUXERMTg9fr5YEHHuixVkRxcXG/1oaIjIwE8IcSvXEkuPj88895++23ARg+fLi/gGdP/vKXvwRderJ+/XpWrFgBwMUXX4xGo/Hvy8jI4IwzzgDgr3/9K4cOHer2OVpaWvr0moQQQgghxMCSQEMIIU5i9913H6mpqXi9Xu677z4efvhhduzYQV1dHXV1dezcuZO///3v/takAAaDgSeeeAKVSkV2djYXX3wxb775Jrm5uTQ2NlJbW8vevXt57733uOWWWzjnnHOOqpBoV0aPHg342s5+8803tLS04HK5cLlceDyeoOdcfPHFaLVaWlpa+P7774Gei4EeER8fT35+Ptdccw3ff/89dXV1lJaW8tprr3HnnXfi9XqJiIjgrrvu6nTuQw89RExMDA0NDVxxxRU888wz7N69m7q6Ourr6zl8+DBffPEFDzzwAHPnzmX79u1H+a4IIYQQQoj+pvB6vd4TPQghhBBdKysr44477uixjsaBAwcCHq9atYpf/epXPdaHUKlUbNiwgfDwcP+2559/nhdeeIFBgwbx3XffBRxfUlLCWWedBcAbb7zBtGnTAvbX1dVx/vnnB21xeskll/Dkk08GHcfPfvYzPv/8cwC0Wi1r1qwhIiKiy3E/8MADfPzxx0ydOpULL7yQhx56KGhgEhISwiuvvNJlC9uCggLuvvtuDh482OVzHfH3v//d/9qFEEIIIcSJJV1OhBDiJJeUlMSHH37I0qVL+eKLL9i3bx+NjY2EhoYSHx/P5MmTWbRoUafz5s+fzzfffMP//vc/Vq9ezaFDh2hqakKj0RAbG8vQoUOZMWMG55xzTkCYcayioqJ47733eOmll9i8eTNVVVW9WtKyZMkSf6CxYMGCbsOMjq644goyMjJ47bXX2LVrFw0NDcTFxTFnzhxuv/12EhISujw3PT2dTz75hC+++IKvvvqK7Oxs6urq8Hq9REZGkpGRweTJk1m4cCHDhw/v9ZiEEEIIIcTAkhkaQgghTgq7du3ydzx59dVX/cVNu9J+hsabb755PIYohBBCCCFOIlJDQwghxEnhww8/BHwzUmbOnHmCRyOEEEIIIU52EmgIIYQ44erq6li2bBngWz6iVMo/T0IIIYQQonvyiVEIIcQJVVJSwq9+9SssFgsmk4kf/ehHJ3pIQgghhBDiFCBFQYUQQpwQR2pgtPfzn/+8T8VAhRBCCCHED5cEGkIIIU4ovV5Peno6P/3pT1m8ePGJHo4QQgghhDhFSJcTIYQQQgghhBBCnHKkhoYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOOeoTPQDRN/lljXyzuYj4KCPnz85ApVSc6CEJIYQQQgghhBDHnQQap4j9hXVs3VfJp2sOY7O7AWg0O7h20YgTPDIhhBBCCCGEEOL4k0DjOPhuazFfrMsnIdrEbZeNRamAsmozSbEmjHoNDqeb8lozcZFGDLrOv5L9BXU88OJa3B5vwPbc4gb/z3vzaimqaGLS8HjioowD/ZKEEEIIIYQQQogTSuH1er09Hyb6YmtOJf/6NJtGs4OJw+JYu7OUI1nE/EnJ7MurpareSlSYjuhwA4dag4nIUB1/vnsOCdEm/7WyD9fw2Zo81meXd3qeockRuDwehgyK4NutRXi9EGbS8tzP5xMdbjgeL1UIIYQQQgghhDghJNDoo+LKJu5/bg0WmwsArVrJvT+awNzxyQBk59bw4Evrujw/NT6UosrmLvfPHp9EQ7MdtUpJXKSBrzcVBT0uxKChxeoMuu+B66cwa2xSwDabw0VJZQsJ0UZCjNpuX6MQQgghhBBCCHGykyUnffTL59vCDACHy8NTb25jWGoU8VFGvt9Z0u35U0bGdxtorNtZRm8Spq7CDID4yMAlJ80WB798fg0lVS2EGrU8cecs0hLCevEsQgghhBBCCCHEyUnatvZScWUzhRVNtFhdQfev2VkKgKWL/Uc4XR4UCuiqOUl/TJeJDtcHPN60p5ySqhbAF26s6GLWhxBCCCGEEEIIcaqQGRq98Kc3trB2V1m3x7jdHq75/Zc0mh3dHrd0TR7QP8FFMKkJoRj1aqx2F26PlxCDhtiIwBkbMRFSX0MIIYQQQgghxKlNamh0Y/3uMt7/9iC5JY3dHhdi0JAcF8L+wvrjNLLeu+yMTH5ywSiWrcljQ3Y5Q1MiuO68EahUMjlHCCGEEEIIIcSpSwKNLpRVt3DHn7/r1Cq1PZ1GSViIjvuvnsRrn+9lf0FboKHXqvj9jdP4+4e7/cs9TpTXfne2zMoQQgghhBBCCHFaka/pu7Avv7bbMCNEr8bu9FBdb+X1z/dxx2Xj0GlU/v3nzkhneHo0d14+LqBeRlSYnsduncGimemEGDWdrhsdpu+07VgoFaDVqFi/u4z3VhyguJuCpEIIIYQQQgghxKlCZmh04b5nV5Nb0tCrY6PD9bz++3NwutxsyC5Hr1WzcU8532wpQqdVYbO7/ccqlfDpUxdjsTm55qHlOF0eABKjjdy8eAwtFifPvLO9316HUgFDUyI4UNTgf/zsffPJGBTeb88hhBBCCCGEEEIcbzJDowuePuQ8i+dlAqBRq5g7IRmTQcOKzUV4vQSEGQBqpZK7nvqOTXsq/GEGgEajYsrIBOZPSsak77lWa29LYHi8+MOMI4/f+Wp/704WQgghhBBCCCFOUhJodOGmi0b1KjQ4d3oai+cNCdimVgX2ZI2PMhIeosWgU+NweSisaOaFD3ZxSet5Wo2KJWcOZcWmQp78zxZc3Sx1OcLt6fGQLoWFaI/+ZCGEEEIIIYQQ4iQgbVu7MCYzljceXkRji536Zju/+8c6guUM00Yndto2LC2KJWcNZfmGQgbFmnjg+ilEhxu4/U/f+guEOpxuNBoVU0clMHl4HP/8JJsWi3OgXxYGnZrzZ2cM+PMIIYQQQgghhBADSWpo9NLP/rqaQ8UNgK+7id3pmyIxb0Iy918zqVfX2JBdxlNvbsPp9jAo1kRptXmghtutoSkRPPN/807IcwshhBBCCCGEEP1Blpz00m9+OpVzpqexcGoqanVbN5PVO0oCamF0Z8rIBGIifF1MTlSYAXCouIH/Sh0NIYQQQgghhBCnMFly0kvR4QbuWjIegLIaM3vzagEYFGtCo+5dLtTYYqe81tJpu0Gnxmp39dtYe2PpmsOcOyOdyloLh0rq2bSngiHJEVx/3ghUQYqHWO0uvlxfgFLpa0mr18qfjhBCCCGEEEKIE0eWnByFhmY77644gNPl4YoFWcRHGXt1ntvj5c4/fxswO2PisDg8Xg87D9YEPUerVuLo5QyQvlIAHX/5Vy0cxo/PHd7p2N+8tI7dub4xThwexyM3zxiQMQkhhBBCCCGEEL0hS06OQkSojtsuHcvdV4zvdZgBYHe4aGxxBGzLL2tEr9V0eU6w2RL9JViS9d3WIsAX2tidvpazXq+XPa0zUgB2HqjCbB34AqZCCCGEEEIIIURXJNA4jqobrLR0CALqm+3UN1u7POdol6KoVQpM+r4vC2lotvPcezu49uHlXPfwcvYcrkGhUDAsNcJ/jMcLb0sNDiGEEEIIIYQQJ5AEGsdRUkwIQ5LDA7aFGDRo1d0HD0pF35/L5fb2urZHew6XhxWbfbM0LDYX73x9AIAlZ2UFHNfYbO/7oIQQQgghhBBCiH4igcZxpFEreeKO2Vy1MAtta9gQG2kgzNj1khPwzYg4Gg0dlrccDZPBN7YJw+IYnxULQKhRwyXzM/3HeL1eDhbW8+IHu3ht2V5ZjiKEEEIIIYQQYsBJq4oBtGZnKV+szychysSNF43ii/UF5JY0oFa1FfrML2tCdTRTMI4DhQJuvngM63eX8dx7O/ACP71wBCa9llc+yaa+xc75swazdmcJ+wsb/OftK6jF4fSg06i4/bKxDE4K7/I5hBBCCCGEEEKIoyFdTgZIeY2Z2/70LZ7W6RUj0qPIKajrl2srFUc/a6MvFAp48s7ZPPrqJv+sC4UCevqLad89JT0xjOfvP2NAxymEEEIIIYQQ4odHlpwMkLommz/MAKhtDCz8mZEUdlQ1LuD4hBngCy7++Ppm7A5XwLYez2v3c5P52Je9CCGEEEIIIYQQHUmgMUCyUiOIDtcDvlkNs8YmBexXKhU4W5eddEehgAHs3NqjxhYHLnfvE5TxWbFcs2g4ACqlguvPHzFQQxNCCCGEEEII8QMmNTQGyI4D1dQ22gDfrIYDRfUB+4srW3p1Ha8X+pAn9AuVUkGoUUtDS+dOJl0tOUmJC2FwUji3XTaWUKOWc6alo1YpCDFqj8OIhRBCCCGEEEL80MgMjQHidAfOvqioNQc8HpYWcRxH0zduj5e0xNCgxUq7WnJSWt3CgqmphLYGGBGhOgkzhBBCCCGEEEIMGAk0BsiO/VX+n2Mi9ESFGQL2X35mFhGhuuM9rF7bdagGdx+KdXi8sHp7CeU1LVTWWXo83mZ34XS6eenDXdz9l5X85/N9nEr1aavqLJRUNZ/oYQghhBBCCCHED5Z0ORkANQ1WfvrY1/7Hg5PCuO68kTzx+mZ/u9bTnU6j5II5Q7j67GF8uDKX+iYb588aTFpiGM+9t4MVm4sw6tRY7G0FR3957WTmjB90AkfdO5+vy+efH+/G64XF84Zw40WjT/SQhBBCCCGEEOIHR2poDACDTo1Wo8LhdAMQHqJj8oh4rjtvJP9auucEjy6482ens/dwLQXlwWcd9LVVrN3p4cPvDrFlbwVFlb5rrttdxq+uncyKzUUAAWEGQFOQmh0no/e/PehfevPJ6sP8+Nzh6LVqsnNr+MfHu1EqFNx+2VhGDo4G4OtNBXy2Nh+LzYXL7WHIoAjuu3oiIQbNCXwVQgghhBBCCHFqkyUnA8Bk0PDr66eQlRrBpOFx3L1kPAAp8SEndmDdWL+rvMsww6hT8YfbZqE9ijazR8IM8LVwNducAfv1WhUAaQmhzJuY3OfrnwhHuteAr0jqL577nqo6C0++sZmiimYKypt46q1tFFc2cedT3/H8/3aRX9ZEZZ2F2kYbm/dV8N6KA/5rFJQ3UVXf8zIdIYQQQgghhBBtZMnJceRwulny68/xtHvLjToVFrv7BI6qd2LC9dS0dm05WpkpEfzsRxN5Z8V+dh+sITk+lHuvHA8oiI00oD6R/Wl74b9f7ef7HSUkxoRgtjnJya876msNGRTGL6+bwnsrDvLd1mKUSgX3XjmeMyenAr6/lUPFDcRGGIiLMvbXSxBCCCGEEEKI04YsOTmOtBoV8ycl893WYv+2C+cMYd3uUkqqzN2c2TsqpaJPhTz7oi9hxswxCazPrvA/njwijjMnpaJWwV1/WYmndYzjwvUkxoRwuKSBx17djVql5MaLR5EUc/LNZNl1sJp3vvbNqiitNnPGpORjCjQOlzZx79MrsTl8NVU8Hi8ffHeIsZmx1DVZ+edH2RwsbkCjVvLgT6YyeUR8v7wOIYQQQgghhDhdSKBxHC39/jDZuTUB2z787hCufgohBirM6AuNWsnNi8cyakgMX6zLJyHaxL1XTqSkqpnf/mO9P8wA+H5HKT86exi/f3kDTWYHADWNVv72s/knaPSBGlvsvLviAE6Xh8GJYQH79Fo1Bp0K6zHMrjkSZhxRXNkSUEwWwOnysHxDgQQaQgghhBBCCNGBBBrHyc6DVbzyaeeCoP0VZpwsPB4vG7LLuWjOEC6aM8S/7d/L9nYKXBQKWLrmsD/MAKhurSXhdLn50xtb2XGgitGZMfz6+inotf3/51pZZ+HDlYfQa9VccdZQQoxa/75f/30txZUtAESF6RgzJIbswzXEhOtZPH8I1ywazq1//JaWDnVB+ltCtGlAry+EEEIIIYQQpyIJNI6TmgbrUZ03kMtIRg6OZF9+/TFfR6mAqDBfjQ23x8vLn2TT0GLj2kUjAXjji30cKm4IPEepQK9R8eX6woDtw9MisTlcrNxazKa9vmUr2/dX8cW6fC49Y2in565ptPKvT7JpaLGzYEoaC6am9nrcXq+X3/5jHRW1vhClqKKJB66fwp/e2Mqew9UBMyjqmuw8dNN0HC4PZqsTnUZFmEnHG4+cw08f+5rGFkdXT3PMxmT6uqXk5Nex82AVIwZHMT4rbsCeTwghhBBCCCFOBRJoHCfTRyfy/rcHKatp62YRZtJisztxuLoOLAZyGUl/hBnga+fasXvJ/745RHykkVFDYtgXpNaEx+Pt1LYVYEtOFf/3zCoWTk0L2P765/twe7wsOSsLgNpGKys2F/H+twdxOH3Bw968Oj79/jDREXrsdjcut4frzh/JmCExQcdttbv8YQZAflkTyzcUsDWnstOxSgXc+8xq/2OFAqaOjKfJ7KTFMnBhBkB2bi1RYXp+/fe1uD1eFMDDN09n4nBZhiKEEEIIIYT44Tq520qcRkKMWh6/fTZKpcK/zeF0Y9D3LVM60uY0mHaXPu6C9cp5/v1d3PGnb4kK0/XpWqXVZrRaFROHt81C8HrhjS9yqG+ycbConhse+5q3l+/3hxlHFJQ3sS2nij15tewvrOd3/1iPxdY5OAEw6jVMHZngfzx/YjKewMuhVIBGpaBjruT1wqa9leQU1OHucE5/GzE4ipz8On+45QX++XF2QD0SIYQQQgghhPihkRkaA2Tzvgoamu3MHJuEVq3ku63FKBQK7loyjne/PkCT2YHN4cbm6FtRye6OP1H3txq1sstxebxwoKiBi+ZksHRNXpfXUKsUuNxtLyAhysjI9Ci276/yb1MqFSiVCp58Y0uvX6vb42X1jmIWzRgcsN3udLNuVxlnTUnh7Gmp6LQqxmfFYbE52byvgpz8WjJTIigsb8LuHODEopUCX1gBvhkgE7LiWDQznemjE8kva8SgcHBDyCrS1dXssaZwsHAcwwfHHpexCSGEEEIIIcTJRgKNAfDeNwd468v9ACxbk0dUmJ7tB3w35mkJoQxOCmdrTkV3lzilOF3d3/DXNFhx9hAKTBwWx5acSrxeCDVqGDE4mmff2RFwzK2LR1Na3UJDs71P4zN0KCbq9Xp56OUN7M2rBWDxvCHceNFowDdr44k7ZvHi+7v4enNh0JknA+WX105m6sh43vv2EIXlTVwwZzDjh/pmqSTHhTA+opEyewRp6hom6grYveor/v7RIOIijdx9xXjCQ/o2E0YIIYQQQgghTmUSaAyAjXvawoqC8iYKypv8jwsrmimsaD4RwzqhvtxYQESIllCTljGZscRF6nn9sxz//pKqFn940GxxsudwDaoOa2iKKpp56aPsXj2fQafG5fYwfXQic8YPCtjXZHb4wwyADdnl/kADYNv+Kr7aFFis1HfNtjatOo2y32duvLviADsOVPH15iIANu2tYPG8DC6ZP5R/fLSbDfWxQCzZjlTuDvua3QeryHeEkl/WxP6nVvK3n80jOtzQr2MSQgghhBBCiJOVBBoDYFhqJLkdunr0VUKUEYvdFdDS9GRg1Kmw2IMvL2m/ZCKYhhYHDS0Orj9vJOOGxrJiUxGl1WZMBg2ThsdRtjYf8HV2SYoxkZ4Uxs6D1f7z1+wq69UYs1IjePreeV3uDzFqSYwxUV5jBmBoSkTAfm8X0zJ+dM5wcosacHk8bAtSOPRYma1OduXWBGz7ZHUen6wOXKqT60pgpz2VbY62ZTSNLXb+/sFuRmdGUVjWTFZaJOdOTw+o2dKezeHitWV7Kas2c86MNGaPGxT0OCGEEEIIIYQ4WUmgMQAazX1bEhFMRZ2l54OOg/a1LUx6Ne6OVTPbSYkPoaiypcdr5pc3sXxTIaXVvkDB4/Zw4ZwhhIfqKCpvZt6kZFITwhiWFuEPNFRKBYNiTf6Ax2TQMDQlgqQYE9NGJfDQKxv91++pWKZKqeCPt89i2Zo8DHo1i+cNCdg/aXg8Z0xKZtX2Eox6NRlJ4Syel8nmfRV8v7O0x9d3tBwuDxMzoqns8Xfv5TXz/E5bN++rYPM+3+ygb7cW8+YX+8hKjeTWS8aSFBsScOzby/fzxfoCAHYfriE9MYzkuNB+eBVCCCGEEEIIcXxIoNHP3G4P63o5k6AjtVqBq5sWridC+0Kd5i66hSgUMDYzhhHpURStONjt9RQK3810e1aHm52HqrhywbCA7au3tYUHbo+XMyalMDgpHLvTzRVnZQXcpF99znDe+Xo/Rp2aGy4cTU9iIgz89MJRQfcplQpuv2wc2/dX0Wh2kH24lthII/lljT1etze6msnSZHaAQsGFswezaW8FVfXWoOcbdGpMeg01jbZun6fF6mL7gWqeemsrz943P2Bf+9DE4/FS22A7boFGcWUzTpeHjEHhnfblFjfQZHYwdmgMapU0YRJCCCGEEEJ0TQKNfqZSKUmMMVHWOvugt6LDdESE6skvazymbiUKRfAWqt2JidBT09D9zXFHF8/N4FBxA0qFgpsXjyEtMYzLH1jW5fERoVoamh1djq04yMwOiz0wQElLDGPRzMGdjgP40dnDuOyMTFQqZafaG8HsOlTNd1uLSY4L4dIzhnY6p6HZTmO75T6HiusxGTQ9Xrc3Jo+IZ0sXS1ZWbS9BrVLw+O2z+GxNHut2l3X6exiWFsWiGek8/fY2HD0UZAWoa2r73Xq9Xvbm1TIhK5Zt+6twON0MT4tkxOCobq/h9Xo5WFSPQuFbOpQYbSIlvu8ByIffHeL1z/cBcP6swdx26Vj25tXidLk5VNTAG1/66qrERRqICtNz9rQ05k5M5oX/7WRrTiVKpYKEKCMZIR6Gb/iIUGcLqTffREPKCKLC9MRFGfs8JiGEEEIIIcSpSeHtqmCAOGr78mv51Qtr+3TO0QQRQa9D93UsOtJplISatAGBRohRQ4vF2eU5Rp0ap9tDTISBB6+fytrdpTSbHazaVtIphDhCq1Z2e/N93szBuD0eUuNDuWB2Bkqlgn8v28vHq3IBX3eY5+8/A4Wi57CiJ2U1Ldz11Ep/d5Zrzh3OlQsDZ4e4PV5+89I6f/HQ9u/rpOFx7DpUHTB7pS9+fM4w3v7qQLfHhJm0QeunaNRKfnfDNBJjTNQ0WEmJD+Gjlbl8svpwl0HYbZeO5fxZviDo6be3sWp7CQCp8aHcvHg0ozJi0Ki7nw3R/jzwLdt58KdTmToyIeC4Q8X15JU2MiI9itSEMP92i81JflkTf3x9c8DrCjVqaO7mbw06t/Q9ItrRwE+KPue/gxZSbvB1g1EqfLNvfnvDNFKj9SjVahQqVbfXF0IIIYQQQpyaJNAYIC+8v5OvNnbulHGyWzw3g5yCeg4U1Xfap1DAlBHxbN7XNrtAr1Vic/iCgRCDhhZr282pVqPE6fSgVCpQKhVdtncdkR5Jbkmjf//iuRkcKGrA7nQzfXQCcZFGZo1LQq/tnwlFW3MqeeRfbTU3Zo9L4lfXTel0nMPpZtv+Kv7z+V5/vQ+AyFAdc8YPYs/havLK+taxJi7CwPzJKfzvm+6X5nQlNT6E82YO5uVP9+DxeJmQFUtOQR02R+dCrVq1ksdumcGqHaUcKKxn4vBYPvguN+CY+ZOS+fnVkzqd29hi53BJI2mJoahVSq55aHmnY7JSI7hryXgGJ/mWjuw4UMXvX97g3z9mSDSP3TaLZrOD+5/7nso6S78Fd35eDyg6hzGX1m8kq/YgqFRk3nUH8WfO78cnFUIIIYQQQpwMZMnJALl20Qg8Xi/fbCrq04yJE23d7jKqu1h+EhGqY+eh6oBtR8IMICDMAHC0tjV1e7y4W6cPaDVK1CoFFlvbDXhBeXNA2LFiSzHm1mtV1Jr576OLUPVjPYUR6VH+LidKpYJ5E5ODHqfVqNColQFhBkB9s52la/KCnhOMSgkRIXrCQ3Xcf80kdh6oOuqxF1W28I+P21rX7jhY3eWxDpeHNbvL+HJDAQB5QWqA1DR0rtNRVW/h53/7noZmOya9mj/cNotQo5ZmS+CMkYNFDdz37Gp+f9N0Jg6L492vA2ujZB+uZeu+Chpa7P6aHf0ZZig9bjzKILMvvF4G1x32/ex2k/v8i8TMmoFKp+u/JxdCCCGEEEKccBJoDJDHX9tMTkHdiR5Gn3W31ERBW0hxtBxOD44OT2Ftt0xFqVQE1LOw2l24PF76c9WAyaDhmXvnsju3hoRoEyu3FfPOVwcYOzSGn14wKqDV6YpNxz7LJjkuFIvNSV5pI3c/9R3uY3sLA3Sc8dBxydGewzUdTwlw0ZyMTts27imnodnXqcdsc/HN5kLio4y43B7io4yoVAoOl/jCEbfHy0crc4kM1QVdUqTVqAg1afv8uoKJCNGSlhjGrkO+1xQ0zGjlpd3SJI8HZ0MDqvj4fhmHEEIIIYQQ4uQgbQQGSG5JQ6dt4SFazpyczNDUCAy6gV/XHxna92+knbaui4PWNR1bO1plD8U6NWolqfGhnDdzsD/U+NHZw9Fp+u+92l9Qx7I1edQ325k5NonDJQ18svoweWWNfLL6MCu3FQccX1jRtyUlwVTWmf2zXvozzNCqFZ1mPHjx1ZE4oqC8mbDWQCEtIZSYcD3gCz7uuHwc00cn8sF3h3jiP5v9NTKSYwOLfe4+XEtuSQNWu4vS6hZuXjwmIHTadaia+55dzcRhgYHBlJHxtFgdvLZsb4+vRaNWcu2i4QFjP2d6Gu1LpgxNjWT3oe4DGoBQlxm1t20GkD4pEV1MTI/nCSGEEEIIIU4tMkNjgMwal8SqbSUB2xpbHKzcWsKz981jSHIEG7LLeHXpHirrgrfnPFZnTU7l221F1PchiHAp+6eTR0dKBUweEcfmvcG7ewA4XR4KyptoMjt465Fzcbo9RIbqj/o5PR5vQIiy/UAVj7yyAY8XDDoVz943P6CTCfhqR7QXH22ktLpzB5a+aL8spz85umjxq1ErsbebSWOxOZk2Kp6C8mZqGm3odSruvHwc8yem8Pm6fP7T2nVk/e5ysnNruPuK8dx9xXi25lQycnA0K7e2hTxOl4eEKCMP3TSdj1fl+pe8uD1eahqtPHrLDHYdqmb6mETW7izlz29u6/Y1pMSFEhtp4EfnDGN4WhTxUSa+2VxEcnwIP7lgFNsPVFHd2r62otbcq+VbzZoQts25mgsMlWhjYki+5GIpDCqEEEIIIcRpSAKNAXLfVROZOiKelz/ZQ0O7m2QvcN9fV7PkzKEUV7VQVX/0YYZSQbctXj9enYs2yOyGiBAtDS2dO2gMLAWb91aiUStwBrkRb790otniwGTQHFNHk09W5/Kfz3MwGdT8+vqpjMqIZtv+Sv/7ZbW72XO4hrOmpLBiUyFlNWYGxZo4c3JqwHXuXjKev7y9jfIaM/MnJlNQ3sT2Y6iBMZCUCoiLMrJwSipvLm+rZ+Fye9nULkiy2d2s2VHK/IkpncKarzcV4vF6ufrs4Zw9LQ2ApBgTf3pjCw6Xh4vmZGC2OimuauasKalkH67xdyAZnBTOhGFxmAwatuyr4NPvA+uMKBQwZFA4uSVttTxmjk3kmkUj/I/nTUz21zTxeLzUtqvxUVzZEvRvd3RGFNPHJFJa1UJji4Ok2BAuP3Nov7XZFUIIIYQQQpycpMvJAHK5PVzyy2X9ft2EaCOhRg2HijsXeexOfJSRi+cN4eV2RSUHil6rwuny4PZ4u2y7eWRMEaE6xmbG8OF3h/ACP71gFJfMzzzq524yO7jmoS/9AUnGoHD+9rP5rNtVxpNvbAF8rUCf+b95DE4Kx+lyU91gJTbCgEYdGACVVrdwz19W+utD3L1kHGt2lbLzYM9LH7rTm3alvaVRKfjJBaPYuKec4soWMpPD2bq/+9DFqFejVStRKhVBlxLFRBj4+y/PxKDzZZ4WmxObw43Z6uRnf12NzeFGqYDrzhtJWY2ZtMRQLpydwd68Wn7zj/V4ukja5oxLYsOeclxuL0oFPHbbTMZmxgYcs/1AFdm5NSTGmPjvV/upbQxcBnXezHSKK5txuj1cdkYm00cn9eXtEkIIIYQQQpwmZIbGADpQ2Ln1aX+oqLVQURt8X/sgoaNmi4M3WpcXDLSYCAN3LRmP1+ulqt7Cs+/sCHrc72+cRmpCGAAXzRmCF+8xLTMB30wAhULBkazuSL2HWeOSePAnUzlYVM+UkfH+dqMatYqkmBD25tXSZLYzaXi8f2bL4ZKGgGKXe/Nqyc7t4s3vg2MJM/QaJbbWJSWJMSYmDYvlf98epLF15kJPYQaAxebC0s3+mgYre/NrSYoxoVBAZa2VURlRbNpb4W8R6/FCQ4udhVNTsTtcPPbvTew8UNVlmAGwdncZT945m715tYxIj2L0kMDaFrsOVfPwKxu67YbyxfoCxmfF8sgtM9GopQyQEEIIIYQQP1QSaAyg/rrZ0qiVAW1Nu3PkZjMYi83V5b5OvF7ouOTD68XotqHES4va2O3pJVUt/PH1zUwcFtv5OvhamZ4zfbA/zABfW9j+EGrUcsdlY/nP5/sIMWq5/bKx/n0zxiQyY0xip3M+XpXLv1uLV2alRPDne+aiUioYkR5NiEFDi9WJQgHD06P4rkNtlGCOnDMQbE4PS84aSnW9FbPVwWfrCvp0vlGv7tXfwqOvbAyoWaHTKnnk5hkBM26Wrcnjk9WHu7zG1FHxVNdbyS9rAiA6TM/IwdGMHBwd9Pj9hXVBwwyFAvRatb8jzs6D1ew4UMXUUQk9vg4hhBBCCCHE6UmWnAywt77M4Yv1+Uf9jXxqfAh/uXcej7yygb35J7YN7PjGA5xdvRklXlZHjWdD1NhOx/Q2fLn1kjFcMNvXMrTJ7KC+yUZyXAgq1fH7xr220cpXGwsJM2n5eGUuVe3qNTxx5yxGZ/hmD5TXmNm+v5LIMD1JsSb+9u6OgDoQ4KtLMnZoDDa7m3NnpPPRylz25B37TI5gVMruu6UoleDpYr9Oo2Ts0Fi27Ou6OGt30hPDcLvdFFeZe33OqIwo8suaMOjUPHj9VGIjDRSUNzE4KYyIDrNxDhbV86sX1uJye1AqFHha/+/pigVZOJzugPDkT3fN7jIYEUIIIYQQQpz+ZIbGALtm0QgWzxvCtQ8v77KORHeaLU50GhVG/YkvcDi3difK1u/s59TtYmPkaLyKwACitzNJtuZUcsHsDPbl1/LwKxux2l2MGRLDI7fMOC7LCJwuDw+8uJaKWt/CC7028Dnf/+Ygo2/xBRqJMSZMBg1/fnMrbo+X+ROTuWjuEJ7573b/8Wabi+93lBEVpicpNgSro3ezYXoq7NqRRq1geFoU2Ye7Dku6CjMA7E4PW/ZVolErmTcxmW82F/X+yYGC8qYu97Uv7Nre3jxfEGexufhifT5rdpb6l/H89MJR4AWv18uimelkpUbyl3vmsC+/jlEZ0ahVCrxAWkIYFpuT6norhRVNnDk5RcIMIYQQQgghfuAk0BhANruvrsDu3KMvIHntohG8/Ek2W3KO7hv1YxVq1DJ3qIasoncYNM6OpRQsVWBV6TqFGX1x5GZ06fd5/mUE2Ydr2JdXy7is2O5O7Rf1TTZ/mAG0zgxpSwLsHVqtfrgy11+XZNX2Eq4/fyRnTk7hu9aWpkeCnLomGx+vyuXsqWm8VLK7x3H0JcwACDFouw0zesvp8mC29m+nm97M9fpuW3HAca9/ttf/eOv+Sp64YzZDkiMYkhzR6VyjXsMD10/pn8EKIYQQQgghTnlSUW8APfKvjccUZmhUCs6aksrGPeW9PketCqxXERNxbAU246MMpBV9QbqiAY0GwtKgOjSSjxLm+49JjjOhUfWuxerE4bHce+V4lpw1FACDPjBTCw05PjNRosP1pCe21e9YMDmV+ChfXRClUsFFczMCjo8Kb3sfDToVRr2a/7tqAk/fO5d7rxwfcGyoUUtBReeZDB1/Nx0pe3gLFQqob+7ckaQ7Oo2KqSPjufyMTLQdZr5U1llJjgsBIMyk6fXv8IiE6O7rqATTMfRo/3hfXi2yAk4IIYQQQgjRWzJDYwDlFB5bzYszp6Ty2L83dWpb2Z2Oy1ouO2Mo4SE6BsWGkDEonLv/srLbZQMd5ZY0cnaoA1pzBoUCPkucQ6Unwn9MSZXZ30mko6QYE9UNVv8Mhup6Kwumpvn3d7zJrqixkJEUwUBTqZQ8cedsVm8vIcykZfa4JKxON19vLESnUREeElig9J4rxvPPj7Nptji4auEw/xKgrNRIslIjqWm0sWpbCelJYSw5ayivd+gm88trJjFzbBI3/mEFtU3Bf58dZ2sYdGpiIvRMHZWA2+2lrLqFzX2sfWF3utm8r5L9hXUB3VoA8kp9dUBUSgUqlQJnL5ZEGXVqbE43Ho+XmgbbUbWfjQ7X02J1YtCpSYoxsa+1Nsz4YXEoghSQFUIIIYQQQohgJNDoJ9X1Vl77bC92h5urzxnGkOQIJmTFsfUol4oYdCqq6i3sOFB9TOPac7iWB66fgq11Wcd1543g0Vc39ekan1vGMyi0jhClndW24VR6wjsd4/Z4USkVAe1iI0N1PH77LG58fIV/m9kaWFvCoAv8E+yP+hkVtWb+/sEumq1Orj57GFNGBu+EEWLQcP6swQAUVzbz9cZCAKx2F28v388f75jlPzY63MCDP5na5XNetXAYVy0c5n985YIsDhbVU1jezFlTUpg9fhAKhYKXH1zAZQ981uNrUCjgzsvH8cx/t/FhZS6RYToumZdJTkGdP0DoqmZFME3mrkMHt8dLfVPvlp9Y7G2/P5fbw8RhiWzYU47D2bvaKQCP3jqD1Hjf7Biny8N3W4vweLycNSW119cQQgghhBBCCOly0k9++fwacgp83zRHhOr4z+/PweX2cM1Dy/01Ik6En5w/gp2Hath5sJrkuBDOnJzCut1lHO7QpaMnCjxocOOg6yUhP/vRRJ55Z3vAtvTEMM6YlMLrn+9FpVRy71UTmD8x2b+/xeLgz29u5XBpI3PGD+LWS8Yc87f0v/3HOnYd8i310WpUvPnwOT0WVa2qt3Dz4yv8sySmjUrgtzdMO6ZxdOXmx1dQUWfp9phL5g9h1baSHpeYxEToaTY7sTu7btcLfQs/lArf33BdU8/LW266eDQrNhdSWN7cq2vHRRp49bdn924gQgghhBBCCNENmaHRT6rq225QG5rtOJxudFoVWrUSa9/KHhwzvVaFw+kmxKjF7vSw86BvlkdJVQtvfJET9JzU+FBarI4ub2K9KHF0U3IlKzWSIcnhndq2FpQ3cc70NM6ZnoZKqUDfYUZGiFHLo7fO7OtL7FZjS9tsA4fTjdXu6jHQiIs0cueS8Xzw7SGiI/TcsnhMl8f+6oU17C+sJ8yk5el75hAXZer12Eqqmlk0K53lGwqoqLHQVcZw6fyhfLWhsMfr1TT4lq9kJkeQW9Lg365p7Q5yZAlSb8MMg07Fb2+Yxkcrc6lrqvJvz0gKIyxE5/9bOmLnwWqmj07oMdCIidATG2HgjsvH924gQgghhBBCCNEDKQraTxbPG+L/+Zzpaeh1ahpa7DSa+7eTRG/YHG48XmgyO1i5rbjH41VKuOfK8T1+Iz82M4abLhoddN/BonrufGplp7atw9IiMRk0mAyaTmHGQLnq7GGoVb4/7fNnDSY63BD0uNpGK3mljf5lMmdPS+PlBxfwxB2ziYtqK3i5blcZ/162lz2Ha/hkVS778uvweLw0NNt54o2tvR7X3rxa7nl6Fa8t24fV7mbBtOBLLCYOjyM8RMv8SclB9wdjsTmYMSYRvVYFgNPtxeX2MjojKuC4EemRnDUlJeg1MlPCeecP5zM2M5bsdsVsFQp45r75nDczvdM5VXVmcvLruy1oGm7S8q8HF/Lnu+cGFGIVQgghhBBCiGMhMzT6yeJ5mUwaHo/d6SazteVkmFHbqa7EQAoxqGixBi49MOjURIV1v3xAq1Hx67+v6/H6588azMyxSeSVNfrblfbkYGE9d/zpW6aOSuCC2RnUNdkYnBTeL7UyujJrbBJjH47BancRFxm8E8fmfRU8+Z8tOF0eJo+I57c3TAta2HTNzlL+/KYvtFj6/WHOmBwYMti6WE7kcLrJKagjJsLAoFhfJ5G1u0r9gU9Ds52DhfVBzx2dEcWPf/+lr2XuhEFU11uZPT4Jq83FB98dwubovLykrMaCTqvm0jMy+e9XB/zbh6dHk1/ejNnqq6Gxv7Aem8PNzRePpr7ZzgffHfIfm1vcyKtLs7ll8ViSYkP8xWNT4kMxW5389Z0dnZ63usFKUWVL0NdxRKPZQVmNmZT40G6PE0IIIYQQQoi+kECjH3W8YWs0249bmAF0CjMAiiqbcffQvcJq77r+gkGrYsaYRC6Yk8HQlEgAfnzOcFZvL+n2tR2p2eAFiqtaKK7K5eNVuXi8MDwtksdvn4VWo+rdCzsKoUYtoUZtl/s/XX3YHy5szamksLyJjEGdi53ub9epxu3xMmRQBJtNlTSZHSgVBF2a4nS5efCldRworEepVPDLaycza2xSwOwEpQLmTUzmreX78XR4H9/8cj9eLzRbnESG6fnz3XP8+xKiTPzlv9v8j3Ualb9+Rn5ZE5nJEcRFGqiqtxIXZeSC2YM5XNLAjtalIl6v77hXPt1DZGhgJxeA5RsKuWXxWH57wzT++u52ymvMZA6K4Pcvrw8oCHqEPUi40pECgj6XEEIIIYQQQhwLCTQGkK2boOB46SnMaO/I/IT2Z6QkhHHf1ZMCjiupauk2zLjl0jG8+fm+TkHJkVP2F9aTk1/HuKzYXo+tv8VEtC1DUauUhIcEDz+mjIjns7X5eDxeDDo1E4fHccHsDEqrWoiNNAQNZQ6XNnKgdfaFx+Pl642FzBqbxDnT03G5POSWNDJ9dAKJMSaWbygMqL8CgfUuahutlNe08IfXNlFWY2H80BiuPmcY320pJiHGxNSR8bz8yR7/8Ss2FwG+9qp1DRYee3UTJkPw/5kHKzh65PU4nG725dXi8cJ33Sxb6k1ed+6MdEK6CZeEEEIIIYQQ4mhIoDGA4qN7XyzyRFMpFYzKiGZ3u9oJoUYNv75+MgBer5fGFgehRg0xEXqUirab2TCTloVTU1k8LxOTQY1GrSIp2sQ/P8qmpsGK0925pWdUuP64vK6u3HyxrxZITYOVi+ZkdFlnY3xWHE/dPYfckgbGD40lKca3fGRQXEiX146NMKBVK3G0zgBJimn7Ozh/dob/59/+Y12nMKOjiloLD7ywlrrW8GFrThXb91fx04tGsXhuJm6Pl/yyJjbvqwgohnpkNsXh0t53s9FpVNx40SgcTjeffp/bbVihgC4LmrZ33fkjWHJmVq/HIIQQQgghhBC9JW1bB9CG7HL++PrmE/LcSgVEhOipb7b16sbz9svGUlrdwtLv8/zbfn/jNKaMTCC3pJ4n/7OVyjoL8VFG/nj7LA4U1vPhqkOYrU7GDIkmMlSPxwtzxg8KWLphc7jYcaCKP72x1T+rYyBbop4sdh6s4ov1BcRHGfnxucPRaztnh798/ntyCoLX0WivfXjU3tSRCVx9zjD+tXQP5TVmahttxzRmvVaFzeHGqFfj9XixBllOEhWmY+qoBNbuLKOltS5HV37+44nMnxi8AKkQQgghhBBCHCsJNAbQRysP8dpn+07Ic//ix5N4+ZPdNJq7v+k84pL5mVw6P5M/vLaJ/LIm5k0YxN1XjGfp93m8umxPwDKI2AgDj98xi7ueWonD2fmm98qFWVxz7oiAbVtzKvl6UyFJMSZ+fO5wNOqBq59xqsgpqOWXz6/1Pzbo1FiD1KnIGBRGXmlT0GuE6NW02IIXJu2JSglBJs8cE4XCt5znwtkZXDI/s38vLoQQQgghhBDtSKAxgCpqzdz37Ooev8keCEa9Eout93erZ09LZclZWf5v+X3LT6r5zUvrgx5/6RmZfLQyN+g+lUrBTReOYn9hA2Myozlnejrgqwfx+mf7sDvdXH3OcFLiQ4N2Fvkh2binnJc+3I1apeCeKyfw8ifZFFU0A23LOtQqJZfOH8LSNXkBHU56u+yjKzqNkisWZLEvv47s3Focrv6p+fLU3XMYnh7V84FCCCGEEEIIcQwk0Bhgtz7xDWU15hM9jG4FW9Jw4ZwMBsWY+MfH2UHPmTIini05lb26/gPXT2HW2CR+9cIa9uX7uobotSocLg9RYXp+f+M0Bid17jDyQ1Rc2cw/PtpNY4udwtZgAyArNQKz1UVpdVuL1JsuHs2KTYUBx/WVUqHg7GmpLN9YeEzjbu/pe+eSlRrZb9cTQgghhBBCiGCUJ3oAp7tgSzJONsHqMyzfUMC4rBjUquAzKHobZgBsy6nkd/9Yz6HitnoRNocbj8dLTYNv1obwSYkP5fHbZ/HHO2ajVbf9zzMqTI+rw/qQrTmVjB0aE/Q6oUZNr57P4/V2CjPuvWo8//z1WVy3aEQXZ3UtPsooYYYQQgghhBDiuJBAY4DdcNFoNGolCiCmtbOHUgFXLcxiyVlDj/t4lL1c4uF0efjdPzfgOoq2r+3ptUq+3VLEzkPVOF3Br6XqIjT5IQszablzyTiyUiOZOTaROy4bx62XjEGvbas9svNgNcvW5Ac9PzxEd9TPPX5oHEkxISxZkMXZ01OD/l7bmzkmkRCDhmFpkbzwizOO+nmFEEIIIYQQoi9kyclx4HC6WbW9hOf/tzNg+x9um8mnq3PZklN1YgYWhEGnwmo/ulkl505P4+tNhf4ZH+Myo5k6KpFXPt0TcP3Hbp1J9uFaPvjuEDHheh64fgrJcaH9MfxTVrPFwatL91DXaGPx/Eyyc2v44LtDqJQK7rlyPGdOTgVg895yHvt3151zUuJCSEsMY9Pe8i4DpO4MT4vkz3fPQaFQ8PGqXP69bG+3x88al8gD103t8/MIIYQQQgghxLHq3EtS9DutRkWYSdtp++//uT7oco8TydYhzFApFf52q8GEmbQ0mR0AbD9YzbP/N4+vNhUSFa7n0vmZfL0pcDlDZKieYWlRDEuL4vIzj/8MlYG0Zmcp//x4NxqVkp9dPYkxmTHUNlp5d8VBvF4vVyzIIi7SGPTcf36UzeodJQDsza/F4fQtL3F7vPx72V4GJ4UzOCm8x+CnuKqF6gbrUYUZapWCR2+dyWP/3siug9U4urmGRq1k3oRkbr9sbJ+fRwghhBBCCCH6gyw5OU6mj05k9rgk//R9pTJ47YoTreOQbrpoFHqdCkUX6w6OhBkAVXUWXG4PxZUtfL+jlE17K1CrAtuzjsuKDXjs8Xh54f2dXPvwch5/bRO2IG1Lu+PxeKmut2I/wbVK3G4Pf313B40tDmoabTz3vx0APP7aZpZvKOCrjYU89uqmLs+vqrf4f3Y4Peg0be9bY4uD/3t2NRuyy9Dr1CREBw9FjmjfCaWjI91yg/0+4yIM/PPj3WzZV9VtmAHg9cK9V01Aq5H2u0IIIYQQQogTQwKN4+hX103hjYfP5dn/m4un9x1V+41eq2LJWUO59ZIxvTo+PsrAa5/vw2Z305uFSSMHR/Hml/vJPlxDUUUzT7+9nZGDo4iL8t2Am/RqFs1IDzhn7a5SvtpYSEOznY17Kli2Nq/Xr8dX52M9N/zha256fAVFFU29PncgeNolVEdmtRRVtnUgKa5spqsVXhfNzfC3sJ08Ip5fXDMJk6GtsKfH42X19lJeW7aXilpL0GscERdp6HKfy+2bXaELEkSU1Vr4dktxt9fuzXMIIYQQQgghxPEggcZxFhGqIzMlkuFpx78ThFKpYPG8THJLGlAojtxYd51UVNZZ/UsfjujuRnbc0FharG0zNlxu30yD5342n0dunsHT987t1J61YxeYPYdrqW20ArByWzFP/mcLH6/KDRoEbN9fye7cGgAamu18svpwl2MbaCqVkjsvH4tWo8Jk0HDHZeMAWDgl1X/MmZNTUHQx1WX2uEG8/OsFPH3vXH57wzQ27a3AbHUGHJOeFIbF1nkGS/tCoQBevDx083RGpkcFfS6ny9PpnL4IMWp47LaZR32+EEIIIYQQQvQHqaFxgvzxjll8vjafshozi+cP4ZNVh/lyQwFqlZJZ4xJZvb202/OVSvo8y8Nic/Hj33/pOz+yHHV4HR67Hnd5Br4eJT13G4mNMFBVbw26b/3uMoalRZFb0ujf9v53B/l+R6n/RnzJWUOZPzGZuCgjeq2aOROSWbmtxB9MbD9Qxf1/+57bLx/HM//dDsC63WUUVzZzz5UTAp4vxBhYlyTU2LlOyfG0YGoaZ01JDQgtbr10LDPGJuL10GWL1SPiooz+2SwlVS0B+y6ck8H4rFisNidbcwKXK3VcYmK1u9mxv4p9BXX+bQoCo6uGFgdHK8yo7bIWiBBCCCGEEEIcL9Ll5CRS32zDoFPzl7e2sWlvRcC+nopz9pVC34Ju1AZsu+eAU9/j8SqlggVTUqhttLF1f/CuLLERBsxWJ5Ze1MGIizTw4E+mUtNgJT0pnBc/2MmOA9X+/SnxIRRXBt7UP3nnbEZlRAds++C7Q6zcVkx6Qhh3LhmHUa/hdPDN5iKe+98OvF4YlRHNwqmp/O3dHd3Mp+lex0DjWCycmtopXBJCCCGEEEKI400CjZPQo69uZMu+Sv/j5LgQWiyOY/pWPRiFoRmv3QCe4BN1xmXGMDw9ig++O+QPU1ITQiiqaAsaRg2JZu/h2qN6fr1Whc3hRq9VcebkFL5YX9Dt8fdcMZ6F09KO6rlORQXlTdQ12RiZHslNf/yGxn7+/ffVhKxYpo1K4JwZ6ahVslpNCCGEEEIIcWLJkpOTUHmNOeBxaVULXnxtNRUKBU7X0VcUVasU4PXi8oDX2nUL0Nnjkrj0jEze+CInYGZISVXg2Fy9GItGrcTp8qBUBF8qYXO40WlU3HPFeFZsLiKn3VKJIzNTYsL1TB4RH/T6lXUWnntvB/XNdq5amMXcCck9julUkJ4YRkp8KL9+ce1xCzPaz+TQqBQ43b5HJr2Ge6+aQHS4FAMVQgghhBBCnBwk0DgJhRjblk0oFQo8rZNoXG4v3S0cUCnB3UO+4HL3bkLOgcI6fv3iuk7tUOMiDDRZHFhsLlRKBZfMG8Jrn+2jsq7rzhtjM2PYtr/KH2aEGDS0dCh4aXW4KapsZuHUVPLLGrE53IQaNfzmp9OwO9wMTY3oskbG3z/c5a/B8ew72xmbGUtEqK5Xr/Nk969PsgMCnr4IN2lpNPctCGn/1zEmM5ZL5g+hqKKZqaMSJMwQQgghhBBCnFQk0DgJ1Tba/D97elgRZNKrMbeGC0dbY0OhgOTYEIrbFaKsbrB1Oi4zJZzaBgsWm4uYCD13LZnApOFxTB2VwMY9FTz99raAMSh8k0HIPlwTcJ3BSeEB28YMiWb5hgLAN4PkNz+dhsPpZlhaZK9uos2WtnDE5fZic7iAngMNi83JRytzsTvdLJ435KS8Yd93lGEG0Ocwoz2FAuZNHMT4rDjGZ8Ud9XWEEEIIIYQQYqBIoHESOVRczx/+vZm6ps5hQlfMrd1DjjbMmDw8DrfHy46D1T0em1fS6J9lUdNg44X3d/LqbxaiUauYM34QqfGhbNxTjt3ppqzGzLpdZQA4nB70OhU2u5us1AiuP38Ej766iSazg9FDohkUF0J2ax0Ol9tLY4uds9q1O+3J1ecO54nXN2NzuDl/1mASok09nvPuigP896v9HMmLtuZU8tKvzur1cx4v00cnklfa2POB/USpgMvPymLaqASyUo9/a2EhhBBCCCGE6C0JNE4iD7+ykaY+fKuu1ShxOPteTyM5LoTKOgtOl6fLjiXBdMxMahqsmG1O/1KQtMQw0hLDAPh6U6E/0FAo4Dc/nUp0mIHEGBNqlZJXf7OQhhY7sZFGdh6s4uuNhXi8YDJoGD2k6/amDc12Vm0vISJUx7wJg1AoFEwcFsebD5+L1eEiMrTnji2l1S28vXx/wLaSqhZsdhd63cn1P4mrFmZRWWfm2y3F/m1HapL0hyOFWUNNWhbPzWDyiAQyBoX3y7WFEEIIIYQQYiCdXHdvA6ysuoVla/MIM2q55IxM9NqT6+Vbg7Q7DQ/RcsGswahUSj79/nBAccijCTMAymtaeqy10RvxUQYe+ddGmlocXDQ3gwtmZ/j3nT0tDYfTzdacSqx2F99uLqa+2UZ9s52pIxO4/Myh/pkUk4bH89Q9c8krbWR8VizxUcagz+dwunngxTWUVvsKkxZVNHHdeSMB0OvUxxRGTBoed9KFGQCFFc2s2lbif6xSKbh4bgYffJd7zNceOTiKoSkRRIXpuWjuEOlcIoQQQgghhDilnHx3cAPE7nTz67+v8y/nqKizcN+PJp7gUQW6aE4GH64MvFFdMCWVKxcO49/L9tIcZPZGeIi2zx0wjibM0KoVOFyBUzQq66xU1lkBePmTbGIiDESE6hiWGolCoWD66ARe/2wvdqeHfflttSCKKppZs7OUl351Jhq1CoCs1MgelzhU1ln8YQbAjoPVXHde319LRIiO82am8/WmQkKMGi6Zl8mFc4b0/UID7P1vD/LW8v142k2NMerUXLNoJGariy9b6470lUmv5ufXTOb597b7fy/V9VZuvXRsfwxbCCGEEEIIIY6L0zrQyMmv4x8f7QbgioVZAbUpDpc0nKBRBefxeFk4LY3Bg8J54X87sTncGHRqzpiUwpqdpXyy+nDQ8yYNi+O7dt/gd6RUQqhRi93h9rdJ7asJWbEUVTYHFCvtyOuFx1/bDEBmcjil1eagM06OqKyz8M2WYsYPjWFLTiVFFc3MGTeIcVmxXZ4TF2UkPsro76gyppulKUfUN9t46OUNFFY0MzQlgpsuHs0jr2ykxepkRHoUf7htJlqNqsfrHG/5ZY288UVOp+23LB6LSqng8rOG8tXGgk7LgKCtGGswWakRPHbrTGoarNQ3twVhB4rq+2voQgghhBBCCHFcnNaBxp/e3OK/CX/67W1kpUZwsKgBgDnjB53AkQVyuT088q+N7DxYjUmv5v5rJuHxwJDkcOIijezNr+3y3Iiw7rt5TMiKo7CiuU+zOEwGNWarL4yYPS6Jn/94Eht2l/Hnt7b16vzckt4Vsfz7B7tQKtpqc3y7pYjnfn4GKfGhQY/XaVT86a7ZfLOliIgQPQundl041OF08+3WYr7fUUJ+WRMABwrr+cO/N/lbxuYU1LHjQBXTRif2arzHk8PZOXz68TnDmD8pGYC4SCN3LhnPB98eQqNRolIoUChg0czBvPVlTpcdTuIijRj1GhJjVKQnhlFQ7ntvZow5+d4DIYQQQgghhOjOaR1oNFvabuqcLg/piWEsnptJmEnb7UyA421ffi07W7uMmG0uVm4t4YHrp/j3z5uQzFcbCshrvTFvb8eBavQaJbYu6mnsy68LOlOifZDQXniIlnkTktmSU0litJF7r5yAWqVkcJBCkQqgt71V1EoIVsey/Rhcbi/Flc1dBhoA0eEGrlwwjOp6K2t3lZIxKJzkuM7HP/GfLWzNqey0vWOwExnWcxHRE2FYWhRnT0vj602FRIbquP+aSYzNDPybPXtaGmdPS+t0blSYnr++uwOny43d6fbP1tColf7jNWolT945m/W7y4gM0zN5RPyAvyYhhBBCCCGE6E+nbaCRfbimUycIq93NnAmdZ2Z4vV52HKjG7fEwaXg8SqXiuIzR5nBxsKgel8sTEA5EhgbOujAZNDxz33yKK5q499nVATUV8oOEHO2NSI+ktNrsX6YxfXQCew7X+mcpdNTY4mDpmjwAymvMvP3Vfi6dn8k/P87udGxfGsX2pilHTLieURnRAduyD9fw13e243R5uPXSscwam0RFrZmf/XU1zRYnGrWSP94xi+FpUQHn7TjQc/eWRTPST+rWpHdfMZ5bLhmDVq1Eoej93+TUUQn897FFANQ12aiqM/PtlhLUagXpSWH+40wGDQuDBCJCCCGEEEIIcSo4LQONJrODx17dGFBHQKtWctkZmUGP/8dHu/lifQEAcycM4hfXTB7wMdrsLn75whryy5pQKhUB4UBJVTOfr8vn/FmDOVhUz1tf5lBU2Ux0mD4gzOhJQrSR0qoWKuuthBg1XHfeSDKTw9m45/teX6O20ca/P9vrn0HS0dEUJe3o5sVjiAzRkZ4Yxiuf7KG2ycol8zMZMiic3/1zPW637zU//fY2po9KYPuBKpotvkDG6fKwMbs8INBwuz0kxpgoqWoJeJ7haRHsL2wAfH8Pi+effIVAO9IdY32PqDA9/166l9U7fHVWdh6s5sVfnHncQjshhBBCCCGEGCinZaDx+md7sdoDaxCcMyOdIckRQY9ftb2tqOaanaX87OpJqAb4hm9vfq1/dkXHkGLnoRp2HqphQ3YZBwrr/cU8axttqJQK3L0MNSpqLf6fWyxOGppsDIodREy4npoOBT5T4kIo7hAA6DQqLpg92F9YNZhjCTMUCvjR2cO4aE4Gbo+XJ17fzKa9FYCv3sWQ5HB/mAG+8CK3pJHBieEBhS/TkwKXwzz//s5OYQZAcVULV5+dRV2zg3kTBpEUE3LUYz+V5BS01WApqWqh2eIgPKT72itCCCGEEEIIcbJTnugBDISmDgURQwwalpw1tMvj0xPbpuGnxocOeJgBvuKMPT3PrkM1nTqTeHux0KOrq0aE6lCrlMweP4islAiiw9vqR1TVWzodn5YYSkp8KK7erBdpNX9i18VWf/PTKRh1bRma1wu5xY289WUOi3+x1B9mgC+82F/QufPGs+9u5+F/bSDMpCUzORy9VsUrn2Tzpzc2893WIqDr5SZmq4svNxZyy+IxjO5Fh5TTRUyEwf9zdLieMJP2BI5GCCGEEEIIIfqHwuvtqsHjqaexxc6WfZWs3FbE7ty2b6X/78pxnDU1vdvz/vftQdxuL5efOTTgBrC/lFW38NTb26hrtHLFWVmcPzuD73eU8Mx/t/d6xgV0v8Qj3KTl8Ttm8unqw6zYXOzfnhhjZNTgGBZMSeGVT/dwuNTXhUSjVnaqM9JRUqyJIYPCWbOzzL/NpFej1aqob7J3Ov6ac4fz1vL9Qa81c0wim/ZVBMy66G+J0UY8Xvw1Q4J5+dcLSIwxDdgYjpfaRiuVdRaGJEd0uzTlR7/9IqBmyqjBUcRHm7h58RhCDJrjMVQhhBBCCCGE6HenTaBhsTm55+lVQW9kF0xJ4d6rJp6AUbV55F8b/V03FAr4128WokDBDX/4utvzwk1ablo8mvzSRg4VN1BQ3uSvH9GRWglZaVHsy68LvEaIjsaWzuFDbyiVCm66aBQrtxWTW9KITqPiwZ9Mpcls5y9vbw84NiHaSLhJy4HW1rgnUldLcxJjTLz4izPQqI+tNsWJtjevlodf2YDN4SY9MYw/3TUboz4wnPh8XT7Zh2vYX1Dnb1/c3sKpqdxz5YTjNWQhhBBCCCGE6FenTQ2NwyWNXX4rfzK0pHQ425aOeL2QW9LAuMwY4qOMXY57zvgklEolxZUtfLL6cNA2q+25PHQKM4Auwwy1SsEZk1LYdaiaqnorAGdPS+X7HaX+pS4ej5eXP9mDWqXk2f+bR0K0iS83FARd1lFRawmo2wGg16pwujx9moXSHzo+3+QRcYxIj2bh1NSTKsywO90sW5OHzeHiglkZRIT2rrbF15sK/b+jgvImdufWMH10on//mp2lAbVPYiMMVDdYA64RLOQQQgghhBBCiFPFaRNodLfEIDbSeBxHEtx1543g0Vc3+et7PPH6FgYnhXU5brVKwdqdZX1qjRpMd8tKhqdF+b+hzy9rxOnykJUayY/OHsbrn+9j9fZS/7Eut4dvNhexL7+WvB5axR5pQatQ4L/pbt+W9njRa1XYHG4yBoXz8x9PPimXVzz73+2s2+1bzrMhu5wX7j+jVy1a46Pa/qaVCl9NlvY6FkWtbw4ML7RqJRfPPfm7vAghhBBCCCFEV06LoqBOl4cXP9gVdF94iBaX28OewzV9anna34alRfHmw+eiVrXdrBaUdx0MuNy9Kf/Zs3OnpwUtPjppWBz3Xd22DGdwUjhZqZEAxEQYuf/Hkwk1dlzCkNdjmKHVqPjTXbN56KZpAW1zj/W1xEUZAt47lcq3FKb9vX/7/QC3LB7DW4+cy1/vm3dShhkAOQVtM2qKKpqx2l29Om/JWVlcMj+TicPjuO/qSWQMCuz0MntcEqbW1xxm0ga8/jCThn/9ZiETh8f1wysQQgghhBBCiBPjtJih4fZ4cLmDz0IYkR7Fr15YC/iKWQ5JjuDOy8eRFHv8W3YqlQoSok3+b89jIwzUN9txujxoVAqc/VAs06BTMSg2hGazg+oGKyu3lXRafnHm5BTu+1HPNUUevnkGT7+9Db25DJvDTZk7KuhxE4fFkTEonDCTlvFZsQxOCu+x2GhfxEYaePqeeWzeW84L7+/CCxi0aqaOSsTt8fLGFznotCostsAw4N1vDnLmlNRezXg4UaaOSmD5hgIARmVEd6qD0RWNWskNF47qcn9KfCgv/uIM8suaqG2wsnJ7CShaCDdpuf2ycUSG6bs8VwghhBBCCCFOBadFoKHXqkmIMlIRZPnGxj1trUDNNhe7c2v467s7+PPdcwDwer3sPlQDChg3NHbAx/q7G6fx1pf7USjg2kUjUCmV1DVZeejlDTjdnb+dnzkmkfXZ5b2+vtXupqSqxb/Uo313C4Cf/WgC8yYmd3uNFouDD1fm0mJxEBOhp6DBiNLTdVHRtIRQNu0tx6jXMDYzhi/W5dNkcXTbkaUjtUpJWkIIeWVN/pkdCdEmbrt0DFmpkYQatUSE6v0zPVqsTj5ceYi7lozn4nmZfLO5kBfeD5ylU1VnwWJzEmo8eduU3n7pWMYMicZqdzOvm5a3RyM63MD3O0p5bdle//t2ybwhjMqI7tfnEUIIIYQQQogT4bQINAB+e8M0fvPSOhrNPd9A1zW11RN48YNdfLWxEIBFM9O547JxAzZGgKSYEH557eSAbXqdCrMt+FKDvfm1TB4Rx9aczkU4u3IkzAjmP1/k8Lf3dpKVGkFWaiTTRycSFa6nqs7KG1/so7LOgtnq7DCrQwNoUOBhmK6GcvUgGs1tQcnHqw/7f/7F82uOanaGAi+HS33LWZQKGJoSye2XjWVIcoT/GL0usJinQef781UpFUwdlUDsNweprm8rfDlpeNxJHWaAb9bO3AndB0xH67O1efx72d6AbZv2VnDpGUMH5PmEEEIIIYQQ4ng6bQKNtMQwX3vSXgQatnZ1Cr7eVOj/ecWmwgEPNIJxdRMANLY42JdfR1SYjrqm3rVeTU8MJT0xnA17ygk36aiqb5u5cqSzRU5BPTkF9Xz6fR7gK+DZUwNfL0qU8UNoLGru8pijXWrSfrmNxwuP3jqj0/KLsZmxXLEgi5XbiklPDOPKhcNwuT289OFudh2qRoFvtsi0UYlkpkQwZeSJ725zIu08WN1pW05BHY0tdsJDetdNRQghhBBCCCFOVqdNoAGg0fSuxmmj2YHb48XhdAfcxAcrnnk8RIbpuXJhFu+tOBh0v8Xm4q/3zeezdXkcLm7E4/GQU1gf9NiRGZE8dKMvDLDYnNzyxDe9GkNPYcYR1U1dF63sr04m505Pw+3xYrW72F9Qx/INBei0Ks6bNZhxQ2NISwhl6sgE9Do1y9bkBYRS4Ot485+HzkGtOi1q3h61yLDOoYXXC+4u6s0IIYQQP0QutwuHx4lRYzjRQxFCCNFHp02gUddko67R1vOBQKhRg0qpwOPxBtyER0d0/oesss7CPz7ajdnq5MfnDGdc1sDU2bjm3BFcdsZQfvLoV52KW04YFktCtJGbLx4DwKtL93QZaOTk17PjYDWzxiZR3WANqGHRH4HDrDEJfLImP+i+cVmxQWcF9EVYiJblGwtZvrGw077VO0r9nWoyUyJ46u45nWqEgG/JjdXu6nWBzdNV++U37Z3MRVKFEEKI48HVWI2rpYFcj5WnNr+G1WXjwmELuHb8ZSd6aEIIIfrgtPkKe0N2OfXNvVuS8dDN0wEwGTTccNEolEoFRr2a2y4Z2+nYv767na05leQU1PH465uwOXrXVvNoGHRq/nj7LEz6wJxJpVT4b0I/W5vHJ+1qVgABrUu9Xtiw21dENCnGxOCkMP++UNPR1ZPQaJRkDArjZz+awKZ9wWt56LUqYsKPrnOGRqVEr/XVx2jqpoho+7a7ucUNLN9QwLnT0+h4f75gSirR4fIti0rVObjQqJVH/XcghBBCnIpcLfUUvXQXeX+8nIK/3kjjti8p+vudlL3+AMY3HuHsUt9nm2UHvmH/J0/j7e20VSGEECfcaTNDIz7K2OtjG5rabpoXz8vkgtkZKBUKlEGWnDS0C0msdjd2hxu9duDetiHJEdxx+Tieemubf9u2/VU4nG60GhVvLd/f6Ryv11dI88j9fmZKOAAatYon75zNxj3lRIbqiQjV8fIn2RSWN9Fs6TyzoSt3XT6eMyen8OaX+yivNfu3x0bocTg9hIfouOWSMeTk1/V4LY1a2anOhtPtwXMUnx3++XE2Ow9WE27S0tAahMwam8S9V03o+8VOQw5H56Ulc8YP+sEvxRFCCPHDUrfqHVx1vi97POYGalf8BzxtBdRnNNsYZbbzelIE/7DlMPWln7J40X0YBx//umpCCCH65rS5s2ky9252BsBXmwoCHqtVyqBhBsCVC7L8tTXOnzX4uBRTnDshOeCm0+uFg0W+JSbhXXy77vFCbISB2y4dy8Rhcbz04S4ef20Tf3tvJxabiwnD4hicFM4Td8wmNiJ4+DNrbGLA48RoIy89cBZnTk4BoKC0MWC/Rq3irUcX8eIvz2Tc0Fgs9p5nrzhdHh6+eTqxkYEzKI62rMOmvRX+MCPUqJEwo52wkMC/FY1aweJ5Q07QaIQQQojjw+l2crAmjxpzHdWfvUjLrm8D9nvdnb/U2RZmoEyvoUyv4ZNoA9s/ear1WBdN27+mYdNSPLa2L3VczfW4Wjov/5XZHUIIcXydNjM0ymrMPR/UKjU+1P/z9v2V/PPjbMxWJ4tmDmZ8Viyfrc0jJsLAj88dzvxJKYwbGovN4SYxxtTv424yOyirbiE1ITSg5sOc8Ums3FYCgEoJMa31Pa5YkMVf390R9Fpe4KzJKdz8xDcBM0vW7y4jxKBh/iRfMDF/UjJ5ZY2dzs9KjWRd63IV3+MokmNDAHC5PQweFM7mdu1jtR2KsKbEhaDTqLA7u24bC74aDo/eMoN7nl7VZVeUrJQIzDYnpdW9/702W5zUNlpJjgvt+eAfgBsvGk2L1UlZtZlRGVEsOSuLQa2/TyGEEOJ05HA7efi7Z8itK0CjUHF/XgVhwLZQPXUaFeObbES1uFF3WCVrVikJd7qxqhRcWdlErNVB3h+XgEIJHt8XNnWr38OUORFNfBoNq94FIPrsGwifch5el5PKD5/CcngH+uRhJFzxa5T6/v/cKIQQItBpE2hkpUT0+thtOZVs2++7MS8ob/Jvf3fFAT5aeQhH60223eHmjsvHERl2dLUhelJc2cyvXlhLs8VBfJSRv9wzl4hQ3wyQOy4fR4hRS3mNmUUz0kmINtHYYsfRTVhw1uQU6ppsAWHGEUWVba1WL5mficfj5Y0v9vmXeqQlhHLezMFUN1j5cn0B8dFGEqKNLF1zmIpaM5+vzSciVE+oUeNfrpKWEMarS/cwbVQCa3aW8cV6X7FQvUaJV6HA7ug8VqNOzZghMWjUSiaPiGdDdnmnYwAOFjf06j1sL2NQOAnR8uHhiKgwPY/cPONED0MIIYToUtO2r7AV52AYMoHQMfOO+XoHag6TW1cAwLj6ZsLdXlZFGFke4wv0N4Yb+L/cWsI6lEm/oLaF82tbOKxXk2lz0aBW8nlMCHaFgrNrW0h2uMFpw5yzHm/Oeo7M661b9V/Cp5xH857VWHJ9y4VtxTk0bltO5CwpMCqEEAPttAk0iipben1sQUVzl/sc7WYMFFU2Y7Y6sTvdRLULNSw2J0+8voV9BXVMGRHP/ddM6lSXwO328M2WYmwOFwumpGIydO648e2WIpotvuUSlXUWNmSXsWjmYAD0WjW3LG7ravLnN7d2O/MhJT6EaxaNwO32MCw1kgNFbdMgDTo1c8YPCjj+sjOHMm10AgeL6okM1TEyIwadRsWtl4zllsVjePhfG3nvm8A2snVNNsZnxTJ73CBKqpr9xUk/W5uHy932wcDm9JAYbaSm0dZpBsaYzBg+X5dHfJSRxH4OH8YMiZH6EEIIIcRJwuv1Yjm0FVvJfgyDx6GNTUVlCkehUOCsr8CSt5Pa5a8A0LJ3DY2bPyN86oWEjJ6DQqHA63FT//172MvzMI2YQdj4s4I+h2+OqoLGTUsJLdrL/HoLsxrMhLR+NinVqUmyOanSqrGolNQY1ITanCg6fGRQAJmtnebejQ+jwOBbujnM4iDZYQ047giV0Vd8XdHhYtJRTAghjo/TJtDIGBR+zNeICNFisbtwOH034Y0tdq57eDkOl4cL52T4A4bP1uaz85CvPem63WVM3hbPgqmpAdd64f1dfLOlCIBV20t45t65nf5x61jINCpIl5DNeys6dTUJRqX0/UOqUin5w+0z2bK3EpVKgVqtJDbCiMXmpMnsIKxdDY7kuNCA5Rk1DVYq6yxkpkSw+1BN0OfRa1WcMz2Nlz7c5d/WPsw4orzWEvT8vXk1bNpbAcD8ickYdGqsvai90Ruffn+Y4WmRzO4Q3gghhBBi4NmKczAf2orSGE7Ljq9x1leCt/Uz1YZPANCnj0ETk0zV11/icYEhCpStn0YdFXlUL/0btsI9oFThqCrAXur7csWatwOv20n4pHP9z2c+tJWqT/8GLifG4dMx710DwDkEhg5XVDWh8UKlVsXb8WHE2nXYWpToQ+2dOqUd0aBW+X8OVhXDrVJjShpK9Nk3ABAyeg6W3G1YcrejTxlB2KRFfX7/hBBC9N1pE2hMHBbHL6+dzK5D1YwaHE2zxcG/Pt0T9B+hroQY27plAJTXmnG33qwvW5PHZWdkEh1uwOMNnHXQsQBU9uEavt1a5H+cW9yA2eokxBhYpPGc6ensOFDNhj2+ZRcfrcxl0vD4gFkGFlvP3UjUKiVXnT3M/1ivVTNngu+mvqrOwv3PfU99s52IEB1P3TMn6LKM3bnVPPzKRpwuD0oFxEebKG+tS5IUa6LZ7CQ2wsCFc4aw62A1YzNjWL6hoM/dSVqsbeHFqu0lQY9RKRW4j6btCfCnN7fi8XqZOyH5qM4XQgghRBuP3YKrsQalMQJnkxmVQY8mIiLgSxp7RR7mA5tpWPcReLuvo2UryKZ+WzYNrd/VWGsgZmTgMU27V6Lwdq6xVbv8FXQJGXjsViwHNtGybx1eu+8LFPPetf7jOmYUmtaPFPEON3cU10Mj1OcqiMjwBSoACp3Rfy2AeQ0WlsaE4FUoaAoy+9M06RySFt7Q9pwqDfGX/aLb1y6EEKL/nTaBBvhaUrZfWnH29DR+8uhXmK29mwEwaXgcJr3Gv1wjxKChsTXg0KqVHCqq56Y3V+Bye/3FL6eOTPAX2wRwe7w89upGOha5fuOLHG69ZAxKpcL/IUCpVNBibQss9uXXUVjexJDkCP+2mWOT+Ocn2bR002b1qrOzmDU2Kei+tbtKqW+tqdHQYuf7HaVcsSAr4BiLzcnS1Xn+5SEeL5TXmLlqYRZhJh1nT09Dp1GRnVvDw69swOHykBwXwqO3zuSD7w6x82B1d29rn8VFGrqc4RGMUa/CYmv7ALVlX6UEGkIIIUQvORsqMR/YhDZ6EMbMSf7tjqoiyt5+CGtFE/WHFHhbv+SJmDSRkb95AI/DTu4zj2ArycUYB6rgjdg6UaohZjQ4msHcOokjYMWGx9M5lWjVsOlzLAc2BLRd9fH6LhIkCGlPD7iNoFB6sTXqMUTZMAyZSOx5t1C19AXf7BBgRqOVEcpQrOZaEltrgnkBF6CPGkTigp/27sUKIYQYUKdVoNGRXqvm3T+cz2/+sc6/hGJQnIkLZw/h/FmDcbs9WOwuvttaTJhJy7wJydgcLr7ZUsyX6/MpqWrxzVaIMvHTC0fx/Ps7/csrjtSz2H6gipsf/5p7rprIxGFx7D5UjdXe+duJLzcU8NXGAkKMWn7702mMGOz7SiAp1kT2Yd/YdFpVp2UnWo2KF+4/g2f+u429ebVB25vuOljDlQt8MzQ8Hi+5JQ2EGrUkxpiIjwqcjdFxmcvu3Gr+8O9NQce8bX8V9/1oIjqNb9rlN1uK/DVGSqpasNpdnDczvV8DDYUCquqtPR/YjsXmRqVsa/26aW8FxZXNpMRLtxMhhBCnt5p1G2jK2U/kxPFETux763K3uZGSV39F0+Fm3A5IWnwZCRdcDUDT9q/wWJowl+MPMwAatm2nYdduiv/7Ks2HfLNMrbUQOxb/Eg6XDWwNoDGArsOq4COPNUYwRNO5lkU35ScsOWu73tkaZni94LaDSgMKVefDVFrfGCKnnsHgG65HofbVOUu65hGqv3yZ5u1fodAaGDr3KqqXvtA2LkADuOtKsRzYhGn49K7HIoQQ4rg4rQONIx6+aQYbs8vRaVVMGRnvnyGhUikJNWq5eO4Q/7FGvYbBSWGUVPmKjHq8kJ4URmykgSazo9O1XW4PtU12/vrOdt54+Fze/DKny3F4vL42ra8u28Nf7pkL+Fpr6rQqSiqbW7t/dP6XNzrcwOO3z8Zqd/HtliL++XF2wP5haZGAb+nLk29sYUN2OUoF3H3FBBZMTeXGi0ax42A1Y4fEMG9i4MyF91YcDBpmABwqbuDZd7bzzP/5qo4ntWtbq1QqSIg2kZ4YxhmTkv0tZrujVimC1ttoz+sF9zH2cLfaXXy9qZAbLxp9TNcRQgghTlbNh3LJ+cMfcTb42rCXf/4FY/74GGEjhnd5jttup2bNOtw2K+rQMMKGDcVjLsda3kxIoi8PKP7gQ2o2HcTZ2EjEKN/sT0WQT4tqkwlrWXW7a4PH6QsL3A6o2du2+iRiiC+4CEbZzSdRr7dzuFGrVhLdRcv3IxQKqN0HagNEjw0DZ1PAfi+gnDqFtOuv9YcZjtoyGjd/RvP2r3zHOKw0rP+0yxkfLXvXSqAhhBAngR9EoKFRK/01JXojMlSHUoG/PkR0mJ6CssZuz7Ha3dQ2Wmls6dwyNdh4jjDo1EwZEc8X6wrYfqCarzcX8cy9czvV2zhy7AWzM0iOC2HjngqaLQ6MOjUzRicCvpkNR9qgery+uh8LpqayeF4mi+dlBh1LiLFz95X26ppsvPxJNis2FxJq1LJgagpmq4v5E5NJT/RV9h6cFN5joJGVEsHvb5rO8g35vLX8QMC+tIRQGs12Gpo7B0a91XHmSkyE4aivdapz2F3k7q8iLMJAcmvYJYQQ4vSS94+X/WEGAB4PZcs+oGldMwqll6gzrsEweGzAOfsefZymPXv9jw8NCWH33GSMI8O5tLqZCJeHsGSo2e374sRSVEzs9BTChphRR+ix19SiUOtIPP8iQodlET5yKLVbfF/kaEygbP1I4WgJLKVhb2wLNNytH5NUutalJjo9ziYbTrMviGgffDjN0JjvCzbCUqEwScMbiRHcXFJPejcFxb0eCEkGUxwBYUaBXotFBbtD9OTF1PIMTsLQ0bBpKXXf/KfTdZzVhWgTMnBU5IGy9Qun1qUu2rg0vF6vdDMRQogT7AcRaPRVclwo9109ieUbCkiMNnHteSNosTgJNWpotjgDwo4jpo9O4Od/+57aRpt/m17rq7PRfsKBUgHDUiPZmlPJ8PQo3voyhy37KnC13pGX15jJPlzLjDGJXY5vfFYco4fE8MCLazlQWM/yjYXctWQcc8YPCugaEhfV8039LYvHYHO4qW2w0mR2+OttHGG2Olm2Jg8Am91KQVkTz943P+CYRTPT2XO4lp2HqvwdYjo68voWTk3rFGgUdtNGt6/SEsOYkBXLBbMG99s1TyUup5vXX1hPRZnvA9wFS8YycXpqD2cJIYQ41XQsSA5A/Q5aWru2O2r/TPrPXkOh8qUMLrM5IMww6xUsn2zAY68Dk45PvXB9RWPAZ5aQJC9qdzEAoYmhhEbbQekiYlgMAMN+8xjln7yHs6GekMx46te8w/deLSlKBwalB1o/EuiiDYBvOWn9YV9QodQAXogda0Nj8C1NMVeBtc5XqFMbn05doRmX1TcLpDJfwWuTIkChoFyn7jbQUChbw4wOVkYaOGDS+R7YWyhpLGNkXBaNG5d2eaHYC+4EjxuVKQJnfQUt2atRGsNo3ruG+rUfEDpuPiiUOCoLweNGG59O9Lk3o1TJR2whhDge5P9tuzB/YjLz2y3PMOo1/PVn89lzuIbocD2P/Xsz9tYiUSEGDbPGJXXq2hEWoqWqLrAehMcLH67M5cOVuUSG6ahvCgwQlArIL2tk4vA4f+2KYEqqWjhQWO9//O2WYs6Zns5DN03n/W8PEh6i44YLR/X4OqPDDTxy8wwAXvk0m6Xf5wXstzkCl6MEaz6i16r53Y3TuPyBz7od7zUPLWdE+sDOGFhy5tBOy2p+SKoqmv1hBkD29lIJNIQQ4jTitlrxOJ1k3HQD+598CmdTE0dSiJYKsNf5jjPGW/G6XHgcLnL+9Bcas/eg1GrxOHyzIR0aJR5V2+yCFrWSFqUGJi9AmbsSj82GIabdEztav3zwuKn4+EWqH/sHsXNnM+SO2/yzFHbYbAx58UNUrZ8V9qfpKBscjnHyWC4NH4r+0A7cOzeB14vH4atvoWz3UUcfDp6Q8USfMYnQsWdQtvZu/z6V24vC363k6Nq9D7U4/IFGuMbIIF0EdavfDRyEUoXKFIEqJJLwqeeji0/371KHRWNIG0XV0udw1pSiUEDzjm8CnsNenkvLvnWk3f1PlPrOXeWEEEL0Lwk0+iAu0siZk303h3+8fRZfrM/HqFPz40UjcLk8hBq1NFvalk2Mzohhm6Oqy2UoHcOMmHA9NY023vn6AHvzann89lldjiU6XI9Jr8Zs8/2jbrW7KKtuYXhaJPMnJuPxgsnQ/XKSji6Zl8myNXn+b2dCDL7rH3ls0Km4ZfGYLs93e7pe03qkmGhOQT1JsSbKqs19GltHwWbJAGSmRBzTdU91EZFGdHo19ta/i/gkKYwqhBCni9qNmzj49F/xOBwkX34pU9/4N4XvvEfJu/8D2sIMAEslFLz1HurwUBp37AR8EyY0kRHYG5qIbHYzPN/K/sEG8HoxGBMZ/cAjKBVKXOf8mJayUg789zfE0jk8cJmdeGxOKr/+hqhpU4maPImG9R/R9N3nxLf7t3nV5FDsOqBsN+XmGrwmiBtpZPZO32cAQxS+qRoeXyc3h1lB8pWXEj7K94XM4Bt+wsFnnwUPKNOVzG60sC1UT0rMYNR2O6aMCZhGzqR513c0b/8a8FKo07A7RMtQq4PhHTrEDapysKC8CbdRwXkXX0ndS/fgdfuOURrC0CUNIWLmpVgObsFja0GXkOF7vc31uBoqUJoiqVvxb6rXbqOpGHSpEBXf+ffkdVgpf/9Jkq55VJakCCHEAFN4g85ZFEejuLKZ5RsLqKy1MHpINOfPyqC0qpm7n17V47mDE8OobbLSZG77xzc2wkB6Uhg/u3oSIUHCiYNF9Tz7znZ/AdMQg4bh6VFszakEfMtgfvPTaX16DbsOVfPqp3vQaVXccfk4CiuaWberlCHJESw5KwuVMvg/zFtzKnnkXxt79Ry3XTqWNTtLKapoormbdrRdOWdaGl9tKuy0fVRGNH+8fRbK1jGWVrfQ1OIgKy2yy3GfjsqKG9i2oZCwCAOzzhyCOkihWSGEEKee7Xfei7WkbTbo1Ddfw+vxsurWmzDZgn+poImNwVldE7DNnpSGrqyQDWNMbB7TNovgvpk3MSPF17b1uQ3/Zmv+Js6qNxPl0ZAxaj6WdZ9hbPHQnN9WC6PoyhmcfcbFNP77AaoPg6vWt90DvHVhFFMcNuIcbgoNOjIsNpxKBevUerRuUEbpuDppOo2bv8Rh9ZAwfgFZl9ziH4/X7SLviavwerwoVeAE/jg4BpdGh8vj4soxF3LpyEW+Yz1u1hVu4bnNbbUwbi6tZ4jV9zljtUFP+jo7WpfvY2/4qFSMpqK2N0WhJOPB96n86C+YczYAoDJFEHfJz6n43x/xOnwzbt1OcFpAG+KbYdLdpwvjwp8QN+V8lB3buAghhOg3MkOjH6XEh3LzxYEzGFITfDUddvTQ2lSnVTFycDQb91T4t1U3WKlusPLeigNBO3ZkpUZi0rcFHWar0x9mAGzaU4HD6UbbzdKVjsYNjeW5+8/wPx6cFB6w9CYYq93FX97a2uO1DTo1WSkRfLEuj6JKXwijVCqYOCyWwopmqnvZrjVYmDE4KYzHbp3hDzO+2VzE8//bgccLk0fE87sbpvn3ne6SUiJI+oHPVBFCiNOROqRdtzGtFqVGQ84Tf+4yzAA6hRkAurJCvEBUQ+Dsi7pNn+PQx6ONTWZfWQ4L1jWRUuGgPMZFzaYVaG0e7GFtrVAPD9LymTKXPbve40ZA5cI/n0MJzKk0MxNf8jHKbPff/Ifr3byUHMW4ZhuaDUuJA9bHGnjTspW/Wa/CaPAVHa/5+lUUCq//+TTALwtreSUpgjK9hnezl7IgYzZh+lAUShXFzW2fgQAq9Tp/oLFDryfL1VbnzNlohXYrQnQJGXg9bhxVbSGH29xA45bPA8IMWy00FUNoMoQkgtMK1mpfkVNjXGBXlq83v8f+xn38fv696DX6Ln9HQgghjp5ExgNMqVTw+5um88gtM7j8zEwmj4hj1thEbrt0DHptW9AwKC6En/94Ej85fyRzO3RksXZT+Gra6ATA9w3BcJS0X2DgBb5YX9B/L6YLT7y+2b/0pSsKfK9jV24Nxa0zSgA8Hi9bc6qoaehdmNGV/LImzNa2MXy+Ls+/JGVrTiUVdce2xEUIIYQ40TLvvoPQEcMxpqaQdf99KDQaGnftDjjGjYLeTL1VABnlduKanSi8Xka22Mk6sIuil36Go76eGdlmhpQ40LogrcKJxmwlZpSvBWvMKNBFwPqxJow2D3mNZZTrdZgS8E9ZKI9VYzJ6A57viEinB41SzVl1Zv8H0ZmNVlwKBTtevpuW1hkStuL9ncZt8HiZ3uT7zKBSKFEpVdQsf4X8p37M4B1r0bUWQQ3Rmpg//yaU+hAUai3Dw8Ipi/F9j6cyQuysUeiHTEBpDMOQMQFD5mTy//QjXE21Ae+S5cBG7K1lSlQaMCVASBI0F4PLCjU5YK6ApkJoKW070wPsCtWTW1fA2qKev/QRQghxdGSGxnGgVimZOCyOicMCS26nJYTx6feHiQ43cN15I9Br1Vx25lDcbg8Wm4utOZXERRq47IyhXV57yVlZKBQK/vf5PkJQkImSSrzY8VKLb9bGQNtXUNfjMe0/XIWH6Gjo0E0l3KSjoRctb7tTXtvCoeJ6Qk1a4qNN5Jb42tkZ9WrCj1Q1F0IIIU5RxuRkxj75eMC2kKFDaTl0CIBybRSFhnimN+ZQrzaxNmo8aq+HM2u2oPN2/uJB44Jrvq0nLA30R74RUbnJe/FJxtaasbQ7VqUDVWtHeYUCnEkKfvRVPWoPFMep0XpduMNAqfaVxAi1udlkMDDG4kAJOBSgPfJFQ2wUapWaFpWSOKev+LhdocDk8hBtbqHqsxc4HBHOd3GhNKjDmVdvId3W9nlGYYog2hDOj8ZejKL0EE3blgMQV5LHg+PPoHHsTIZGD6blX7/EY/N9iXJeTQPb7v4x1r05ZBRtw5G/CoXOSPINf0Kh1lH0vG+pyy6jmsqYGOY0ONBbfUW2dWGB75taDyjA7YD2JUYcbd/XsCVMT3HrLFqT9ofbSl4IIQaaBBon0OghMYweEtNpu0ql5KGbptNicWDQa3qs/3D5mUPZvq4AV4MNNQoGoaAKD/pYI+fNTB+g0beZPDyedbvLArYpFNBVdRatWkmIQU1L64wKpULB72+ayn+/OkCT2cGUEfG8/dWB4Cd3YXBSGG99uZ/dub6ptT8+dzgmvYbGFjuXzM/sc4HUk9Fna/P4cGUusREG7v/xJOKijCd6SEIIIU6wUQ//lvIvllP033cJdVmY3piDGwVvJZ+HWe27kW5WG7mi/Nug57stUJ8DahMYo30zEDTeXDSxYCv31+vE4wGvx9cSFUBT5+VILfCUKhcOwNFudW1Is5cJtTb/DAytF/4XF0qxXkO1VglOGx8nRnJVvROXrZlatYqbyxrQesHmsvP498/7TjTpKAg18WTyGXhzd6CNS+OKs67nSrXv33XL4R0BrydGqWFEykQAmuxtsz+9DjuXjb+I2toGGgt8IYrXbsGavxvjsGmgUFKsVfJOfBhehYIhVRYyjpzrBRRKFHjwenytZcPTQRPiC3qO1BPRR7S+V8DKCCNqhZL5GbOYnjyx51+kEEKIoyKBxkksxKjt9bG/+/k8ln2YTUlRAxmZMcxckEl0hAGVauBXFd1/zSQmb4vD7YGNe8rZmlPZZZgBUFXfsZWtl9IqM1tzqgA4WNTQ5bkTh8XR2GzjcLvWpOBbctLel+sL+M9D5/TthZzEympaePmTbLxeqGmw8uqyPfz6+qkBx9Q2WtlxoIrk+FCGp0Xh9nh/UMVQhRDih0gdEkLKFZfTuGcvtC4/cSg1/jADoFYb1tXpfl6nL8yAttAiIhPqcnw/e+zQ1JSAylGBywz27kuD+camIGCKplWlpFrb9tGzSauF83/KS5teY7jZzjCLA4tSwYdxgR26rB4XqjFziZtxaafnMGSMJ2TsGbRkr0Ybm0zkrMv9+6IX/ISaL//Z+vP1AOiSMttOVijRJmSgDokk+uwb2LnlfbytRTD+NyiM2w7VE+LxYrZCeJTH/95EtZs4GzYYXBbQ6H3LcABsSgVWtRKX10OkPkw6nQghxACSQOM0YTBqueLaSSfkudUqJQumpgHwn8/3HtU1XvpwV6+Oyy2ux2LreRlNfbON4qpmkmNDTosPEnaHOyAkstndAfsbmu387K+rqWttBWzSq7E53Pz43OEsOSvreA5VCCHECZB1/31su/FWPA4HBo+D4c0F7A9NB2BC48Eez/d6ff+1/yez47+elkOV/oBCGxWJ19mE2+7G46ATe1w4zbNn0LJhBSEuN40qJWfVtpDiUrAqwoAHuGnSjxganY5WpWW/CR7LiCUlLJHipvKAa00eNI5YUzRv7PiAFYfXkBgaxy9n306MKQqFQkHchXcRe8Gdnf69D5uwgJBRs8ALSp0v4AkZMRMWu2nOXo1CrcPr9P27GT55EQtGz+bbFU9SbamjWafjyVGx6OweprZYMALhFjeZh+3oWvMWbSgoQyCkQ15k9Hi5r7CWv6dEoVdLMVAhhBhI0rZV9KtH/rUxoNNKMFNHxpOaGMqH3+V2O5OjP0wfncCvr596WnQ4+fsHu/hyQwFhJi0P3TSdrNRI/751O0t5782tuIEyApb08vrvzyY6XNbvCiHE6crVVEvN8lcpWroFZ7NvJoEXKNbHofW4SHD0XOsKwBALoYPA6wanDdQ6qNkT/FhjWipj/vBbLHk7adhXQvF7S/37wieMZ9RDv0WhULC3bC/b//dHZpnbOoxUapTEOj1EzbqMqPlXU1BfzJbSXaRHppAVPZg3d31Ei8PCnNSpxJgicbpdfH7wW7aVZfuvMT99BndMu67vbxZg3r+Ryg+f8j1QKDFNvp6SD79AY3IRtfBMclLjeGP/UuwuO3hB4/HgVClJsTm5o7ie3n5PsiclnalhKbhqSggZM5eIaRcd1XiFEEJ0TWZoiH71q2sns3RNHjaH75a6tKqF9dmB37TMmZDM/InJ6DVq3lreuYJ5T7qrz9HRxj0V5JU2knkatDG94/Jx/OSCkei0alRKBXanm5c/zia/sI6wKgv1QEOHc5QKToswRwghRNcqP36G+u37cbYrSqkAUm1VfbqOtdr33xH6GHz98Dy+lrFxC86i7JOlKLRaPC4XW2+7j4RzFpJ2zTWYCyqo27QZbVQUGTf+1D9bYlTSKPI7NDIzubwogZZ964iafzXpkSmkR6bgcrtocZi5c+r1/vMrWqr5+ZeP4vQEFjX1eIO3qnU2NdF84CDG1FT08YHF2G3FOdR++yau5rZOJl6Ph/qVrxMS40VjBMf29ynfpsc+NMz/Rjpbl+9GOt1dhhnlKhWxVjfqdquFRxYXYKEAgLrKfPSDstAnDw9+ASGEEEdFAg3Rr/Q6NVcsaFviYLY62ZVbHdBS1ajz/dl9v7O00/k9UauU3HH5OFosDvLLfF1MVm4r6fJ4BRBqCqxFUlTRhMmgOelnLazaUMDX3+WSGKLnqqvGERsfilHfVtz0f98c5OtNhQxFiZPOYQbANYtGEBkq012FEOJ0ZSkppfTrgwFhxhFKTVtRzx4pfTMy3HZf8U8AW03bblPmENKuuZqUK5eQ98qrVH+3CoDSjz4hJGso+sQEBl16EdGThqLW+ZZFWsvKsFdVE1MTjiXajtHrpdmlICdSS45JT4pGzbxVb5KcMYkKRzN/2vsxdbZGJkRm8Yuz7katUlPWVBEQZiiApLAElow+v/N7UZxP9q8fwtVsBqWSmFkzybzrdlR6PV6vh48//wslSjdjXHaOfFJRKEAbEvgtyWCVC6XHi6f1CwGNx4NTqeSgUUuVRkWc040NqNWqGeRwUa9W8mlcKKk2B+fVtfWG6VjFzG1u7OUvQwghRG9JoCEGlMmg4W/3zedPb26lpsHKvInJTB2VQElVM0UVzQHHhpk0NJud0MUMjCHJ4fz5rjloNSr/NofTTUF5U6eioEfodSri23UDeea/2/wBSGZKOJfNH8ra3WVEh+m57vyR6Npd+0TafqCKpz/w1RXZU2fG9u8t/OLXZ2KxOdmXX0d8lJGtW4rIQokJ3wc8FeDucJ2zp6Ud55ELIYQ4Xtx2O3se/C3OluCzFXobZijVED3S147U7YDafa0tSdtp3Lmb7F//jtGPPwKewH+kc597EbfNQsxIqC4BFEqMYy4i7/XP8LpchI/UYWz9h11p81JZrqJ5uJK5xSWoiksoXfcJryWE02jQcumqBlIq17L5owNMfvJJsmIyiDNFU2WuRaFQ8LMZNzMtZULn98LSRMGLrWEGgMdDzZq1eN3/z959R1dd338cf949sncgIWGHvQU3iiKK4qxWa9FaW7ettnXU1aq1tT/raLXWvetWKENBEUFkCgSQPbMI2Tu5+97fHxduCAmQMAVfj3M83vv9fta90ZPc9/183u8gfe75PV9umsukhPAXHMtibDyQV4Uz2Pb7ltbk59fFNayPspLp9rPDamR2UgxRgSAfpsZiIkSt2YTHEP5DuslkJGAwcG5VG1GlXe9xVDwYjIRCoeMit5eIyA+FAhpy2KUlRfHUHaNbXLNZzOye/DzGaeWNh87BYjYxa0kB//ygZRm2QT2TefTGk1sdn7BaTDxz5xlU1LrYWlTL5wvzWL6hbLd+KZHHZVVNLXZzbC6s5f/eWRoJnizfUEaf7AR8/iAj+6dz4oBOlFQ2EhdtIy7adtDvQ0es2O01hIDiOjcuj5+7n51Hfkk9RgN0CUESpp1tQvTCSCFBmggHOH4xod8RX7eIiBw5vppafLVtB/Q7wp4UDmYAmKzgSIaG4tbtGjZtYttrb+AuK8McHY2/IfwBPtDUhCUaLLu+PwgFqV30P0L+8C9Yu90TGSMqGkZ810SnuEDkj1AjEBcIYPUFmTMihpNXNtCjqJwdU6eTPfFq/jr2XlaXrqdTTBrdErq0+Rrc2zdipLHV9coFC8j/b2fycpqDMN3d/lbBjIA3/GWKrwEMFhPd3D66uX0EgPfSUxha5+LysnqMwNIYO4njrid2+qssc4Qrt2xzWOns2/t52GBjDaUfPU7MsHNIOe/GvbYTEZGOUUBDjoqUBAe3Xj6ED2dtID7Gxl0/H4HFHP5wPnpYZqT8a5+uiTz4y1FEOSx7HctoNJCa4CQ1wcmoAelMn7+NBauK6Z2VwJVjcyLtnA4LNosJj695H8PuO0GKyhooKgv/cTY3t+VxmJR4Ox5fkItH9+Dys3rj9vqpqHGRluiMrPtQGtQrhUlztwDh4MSZp3Qld10p+Tt3tQRDkA/YCBCHCS+wjSCd4x08esfpxOmYiYjIcc+alHhIxtmzSklg584Og8lEKNBy71/pjC8wO5uPpUT6eMLJRA07fyUazSESekNTGXgbwR4Xvu5rBEJQ4zcSNISDGSHg+2g7HpMRlx0+PzmOGz6tYGN9IcvWfs45PU/n5KwR+3wN1uRMbAlW4nt4cVeDe7c8qNs/mcSJ//4zX2+ZT4AgtkDLxYdCULk+HJBJ6AlGRxTBgBe8bj5LiiZoMJAb6yDeH2RcVSMj6t1YvluGz+Vm3M78IEFaHjHxEf4je8+9GA0rv8aS2JmYgWdgcsYgIiIHR1VO5Ecld0MZT7+/nOqd5U3NJiP+QNtbTvfmLzedzL8+yKWs2kWXtGgev/U0YnfL07Fo9Q5enbIam8XM3dcMJyutZT23/B112Kwmps/fxpK1JUTbLfzsvD5s216Hzx/kglO7EeO0snxDGSvWlTK4ZzKBGg/PTlrZZp6MLhhIwUDc0M787udHp3SviIgcHfMvuqzFc0cquDqWCxSA6AywxYK3HuqLwN6pE3GDB1E6YyYABrOZxJNOxL/9W5zJ4SBAXX44YAFgTU4m67KzaMz9kOb9lxDCgPPEX7BhxyJilm3CU+DHmtGFHdedzZo1M0mprWGL08pmh7XFp/8rlof4dBD4zQa6J2Tx+Dl/BCCvugiHxUZadPMOTAB/UxN1Kxfir9qENaULm16cgrcinATElpLMiFdeJL8qn9VfvEhG3iZiQwYINgdrytdAbJfwe/BVgpNFcU6ChGg0GSO1bI2hEH/ZUh4JXASDYNwzUcbuDMbWkZ+dLMmZZP7qSQwmfbcoInIwFNCQH6X8kjrsVjN1DR7+8d9llNU04fe373+Fc0/MZsai/MjzGy8ZyAWndgegocnLzx76PLLzIzbKyn8fOS/S9sl3lzFnWdE+K7XYLCaev3sMqYlOPluwlU++3kJVVRP+tptjAM7PSODG353ervWLiMjxoXbNGlbf91DLi7uf5wQwmSCwZ4al1py9etK0Obwz0BIdIqE71BZa8VQ1b9/oefuvaVz8cuS53w3lq8KPBz/5d6J79qR+5WzKP3uhRbCg08RHcGT1J+jz4a2qxpachCfo45pP74y0cZjt+II+/MEAl/Y7j1lb5lHnac5J8c5l/+SVZe8zJ28hBoOBXw//GWf3OBUAT3kFq+65D29lJdakJAb9/a8E3G7yXn+DUCBI119cQ1S3rrh8buYXfIfTZGOoKZaSD/5KyNNIYxnYEwyYLCE2Oq281jm+zffIHghyVlUjJ9W6WmxxDoXYo/qJAWNMIsnnXEftkul4SrdhsjoI+b0E3c3HYrrc+jyW+LT9/mxERGTvFBaWH6Xs9PCuibREJy/+8Wxq6j28PPl71udXEQyG8PoDNLr8BIIhLCYjTruZuiYv55/SjS5pLbeIxsc056nYXt7QIlDR4GrOyFZW3cScnTk89hVG9PgC3PH0HH7z0yH855Pv9/tanBYTV11/QntetoiIHEdC/jYCFXv+fmlHMAOgadPmyGNfPbhrIOTf7SyKwYAzuweNS3eWQgGCvnBNV0t8PI35BUT37EnM4DGYohMo/ejvhAI+bJk52DuHa4oYLZZIKVWL18VAWyKr3ZWEDAbiGgJcWhBP1kmn0X3gOJYUrYgENIwGI3PyFjInb2H4JYZCTNswKxLQKJ/7Dd7KcClWb2Ul5d/MI/OyS+j30AOR5XtqSvjzt/9hW2N4S8kFvc9i4u9eJ+T3Ub96HpWfvwBAvC/AWVWNfBPvxLczb5c1EMTkDeFymJieEsOARg8J/uadF3vm+Ey58HZiBo6mbOqzeArXhX8MXjfmxM6RgIYlsRPmmENzZEhE5MdMAQ0RwkGJuybu+3yuzx/EYjYSCIbYXtbAmm2VjOiTxqmDMyJtstNjiXZYIoGMob2bt8RG2S3YrSbc3vAfl3t+iba7+iYf/9uZQ2NPRiDeYcHmtBAbbePXFw0g9gdeglZERA49e0bnQzKONS0Vb2nLcyp1zRsRMUVH0/36XxDTqxeWiQ9TPe8DjLYo/Fuqie68Bk9dDZuf+w+xffvg6NwZZ4+hdLnlOfz1VdjSu2EwhfNgVS/Pxb2jhKiuSVR+/ixXe5oojovnPRNc+mUZlsB2dixdR1xiKuWNlZH5g6Egryx7H4vRgm9n6ZYkZ0LkvnuPtZujolo8d21bxcaP/8a2rPjItWU7vueaoT/BYDVhS2uuCJbqCzC2qpEUr59PU2MZW9VAX0Myz0W5Im3y7BYSGjy0xZreC2fOSAACTS2rufmrisFgJHb4ucSfcmnkfRERkQOngIZIO1nM4YOyJqOBX188sM02dpuZF+49i+nzt5EUZ2fciV0j96IcFh64bhQfzNpIbJSVK8f15s1pa9lR0Uif7AS+WtpcgSXKbmZAj2RWb23OarYrkPGHq4YxsH/6YXmNIiJy7Aj52lmXdS9iu9qIO/E8ij6ets92gcZGUkaHjzXaM3rR6coHcOV9T8OaPxOTCdFBqFwXxF/ffETEHJuMOTY58nzH5zPZ+sJLACT2s2CLDq+9c20No9w2LLttJFmROwdP9B6ZSoFgKED/1F7E2mKZOPhSql21xNqi8de3rPRiS22ZX6Mu90ucXi9JXj+V1vCfvjlJPSL37Rm9STzneqq+eDVyLcPjB4uNq37xd9ybltJn/VesoBqA72IcDG3wUG0y4AyGsO36dsIah8nhJP+JiVg7dcdXU976zQwFsaR0oWH1PAgFiR02DqNNX0qIiBwoBTREDrG4aBs/G9enzXuDe6cweLddG3/61UkArN5S0SKgMaxPGleOzWFHZSO5G8rp3SWeP/36pMO7cBEROaY4OnUi5YzTKZ/zzQH1z7rlIQr/+wEhf3OWJqO1ddWTJiuUV+wgNS0zcs1VsDZy1MJghPj+XYju1XOvc1UvWxZ57G/0YYsOPw4ZDGztHEXmGg+2nUEN+7QFZJ4ZS1GatcUYgVCQXw67khRnIo/M+Sebq/LoFJ3KjX36w8LF4fU7HPhdLhrzC4jKzgLAkpCOCbhxew2L4pykj7qQ8wdf2GJs86DTMa2eS6A4fPTm+2gbpmCQ0ncewldRxE+A7FgHfgOMrHMD4DaZcAYDRPZbemtxbVsZfrij7V2WAHVLpuGrDFdTa9ywmIxf/G2vbUVEZN+UFFTkByAUCvHshyuY9V0B6UlRPPzrk+iUHLX/jiIi8qMWcLlYdsvt+KqqO97ZaAyX6miHjV0d9COZUHkVzsxMsq48j6rP/wmECAXBOeSndJpwRZt9Q6EQ+f95EG/xOryN0FTpJGvCIAINlTj7nEqZ10r16tUEvpgf6bO5XyzTh7QsQZ4Vl8mpmcNYP38Wy+ObItcv7XcuZ5bF4NpeTP269dStXQcGAz1uuoH0c88h5PdRNfc9fBVFxAweQ1SfEyN9vQEfq0vX89SClwn6vJxnTiLPVckGp5Vbup9N+udvtv2agPfTYund5GV4fTjA4W0Ea3t+de+RGTzpvBuJG3ZOOzqKiMieFNAQ+QEJBIKYTPuqASciItKSp6KSba+8Ru3332NJSsaVn7//Th1U6zQS2xSMVFZNGD6Mxk0rsEQF8dYB1nhGvvFqm30b1y+i9JMnIs+d/ceQPOZKQiEzK+68C29lJUXpNjqXejDu/Kt08ug48jNsLcYxG834g61rfv188KVc2Gcs7tJSlt1wS+R6VLduDHnmH22uqbqphr988yyFtcWYDCYCoeYzL/8c/zDp0Sks2rKQhEnPYfW2zJfhNYA5ZGDxBVfTxRRP1D+eAwO4qyFhgB1HnAF7Rm8wmXDnryXk87BrF4fBFkXI09hiPHNcClm3vdDmOvcm4GrAX1eBNSkDg1m5OETkx0tHTkR+QBTMEBGRjrIlJ9Hn3rsAqFu/gQ3/eBpveRv5GzooYDZi2lnNoyzJTFxT81mUgMtFIGDHuyO8U8Ie52zRt6ShnE/XfI7VG+TEb7bg3QrRncDsgKY1sylYOwdLlzMj1Uk8phBL+zqx+IK4EkyUp7X+kL57MMPpCmDxh+gdn824bqeyY/pneKtrMDqdBJt2rqnz3vNNPTj7H5TtTDy6ezADwGI0s6hoOU8ve5vk9ChOqTGQ6vUTFwgR7wuw0W4hJgQ/HTABEwZWJkzHXbqNr8bGsibJRqegkd/1HEJ6j+GUfPwE/orC3UZvvSPGFN2+aiee0jz81aUYndGUfvR/BN0NWNO703niIxitysMhIj9OCmiIiIiIHAcqFy1m/eNP7Ls2+H6Y7ODM7k6niy+l+N1ncAVD1JiNJFXtlmfDbifr5z8j5POx7dXXMZjN9Ljlpsj9QFM9f/nqScrctUyYU0NtcTgQ4qmD1ME7y5yGgngKvosce+mx3UuP7V7cXYx0I8iE/EZe7xxHns1KyGjYc5l0L/Zzma87fSbexdaXXqVs1lcAWJOTqcpKpMLsoXZsX9rKaOUN+CLBjLYs37GaTZXbAKiwmvlfamz4PTUYsAcCuE0mDKEQCWUbGNKpP30fuIsv//sHVieHj8gUm0JMyv2EixZNIVAXPgq0K99IzKAx+CqLcG1bhcHqwJ7Rm+Rzf73fn0vD2vmUTX4GQkGMtiiCO3d5eEu2UvLR30m7+E5MUXH7HUdE5HijgIaIiIjIcaBy8XcHFcwACLjBaI/Gk7+cmE5+YoBUAtQFHHS9+x4scfE4OqdjtIR3UAx99hkA6jdtpnrZchydEih6/8+UZYR3bCTVNgdCgl4ImaMwBMIfxu3pKfS89edsfvb5SJvoyiB0AmsIzq5o4tXO1pYlzkOAAdb2cDD+1Asx2WzhnBk7eSsqeP/UJBqdJtg4DVtsHGf1OJUFBcsoa6zg5C7DSY1OZminAeTuWN3mezBj09cMSuvX8uLOiITbZAovw2BgzraFDOnUH/wuDIGWR2EMIQjW10QCGaEQ1BUY6HbfdRgMBkKhIAZD867MUDBA3dLP8dWWEzt4DNbU7Bbj7aqKAkSCGbu4876n5JN/YLKHE3gknHk1loQ0jOaWSVVFRI5HCmiIiIiIHAd2r1ZyMGpXriJQDjHNRU1IGBr+gB9wu9j+6WQwgD0zE1dBIdVLl9OwaRMAzi7JxKY3MLTOQG6sg3XdHZz4ffgDeMKI4WRO/AlVs98hYLbgOul87Ild8ERbsDWEy7hao5vndLkhvdxHcZqleYuDAezuAG47PLf4DV69+AkShg1hR3ExAPUpUTTZmwMF8wuW0eRz8/bKTwCYvnE2T537IHedciOLinL5cPVUShpaHs8pqivh6kGX8sWWb9rM2bFLojMhvObkDAbHZzGytpSVMTY6efycF9cNk7uQQGMNAKEANJWGCDQ20rRpEfWrvsaanEnSOb/EaLFRPfd9ahZ8CkDDqjl0uflZTM7YyFzWlC40bfpur2vxbN8AwfDRmabNyyAUIv7ki0k88+d77SMicjxQQENERETkOODI6HzIxmooBlcFxHQBk91M5fRlFE1dtt9+TYUVBJtgXH49I7JcpP70erpelYm3qpzo7DSsyV0w9xrD9y++RGDqKhoHWxjS00dTOTTaDMQmhfdjNOyApEIfl1PD5kwb008PH6eIqfdj94Zw2000+VzUuOvodv11RPfqRaCxgQ1d7YRWfxRZT7/UnqwuWx95Xuuuo7B2B/1Se3Fq9gkMTu/L/817kQ2VmyNtLEYLfVN68pez7uLVZe+xqSqv1euMsji5YsAFABhMFjr//BFu3raKUCBAfe5M/E0NGKLi8DfWEvKFqN4MMTk5BBrKqPjsBSCEp2g9Rkc0SWMm4ineFBk76G7AV13SIqCRcPpPaVg7H39N6f5/eDt3ctQsmIS7cD3pVz2I0WLbTycRkWOTAhoiIiIix4G0s8ZQ/L8pBJpcbd6P7Z2Et86FI7MnppgEKr6eu8/xAl6o2QLQsZ0f7p3pKaKqQvS+fgCGQC2VU1+k+H0PzlQjJnOQbl2gch30bPRgskFMBsTsdrikcbfP7T2LPJyzoBabL0T37V52JJmZNCaetKQM4u2xGIxGUs84HYBOgM9mZl7Bd/RN7smlfc9j+sbZ5O5YA4DT4iQjJi0ytslgotpdE3luMZr5/Sm/xml10D0xi8GVNZxQUstWp4VFuyU+DRHCbm4OEhgtNqzJmWx/8z6CTXWR6wbAYIH0c8+g82W/wrN9Lez2OgP1VQDYsvrjyvseAHN8GtaULOpXzsZduB5nz2FE9TmRuJHnU/nFay3ea1tmH2wZvalb+jnQMrkpgLtwHcX/fYSkMVfjyOrX6r6IyLFOJRVEREREjgO2lGSGPPsMlsS2q2b43U6MjlT8DR5qc1ce9vWE/AFW3HkX2157mZrNHoIeMJnDuwfMNohKBd9usZdak5G1iQkU2sw0RjX/iRo0gCvOiN9qoNFu5OsTYvCbjWREpWAwGAj6fAT9fiatncHf5z1PgiOeR8b8nqsGXYTRaGRCn7MZnB7+MN/ka+KZRa8S2plrZFPVNsoaKyJz9UrqxrDOAwFo3LCEEVs2MqjRw8XlDQxocEfajcoc2ur1ln/2Qotgxu5i+/QiFPRSNfc92Fn81mhzEjtifHiu1d9E2ppjEmnavIzyaf+mfuVXlH7yBOUzXibuhPNJueA2MJoibZ05J1K3eAoEfHv9OXi3r2fH2w9Ss+SzvbYRETlWaYeGiIiIyHHCaLbQuiZIWFNB4V7uHBhbWirm6Ggat2zda5ug203V8nxwgN3e8p7fB5/FRdEzxU7XqFT6jP0VwXf/TJnRQFbXIB4TWLsN483EbeQnhZOQdq70Up4Yfrx4xyq+mvoWUW98RlmCmQ/OjiVoNLC8aBXJUYmEDAYmDrmUkRlDWFXSnDh0TdlGatx1JDjiiNk9aQewo6Es8thXVdziXoo3vAOiR0I2N4+c2MZrbZms02B1EPK6sGXkED3gNLa/+gf8Nc3jJ559LbZO3alZNKXFXN7K7XhL81qMVb9sBkabk6Qzr8aa3o3GjUsIeV3UzPlvm+97W6q+fBXPjs0knHwJ1pQu7e4nIvJDpoCGiIiIyHGift06vFVVHepjjo/HX1PT5j2DaWdKhjaKpwR9PsyhraSPAL8LqjZCcC8bBarNJhKqA9RvB3sCeOsh32tidVcHzq4j+Mmpv2ZlyVr+ke4gYHCQmuznt+l2XKOGkL+xKDJOQ7SpxbhlM7+kayDAhkw7wZ3lXUNGA51Wbuf7ng6eW/QGz0/4K6HdXoABA9HW8PGR5KjwbhZjIIQ5ECIhobn0aVTOKGoWTiboqidgsXH22FsZn5xBRkw63+Z/h9loondyd5749gXya7ZzYnY3zq/cjsHvJWbwGJLPv4WQpwmjPQp30YYWwQwIB0CK37ofz/bm/BkBD4Siu4KjU6v3sHbxVFxbcvFVbicU8EdyZXRE4+q5NKyeS8jmwJSUSVRyJjGDzsSR3b/DY4mI/BAooCEiIiJynHBmZWGwWAj59n4EYU+WuLhWAQ2jBexJZrx1fvxNrfsYzGaMwWqcyTvHiIKUQVC5Nhzc2GVnlVUS6gMEjFC3HRq2h++lEqDPNjeNm79lwaQ1zDkhjsDO7SVlNjNrSh2MTu5O7NoAdeZwIGN4g4sNDVbK4yyc3Hko3crnEgLi61vmj+hR6KEu1kReuoFbpt5HSlQS5Y3h5B6X9DsXiym8yyPWFs2vnCdifX0qlkCIpqFxfNl9HkPd8ViNZqw/u5+mHZvJ7jkSa0wSAI/N/Rcrd+74cJjtuPzhoyjfVm2iW9wA+rjtxIy4DIPBgGFnKVVTVBwYjJEghCkqnqrZ77QISgS8ULnBTMC9ipI5q8n+6Tl4t3yx23tuwVu6bd8/zHYwAAaPi1DxJmqLN9Gw+hu63PwclvjUgx5bRORIU0BDRERE5DjhyOhM/4cfpGLeAhyZGZTP+5aG9Rv22ceVn48lIR5fdU3kWtAHnjorgaa2E4IaTCYItbxnNEF0BtQ0FwzBawLbzliDqY0NBenlXvrmewnRgNVRBQPDAQBjMIRpVT5bNz/LLf3jWGEqIcEfYHCDh/MT48m84imMFguVjiFsffk1hrss+EvtFHmr6LbdQ1apj8zMBp5Nt+EL+ilvrOTKgRdyevaoyK6MXTot2ERdILyDw5m7hbU1/8G5zQPAyt4O5oyI4cSmIu48+VcEgoFIMAOIBDN2qVm5mrJiLxVrNzLg2SeJsUVT72nAHB2P99xraVrzLRmxnTBabNTnftmir7ceAu6d72kwiKvcT9aN/6R6zrsYDEYCXhfurSsACIXCgSOjGUzWcJf67eGgSHy3Nn9kbTIBBAN4K4sV0BCRY5ICGiIiIiLHkbj+/Ynr359QIMC2199sV5/dgxm72NPTaNza9o6AoMeDxwOuSnAkNV8P7ZHAw2SiRfGNXTs2dolubI5yjFzdSFmyFYJBBm52kVjnx11XCmVwxojmPoH6KoyW8A6LpBNHkXTiKACGNDSw6s5f42vwEtUVnKYA9kAQtymcYDTWFh0JZri3b6R+xVdYEjthiY1pHtsAvQs8kecDNruYMzyaRUXLqXRVk+xMJM4WQ62nPtImLSqZSlcNOXkuuhV7AfCXVXDn9D9zUvYIZm6ei9FgJBgKghWu7DWasxpbRndCITA7dr45O0/HRHXvijWpM7b07niKNxH0NG99qdkC7qpw+/ju4X83bA8HN0LB8GaQjrCndyAKIiLyA6IqJyIiIiLHoU3/eg78HSu5GmE0YrTbcWRk7LNZzRaoKwC/B/xEM9/qaHHf7G1+HAJqd6teEgK+HhlD3c5rHpuB6mgDiaYoum/frWMQjNHJzUuzR+HZI2kmgDk6mswLTyFlADhTwZzeje7pORgNRoZ2GsDoricC4K+rZMd/H6Z+xSyqZr+Ns5MFc3wcPquReUOc1OyWp6MmxgQGA06Lg2hLOO/Gw2N+T5IjHgMGRmQM5pnxf+bdy5/lmuTTIsGatd3t1Pkambk5XBo3uNvRkqnrv8SakhV57q6GkqVQvhpye9vJzXFQNCSaTuPHU7d0BtVz36Np01K82zcQDIDfvTOYsfNNbNgRfo8cKRDf8wCCGdkDwkdiRESOQYbQrrpVIiIiInLcWH7bHbgKD21lk7bsytlhiYKQ1UBdE1h9Icy7bULwJ8exLdNOYo2P1NImAi4321PMfDw2EYsvSGJtgJpYEx6rkcwSL+MW1hHtCg+QNm4s3a77OTve+RPesjwAjM5Ysm59HuMeAZRQMED9ytkEvW5iB4/BaI8iFAphMDTvC3Hlr2bHO38CwmVjG4rBXbmzP82bJNxWA2u62yk9uSfXnjKRnOQe+30vlnwzjS+XfURDnImtTiuh3eY1BkJMWFhLdpmPqHgT0Rl+areCp3q39QP/vjyZPvkezt/uJCqmHFtsy90cQT+UrWhOv2GLh4ReYNhbeZvdxt5hNdHZ27xlxhSTRPZvXtrv6xIR+aHSkRMRERGR44Snsootz7+At6oKW1rqfgMaxqgojAYD/oaG/Y5ttFkJepp3ThjsdtLPOpOKhYuxmKuI6woQIrYOqtbv1tFgIMYRS68V4bXY0iCmL8SYAiR5/VRazZQnGHZGEkIUpVt5f1wCV39eReaIk+h5y02RcXYJNtURaKxtFdAwGE3EDh3b8toen/TdlR6aqmIwW+qxRDUHM2DncRgDGI2QEBXibJ+L+m/W0/vCvR/J8FRUsOPj/xCs30aazcxVTQ3QBGujrLyVHgcGA0nOBE5Z20jXgvD711Tix1MDgZYpODAAP9tYQ/J6P37qMSa2mg6jORzAaCgOJ2+Nzd5/MGPX2An+ICXJ6aQ2NeJMySL14jv331FE5AdMAQ0RERGR48TWl16heumy8JNtefvv4PfT8/e3UP6/ZyHkx+tNon5zZatm5phoOl0wnsL3Poxc6//Q/cT174e/yUWwdA4Q3jVgtoPRCkEv2Ab2IXXMmRT+8z+Rfp5qiMuGaEL8prCajVVWHIU+Zp8QzdYudgAanSbqhvWg2/XXRfrFDDqDyi/DOT3s2f0xx6Xgb2xk83P/oamggNQzzyDzJ5fu8+XWrl7D2kcfh2AQDJCY06L4CADJ/aGucOfxDQM48FGzcAoJJ1/carymoiJW/eFuAi4PRjOkDmk+8tGv0Ut0IEiD2cSErQVkFLjYPWwU9LYaDgzQx+CHPuFjPJaW8Ro8deE8GQYzxPdoTgi6TzYntpQueIo3E5eSRd9rHm0VCBIROVYpoCEiIiJynPDX1TU/acep4qDHQ82ct7BGhXNtWKiifo82BquV2H79SDrlZMrnzcddtB2MRvx19bhLS2nYtAnXdrAngq8+XGljF0/xeqav3cGg3cYLeGF75z68aamgyWhgZH0DQ3xBdqQ0fzo3YiBr4tXYkpq3KMSNvABbRm8CTXU4uw3GYDRR+OHHVC5YCED+2/8ltn8/Yvv22evrrVuzNhzMAAiBr9FAQq8QtXnh4EVUJ7A4wZ7QcteDv7a0zfEqvl1AwBVOIhr0h1+bORyTod5kwGUyYgqFSHZ7iEoJ7wbxu8Jlbs0OcFU0j2WNhaj05iBFaI+qMNEDRhMw9Wf7gmU4M5Poc1I2gaY6bJl9qFv6Gb7K7cQMPouoXsMw2KKoWTgJAgFiR5yLNWnfuVBERI5VCmiIiIiIHCcyL7+M9Y8/QdDjIeGEETRs3txmBZPd+WorsYarpWKgdRAk5PVStXgJVUuXQWBn/oVgkM1TJ1Nl9hJbtB1oeXRjl9hoOLu2lm1ZsUQVhIMtCeeexT/ittDgC29lWDg4mvQKPy57czbLICH+Mf9F7jv9Ngal941ct2f0bjH+nkdl/A0N7PhsBkWfTMKWnETv392BPa25HGncoIHw/ocQDGIwm0mdcA2F776OwRAiqX+49CyAMwWCgfBzg9lKzIDRbb53js6dWs7vBoPDyNYYJ8syMjghLoX+KxeT7A+CBZIHQCgABhOYY5OoL2jAV+PBmQaxg0fg2rQUCO/EaCqF+J4GDIYQsSecT/I5vyQV6HXBWa3W4czu1+pa8tm/aHPNIiLHEyUFFRERETmO+Bsa8Tc2Yk9LJejz4W9sYvnNtxJocrXZ3hYPCTurYxhiu1OzOUBTXv5+5/FYjQQJ4fC2/adkVCeI7RJ+XL4q/GE//dxzmNPbiPnT2di9IZYMiKIozcLEqZV8NDYRlyMc1Oi71YXDHSSqXx9u/+l9e11DU0Ehqx96GF91NfFDBtP9hl+x/NbfRHanJI4aSd/77mnRp37DRmrXrCVu4ABievWkOncF5XNnY2pYiMEQ3hZhjIojus+JOHoMw5qShSU+tdXcuxRPmUbt6tXYU6OI75dBVO+RNKz+Bk/JVqL7nYKnZCt1333Wqp8tI4f0y++haUsulqTO1MUnsWjh+0QFoFcgG5vFTuKoYRhCAcxxKXv/QYiI/Ihph4aIiIjIccQcHYU5OrzlwmixYI2Pw56WRuNecmp4aqBkOZjM0Ov3P6Hb7aNoKiyiePpnVMydR6CpqXnsuDj8tbUA2LzNZyJCgCU+DrMzCk9ZGQajn6jO4XtN5eFgBkDlwsWkrjORWBQ+l5L6TS1L+jlIaAhy+axqVvd0ENMYYNAmF8YQFOxYRXmnb0k5/dQ21+7M6sKIl/+Dr64ea2JCOAnqbt/VBdzNWTcLarYzL38JadEpnHXJRZFkoQlDhxDVJZmiF+dH2lriUkk+94bm1xcKUffddNzFm4jKGUV035Mj9zpfeAGdL7wg8rxm0f+omf8JAK4tuThzRoVPuQTDCT1DoZ3HWUJBTFFxFHXKZFXJWmZ9N59aT3gXyxndYrhl5DVtvmYREWmmgIaIiIjIcS7rZ1ey/v+eJOTztd0gGM7/ULVsOUknjsLZJZOeN91A159fTfG0aTTlFxI3cABBr5e8198EIGAA087YgYFwYKD3Hb8h9zd30pRfQHlu+GhF0A+W6HASTGtKMklVlZGDLVZ/iJNXhQMmCfUBTstteYQkq9SHp6KCvQkFApTO+gpvRSWpZ5+FMyuL9PHnUvLZDMwxMWRffRWhYJA1Tz1N1fwFWBPNvHV6PHWeei7td15kHEtiJ+xZ/XEXrAm/tqY6tv/3UWrXVeKphfTRfXFt+AKAxjXzMV+bhD0zp801+atb5tto2rCY2m07y7MawBoNMf0tfNspBd/S95i55ZtWY2ypzNvraxYRkWYKaIiIiIgc5xJHnsDIt16nfN63bH3+hb22K/tiFtVLl2MwGkg+5WQcmZnY09PpcvlPMJjCCSbcJSWUfD4zEsyAcKCi2y/DFUl8teFdBqFg+J+YTIjuHH7cWLqFUFVzvxDQnDmjNUtiIimnn7bX+/nvvMv2TycDUPrVbIY9/yw9bvw12RN/jtFswmi1UrlwMbXzFmACOlf4Gb6uiY3dtrYYx2A0kXrxnRT851bwefDXlOKvKcVmg7pSqJi3najIqZMQvsrtew1oRA8eQ/3qbwh5w0d8QiFI6BEO7FSuB089PJEdT6h2M9RubnOMEzKH7ONdERGRXRTQEBEREfkRMDsddBo3Fm9VFUXvf7jXdr6qcMSh+H9TI9eqv1tGzl2/o2blKkq/mNWqT+IJIzDawuU54gcPonxu866D+iJwpoaPW/jbTuMR8X0PO6VJFnqWh5hw0304s7pgdjrDa1ieS9EnkwBwl5ZiMBgw2uzN666uwV1SSnT3bhS89wE7pk7DHBNNaFci050MwIiM5rorAZeLDU8+Q92aNZjMnnAp150VTgxGMNnAVR4kurOVkN+LKToRR/che30N9s49STjnTvJfepyYzsHIWEYzRKWBuwYe21LOd7F2JqXGtug7uuuJnNhlGMM7D9z3GyUiIoACGiIiIiI/KrWrvu9wn6ol3wFQ/s28VgECgJLPZuAu3kH/hx+i529upfybeS1yWdQXQ2xmuCTq7jGNHUlmpp0ex88/q2Jbho3Zo8If8Nd2DzGCBoLP/Iugx0vCiGFse+X1VvMazM1/yto7d8KR0ZnNL75M6WczAPDXNRehDQHB9EROv/5GhvQYEbleNOl/VH8Xri4SAOq3h9cK4HcZ8DWE6HThhWRePA5veSH2jN6YouJarMNduA5vWQGOnkOxxKVSs2ItDUVBAj6Iz25uZ3ZCQlI4qDKqzs3axHiaktIpb6xkVOZQbh117V5/BiIi0poCGiIiIiI/EgGPh/q16zrcL6ZP+HiF0Wbba5va71eH25jNmKOj8dc3BxOaSiDghthsoKC5j9diYPz8OpyeEBUJzX+WhowGyp5/HWP+DgCqV6zE0MacIb8//G+gKtHG+n8+S838hW2uzwCYSqpI21QOvZqv+3YmOd3FXeug529vx2g2Y0npRjdMWOLCAQxLQnqrcRvWL6TskyeBEEZnLJm/epLimHAwx1UaLv0a1QlMVisxfXriKVwb6fubE39JSo/hba5XRET2b1/HFkVERETkOGKy2Yjq0WOfbaypLUuE2jt3xldbx5qH/0LJ9M/32i8mpzcF731A8dTpJJ8xGnNsTIv7nlow2yA2C4w2M+XxZnL7OMksCycq7VngwRQIBwJibdFYahojfdsKZuzOADhX51G9l2DG7ra+/FqL6ieZl13SYqdH4qgTie4zCmfP4VjiEiPBjL1p2rQUdqY5DTbV4S7awBfxFXwzJIrVPey4upgwmYCAF2/pVmydemKwOYk78UIFM0REDpJ2aIiIiIj8iAx45CF2fDYDf0M9/vpGatauw5aYQI9bbsQSHU3V4u/Y8p8XATA5nbiLiwFoys9vMY7BbMJkDWBPAHtmL+o2lVK3j90fBpOJgCeALR6Sx13Bhq/+R02MCbfFgN0XIqPcx81FnTFfOZ4uTVaK3H8jxH6CGQZDi6Mt+wt8AOH2u/Wxp6ZywuuvsGPGTGwJ8aSOObM9o+y+iJbDB/z4gn7W9guXzh2WVwH+nfe8bjpd/WeMNkcH5xARkbYooCEiIiLyI2KOjqbLFT/Z6/30c8/BlpaKu6SEhs1bKZv1VZvtQv4Afj+YUoHGTXir2mwGhIMfztQApp0nVuoWfUCvfOi1tXkXhrNrNoNuv4uA282y399C0Ovdf4AiFGoR9GgrAGKwWgl5vTufGOh+468xOVoGFCyxMWTt4z3Zlz3zaYQ8jQxM68Omym0AzE6M4tKyekxA3KgLFcwQETmEFNAQERERkRYShg7BXVaGOSaG6mXL8VVXY++UjntHSau2PjfYkkwYrKbmwMEe+j70AJX/ezjy3GwPhDNwAhgM9Lrzt6SODpdnbdiyleCe41jM4PO3ObZhL48BTFFRjHzzVZoKiwh6vcT2abvU6r40bvmesunvEzLGkHHlr7ElJ7W4H93nJOqWfk7I58HojMXRcxjnWm3ML/iO0oYK8tI7Yzr3KrpEp7SZg0NERA6ccmiIiIiISAtV3y1l+c23s/GJp7DExdLjtluIHz6szbb+JtixJrDXYAZA5bfzsXcZEHnu2T0PZyiEPS018jSqezcs8c27HgxmE33v/gPhRBRh1j2CCs2NDSSOPCH82GSi5y03YrRYiO7ejaDXS9HHn9Kwdes+XnlL3vICSt57mFD9eqj9jg1/vTdyr6mggB2fz8TvMZP566dIGvcrUi/8DcGoeJ5c8DKlDRVEW6O459Sb6d5loIIZIiKHgXZoiIiIiEgLOz6bEakg0pSXz5bnnie6V88223rqmr8hM5gg1LqqK57yCno89BBF//035XPm4qpsvmcwGbEmxEeem51Ohv7raYo+mUzA1UT6eecS3b0bw194jrKvvsaRmUnj1q1s/3Ry64lCITDAsBeew+RwYt0ZGKletpy1j/4VQiEKP/iIQf/4O1HZWft9H9xFGzAYmvNt4Ksi6PXi2l7Mqrv/GD4WYzbT9aejcW8KH83Z0m8YG7xFADR4G5mxeS43nfDz/c4lIiIdp4CGiIiIiLSw+46JXRo2bSaqdy8aN25qcd0AVMeY8MaGSCsOtjmeLTkZg9GEMTobV0XzdXNcLD1uvAFrYiIbn/ondWvXEj9kEN1v+BXdfnltyzWlppJ11U8BiOndi5LPZxBwudlT1eLvSB0zhrhBA3Fv30jI62bH5zMiiUCDXi91a9e1K6Bhz+xDOFwTJBQCW3ovjFYr1bkrIsdiYjP9kWAGgHnrKshMjDyPs8UgIiKHhwIaIiIiItJC12snAgYqFy7CV1MDgDkmhvihg1sFNAAS6gMEGtlVvRQAgxFCwXB1k86XXgRA2rixVC5cRP2GjcT07UP6qVk0LnuditkfUrm0AIDSL2fj2TaXLtfexo4vl+EqLCL1rDF0nnA+dWsXsPG7ycRYoun74D005RezefoUjEWlLdaz/m9/JzrDQExGeEGBmt1umkzE9u3TrvfBaHOSdsU91K1YhDEqldRxlwHhgAoGA0ZzCOcesZ9uBjsTB13Mt4XLyIrL4JJ+57ZrLhER6ThDKLRb3SoRERERkZ38DY1sffE5GtbnEtUJ7L1GU/TJVy3KnrbJAKmjh2N0ppBy+mmtAghBrxfX1lxKP/k/AOq3Q8P25vux2RDV2cGOha7Itb4P38u/lr/A2igr5mCIyzfXMeL8O3h7+n8YvbSuxfi2eIjuDtbdvrrL/x78QQOOsadz8q9uw2hoO5Vc0Oti8Zcv8W7tBkJ+HxeX1zNs2AQSz7y6Rbvq5blU5y6H8lkQCO/WMDpiSP/pfdgzeu/7/RERkUNCOzREREREpE3m6CgcUdsxdvFRuRb8K2cBYLBYMMfEUG5wEVXjwrJH3oz4QT2pWLiaoM+HPS2tVUDDaLUS9DUHK6JSweeOwVNZjyUKHMkQCrYMOOSXbWFtlBUAv9HAwk4OEqdPYUVvO1aPn56FHupjzIxK9FAbZaTWACm+8BGYWpORpT3t5PaNwm9ex2uT7+K5C/6C09K6hGrll2/wSs0a6s0mMJl5Lz2W7gsmkXD6FRhMlki7hGFDSRg2FFfeSKrnfYjRHk3yuOsxxyYf+BsuIiIdoionIiIiIrJPdQXgb44/EPL5CDQ0MPK6m1oFM2IH9MdVWk/Q44FgkLw33iLgbp3rIqrvydizw5VPbOmdGfz0P8i8+HQS+lowOuJIGHs9JqcTgLgBvUjt0QvTbhtDHHVB0hwJDDNnsKxfFFNPjyc7HrBBkj9Iii+Iy2hgRbSVVzvHk9c3Eb85XNi1wdvEh99PIxgKUlxfSoOnMTKur3oHHmNzAViP0QAGKHzht7jyV7d6HY6uA+k88VHWdruKv3+yhY9nb0IboEVEjgwdORERERGRvXLlr2H1gw/jrW2jfInJhMluJ9DYHBDo88e7KXjvA5ry8vEbwWq2MurdtzBaLK37AwF3I0abk5rluax//DFiu4DBAMaUYVQuXA6AJRqS+sDmnP58bfRhL63jgrrODLr5Vtb/3z+oXbMOI2C0QEwO7IyDAPBKWhwjat0sSI6iwN68OfmyfuPJqylkWfH32M027j3tFvql9qZhzTymzX6RySnRAFxS3sAJdeFojjkuhazbXqB+02aCbjex/fthMBr5YOEC3vm4PDL2leOzuPqsoQf6louISDvpyImIiIiI7JUjuz+OrL54v2+9O4FAgIDLRTC7E77aWmw9srGnp2Ea1Id3+9RRnmiha4kP24MP0e/OO1tVTwn6fJR9PY+Qz08oGCShB1h3FgWp+D430s7XAH439Nq0hjNvehZrUufIPX9dQ2TLcdAHgWpgZ0DDG4KTFjSQ7g9wYcBDpc1CRZwJU98YOi/8nE/iwt/ruf0e/rf+S/ql9ia6/2lcmtaNc2vLMKR1pfy5myNzhfw+Cj/8mIL/vgfAuvP6sqV7NBs2BIABkXZzN6xWQENE5AhQQENERERE9qpszjc05hfsvUEwSDB/ByYjsGwdK1bezeoeDsqHh6MKeekWlm8twPHaG/T9490tum58+l9Uzl8AQHTvXkRFG9hVKsXiCOFrCLczmMBkBYPFhsnRsgyqvVM6rsLCyPOG7eERfE4Dwe0hEpsCeAETkNrgI7XSh6Pejb+nEWNsEkFD+HhJnL15XGtyJtbkTB6d8wy2JAcXl9VjMJpIHXc96554g62drcw8ORavtRKqKzHF2/BbXYS8DjD6Sc10ISIih58CGiIiIiLSJteOEjb981kIBvfZzgywq4k/QGKtv8V9UzBEsI08GrWrVkUeN2zcRKgTxHYJP+984RjctfF4ykoJ1BdRt6OK6N79cBWX4ezqwGgO/xmbMGwo1Uu+azFuylmXsf3TT/A37ZzfBgFP831fA8TXB7lzbSXvZsaRntyNawaHS7LWeRrYXJlHWlQy35dugFgHy2PsxNiiebnvyRi6zOCz3kYC5uY8GwarB9uABQQbYzE6Ghjcfew+3y8RETk0FNAQERERkTb56+ogFCS+R7gUqq8BqjYCIShNMJFSHYgc9wgBuz7ip5S56brdRkmyhe5FHnoVekm/elyr8eMGDqRywcLI88Yd4KkBW0oS3e+/FYD6DRtZdc99EArh2rGY8rmLie3Xl/6P/AmjxUJMTm8wGiNBly5XXUnniy6mcf23lC8pBSDgazlvTBewOCGFIJcsq2bDoGQcFjtVrhr++OXjVLtqsZltpEenUtJQRtBgoFdKTwAqLzmZwIb/tXotBrMPU1wlAFWumgN4t0VEpKMU0BARERGRVkoayvlXwSTKfpLG6Io6ei10EXATrpEXgkUDozktt4HE+kCLYEbACPXRJs6fV4t5t40dDZu3kHTiqBZz9P7dbykdOICA203B+x8S8njwu8BuS4i0cZeWwh457OvWrqNmzRoShwwhuns3+v7xbirmLyCqezc6T7gAg9FIjz88QeiRa2mqCNFU0tzXEgX2+ObnZiN8lVzLli8fZ2TGEKpdtQB4/B4GpvXhlKwRWE0Wzut9Jt8VreDVNoIZuzMAJ2QMatd7LCIiB0cBDRERERFp5c3cj9hclQcWmJoezXVGD7EEI0dLcvLdJNaHK5/sCmY0OIx8dE4CdVEmEmr9XD6rGocnHIxwFe9oNYfRYqHT+HMBiOqaTf5b72ByOOhxy02RNgnDhmLv3Bl3cXHkWtAAK5sKOZMhACSOPIHEkSe0GNtkiyL9kl9R8fnL+BpokY8j4A3n5PA2wscD4wHIqymioqm6xRjdErpwStYIFhYuZ862hbyzctJ+37chUdkM6zxwv+1EROTgKaAhIiIiIq14/N7mJwYDAVM4bBEwQHHPBJJL61q0tyYlsnlANHVR4VwZ1XFm1ne1M3RDOEFmXP9++5wvYdhQEoa1rgxijo5myFP/xxdfvkfxrFlEu4Ks7uFgWHzbZWB3FzfiXGIGjibb52PTcy9StWgR3jooWxkOaOQOSac4qXkbSYO3keuGXs66ii30SuzGGV1P5MGv/sGW6vz9zrWLZekGAmM9mGy2dvcREZEDo4CGiIiIiLTSK6kbq8s2ADBkfRMJO3dj1MSa+fQECyZDCteahpA+fyNRXbvS/cZfUVv0HXOX/jcyRnr3PlgrC4kb0J+0c84+4LWYHA5OOucnPGTKo6ShnNSoJEZ3O7FdfY02B0abg5zf38HqB/9M/br1EIKQwc5V19+PZ+vnLChYCkD/1N6M63UG5/UeA0B5Y2WHghmEQsRWewj5/KCAhojIYaeAhoiIiIi0Uu0O55IgGKJHUXOJkFW97AAEQkFWpwU596knIvfGdDuZ4roS1pVvZnCnvlw24EIMNxk4FOLtsfzj3Acpb6wkxZmI1WztUH+jxcLAxx5h++QpuEtLSTtrDDFpnbkj7XrO6XE6Dd5Ghnbqj9FgjPSJt8eSEpVEeWNl+yYxGPhmRAxnuEvpHd29Q+sTEZGOM4RCe2RZEhEREZEfvS83z+PlZe8CYAqE6FLixRAbQ2FcEH8wXJb14r7j+Nmgi4/iKg+/isYq3l31P74tWNLuPreMvIYzup10GFclIiKgHRoiIiIi0oaF6+aRVuGlPMFCwGQgL8MGeDm9yyj8QT/pMan8pN/4o73Mw85pdfDd9pXtbh9jjWJw+r7zhYiIyKGhgIaIiIiIRIQCATY/9zxnfr2MeqeRNy5KbnG/X2pvxnQ/+Sit7sh7cv5LeAKe/TcEhnYawK2jriXWFn2YVyUiIqCAhoiIiIjsZssLL7NowwLMqRbqoowQDIIxnFciNSqZM4/ToxQLCpZR2VTNKdkjSHTER66vLdvU7jHO7HqSghkiIkeQAhoiIiIiAkDNqu9Zs+grutc1lzL1WI3kDk8iMTaZO0/+FQbDoUny+UPyyZrP+GjVFFKq/HyT+AWP/OQRHBY7H34/jUAo0O5xaj31h3GVIiKyJwU0RERERASAonlzse6RLj7dGMPrV/zz6CzoCPm+eC0Xf11Dl1IffmM129Jm02/MeHY0lHZonIzY9MO0QhERaYtx/01ERERE5HjXUF9BzY65xNY3784IGGDkxF8fxVUdGYP9iXQp9QFgDoJ/Triiydgep+23r9PiZETnQdw+6joGpOUc1nWKiEhL2qEhIiIi8iO1Lq+SZz9cgccb4NeOd0khSDmw61DJti42Tu837Ggu8Yg4b/gFLDXNwBAIHy9xpod3WvRL7U2PhGy2VOe3aG8z2bh++E8ZmTkEp8VxxNcrIiJhCmiIiIiI/MgEgiEmzdnEW5+tIxQCg7MWs6URiwPoaaS23EBjlJG6Ud2P9lKPCHtqKv3uvYsd0z/HlpZK119cE7n38Fm/55u8RRgNRk7PHoUv6MdqsmAymo7iikVEBMAQCoVC+28mIiIiIseLp99bzuylhZHn5s6bmWDL5dRaF2Zgm83ClM4p/PNnzx69RYqIiOyHdmiIiIiI/MgsXlPS4nmwMY4ZmTFsc1ixhEIYYzrz1OWPHKXViYiItI8CGiIiIiI/MjnZCSxfXwaA02Zi4pgxpHQdzpqyjQxK68OIjMFHeYUiIiL7pyMnIiIiIj8yTW4fU+ZtxR8IMuHU7sRF2472kkRERDpMAQ0REREREREROeYYj/YCREREREREREQ6SgENERERERERETnmKKAhIiIiIiIiIsccBTRERERERERE5JijgIaIiIiIiIiIHHMU0BARERERERGRY44CGiIiIiIiIiJyzFFAQ0RERERERESOOQpoiIiIiIiIiMgxRwENERERERERETnmKKAhIiIiIiIiIsccBTRERERERERE5JijgIaIiIiIiIiIHHMU0BARERERERGRY44CGiIiIiIiIiJyzFFAQ0RERERERESOOQpoiIiIiIiIiMgxRwENERERERERETnmKKAhIiIiIiIiIsccBTRERERERERE5JijgIaIiIiIiIiIHHMU0BARERERERGRY44CGiIiIiIiIiJyzFFAQ0RERERERESOOQpoiIiIiIiIiMgxRwENERERERERETnmKKAhIiIiIiIiIsccBTRERERERERE5JijgIaIiIiIiIiIHHMU0BARERERERGRY44CGiIiIiIiIiJyzFFAQ0RERERERESOOQpoiIiIiIiISMTEiRPJycnh2WefbXUvJyeHnJwcFi9efBRWJtKS+WgvQERERERE5Fh17733MmnSpFbXDQYDUVFRZGVlceqppzJx4kRSU1OPwgpFjl/aoSEiIiIiInKQLBYLycnJkX/i4uJoaGhg7dq1vPTSS4wfP54VK1Yc7WWKHFe0Q0NEREREROQgDR06lLfffrvFNY/Hw1dffcXDDz9MTU0Nd999NzNnzsRgMBylVYocX7RDQ0REREREfjRcHj8b8qtYsbGMDflVuDz+wzaXzWZj/Pjx3HfffQDk5+ezZcuWwzafyI+NdmiIiIiIiMhxL7+kjunztzFnWSEuTyBy3WEzccbwLpx/Sjey02MPy9x9+/aNPG5qajqgMQKBAFOnTmX69OmsXbuW2tpa4uPjyczM5IwzzuDiiy8mPT29Vb+8vDxef/11Fi1aRElJCUajkaysLMaOHcu1115LTEzMAb+uPRUXF/Pqq6+yYMECiouLCQaDJCYmkp6ezoknnsill15Kdnb2IZtPRAENERERERE5rk2eu4XXpq4mFGp9z+UJ8PmCPGYszOOXEwZw8egeh3z+9evXA2A0GunSpUuH+1dUVHDrrbdGcnAYDAZiY2Opr68nNzeX3NxcfD4ft99+e4t+H330EQ8//DA+nw8Ah8OBz+dj/fr1rF+/nkmTJvH666+TlZV1cC8QWLduHRMnTqS+vh4As9mM0+mkpKSEkpISVqxYQWxsLNdff/1BzyWyiwIaIiIiIiJy3Jo8dwuvTlm933ahEJF2hyqo4fV6mT17Nn/7298AuOiii0hISOjwGDfffDOrVq3C6XTyhz/8gQkTJhAbG95Nkp+fz8yZM4mLi2vRb+7cuTz44IPYbDZuuukmrrjiClJTU/H7/axatYrHHnuM1atXc9tttzF58mSMxoPLRvD4449TX1/PoEGDeOihhxgwYAAGgwGPx0N+fj4zZsxocweJyMFQQENERERERI5L+SV1vDZ1/8GM3b02dTVDc1I6fPwkNzeXU045JfLc7/dTU1MDQOfOnbnlllu45ZZbOjQmwKeffsqqVaswmUy8/PLLjBgxosX97OxsbrjhhhbXAoEAjz76KKFQiMcff5zzzjsvcs9sNjNs2DBeffVVLrjgAjZs2MCsWbM455xzOry23e3aPXL//fczcODAyHWbzUbv3r3p3bv3QY0v0hYlBRURERERkePS9Pnb2jxmsi+hEHw2f1uH5/L5fFRUVET+2RXMAGhoaKC+vh6v19vhcSdNmgTAeeed1yqYsTdLliyhsLCQjIyMFsGM3cXHx3P66acD8O2333Z4XXvalYujrKzsoMcSaS/t0BARERERkeOOy+NnzrLCA+r79bJCfnFBfxy29n9cGjlyZIuyraFQiPr6epYvX85TTz3F22+/zfLly3nnnXdwOp3tGtPn87F6dXiHyejRo9u9ltzcXCAcXNh918iediUo3bFjR7vH3pvRo0fz8ccfc88995Cbm8tZZ53FoEGDsFqtBz22yN4ooCEiIiIiIsedgpK6FtVMOsLlCVBYWk/vrI7lu9jdrsSdZ5xxBn379uX8889nzZo1vP3229x4443tGqO2tha/P1xWtnPnzu2eu7y8HGjeNbI/bre73WPvzd13301+fj7fffcdr732Gq+99hoWi4WBAwcyZswYLr/8cuLj4w96HpHdKaAhIiIiIiLHHZfHf3D93QfXf3dpaWmcdtppfPbZZ0yfPr3dAY0DFQiEAzknnXQSb7zxxmGda5e4uDjeeecdlixZwuzZs1m2bBlr165l+fLlLF++nFdeeYUXX3yRIUOGHJH1yI+DAhoiIiIiInLc6chxkTb72w/tR6VOnToBUFjY/mMw8fHxWCwWfD4fxcXF7e6XnJwMHJqjJB01cuRIRo4cCUBjYyNff/01Tz75JMXFxdx11118+eWXR3xNcvxSUlARERERETnuZKXH4rCZDqivw2aiS1rMIV1PaWkpEK4y0l5ms5kBAwYAMGfOnHb3Gzp0KAB5eXls29bxBKeHSlRUFBdccAGPPfYYAAUFBUclyCLHLwU0RERERETkuOOwmTljeJcD6nvm8C4HvcNjd9XV1SxYsACA/v37d6jvpZdeCsCMGTNYunRpu/qceOKJZGRkAPDXv/41cgSlLT6fj8bGxg6taU9+v59gMLjX+zabLfLY4/Ec1Fwiu1NAQ0REREREjkvnn9INg6FjfQwGGH9Kt0MyfygUYs2aNdx2221UVVUBcM0113RojEsuuYTBgwcTCAS44YYb+O9//0t9fX3kfl5eHs888wzvvfde5JrFYuFPf/oTRqORb775hl/+8pfk5uZGgg7BYJDNmzfz0ksvMW7cONatW3dQr7OkpIRx48bx4osvsmHDhkgAJRQKsXLlSh5++GEAunbtSnZ29kHNJbI75dAQEREREZHjUnZ6LL+cMIBXp6xud59fThhAdnpsh+fKzc1tVSK1oaEhUkHEaDTym9/8hjFjxnRoXIvFwvPPP8/NN9/MqlWreOSRR3j00UeJi4vD4/HgcrkAuO2221r0Gz16NE888QT3338/ixYt4sorr8RqteJ0OmlsbMTn80XaGjoa9WlDQUEBTz31FE899RRms5no6OgW88TFxfHEE08ckrlEdlFAQ0REREREjlsXj+4BwGtTVxMK7b2dwRAOZuxq31FtlUh1OBx07dqVESNGcNVVV0XyYXRUcnIy7733HpMnT2b69OmsW7eOhoYGEhIS6NOnD2PGjOGiiy5q1e+CCy7ghBNO4J133mHevHkUFhZSX19PTEwM2dnZDBs2jLFjxzJ8+PADWtcuaWlpPP/88yxatIgVK1ZQUlJCdXU1FouFnj17cuqpp3LttdeSkpJyUPOI7MkQCu3rf2sREREREZFjX35JHZ/N38bXywpxeZpzSjhsJs4c3oXxp3Q7oJ0ZInL0KKAhIiIiIiI/Gi6Pn8LSelxuPw67mS5pMYc0AaiIHDkKaIiIiIiIiIjIMUdVTkRERERERETkmKOAhoiIiIiIiIgccxTQEBEREREREZFjjgIaIiIiIiIiInLMUUBDRERERERERI45CmiIiIiIiIiIyDFHAQ0REREREREROeYooCEiIiIiIiIixxwFNERERERERETkmKOAhoiIiIiIiIgccxTQEBEREREREZFjjgIaIiIiIiIiInLMUUBDRERERERERI45CmiIiIiIiIiIyDFHAQ0RERERERH50cnJySEnJ4fFixe3uL548eLIPflhMx/tBYiIiIiIiBwPvF4v06ZNY86cOaxevZrq6mr8fj/x8fHk5ORw6qmnMmHCBJKSklr0e/bZZ3nuuedaXDMajURFRRETE0NWVhb9+vXjrLPOYsSIEQe0thtuuIG5c+cCcMkll/D444+3u++9997LpEmTDmje2267jdtvv/2A+orsjwIaIiIiIiIiB2nhwoXcd999FBcXR67Z7XZsNhtlZWWUlZUxb948nnnmGe68806uvfbaVmMYjUYSExMjz5uamiguLqa4uJhFixbx2muv0atXLx599FGGDh3a7rVNmzYtEsw4ENHR0SQnJ7e67vP5qK2tBSAhIQGTydSqjdPpPOB5RfZHAQ0REREREZGD8Nlnn3HXXXfh9/vJzMzkxhtv5IwzziA1NRUAj8fD0qVLmTx5MtOmTWPWrFltBjQ6derE7NmzW1zzer2sXbuWWbNm8cEHH7Bp0yauvvpqnnjiCc4///z9rq2mpoa//vWvxMTEkJqaypYtWzr8+h544AEeeOCBVtcXL17MNddcA8DHH39MZmZmh8cWORjKoSEiIiIiIj8aQa8L9/aNNG1biXv7RoJe10GNt2XLFu677z78fj8nn3wyU6ZM4YorrogEMwBsNhunnHIKTzzxBJ988gnZ2dntHt9qtTJkyBD+8Ic/MHXqVPr27UsgEODee+9l06ZN++3/+OOPU1lZye9+97tWR11EjnXaoSEiIiIiIsc9b3kBdUtnUL96LiGvO3LdYLUTM2A0sSPOxZqS1eFxn376aVwuFykpKTzzzDNERUXts32/fv145JFHOjwPQHp6Ov/+97+54IILaGpq4t///jfPPPPMXtsvWLCASZMmMXjwYK688ko+//zzA5r3SKqvr+fdd99l9uzZbNu2LfLedu/enXHjxnH++ee3eYxl4cKFvP/+++Tm5lJVVYXT6SQnJ4eLL76Yiy++uM3jMAdq+fLlvP322+Tm5lJRUYHFYiExMZHs7GxOO+00Lr/8cqKjow/ZfLJ3CmiIiIiIiMhxrWbxVKpmvQmEWt0Led3ULZ9J3fIvSDz7WuJHTWj3uGVlZcyaNQuAiRMnEhcX165+RuOBb5TPyMjg0ksv5Z133mHWrFm4XC4cDkerdm63m4ceegiz2cwjjzxyUHMeKStXruTWW2+lvLwcALPZTHR0NGVlZWzfvp158+aRlZXFqFGjIn38fj8PP/wwH374YeRadHQ0dXV1LFmyhCVLlvDZZ5/x/PPPY7PZDnqNn3zyCffffz+hUPi/JbvdjsFgoKioiKKiIubPn8+IESMYOHDgQc8l+/fD/69aRERERETkAIWDGW/QVjCjpRBVs96gZvHUdo+9ePHiyAfbs84664DX2FGjR48Gwkk5V6xY0Wabf/7znxQWFnLNNdfQp0+fI7a2A1VUVMSvf/1rysvLyc7O5j//+Q+5ubksXryYFStW8NFHHzFx4kTsdnuLfk8//TQffvghnTp14u9//zvLli1j2bJl5Obm8tRTT5GSksK3337L3//+94Neo8vl4rHHHiMUCnHppZcye/ZsVq5cyfLly1m2bBn//e9/+elPf9pmgEkOD+3QEBERERGR45K3vGDnzoz2q5r1Js7ug9t1/GTz5s1AOM9F9+7dD2iNByInJyfyuLCwkJNOOqnF/TVr1vDmm2/SuXPnY6Zk6lNPPUVtbS1paWm8//77Laq9mM1mBg0axKBBg1r0KSgo4LXXXiMmJoY33niDrl27Ru45HA7OP/98OnfuzFVXXcWHH37ILbfc0ma1lvbatGkTjY2NOJ1O/vKXv7Q4xhIdHc2IESMOuKyuHBjt0BARERERkeNS3dIZ7H9nxp5C1C2b2a6WNTU1AMTGxh7RIx3x8fGt1rBLIBDgwQcfjPz7WCib2tTUxMyZ4ff81ltvbRHM2JdJkyYRDAY5++yzWwQzdjd06FAyMzPx+XwsXrz4oNa5Ky+Gz+ejurr6oMaSQ0M7NERERERE5LgT9LqoXz33gPrWfz+HxDE/x2g99o4OvP7666xZs4axY8cyZsyYo72cdvn+++/x+/0AnHHGGe3ul5ubC8DMmTOZN2/eXtvV1tYCUFxcfOCLBLKzs+natSt5eXlcccUV/OxnP+O0006jV69ex0SOkuORAhoiIiIiInLc8ZYXtqhm0hEhrxtveRH2jF77bLdrp0RdXR2hUAiDwXBA83XU7rsydt+tUVhYyHPPPUdUVBQPPPDAEVnLoVBZWQmEj5akpaW1u9+u5KFNTU00NTXtt73bfWD/PexiMpl46qmnuO2229i+fTtPPPEETzzxBNHR0Zxwwgmcd955jB8/HovFclDzSPspoCEiIiIiIsedoNd1UP1D7ejfs2dPALxeL1u2bIk8P9zWr18fedylS5fI47/97W+4XC7uvPNOYmJiaGxsbNEvEAgA4cogu+45HI5jdnfBrtfz29/+lltuueWIzNm/f39mzpzJrFmzmD9/PsuWLWPbtm18/fXXfP3117zyyiu8/fbbLQJNcvgooCEiIiIiIsedgz0uYmhH/1GjRmEwGAiFQnz11VdHLKAxd274KI3FYmHIkCGR69u3bwfClT+efvrpvfafOnUqU6eGq7lMnjyZvn37Hr7FtsOuRJ1+v5/S0tJ279JITk5m27Zt7Nix43AurxWr1cr48eMZP348EC7fO2XKFP71r3+xceNGnnjiCR577LEjuqYfq2MzFCciIiIiIrIP1pQuGKz2/Tdsg8Fqx5qSud92qampkXKtb7/9diRXw/4Eg8EDWheEgxaTJk0CYOzYscdFidABAwZEjml8/fXX7e43dOhQAObNmxfZrXE0pKam8qtf/YrrrrsO4KCTj0r7KaAhIiIiIiLHHaPVQcyA0QfUN2bgGe3e4XHHHXdgt9spLy/njjvuaHXMY09r167loYceOqB1lZSUcOutt9LU1ITVauXWW29tcf9///sfGzZs2Os/I0eOBOCSSy6JXDvauzMAnE4n48aNA+D555+nqqqqXf0uueQSjEYjO3bs4JVXXtln2/YGm/bF6/Xu877dHg6geTyeg55L2kcBDREROeoKSurYkF9FKNTR0noiIiJ7FzviXKCjiToNxA4f1+7WvXr14rHHHsNkMrFgwQIuuugiPvroo0jCSgh/wF2wYAF33XUXl112Gfn5+e0e3+v1smrVKp588kkuvPBC1q1bh8lk4vHHHz9iR1yOhN/97nfExcVRWlrKVVddxezZsyMBBL/fz4oVK7jvvvtYuXJlpE/37t25/vrrAXjqqaf485//3OK99Xg8LF++nL/+9a+MHTv2oNc4ffp0rr76aj766KPI8R4I/4xmzJjBa6+9BsDpp59+0HNJ+yiHhoiIHBW5G8pwewPMWVbIgu/DZ1+7d46l0e3HajExtHcK0U4LPxnTG4vZyOotFUyZt5WkODsTz+uL064M4iIism/WlCwSz76WqllvtLtP4tnXYk3J6tA8F1xwAQkJCdx3330UFhZGKozY7XasVit1dXWRtlFRUZx77rltjrNjxw5OOeWUyHOXy0VTU1OLgH+vXr149NFHI8ctjhcZGRm89NJL3HLLLeTl5XHzzTdjNpuJjo6msbERn88HwEUXXdSi3+9+9zt8Ph9vvPEG7733Hu+99x5OpxOLxUJ9fX3keI/ZfPAffUOhEEuXLmXp0qUA2Gw2HA4HtbW1kZ9RTk4Ov//97w96LmkfBTREROSQ21Zcy6LVJQzskcSAHuFEX01uHw6bGYPBwOtT1/DpnM2t+m0tbv6Dr7C0HoBPZm/i5fvG8vAri3B7w+djPd4Av/np8fWHnIiIHB7xoyYAUDXrTWBfOwENJJ59baR9R51yyil8+eWXTJkyhblz57JmzRqqqqpwuVykpqaSk5PD6NGjmTBhwl4rYASDQSoqKsKrMRhwOp2kpaWRnZ1N//79OeussxgxYsQBre9YMGTIEGbMmMFbb73F7Nmzyc/Px+VykZaWRo8ePTjnnHMYNGhQiz5Go5E//vGPTJgwgXfffZelS5dSWlpKU1MTSUlJ9OzZk1GjRkUSeB6MMWPG8Pe//52FCxeydu1aysvLqaurIy4ujl69enHOOedw5ZVXYrVaD3ouaR9DSPt7RUTkENpcVMPvnp4b+ZPxt1cOZdaSAtZsrSQt0cndE4dz77/n4/O3PyFajNNCfZMv8rx/9yQev/XUQ7xyERE5nnnLC6hbNpP67+cQ8roj1w1WOzEDzyB2+LgO78wQkaNLAQ0RETmkHnpxAbkbm88Nxzgs1Lt8++jRMUYD3HnVMM4Y3uWQjSkiIj8eQa8Lb3kRIa8Lg9WBNSXzoEu8isjRoSMnIiJySJnNphbPPf5DW0btp2NzFMwQEZEDZrQ6sGf0OtrLEJFDQFVORETkkOqREdfieZ+shEM6/sxF7c8MLyIiIiLHLwU0RETkkFm1uZz3v9zQ8tqWykM8i05KioiIiIiOnIiIyCFUWtl02OfITI3m9n98jdlkpL7RS0qigzuvGkZqgvOwzy0iIiIiPxxKCioiIodMbYOHO56aQ0Wte/+ND6ETB6Rz/3WjjuicIiIiInJ06ciJiIgcEoFgiNemrjniwQyAJrf/iM8pIiIiIkeXjpyIiMgh8bc3lrB4TckRnzfKYeHqc/sc8XlFRERE5OhSQENERA5aXaP3qAQzemfF8/itp2LZo1SsiIiIiBz/dOREREQOWpTdjN165IMKGwtq+P0/v+HDLzfQ5PYd8flFRERE5OjRDg0RETlom4tqCASPTo7pbcV1bCuuY8HqHTz529GYjIajsg4RERERObK0Q0NERA7a8x+vwucPHtU1bCmq5e9vfkcgcHTXISIiIiJHhgIaIiJy0IK7VQA3GGDCqV0xHIWNEgtX72DO8qIjP7GIiIiIHHE6ciIiIgfM6wvwypTVBIJB7FYTgWCIq8f1ISbKSujonEChqs5Nk9uH0245OgsQERERkSPCEAodrT85RUTkWPfezPW8+8WGyPM//XoUr0xew/byhqOyHrvFhNsXwGEz8+AvRzGwZ/JRWYeIiIiIHH46ciIiIgesss7d4vmarVVHLZgB4PYFAHB5/Hw4a+NRW4eIiIiIHH4KaIiIyAE7/5RuxDjDRzt6ZsZx+uAMzKYfxq+W2Cjr0V6CiIiIHCZFRUXk5OSQk5NDUZHyZ3XUxIkTycnJ4dlnn211b9f7unjx4qOwso5RDg0RETlg3TrH8dJ9YykoqWPmonxenbqay8f05L0vj87uiJyseLz+IMnxDn510YCjsgYREfnx8nq9TJs2jTlz5rB69Wqqq6vx+/3Ex8eTk5PDqaeeyoQJE0hKSjok89XV1fHmm28CcO211xIbG3tIxt3d4sWLWbJkCRkZGVx66aWHfPwfuk8//ZQ//vGPB9R35MiRvP3224d4RbI7BTREROSgRDssfLE4n9lLCwFYuaniqK2lV1YiN14y8KjNLyIiP14LFy7kvvvuo7i4OHLNbrdjs9koKyujrKyMefPm8cwzz3DnnXdy7bXXHvScdXV1PPfccwBccsklhyWgsWTJEp577jlGjhz5gwpoWCwWunXrFnl8uNjtdpKT287JVVER/psnOjoau93e6n5cXNxhW5eEKaAhIiIHrbza1eb1jJQotpc3HrF1TPt2K907xzJ2VPYRm1NEROSzzz7jrrvuwu/3k5mZyY033sgZZ5xBamoqAB6Ph6VLlzJ58mSmTZvGrFmzDklA48csLS2NGTNmHPZ5xo8fz/jx49u8l5OTA8D999//gwr2/JgooCEiIgdtwmndWbW59c6M2kbvEV/Lmm1VCmiIiMheuX1uCut24PK5cVjsdInthN3S+tv19tqyZQv33Xcffr+fk08+meeee46oqKgWbWw2G6eccgqnnHIK1113He++++7BvgwRQQENERE5BFITnG1eb2jyHeGVgM3yw0hKKiIiPyyFtcXM3DSXb/IX4/Z7ItftZhunZ49iXK/RdInr3OFxn376aVwuFykpKTzzzDOtghl76tevH4888ggAoVCIs846i+3bt/PHP/6RX/ziF3vt95e//IW3336bE044gXfeeYeJEyeyZMmSyP2zzjqrRftLLrmExx9/vMW1LVu28Oqrr7Jo0SLKy8ux2Wz07NmT8847j6uuugqrtTmhdlFRUYsxlyxZEtmRsMtbb73FqFGjIs9DoRDTp0/n008/Zc2aNTQ2NhIfH8+wYcOYOHEiJ5xwQov+kydP5p577sFoNPL2228zYsSIVq/7o48+4oEHHsBkMvHWW29F2uy+vq+++orMzMxWfT0eDx999BEzZ85k06ZNNDQ0kJSURFZWFmeffTYXXnghCQkJbb/hR0EgEGDq1KlMnz6dtWvXUltbS3x8PJmZmZxxxhlcfPHFpKent+qXl5fH66+/zqJFiygpKcFoNJKVlcXYsWO59tpriYmJOWRrLC4u5tVXX2XBggUUFxcTDAZJTEwkPT2dE088kUsvvZTs7CP3xZICGiIictDydtR2qL3JCIHg4VlLZU3bx19EROTHa9qGr3h7xSeECLW65/Z7+GLLN3y5ZR4Th1zGBTlntTFC28rKypg1axYQrhrR3pwJRmM4+G4wGLj88st55pln+Pjjj/ca0PB6vUydOhWAn/zkJ0A4P0NCQgLV1dUAJCQkYDKZIn2io6NbjDF58mTuv/9+/H4/ADExMbjdbnJzc8nNzWXy5Mm88sorkYSlJpOJ5ORkmpqaaGpqwmKxtHp9u+eu8Hg83HnnnXz11VeR/tHR0VRUVDBz5kxmzpzJTTfdxJ133hnpc/HFF/PNN98wffp07r77bv73v/+1+PCdl5fHX//6VwBuvPHGNgMee5OXl8eNN95IXl4eEH7PY2NjqaqqoqSkhCVLlhATE/ODOSpSUVHBrbfeyooVK4DwfxuxsbHU19dHfkY+n4/bb7+9Rb+PPvqIhx9+GJ8v/CWSw+HA5/Oxfv161q9fz6RJk3j99dfJyso66DWuW7eOiRMnUl9fD4DZbMbpdFJSUkJJSQkrVqwgNjaW66+//qDnai8FNERE5ICtz6tiy/ZasjvFEBtlpW4/R0ysZgNef+iwBTMAFq8tZfWWCgb0aDuBl4iI/LhM2/AVb634eL/tQoQi7dob1Fi8eDGhUDhIsucOifa67LLLeO6559i0aRMrVqxgyJAhrdp88cUX1NTUEBsby7nnngvAc88912KXwscff9zmLgWAVatWRYIZJ598Mg8++CDdu3fH5/MxY8YM/vznP7N27VruvPNO3nzzTQwGA506dWL+/Pk8++yzPPfccwwdOnSfFTueeOIJvvrqK4xGI3feeSc/+9nPIgGNf/3rX3zwwQe88MILdO3alUsuuSTS7+GHHyY3N5ft27fz5z//mSeffBIAn8/HH/7wB5qamhgyZAi33npru9/Turo6rr/+eoqKikhOTubuu+9m7NixOJ1OgsEgmzdvZvr06YclieqB8Hq93HzzzaxatQqn08kf/vAHJkyYEFlffn4+M2fObBVQmjt3Lg8++CA2m42bbrqJK664gtTUVPx+P6tWreKxxx5j9erV3HbbbUyePDkSSDtQjz/+OPX19QwaNIiHHnqIAQMGYDAY8Hg85OfnM2PGjDZ3kBxOCmiIiMgBWbqulEdeXUQoBFaLkUdvPJmSyiYyUqK57z/f4vW1jlqYzSa8O78Z2lNyvI2KGk+b9/bHZjHi2W2+Jnfbc4iIyI9LYW0xb6/4pEN93l7xCYPT+7br+MnmzZsBsFqtdO/e/YDWmJqayplnnsmXX37Jxx9/3GZA4+OPdwZaLrigzWoa+/PMM8/g9/vp3bs3L774YuRoicViiXxwvuGGG1i8eDHffPMNo0eP7tD4O3bsiOQF+e1vf8sNN9wQuZecnMwjjzxCXV0dn3/+OU8//TQTJkzAbA5/FI2JieGJJ55g4sSJTJs2jdNOO42LL76YZ599lu+//56oqCieeOKJSPv2ePnllykqKsLpdPLOO+9EqqFAeKdG79696d27d4de4+H06aefsmrVKkwmEy+//HKrnSjZ2dkt3lMIH0959NFHCYVCPP7445x33nmRe2azmWHDhvHqq69ywQUXsGHDBmbNmsU555xzUOvctXvk/vvvZ+DA5qpyNpvtqL2nOmgsIiIHZMaCPHZ+KYXXF2TOsiLGjOhCKBRsFczonhHLeSd1JT2p7VwbABU1HgyGjq+jb9dE7po4guS48B94w/ukMqxPascHEhGR487MTXPbPGayLyFCzNw8t11ta2pqAIiNjT2ob7+vuOIKIFwtpampqcW9wsJCFi1aBMDll1/e4bFra2tZsGABADfccEOLPBm7jB49msGDBwMwffr0Ds8xc+ZMAoEA0dHRXHfddW222XVUorS0lO+++67FvREjRkQ+sD/66KNMmjSJl19+GYAHHnigw8clJk2aBISPAe0ezPih2rXe8847r93HapYsWUJhYSEZGRktghm7i4+P5/TTTwfg22+/Peh17joOVFZWdtBjHSraoSEiIgfE4Wj5KyS4M7rxn0+/b9V26/Y6tm6v2++YoY79zQnAurwqXv3fGv56yyk47Rbiom0dH0RERI47bp+bb/IXH1Dfb/IW8/NBlxxU9ZOOOPXUU8nIyGD79u189tlnkTwZAJ988gmhUIj+/fvTr1+/Do+9du3ayLGYk08+ea/tTjrpJFauXMmaNWs6PMeuPsOGDcNma/v3cI8ePUhLS6O0tJQ1a9Zw0kkntbh/++23s2DBAlatWsW9994LwLnnntvhHBdFRUWUl5cDdHinydHg8/lYvXo10LH15ubmAuHgwimnnLLXdrsCZDt27DiIVYaNHj2ajz/+mHvuuYfc3FzOOussBg0a1GaQ7EjRDg0RETkgV4/rg90aDmpYLUbOGZXFsx/msnV7xxKEHgo7KhuZ9u02BTNERCSisG5Hi2omHeH2eyiqK9lvu/j4eCCcsyF0IFH5nYxGY2T3xa7jJRA+VrDr2/vdgxwdUVVVBYSPl+xK+NmWXbkPKisrD3iOtLS0fbbb1xxmszmSABQgKSkpUg2mI3YfOyMjo8P9j7Ta2tpIotbOndtfZWdX0Mbn81FRUbHXf3YFNNxu90Gv9e677+aEE06gqamJ1157jauvvpphw4Zx1VVX8fLLL0d2LB1J2qEhIiIHJD0pihfuHcPGghq6Z8Qx5ZstfLG4YK/tjQYIduBvvYE9k2lo8rKteP87OwDydtTx55cXMqJvGhecemDnmEVE5Pjh8h3cBziXf//9e/bsCYSTOm7ZsiXy/EDsSg6am5vLli1b6NGjB99++y0lJSU4HA4mTJhwwGMfKz766KPI45qaGjZv3szw4cOP4op+uAKBABDeWfPGG28ckTnj4uJ45513WLJkCbNnz2bZsmWsXbuW5cuXs3z5cl555RVefPHFNvPAHC7aoSEiIvsVDIb4fksFW4pqWlxPinNw0sBOpCU6KSpr2Gt/A3DDxQO548qhxMe0bxdFdZ0bm8W0/4aAyWhg1eYKlq0v48VJ37Pw+4PfVikiIsc2x0EeF3GY999/1KhRGHYmgNpVrvRA7UoOCs27NHb9e9y4cS3KmXZEYmIiEP4mf1+7L0pKwjtS9rWLY39zlJaW7rPdvub49ttveeuttwDo3bs3gUCAu+66i4aGvf990Zbk5OYqZ9u3b+9Q36MhPj4+Uv62uLi43f12vc5DcZSko0aOHMm9997LRx99xJIlS3jyySfp3LkzNTU13HXXXUd0LQpoiIjIfv397e+47/n53PH0XD79elObbcaOysJoDP9RZ7UYyclKiNwLAfml9Zx1QhYZKdHtmrOorIH1+dXtahvcY5tvQUn7dnWIiMjxq0tsJ+zmAzuKaDfbyIzdf/nJ1NTUSNnUt99+m9ra9h27DAbbrl++Kzno5MmTKSkp4euvvwb2ngx090Skezvy0q9fv0jQZeHChXtd0657AwYMaHF9V999HanZ1Sc3NxePp+1jPlu2bIkEPPaco7q6mnvvvZdQKMSll17K22+/TVpaGtu3b+fhhx/e67xtycjIIDU1nBx8zpw5Hep7NJjN5sj70ZH1Dh06FIC8vDy2bdt2OJbWLlFRUVxwwQU89thjABQUFBzRIIsCGiIisk+1DR4WrGr+xTRjYX6b7U4dnMFjN59M5s6ARUKsDeNuVUsyUqJ5/uOVlFQ2YjIeQDmTfdjzb6xR/Tsd0vFFROTYY7fYOT171AH1Pb3rqHYnBL3jjjuw2+2Ul5dzxx130NjYuM/2a9eu5aGHHmrz3q7koFVVVfzud7/D5/PRrVu3vVa+iI5u/pKgvr6+zTZxcXGRpJEvv/wyXq+3VZu5c+eycuVKAM4///w256ir2/uXBeeccw4mk4n6+nrefPPNNts8++yzQDiPxp6v54EHHqC8vJzs7GweeOAB4uPj+fvf/47BYGDKlCkdrryyK5HoO++8c1Q/7LfXrvXOmDGDpUuXtqvPiSeeGMkR8te//jVyBKUtPp9vv/9d7o/f799rIA5okQx2b0Gtw0EBDRER2Sen3dLimIjDHk6/5PG1/sU5f2UxReUNeH1BFq0u4fKze3P6kAyuu6AfDquZzxfmUVnrJhAM0Sk5qkXftkq2juibGtn10RHPfbSizfWJiMiPy7heozHQsd8jBgyM69n+ahO9evXisccew2QysWDBAi666CI++uijSNJGCH/AW7BgAXfddReXXXYZ+fltfzmwe3LQZcuWAftOBhobGxtJxDl58uS9fqj97W9/i9lsZv369dx8883k5eUB4Q+606ZN43e/+x0QPkJz2mmntejbu3dvILzDYlfQY0+dOnXiZz/7GQDPPPMMr7zySuQDdGVlJQ899BCff/45EA4Amc3NqRw/+OADZs2ahdls5h//+AdRUeG/D0466aRICdg///nPHTqOcf3115OZmUlTUxMTJ05kypQpuFwuILw7Zv369Tz22GN8+eWX7R7zcLrkkksYPHgwgUCAG264gf/+978tAlR5eXk888wzvPfee5FrFouFP/3pTxiNRr755ht++ctfkpubGwk6BINBNm/ezEsvvcS4ceNYt27dQa2xpKSEcePG8eKLL7Jhw4bIf2uhUIiVK1dGdtJ07dqV7Ozsg5qrIwyhg0nHKyIix5XZSwsoKKnntCEZ9MiMj1xftamCP728EH8g/EsyMdZOVZ2bYTmpPPDLkVjM4VwXL3y6iunzm78J+dOvTmRE3zQamrxMX7CNdz5fH7mXkxXPhoKaNtfRp2sCWWkxeH1B1m6rpKza1eHX8vCvT2JYn9QO9xMRkePLtA1f8daKj/ffcKdrhvyEC3LO6vA88+fP57777ovkiQCw2+1YrdYWuxuioqL4/e9/z9VXX93mOGVlZZx55pn4/X4sFgtz587dZ16L5557LrL7wWazkZSUhMFgYNy4cdxzzz2RdpMnT+b++++PVNSIiYnB7Xbj8/kA6Nu3L6+++mqrufx+P+eff34kCBIfHx8JOjz11FORBJAej4c77riD2bNnA2AymYiOjm5RAeamm27izjvvjIy9bds2LrnkElwuF7/97W+55ZZbWszt9Xr56U9/ytq1axk5ciRvvvlm5JhNUVFR5LjPV199RWZmZou+27Zt48Ybb4wEj0wmEzExMTQ1NUV2qfztb3/rcFnY3eXk5ByScQAqKiq4+eabWbVqFRA+6hMXF4fH44kEY2677TZuv/32Fv2mTZvG/fffH6liYrVacTqdNDY2Rn62AO+++26LBKsTJ05kyZIlbY6563W99dZbjBoV3uW0+/sN4aMy0dHRLeaJi4vjlVdeYdCgQQf1XnSEqpyIiAgA077dyouTvgfgswXbeO4PY0hNdAIQCAYjwQyAqrrwL83lG8qYt6KYMSO6AHD5Wb1Yt62K/JI6Rg/LJDHGylUPfEaDy9fq+7G9BTMAthTVsj6vffkz2mI0QFLcwSWDExGR48Ou4MTbKz4hxN6/yzVgYOKQyw4omAFwyimn8OWXXzJlyhTmzp3LmjVrqKqqwuVykZqaSk5ODqNHj2bChAmRcq9tSU1NZciQISxdupQzzzxzv0k6b7nlFqKiopgyZQp5eXmRnQzV1S1/j1588cUMGDCAV199lcWLF1NWVobNZqN///6MHz+eq666CqvV2mp8s9nMG2+8wb/+9S8WLVpEeXl5pDzn7kcLbDYbzz//PNOmTePTTz9l7dq1NDY2kpyczLBhw/j5z3/OyJEjI+19Ph+///3vcblcDB8+nBtvvLHV3FarlX/84x9ceumlLFmyhJdffrnNdm3p1q0bU6ZM4f3332fmzJls2bIlsp6srCzGjh3LmDFj2jXWkZCcnMx7773H5MmTmT59OuvWraOhoYGEhAT69OnDmDFjuOiii1r1u+CCCzjhhBN45513mDdvHoWFhdTX1xMTE0N2djbDhg1j7NixB10tJi0tjeeff55FixaxYsUKSkpKqK6uxmKx0LNnT0499VSuvfZaUlJSDmqejtIODRERAeCJt5fyzYrmbOAPXj+Kkf3CCdGq693c8n+zaWjytep3+xVDWLO1koYmH5ef1Ys+XRMJhUIEgyEuu3cqgb0ftzzkTEYD/bolMnZUNmcO73LkJhYRkR+8wtpiZm6eyzd5i3H7mz+I2802Tu86inE9R9MlrvNRXGFYXV0dp512Gm63m5deeonRo9t//EXkx0Y7NEREBIAT+qdHAhrx0TZ6dYmP3EuIsXP75UP425vfRa6ZjAZG9k9j+rdb2Voc3kq7dF0JBoOBTslR9OoSd8SCGUaDgeR4OzdcPJBRA5QQVEREWusS15lfDb+Knw+6hKK6Elx+Nw6znczY9HYnAD0SPv30U9xuNxkZGa3yWYhISwpoiIgIAGcMyyQp1k5hWT0n9E0nIablH3fDclLpnBxFcUU4yZfRAAu/L2nRJhgCQiGKyhqorHW3a96kWBuVdW1nwx7VL43Fa/dd0x7gFxf045IzerZrPhER+XGzW+z0TOp6tJfRpi1btvDCCy8AcM0117QoyyoirenIiYiItFttg4dFq3fw1dIC1m1rf44Li8mAL3Dof91E203c/JOhnD4045CPLSIicqRcddVVFBUVUV5eTigUomfPnkyaNKnNnBYi0kwhPxERabe4aBvjTuxKz8yEvbbZM/lnl9Ro3vzzuXzw2HhuuezQZr1ucAd4/uOVPPvhikiiUhERkWNNaWkpZWVlxMfHc/755/Paa68pmCHSDtqhISIi7ebzB5m9tIAmt4+Fq3awqagG/247L4b1SeWmSwZy+z++xuMLJ9C48LTu/PrigUC4Vvndz81jY351+HjKIdS/exKP33rqoR1URERERH6wlENDRETa7en3lrNoRT7nO3M52dhAyNib9YHm4x7L15dxw9++wmk3w86Axq7SrxAuDXug5VitFiMTTutOYoyN79aVsmpTRYugyPbyhgN7USIiIiJyTNKRExERaZfNhTUsXVfKBc5czrSvY5C1kF9Ff02CsXUgocntjzyePn9b5PHUb7ce8PxeX5Di8kYuPL0nj954CpP+70LOHJ4ZuX/uiV0BKKlsZOaiPDYWHFjgRERERESODdqhISIi+/XJ7E28MX0tACnRdZHrFkOQBGMj1cHovfYNhUK8MW0NE07rjsPW9q8dgwHacwDS4w1EHhuNBu68ahhjR2Vjs5jonZVAWXUTdzw1h8adAZUJp3XjhosPbd4OEREREflhUEBDRETa1NDkYdn6crI7xfLJ15si1xd4epNj2YHZEKQgkMINv5pAnTtEfaOXb1cVk7uhPNLWZDRQUtnEJ19vZvGaEm79yWD+8voSXG4foRDsimF0SYuhoKR+n+uJi7by8/P6tLhmMBgY2CM58nz1lopIMANg6rxtxEXZ+OnYnIN4J0RERETkh0hJQUVEBAC/L8AnH69ia341q6oaaQgE99o2yVhPgrGRPH8KAUwkxzu46+cj8AeC3Pef+Xvtlxhrj1QjsVlNGA2QmhjFdef35ZHXlhDcmRTDZITdp7/kjB784vz+GI171lBp6ZvlRTzx32UtrnVOjuLFP569v5cvIiIiIscY5dAQEREAXvjPQjYs3Y6vvImegX3/gqgMxrDZn44fEyGgvMbFPz/IpVeXODolR+213+6lVT3eAC5PgKLSOh5/a2kkmAEtgxlWs4G1W6uYm1sEwIufruLK+6dzz3PzqG3wtBh/Shs5Orp1jt33CxcRERGRY5KOnIiICAA7imqx7XxswYAVcO+rwx6qal28NHk1OyoaOzRvIAiB3XJj7MnrD7GhoJpN79cQCASZtjPJ6NptVXw4a2OkJCzQfIZlp9OGZHDb5YM7tB4REREROTZoh4aIiAAQjLFGHjcQwrOPtgBRDjN2qyny3OUN8PXSwv3OM6pfGpmpe08iutf1BUPMXV7U4pp/j2Mxv754AElxdqxmI7+6aAB3TxyB027p8FwiIiIi8sOnHBoiIgLAjopGHn32W1yNHtxWIw2eve+aOBijh2ZGjo90hM1ixONrDmB0SYvmkRtOxuXxU1BST7/uiSTE2AGoa/QS5bBg2k/ODRERERE5dimgISIiEZsLa7jn39/i9R2eYAaAgVYnQw7Iy/edTUWNiwdfXIg/ECQhxsZjN5/Cvz7IZX1+NamJTv568ymkJToPwWwiIiIi8kOjIyciIhKxaM2OFsEMi+nQ73A4FMGMrLRoUuIdfLuyOHLspLrew13/msf6/GoAyqqamDxn8yGYTURERER+iJQUVEREInpkxLV47gscuU18JqOBQLB98xWUNvD4W0sZ0is5cs0ANLp9Ldo57Po1JyIiP2w+n4/XXnuNqVOnUlBQgMcTzmL11VdfAXDWWWdFnmdmZh61dYr8EOkvPRERiThpYGd+/7NhrN5aSXy0jQ9mbdxne6MBumfE0iMzgTnLi/Dso1rJ/rQ3mLHLotU7GNI7mfEnd2VdXhU9M+L58ruCyP1unWL5yZheB7weERGRfcnJyTngvrsHJx599FE++OADAGw2G8nJ4WC9yWQiEDh8R0BFjgcKaIiI/Mh8v6WCyhoXI/unt1kB5IzhXThjeBcAPL4AXyzOx+sLEAiEWh0XCYUgb0cDm4vqjsDKW/t49mYqalwA5O2o44xhmRRXNNC/ezK/OL8fRiUFFRGRw2RX4GFP9fX1eDweLBYLcXFxbbYxmcJVwhoaGvjkk08A+OMf/8i1116LwdD8u6uoqONJtEV+TBTQEBH5Ebn72W9YlxfOMZGVFs3Td56B1WLaa/vrLxzA9RcOAKC82sWrU75n/qodkfshWpdOPZJ2BTMgHFxxewM8+dvRR209IiLy4zF//vw2r997771MmjSJoUOH8vbbb+9zjK1bt+L3+wG4/PLLWwQzRGT/lBRURORHwOP189CL8yPBDAjnoSgqa2j3GCkJDs45MftwLO+QyU6PAcJBlinfbOGdz9dRXu3aTy8REfkxCbhc1G/YSM2KldRv2EjAdfR+T7jd7sjjqKioo7YOkWOVdmiIiBznKmtd/OqxWW3upEhNcHRorA35NS2eGwwQH22jweXD5z96OzV2cXn8uDx+Xvx0FV8tLQTg6+VFvHDPGCzmve9EERGR419TQQE7PptB2ddzCe4WSDDa7aSeOZpO48/FmZV1RNby6aef8sc//rHFtd1zclxyySU8/vjjrfqVlpby73//m2+++YaKigqSkpI444wz+M1vfkNSUtJhX7fID40CGiIix6lgMMTMRXm8OmV1m8GMxFgb0U5rh8YclpPCh7M24A+EMBoMXDehHxeP7sm7M9fz3hcbDtXSD9iUeVv5fGFei+BKWVUTlbVu0pP0zZeIyI/V9v9NJe/1N8PnE/cQdLsp+XwmJTO+oOt115Jx0YTDvh673U5ycjI+n4/a2lqgZU6O6OjoVn02btzIfffdR3V1NVFRUYRCIUpKSnj//fdZsGABn3zyCbGxsYd97SI/JDpyIiJynHrgxQU8/8kqPL7WwYxeXeJ48d6zOzxmTnYit10+BAMQDIV4dcoavltbwrgTs+m0M2AQ5dh7rNxpO3S7JIb1SWnz+p47Rbp2iiU5vmM7UURE5Pix/X9TyXvtjTaDGS2EQuS99gbb/zf1sK9p/PjxzJ8/n2effTZybf78+ZF/HnjggVZ97r33XnJycpg6dSrLly8nNzeXxx57DKvVSkFBAS+99NJhX7fID40CGiIix5FgMERlrYs3pq/h+80Vre47rCb+ctNJPHXHGdhtB7ZJr8Hla1HtZH1+NUlxDp6/ZwyvPXAO9/9iFBZT20nNvHsEG8y7tbOY2/8r6Yzhmfx8XJ99tjEbDfzqogH87dZTMZv0605E5MeoqaAgvDOjA/Jef5OmgoL9NzzCUlNTefnll+nduzcAVquVn/zkJ1xxxRUAfP7550dzeSJHhf7CExE5TjQ2ebn+sS/4xSNf8MnszS3uGYCJ5/Xlw79dQF2Dj4l/msH1f/mC1VtaBz32Z0ivlEhlFLPJwPA+qTsfG0lJcOCwm7FZw8GSPaum+gPNoRCjwRB5nhRnJ6Wd+TxOH5LBzZcOoldWImOGZ7a6bzRAVloM91x7Ahed3oNoR+vStCIi8uOw47MZ+9+ZsadQiB2fzTw8CzoIv/jFL7BaWx8VPfvs8I7LoqIimpqajvSyRI4q5dAQETlOPPnecipq3G3eu+/akZw4qBP+QJBn3l8e2Snx3EcreKGDR0+yO8Xy9B2n8/2WSnKyE+iZGd/i/sezN9Hg8gEQDEFWegwFJfWR+6cM7kRslI2vvivE6wsAUFnb9rr3lJbo5M6fDYvsuLjzZ8O5/qKBFJc38MqU1fh8QX55YX8G92r7OIqIiPx4BFwuyr6ee0B9y76eQ9drf47J8cM5sjhw4MA2r6empkYe19fX43Q6j9SSRI46BTRERI4Tmwpq2ryemuBgcE74A34oBIFg8zdVu++Y6Iis9Fiy0ttOPLbnjojdgxkxTgv3TDwBg8FAbJSVD77cCIDdasLtDbQ5ntFoIBgMYbeaeOCXI1sdH4mNshIblcg/fnP6Ab0WERE5PjUVFLaoZtIRQbebpsIiYnr3OsSrOnB7K+tqs9kij30+35FajsgPggIaIiLHgeUbyqhp8LS6Hhtl5ak7RuPYmS/DYjZy82WDeHHS91jNRm66dNAhX8s14/tRU++huKKBs0/I4r0vNkSCFVnpsRgM4XMoPz+3L6cOziAUCrE+r4rnP1nVYpxoh4VBPZO59MyelFY1kZOdSFqivnUSEZH2CbhcR7W/iBx+CmiIiBwHGpq8bV5/+o7RxEXbWlwbd2JXxo7MxmAgElw4lGKjrDzwy1GR5107x/HO5+uIcli45bLBLdp27RTe5dGtcxwuT4DXp63ZbZ3Z/OKC/kC4uoqIiEhHHOxxkR/ScRMRaZsCGiIix4GR/dPp2zWRdXlVRNnNjBqQzjXn9SNpL+VKjXtm6zyMhuWkMiwndb/tzju5K/NWbmdzYQ2pCQ7Gn9ztCKxORESOV86sLhjt9gM6dmK023F2aZ14WkR+WBTQEBE5DtitZv5266lU1rqIj7ZFqpAcSxw2M//4zelU1rhIiLVhMR97r0FERH44TA4HqWeOpuTzjlcsST3zDO3QEDkGqGyrHNOaGrx8+MZSXnryG1YsKTzayxE5qkxGA6kJzmMymLGLyWggNdGpYIaIiBwSncafCx09Xmkw0Gn8uMOzIBE5pBTQkGParGnrWP99CSXFdUz9cCWV5Q1He0kiIiIi8gPhzMqi63XXdqhP1+uuxZmVdZhWJCKHkgIackT9P3v3HV91fe9x/H1WcrJ3AgTCTtgbFHAhqHW0VevErXWPOmodtVdttbVWbeuo26o4UAtOnMjee++ZELL3Ts64f4QccpKT5CQkhB+8no9HHzfnN7/n5OTieZ/v9/PJK6rQuh3ZKmmigGFrlZUd7urgdksV5bSqAgAAwGGJv/6let14fcszNUwm9brxeiX++pdHZVwAjpzJ7Xa7O3sQOH6t35GjKodTowckKDWzWI+8skhllQ7FRNh1x2+GqaCkWn0SwxVgtSipS5jfHRecTpde/HStNm3NVmyFUyEuKWVIgi67boxMR7HYIQAAAIyhPDVVGd/+oOy587wKhZrtdsVPOkNdzzuHmRmAwRBooEOUlFfrP5+t16INByVJJw/posS4UM2Yu6vJc4b1j9VNvxys3QeK1D8pUhazWV1iQmQ2m/TazA1atSVTyT2j5HK6tGpbthzOw2/d4X1i9OhNJynYbuvw5wYAAADjclZUqDztgJwVFbIEBSm4R3cKgAIGRaCBdpdfXKkH/jVfuUXeLbISooOVlV/e7LkmSfXfkF1ignXu+F767zdbWrxvv+4R+sc9p8lqYSUVAAAAABzv+OSHdrd8c2ajMENSi2GG5B1mSFJmXrlmzN3p1313HShSdkHL9wAAAAAAGJ+1sweA409MeGCbzrOaTXK4DkcaYaZyOWVWeZlD/rxVo8ICFR1ub9O9AQAAAADGQqCBdle/tkWrzqsXZnS35OqAM9bz2KoaOeS7PobNatbQvrG69eKhsgfwEsMklQABAABJREFUlgYAAACAEwFLTtDuPvlph1/H2QMsmjC0q+IiGxdhijcXez12N/FWNZmkqNBA7c8s1nuztii/uPFSFwAAAADA8YdAA+2qstqhfZlFzR5z+qhuOmN0d102JVl3Xz5SA3tFNzrGanIowlQmSQoxVcgpS6Njelhy5HZL2YUVyiuq1JINGXrug9Xt80QAAAAAAMc05uej3cxbc0D/nr5GLlfzxy1clyHXoeUli9Yf1MPXjNXqbVkqq3R4jllR3V91PU8q3AGNrmGSSxnOqEbbM3JLj+QpAAAAAAAMgrataDfXPPG9CkuqWn1esN2q8nphxpG47vxBuuTM/u1yLQAAAADAsYslJzhiW/bm6aanf1JxaeMww2Y1tXh+e4UZQ/rGaEjfGL391SbNWZXaLtcEAAAAABybWHKCFhWWVKmy2qEuMSFe250ut6qqHXr5s/XKzi/3eW6Nw3sCkNVialUXFLNJcjU43Gw2eZas1FdWUaOHX14k56F9VTUunTu+l9/3AgAAAAAYB4EGmjV/zQH98+M1crrcumBib9168TBJ0sotmfrHB6tVUeVQUKD328geaFFlldPn9VoTZphM0huPTNGeg8V64aPVcrrcSogO1oFs33Uy9h707oyyfX8+gQYAAAAAHKdYcoJmfTJ7u2fGwzeL96qwpErZ+eV6+t0VqqiqXSpS93/rNBVmtJbbLb355SbtOlCoymqnahwun2GGyceqFpNJOmlwl3YZBwAAAADg2EOggWZFhAR6fjZJKiip1KL16XK2YqbFkdiRVqD8okqvbVaLd4Lhq6xteHCAkpMad0EBAAAAABwfCDTgsWl3rqb/tF2b9+RJkiqrHJo0urtnv1vS+99u1buztrTbPUODbYqLDJLNapbVYlZEiM1rf2FJlTbszlWArfat2jcxwq9lK0Vl1frfnJ3tNk4AAAAAwLGFtq2QVBtm/PHVxZ4CnPYAiyqrnbJYTB06G+OCU3rr1ouGyelyy+12a8HadP3z4zU+j73ojL4a2Ctaf313ZaN9ATazqmtcXtusFpMmDOum+68cJYuF7A4AAAAAjid8yoMkafOePK9uIpXVtXUwOnppyeqt2brj2Tlasy1LVotZZ47poXGDE2Qy1XY4qe/zebsbhRlms/TCvadpRHK8woJtCgu2yXzoXe1w1gYk89emd+hzAAAAAAAcfQQakCQN7Rfrs7hmRwqwmpWRV6a0rBL9fdoq1TicmrVoj1Zszqqti2GSbNbm36Iul/TYq4u1YnOmSsprVFJeo/FDunkdU1pe3YHPAgAAAOg4Bw4cUEpKilJSUnTgwIHOHg5wTCHQgCRpUO8YPXvXqerVNbxD7xMTYdcFp/TSv+8/XdERds/2qmqn0rJKtHlvvmebyyVNPSelxWuWN+iqEhdpV7e4EM/jd77erKUbD7bD6AEAAID2M3PmTL300ktavnx5Zw8FMCQCDXgM6BWtf91/hu65fITsARbP9vDggHa5fmiwTXlFlZq1eJ9+98J8JSdFeWZgJMaF6ncvzNeyTYeDB7PZpKSEcEWGtu7+XyzYo4M5ZZ7HTpdbn87e0S7PAQAAAGgvn3/+uV5++WWtWLGis4cCGJK1sweAY8vWvXkqKKny1NCQpOJ2WrJRWl4j6XCb1YXr0vXfP52t/ZnFevyNZZKkGsfhmh0ul1tPvbNc7VHFIzLs8GyQiiqHggJ56wMAAJyIqqscys4sUXWVQwGBVsV3CVMA/20IGBJ/ufD4Yv4uvf3V5qN2P5vFrNKKGkkmmSSfwcWRhhnREYHqlxilYf1j9eSby5SWXaKs/HJFhQXqirNSdO6EXjId7eIhAAAAOOqyM0u0avE+bVh9QNX1liwHBFo0bHR3jZnYS/FdwjpxhABai7at8Ljvn/O060DREV/HbJJXx5RG+80mxUbYNaRvrOasSpMkDegVpW37Cpq9brDdKovZpMiwQKVllfo1FnuARdefP0ivfb7R5/5RKfG68pwUDegZ7df1AAAAYDzL5u/Rj19vaf7bMpN09i8H6eTT+7T5PgsWLND06dO1fv16FRUVKTw8XEOHDtWll16qKVOmeI6bOXOmHnnkkWavtX37dkm1RUEnT54sSfr5559ls9n0yiuvaMGCBcrNzVVMTIzOOOMM3XPPPYqJiWnyesXFxXr//fc1Z84c7d+/X9XV1UpISNCECRN00003qWfPno3Oeemll/Tyyy9r3LhxmjZtmr766it9+umn2rlzpwoLC/XKK694PS/gaGOGBiRJ63Zkq7JBcc2GLGbJ6Wr5Ws2FGVLtUpJe3SK0fFOmZ9v2FsIMSSqvdEiSSg4tXfFHZbVTb3zpO8yQpDXbs7V2R7bOHNNDN1wwWBGhgX5fGwAAAMe+ZfP36MevtrR8oFue41obarjdbj3xxBOaPn26JMlkMik8PFwFBQWaN2+e5s2bp4suukhPP/20LBaL7Ha7YmNjVVRUpJqaGgUHBys4OLjF++zYsUOPPvqoCgoKFBISIrfbrczMTE2fPl1LlizRjBkzFB7euMj/hg0bdPvttys3N1eSZLPZZLValZaWpk8++URfffWV/vnPf2rSpElN3vupp57StGnTZDabFRYWJrOZcozofLwLoc9+3qE/vb5UB3Kan/VQvw7FkVqxOVNllYeDCXugRdHhHRMmuFoIYdxu6eeVaXr01cVytZTGAAAAwDCyM0tqZ2a0wo9fb1F2Zkmrznn33Xc9Ycb111+vJUuWaMWKFVqxYoXuvPNOSbUFQF999VVJ0nnnnafFixdr5MiRkqQbb7xRixcv9vqfLw8//LBSUlL09ddfa82aNVq7dq2efvppBQQEKDU1VW+88UajczIzM3XzzTcrNzdXF110kWbNmqUNGzZo3bp1+umnn3TBBReooqJC999/f5NtYTdt2qQPPvhAd999t5YvX64VK1Zo5cqVnvEDnYVAA1q4Lt2v44rLqjpsDBVVToUE2Rpt7xITrD7dOraVbJ3UzBIVllQelXsBAACg461avK/1Rdnch87zU0VFhf7zn/9Iki677DI98sgjio6uXc4cFhame+65RzfddJMk6c0331RhYWErB3RYfHy83nzzTSUnJ0uSAgICdMkll+iyyy6TJH333XeNzvnXv/6lwsJCTZ06Vc8884z69evnmV2RlJSk559/XqeeeqrKy8v17rvv+rxveXm5brnlFt11112eGSChoaHNLnEBjgYCDSjYz6rO9TuQdATfdTHcGtQnRl1iglvdvrWOxex/0c8XPlqjJ99apk9+2q7qGqe+X7pPn/y0XQdz/avZAQAAgGNDdZVDG1b7nnHQktrCoQ6/jl28eLGKi4tlNps9szEauu222xQQEKDKykrNnj27TWOSamd/BAQ0/m/iujoWBw4cUHl5uWd7ZWWlZs2aJUmeUMWXCy64QJK0aNEin/stFouuv/76tg4b6DDU0DjB7Uwr0Oa9+Z09jCblFFTqm0V7W31et9gQPTB1lN76apO2+lGfo876XbXrCldtzdL3y/Yrt7BCkvTB99tkNkkPXTtWE4Z1a/V4AAAAcHTVtmZtvkZcU6qrnMrJKlFiUlSLx27atEmS1Lt3b3Xp0sXnMeHh4RoyZIjWrFmjzZs365JLLmnTuIYOHepze3x8vOfnkpISTz2OTZs2qbq6WpJ0+eWXN3ndmprapeAZGRk+9yclJXlmnQDHEgKNE1xOQUWHXt9iNsl5BHUp2nruwdwyPfDiwjbfV5InzKjjcksvfrqOQAMAAMAA/J1h0ZSqSv/CkPz82i8HExISmj2uLuzIy8tr85hCQkJ8bg8MPFyLri6ckKScnBzPz3UFQZtTWel7+TVhBo5VBBonuBHJcYqJsCuvqGNqRzhdbpnU+qWLnSU0yKbSihpZLWY5fLV0McoTAQAAOMEF+LmsuimBdks7jaTzuA5Vx7dardq8eXObr2OxGP+1wPGJGhonuGC7TQN6dWzi2poMwGbt3LekzWrW3+6YqAemjmpUe8NsMunOS4d10sgAAADQGvFdwhQQ2LYP4gGBFsUlhPl1bN3shaysrGaPy8zMlKSjWkiz7l4Oh6PF8QFGxAyNE5zb7da4gQlavP5gZw9FkvTYjeP088o0LVqf3mK7VV+sFpNcLrfausolNjJIQ/rGSpIS40O1L6NYw/rFKjrcLpPJ/+KiAAAA6FwBgVYNG91dq5bsb/W5w0Z393uGx5AhQyRJe/fuVVZWls+lJ8XFxZ4ZEnXHS/L896Xb3THTgIcOHSqbzaaamhrNmzev2ToagBExQ+MEtm5Htq7803d68dN1CrEfG9nWX95epgVr2xZmSJLD6VZclL3ZY/r3iGy0zWI2KSE6WLdceLjQUu9uEZo0uodiIoIIMwAAAAxozMReUmv/M8506Dw/TZw4UREREXK5XJ72rQ299tprqqqqkt1u1+TJkz3bQ0NDJdUGHh0hJCRE55xzjiTpP//5j6feR1OKioo6ZBxARyHQOIG98cUmlVXUyOlyq7zKobiooM4ekhytKETdNzHC5/as/ObrgZjN0lnjkiRJsRF2TRjaVU6XW1n55Xruw9WqcbQxTQEAAMAxJb5LmM7+5aBWnXP2Lwcpvot/y00kKSgoSHfccYckafr06fr73/+uwsJCSbUdR1588UW9/fbbkqSbb75ZkZGRnnP79+8vSVq4cKGys7NbNU5//f73v1d0dLQyMzN12WWX6YcffvAq/pmRkaEZM2boiiuu0IcfftghYwA6yrHxtTw6hc1yOM+ymE0a2T9OP65I7cQR+W/K2CT16BKqtKwSVbcygNi+v1Aj+sfrf89coACrWbf+7WfPvqz8cu1ILdDgPkdvbSMAAAA6zsmn95Ek/fj1luaLu5lqw4y641vjuuuu0969ezV9+nS98847evfddxUWFqaSkhJPYc4LL7xQt99+u9d5v/71r/XOO+9o3759Ov300xUTE6OAgABJ0pw5c1o9Dl+6du2qd955R3feeafS0tJ0zz33yGKxKCwsTJWVlV7hxumnn94u9wSOFgKNE9idlw7XCx+tVlmlQ8P6xWrZJt99p481g/vEaM7qNLmaKJRhtZjkcB7eFxRoUUWDHuQ7UgsUaKstEhUabJPqdc/anV5EoAEAAHAcOfn0PuqTEqdVi/dpw+oDqq7334YBgRYNG91dYyb2atXMjPpMJpOefPJJnXnmmfr444+1YcMGFRcXKyIiQkOHDtXll1+uKVOmNDqvT58+evfdd/XGG29ow4YNys/Pl9PZiinLfho4cKBmzZqlTz/9VLNnz9aOHTtUWlqqwMBAJScna8iQIZo0aZLOOOOMdr830JFM7o6qQAPDmLfmgJ7/cHVnD8Mv44d21d70ImXmlzfaFxMRqKLSmkbtVnt3C9feg97rEh+7YZxOGtJVkvTzyv361/R1nn1/vX2ihvaLbf/BAwAAoNNVVzmUk1WiqkqnAu213UyOtMUrgM7BX+4JKK+oQvszS9S7a7iy8su1fX9BZw/JS4jdqi6xIYoICdCa7Tle+1Izi5VdWOHzvLyiKp/bS8qqvR7XDzMkafLYnqqocmrbvgKNGZRAmAEAAHAcCwi0KjEpqrOHAaAdMEPjBLM/s1gPvbRQZZUOr6UZZpNJrmPorWAPtCgsOEA5BY3Di0CbWVU1/tfNsAdYVFldO3Wve3yoXv79JFks1MMFAAAAACNjhsYJZsHadJVVOiTJq87EsRRmmOSSu6paOVWN1w/GRNp10qAu+nH5fq/xN6ey2qkpY3uorMKha84bSJgBAAAAAMcBZmicYOasStU/P17b2cNoUaSpVIXu0Cb3myRZrSbVONwa1CtKg3rHKDW7RKu3ZsvZoFio2STVbQoKtOj3V4/RuEFdOnD0AAAAAICORqBxAvpi/i79uDxVaVklHXJ9m9Ws6LBAZflYLuKvc+zr9WPlULnl32yKkCCbyipqfO7ztUTlnJN76q5LR7R5fAAAAACAzkWgcYKqrnHquQ9Xa+nG9m/Vag8wq7LapQCrWdUO/2tdWOWQ3VSj0wK36sygrUodd6++Wl+pfZnNBy9ms+Rq5jYWi0lOH8tT+iRG6N/3n+H3+AAAAAAAxw6KCZygAmwWPXr9OD187VgN6BUts6l9rhsaZFVldW260JowQ5IcsireUqwKBeqF4nO1NiugxTDDZjXr1l8PVWyE3bPtnJN76qxxSeoSE6x+3SN9hhmStCe9SE5n68YIAAAAADg2UBT0BDdxeDeZzdJf3833ud9mManGz+KbklRa4fD7WNOh+6/fmaOS8trlInscCdrjSJAkDQm0KqlLmFKbCTVqHC6FhwXqud+dpmWbMtU1JkSjBsR79heUVOrmp3/y2RXFbBIFQgEAAADAoAg0oMKSqib3tSbMaC23pFOGJ+reK0fpt0//5DWOyLBAXfWLAbKYTfpszk59tWC36hZHmUxS/YVSoUE2xUQE6fyJvRvdIyrMridvmaAv5++W2SwlxoXqywW7ZTabdPelIzvsuQEAAAAAOhY1NKCS8mr9/sUFOphTdtTvHRUWqD/ddJKCA6166OVFKiqrlj3ArKdum6iUntGSpLmr0/TCR2s854xIjlV4cKB2pxcpITpYDqdL/XtE6przBsnSXmtnAAAAAADHNObbQ2HBAfrVqX065d4FJVV684tNSogJUd/ukZKkiFC7osODJEnfL93nFWZYLSZdMLGPHrxmjG6/eJjWbM/Whl25mjF3l75ZtKczngIAAAAAoBMQaECSlBAd0mn3drvdWr45U2u2Z0uSsvLL9fn8XZLUKKR4+raJOmlIV0lSTmG5176cI2gTCwAAAAAwFgINSJLGDEzQlLFJqq1scXRZLSYFWL3finWPu8QcDlpCgmzqkxjheXzSkK5KjAuVJIUF23TWuKSjMFoAAAAAwLGAoqDw+N0VI3Xm2B567LUlcrmOXrCxaU++rjzbomC7VeWVtV1SqmqckqS7Lxuh8FlbVFxWrUsm95c98PBbNiw4QP+673SlZpWoS0yIwkMCjtqYAQAAAACdi0ADXgb3jlGA1azKaudRu6fJJFXXOD1hhiRt21fbRjYiNFD3XN50NxJ7oFXJSVEdPkYAAAAAwLGFJSfwYjabdO+VoxQeEqCI0ACFBttadX5YsE3JSZGNtpuaaD4SERKgOy8ZrmH949Q19vDykuH941p1XwAAAADAiYW2rWjWTU/9qOwjLLZptZj0l1snqKisWq/N3KDCkirPvgtO6aNbLxoqSSooqdTcVQcUGRaoSaO7y9RUCgIAAAAAOOGx5ATN6hobcsSBxnkTemtI31hJ0o79BZo5r7aDicVi0sVn9PMcFxVm18WT+vm8BgAAAAAA9TFDA83KK6rQI/9ZrIzcsmaPs1pMiokIUla+dyvVYLtVbz56lqdgp8Pp0ufzdikrv1xnn9ST+hcAAAAAgDYh0ECLKqoc+u/Xm7X3YJEkk7btz/fsM5kkm9Ws3181WuOHdtPMuTs1e2WaisuqlJQQrrsvG+FVGwMAAAAAgPZAoIFWKSiu1PMfrdbB3DKdN6G3Ljmzf2cPCQAAAABwAiLQAAAAAAAAhkPbVgAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDsXb2AAAA6AirtmbpzS82ymw26f4rR6l/UlRnDwkAAADtyOR2u92dPQgAANqTw+nSZY/OUo3DJUmyWsz67G/ny2phYiIAAMDxgv+yAwAcd5wutyfMkGoDjnmr0zpxRAAAAGhvBBoAgONOoM0im9X7n7jUzJJOGg0AAAA6AoEGAOC4NHZggtdjamgAAAAcXwg0AADHpfHDuno9jo6wd9JIAAAA0BEINAAAxxWXy60Faw9o/pp0r+1b9+R30ogAAADQEWjbCgA4rrz2+QZ9t2Rfo+1Z+WVHfzAAAADoMMzQAAAcV1ZuzvS5vayi5iiPBAAAAB2JQAMAcFwZ0Cva5/aIsMCjPBIAAAB0JJacAACOK/deOUr9ukdq54ECLV6f4dk+rF9cJ44KAAAA7Y0ZGgCA40qgzaLfnNlfVrP3P3GxdDkBAAA4rhBoAACOO3sPFml5g1oab365qZNGAwAAgI5gcrvd7s4eBAAA7WX7/gI99PJCOV2N/3kLDbKpS2yIHr52rBKigzthdAAAAGgvzNAAABxX3vpyo88wQ5JKK2q0K61Q//1m81EeFQAAANobgQYA4LhyMLe0xWM27spVZZXjKIwGAAAAHYVAAwBwXAkOtLV4THFZtR5/c+lRGA0AAAA6CoEGAOC40qtbuF/H7Uwt6OCRAAAAoCMRaAAAjiuXTk6WyY/j7IFW5RVVdPh4AAAA0DEINAAAx5XkpCiFBLe87KSkvEbvztpyFEYEAACAjkCgAQA47vz2V0N8bjc3mLqRlllyFEYDAACAjkCgAQA47kwem6SnbpugPonhshxKMawWk56+bYImDOvqOW53epG+WbRHkjR/zQH98+M1mr1if6eMGQAAAK1j7ewBAADQEf4xbZWKyqo9j4f0jdVPK9O0fFOm13Fb9uYrMS5Uz324WpI0Z1Wagu02TRjW7aiOFwAAAK1DoAEAOO6Ulld7hRmStH1/gSqqHI2OHTMwXvsbLD3Zl1FMoAEAAHCMY8kJAOC4czC3rNG2uEi71+OhfWP051vG68wxSRo3KEEhQbWFRO0BFo0f2rXR+QAAADi2mNxut7uzBwEAQHtwOF16b9YW7Ugt0N6DRaqockqSzGaTXK7D/9z16hquv9w6QZFhgZ5tOQUV2pFWoL6JEeoSE+LZvmprpuauPqB+3SP1q1P7yGLhuwAAAIBjAYEGAMCQdqYVaPaKVHWNDdUvT+0ji9mkJ95YqtXbsz3HDOkTI3uARau2ZTc6f1i/WG3bl6/w0AA9ct1YJSdFS5L2Zxbr4x+3y2Y1KyUpSq9/vtFzTrDdqhcfmKSE6OCOf4IAAABoFoEGAMBw8ooqdPvff/bMwLjirBRd9YsBuuzRbzzbWisu0i6ZTKqoqFFpZW2tjbBgm0rKa7yO65EQpn/cfapniQoAAAA6B/NmAQCGczCnzCu42J1eKEmKDg9q8zVzCiuVU1DhCTMkyeFsnPmnZZXozmfn+CwwCgAAgKOHQAMAYDh9u0coPupweNEnMUKzV+xXek6pX+cP6RMte4ClxeN+M6mfbr1oqEwm7+15xZX65Kftqq5xqrqmbTNCAAAAcGRo2woAMJyyCoeK67VlnbVob6uWgOzNKNHrj0zR7/89XzmFlV77QoNtemDqKMVEBKl3twht258vX4sz565O0xfzd8tkku6+bKTOHNOjzc8HAAAArccMDQCA4Xzw/VZVVh+eGVFaUePVxaS+G84fqMS4EK9tgTaLosPtigzzbuU69ZwUvfbQZI0Z2EW9u0VIkpISwhQX1XgpS35xlZwutxxOt974YmOj/QAAAOhYBBoAAMNxNqhtERUWqJzCCkmSzWpWgLV2jUhifKhio4L14NVjdMMFg5QQFaTEuBD9/qrRkqTu8aGea8RHB+viSf0VERrode1gu03/uPtU3fzrIerXPcLnePxZvgIAAID2xZITAIDhTD0nRTvSCpSZV6ZThnXTup05nn01Dpfn56y8Mv3jg9WyWc164uaT9dZjZ3v2rdqapflr0yXVBhKPXjdWgTbvYKK6xqm127OVkVemXl3DdfKQrtp1oMizP8RuVWSYXXdeOryjnioAAACaQKABADCcbnGheuORKXK63LKYTXrg3/NVklrY6Li6LiU1Dpc+m71Tw/rFefYt2XDQs0ylstqpgzll6ts9st65Lv3x1cXatr/As+2Xp/ZRQnSwsvLLFRZs09/vOkUxEUEKtFm0fleOsvLKNXpAvGIi2t5tBQAAAP4h0AAAHLOcLrdKyqoVERogU8NWI5IKSyq1fHOmusWGaIePQKO+dTtz9OPyfTr7pF5auz1buw4cPt5qMaln1zCv49OySrzCDElasTlTfbtHKCu/XCXlNfrjq0tUUFIlk0mewqHR4YH69/2TFBnmvXQFAAAA7YtAAwBwTMorqtAj/1msjNwyDewVrT/fOl72AKsqqx36Ydl+/bQ8Vfszi1t1zTc+36S0rFJ9vXC3nIdWpvTqGq6bLxyipC7hXsd+tWBPo/Ora5xasiHD87igpEqSvLqg5BdXaUdqgcYN7uLZlpVfrqfeWa6DuWU6b0Iv3fSrIa0aNwAAABqjKCgA4Jj09cI9ysgtkyRt3Zevt77cpOoap/723kq99eWmVocZklRV49QX8w+HGZIUE2H3Wooi1YYps1emem2zB1o8AUZzTCYpv9i7FewH32/VvoxiVR+6/7vfbJbbVy9YAAAA+I0ZGgCAY1Kw3eb1+Idl+7V9f4HSc0r9vobFbJKziXaukmQ2Seec3LPR9oZLTYICraqocjR7L7NJcrlrZ2u8/vlGVdU4tXFXrrrEhKimxuV17Iy5uxQZZteFp/f1+7kAAADAG4EGAKDTfTp7u35cnqqeXcJ035WjFBocoAtO6a39mcVacKgTiSTtyyhWv+4RXp1G6qtfy0JSs2GGJNmsFvXrHtVoe1WD8OLXp/XRuh05jYKO+urfyuF06a0vNzW4l9mrA8uutMJmxwYAAIDmEWgAADrVnFWpmvbdNkm1tSae/2i1CkqqtCe9SOMGdVGgzaKqGme9M9yymOW1bOSqc1LUIyFMizdkaOG6dPmrqsapp/+7XA9fN1b2AKsCAywKCrRq4fqDXsdZLGbtbEUAEWK3qqzSOxSpcbg8200mafzQrn5fDwAAAI2Z3CziBQB0EpfLrev//EOztSmC7VaVNwgHGoccUmRooEKDbTqQ3fSSlPFDu6pHfKg+/Xmn13az2SSXyy2rxaT7p47S+p25+mHZ/tp9Jslkan7pSn1TxiY1qr9RZ9ygBI0f2lXdE8I0oGe0X9cDAACAbxQFBQB0mpzCihYLbSYlhDXa5qODqwpLq1RY6vta55ycpMun9JfNatbc1Qca7XcdCiscTreenbZa50/opUmju2tQ72hdd/4gv8OMwACL+nWPaHL/2h3ZqnG6FWC1aNXWLN301I+65a+ztXFXrl/XBwAAwGEsOQEAHFUOp0tud21NifCQAIUF21RSXuN1THhIgBwOp1J6RmtnmnfdCpNJ6pEQ5nMJSEJUsJzOUlVUec/eMJvM+mT2zkbHN+Xjn3boyrNTtHxTpmYt3qvI0EAVllbJJMlXtDGod5TOPqmXBvaO1ic/7WjyujUOt/7zv/WyWkyyWS2eQqP/nL5G7zx2tt/jAwAAAEtOAADtrLLaodXbshUZGqjBfWK89s1bnaYXP10nt1u669Lhmjw2SbvSCvV/ry9RScXhUONPN43Tl/P3aEMzMxfOn9hb6Tmlqqlxan9mieyBVhWWVMrhbPzPmq8lKnVsVrPCgm3KL265JasvN/5ysC46o5++XbJXK7dkqaKqRpv35Hv2X3FWstbtyFFuYYVyiw63c63riiJJEaEB+uDJc9t0fwAAgBMVMzQAAO3G4XTpsdeWaPuhbiCxkXZNGNpNN/5ysCwWs177fKOn08drMzdo/NCu6p0YoZsvHKoXPl4jSQoLsclqtjQbZkjS7BWpevzmkxUTYdeX83dr9bZsn2GGpCbDDKm2WGdbwwxJyi4o16qtWXp1xgbPtoG9olTjdGvK2CSdP7G3rvrFQN3z/FyvQCMwwKrqGocsZrNuvWhYm+8PAABwoiLQAAC0m4zcMk+YIUm5hZX6auEeZReU6+Iz+ivQZlZZRe0+h9Oly//4rUKDrEqpVyCzpKxGWXllLd6rqsapx15drJCgxktW6ljMJnWNDVFZZY0KjiC0aM7PK1M1d1Wa17ah/eJ04el9tWprljbvydPgPjGN7l9R5dCLD5yhpIQwWSy1Ja12pBbo9c83yOWWbr1wqAb0onAoAABAUwg0AADtJibCLou5cUeQZZsytWxTpizm2mqeJskzm6K0wqHdB4o8x9qsZvXvGenX/VxuNRlm1LVIret6YlJt/Y3m6nvaLLX1O/KKq/26v6RG9TrCgm06eUgXPfjiAqXn1AYzd/xmuIKDrF5FS7vGhKhbXKgnzJCkv7+/UtkFtYnP395bqfceP8fvcQAAAJxo6HICAGg3gQHWZjuC1O1reES1w6nh/WMVaLPI5XLr8TeW+uxk0hplDVq9utV8mCFJNU4p348wI8Dm+59Pm9Ws5393mhwOtyfMkKRvl+zVwXqPe3cN0x2XDFNBcaV2pBaosrp2rPXDmdIK30ENAAAAalEUFADQZqUVNXrzi43Kyi/X+RN669SRibrm8e89MxHMLcyIqGOzmFTTRP0LXwb1ilaf7hH6ZtHeNo3bZjUrpWeUNu3Oa9P5zRk3uItKyqq1J71QVTW19UK6xgYrI7fcc0zdLJa6rik9EsL07N2nav6aA3p95ga5JcVFBunuy0ZoZEp8u48RAADgeMCSEwAnnJpqpxbO3qmykiqNO7W3ErqFd/aQDOvdbzZrzqH6Edv25at/UqTsgRapdpWHXG7JapYO1QFtUmvCDEkqLq/W90v3tWHEh+7ncCnAatF9V47QnvRi/bwyrV1mRIQF27Ric6YkyWYxKzzEpuKyGq8wQ2o8UyUtq0QL1hxQjcOpLjEhysgrU05hhf723gp98OS5CrBZtOtAobbszdPg3jHq2z3Sr+f4/EertWZblgb1jtGUsUlauilDvbtF6OIz+slsPsIpMAAAAJ2MQAPACWfWjI3asOqAJGnlilRdcN1ojRvWrZNHZUx59bp2OF1uzZizQ5l5hz+8R4UFqqCk/Ytx1tXFOBJrtmdrzfZsJcaFqLyyfZZ3VFYfrqdR43Sppsw7ybFaTHK53D5nrXwye3ujbisVVU5V1zi192CRHn5lkRxOt6wWs569+xT17xHV7Fjmrk7T4vUHJUmrt9U+V7dbWrA2XVaLSRee3q+NzxIAAODYQKAB4ISzeUuW52erTPrHeyvVLTFc/3fTyYqJCGp0/IHsEoUE2RQVZj+awzQEq+Xwt/wWs0k/Lk/12t9eYUbd0oyOUL/WxZGqcbhkMklud+1sjbKKGq/woqm2smaTfLaOHT0gQY+9vkTVNU7PuQ6nS+t25LQYaDSsZVJ/gWlqZomfzwgAAODYRVFQACecquDDWW6J3KqUtCe9WNf/+UdNfWyWHn11kUoPFWd8/qPVuv3vc3TjX37Skg0HO2nEHcfpdGlPepEKSipbPrgeh9Ol1MxirduRffhaTcw8OBJBgVbdc/kI3XHJcJ/7YyPsiggNaNd7njQ4odG2rjHBfp/vdtcWDS0pr2nz6zGod7SeufMUrd2Rrd0HipSWdXhGiklSSlLzYYYkTRzeTcF2q+ec8EOvk81q1umjurdtYAAAAMcQZmgAOOFcc9VI/enfC2WTVNRgX0mFQxt35enKP32riyf11bzVtUtTHE6XPpuzUxOO0aUpOQUVyiksV7/ukQqwWfw6x+F06fE3lmrDrlwFBlj0pxtO0vDkuBbPKy2v1mOvL9HuA0WeNqxNCQq0NGpreuaYHp66Gy2pqHLoxU/WNdreJSZYF57eV+dN6K2n3lmuFfVm3bSVxWzS2EEJSowL1fLN3tcLDQ6Q8sqbOLOx6poWioY00DD42LYvX2az5PKRiLglLdpwUMP6N/+72newSOWHOr24JSX3iNK543upe3yousWFtmp8AAAAxyICDQAnnP5J0QqLDlJmfkWzx82cu9vr8b6DRfrw+2266hcDOnJ4rbZuR7b+8vZyVTtc6tcjUs/ceYoC/Qg1tu8v0IZduZKkqmqnvlq4p8VAY/mmDD0zbZUch6p8NteiVZKiwuyKizJ7ljgE261KiG68rKe1MvPK9drMjdq4K0+D+8QccaAxcVhXpSRFKyTIqtc/39ho/860wiO6fkMtLaFxS4oIDdT4oV21dGNGo/3rd+RoxeYMLd2UqbED4zVhWGKjY+Iig2W1mDxLVbrHh2rc4C7t8wQAAACOAQQaAE5Iz9x1qt79ZrPmrUn3+xyH063pP23X2EEJSvZjyv/R8v3S/ao+FDDsSivU1r15GpHsu9Xn1r35euHj1aqscuriM2s7XdTNAoiNPFwjZPeBQhWUVGl4/1jZrIfDkXe+3uwJM/xxMPdwfQqTSbrvylEqascioYs3HNTlZyXLYjbpra82H8F1MrR4Q+PgoKG6+hh1woJtKilvfUHRllaiuN3SF/N365HrxurL+bv19tfezy0jt0x/eWeFJGn2ilR1j9+mYLtVF57eT6eOqA03usaG6HeXj9S077bJHmDRWeOSWhxXXUC1bke2Fm84qN0HilRSVq3knlG67aJhigwLVGpmsaZ9t1Vms0nXnz9YXWNDWv38AQAA2gOBBoATUkxEkB64aoymjEvSE28ua7JYoy9/f3+lHrvxJPXuFtGBI/RfQvTh+g4Ws0mxkU3PgHj5f+s8XUjen7VV914+Uj+u2K+uMSG67vxBcjpdmr0yTa/8b53c7tpaDn+9faIsltqSS/aAtv+z4XZLoUE2ffj9tjZfoyGLxaQAq0UThiceUaDhL3eDt0lkaGCbAg1/WC0m5RRWaNaSvZK8Z3U0fLfWdX35xwertGprpq76xUDFRwXrpxWpyi6o/X3/5Z3lmjS6u35akapeXSL04DWjFWy3ea6xaH26/vXxWlXXOBtdP6ewQg6HS4/deJL+9PoSTwHTjNwyvfjApDY/x4M5pXI4XUrqQutkAADQeia3u+F/ngHAiWVPeqF+98L8Vp0zqHe0/n7XqR00otapqnHq/W+3KD27VGef1LPZOh+3PTPb09XDbDbpk6fPkz3AqtTMYj351jLlFlYoItS71epjN47TqJQE2axm7T5QqH9/slYHc8tUVe30eQ+rRXL42GU2m/Tmo1N0/7/mq6i0us3PNzDALJuldtZIaUWNAmxmjRmQoCU+lmYcCZvVrMun9NfHP+5ocmnN6AFxWr0tp13vK9XOBDGbTerXPVLb9xe0+vwuMcF645EpuvaJH1RY6ntGzGkjE/Xg1WM8j6f+6TuVlDf9e4mNtKtLdIg27cnzbAu0WXTJ5P76asFumc0m9U2MkNVi1ugBCbJYzBo/tKvCQwI07dstWrQhQ0P7xuj23wyXxWzSjDk79e6sLZKki87opxt/ObjVzxMAAJzYCDQAnPCKSqt07RPft6ojRf8ekXrh3tM7blDtJCu/XMF2q8KCaztcrNmerWffX6mqGpd+++shOn9ib0nSX99d4bNWQ51eXcP1zJ2nKCTIpi178/TQy4uaPPaZO09Rek6pXp2x3mvmS7fYYGXmV/gsdFlfdLhdwXarZ9aBVDvzpC5UMJmkEf3jtHZH+wcJDQXZrao4VFjTlwCb2asAaEyEXQXFla16L1nNJjnauz2MpNsvHqq1O3K0bFOmpNpOLRn1CpsmxoXqtYcnS5IWrD2gFz9Zp6oa3yFVWzVcoiNJ4wYlqGfXcH21YI/nfmaTNOPvv5TVQvM1AADgPwINAJC0aXeu/vvNZlVUOjRxWDcVllXp+6X7vY4JCrSqqsapELtNf7xhnAb3iemk0frn5c/W6Ydl+2WzmvXQNWN00pCukiS3u7a9qsVs0s60AhUUV2n2ytRmAw1JuvuyETr7pJ7atj9fD7640OcxZlPtwoggu1VlFYeDgMiwQJnkVkFJyzMzzCbvrh8mkxQfFaysfP+7jLRWUkKIDuaWt2rpkS+xkUH61Sm99c43W9ppZP4LtFl8BhLJSVEamRyn/83Z6TXTZHRKvO6+fIS27y/Q395beTSH2kh0uF3vPX5Op44BAAAYDzU0AJxwsvLLtXxzhnrEh2lkSm3xzCF9Y/X877xnXBSVVmnNthzZrCYN6ROra84bqG5xobKYTTKZmm9X2tmy8sv1w7LaQKbG4dL0n7Z7Ag2TySSLSV5T/mMj7E1eq47JVBuSSE0Xw3QdysjrhxmSVFZerZiIIEm1gUZokFXd40O1bX+hj2t4P3a7a2s4tEZokE02q6lRgGKzmlTj8L7BGaMSde8Vo3TV49/LUXFk9TD694jUqm3ZR3SNpgTaLD7rW0iS1WJucnbFjtQCZeaVNlo2s3p7tu59Yb5OGd65rYh7JITq91eNaflAAACABgg0AJxQCkoq9cC/D9dwuPeKkZo81nf3h0evP+loDq1dBdutslnNqjnUkSQiNNBrf1WNUx/9eLg4Z25Rpc/rhAbZVFZZI7dbev3zjZ66GVZL6wKdGqdbWQWHZ1j8+rR+cjhdPgMNX1paptJQaRPBRI3D7dXKVJLmrUnXovUHvbYFBVpUUeX/8ovo8ECdNS5Jw/rH6cm3lvl1jklSSJDN51gbzlKRJLO56e4oDqd355kQu1Vlh5bKhIcEqLjM98yYwtIqhYcGyGoxy+F0NVpCczRce94g9Uk8NgrsAgAAYyHQAHBC2ZVW6FWQctXWrCYDDSMLCw7QvVeM1OfzdysiJEB3XjLCs2/V1iw98/7KRh9c46ODlJ3vPROi/FCYIcmrCGhblmbUX+C4cXeutu7Lb/U1jlR0eKCnQ0d9DZ9PiN0mm9XSZBDQkNPl1oZdefpk9k6/xxIYYGkyePGV37TmNS+rdCjYbtX4IV0UYLPqu6X7mjx2/NBumjCsm3amFmpwnxjNWrRbXy7c6/PY8BCbissOj7lLdLAyj2Ap0BVn9dfJh2YOAQAAtBbVtwCcEPakF2nemgNKzSr22j6o97FdB6MtSsurdcfff9Y/Plgtud168OrRWrU1U29+sVErNmfqr++uaNShJKlLqE7x0R2lA2pVSpIOZJd4Zo80dPa4JI3oH6euscE+9x+JpjqzNJRbVKnQIJuCAmtnurSkqLS61QFNpZ9jqdPU69WU8kqH+naPUrWvljOHWMwm9UgIU88u4Zo8toe6xoZoeHJ8k8f/6tQ+Xo/txftlU9uW6SR1CdNVvxjUpnMBAAAkZmgAOAGs2pqlv7yz3OeyhbPGGWt2xvb9+fpi/m5FhgXq6l8MVEiQzbNv2758PfP+ShWUVMp16LPvrgNFuvJP33lmR8xavNdnC9LM3HLNnLe7w8c/ekC8bFazp/OGL1arWX+5bYJWb83SE34u32hJ3fKbsmY6ljR0MLeszferW8LR2eKjgpSZ1/TzcLrcKi6r0j8/WqP1O3M0uE+sHrtxnC4+o5/mr0mTW/LMaLFazJo0OknVDrdmLdyloJoC7XPEqnbxjFS7IKb+z6r32FuAzaw/3zK+HZ4hAAA4kTFDA8Bxb9H69CZrMFgM1CayrKJGj7+xVIvWH9Q3i/bq6f8uV2HJ4eUTr32+QXlFh8OMOvWXevgKMySput63/0dS7rRHfIgiQgNks5oVG2FXoM379d17sEjrWmi3mpZVorSsEs2Yu8uvYqUtmTK2R5PXsTcYn7mdar2G2K3tdq36woJtLR8kqV/3SN1wwWCdNKSrLp2crAE9oxRgM6tX13AFBlg8x506IlFLNmRo7Y4cudzSpvR9+mzheg3pG6OishrlF1cpwGqWxSwlJ0UqKjxQ15w7UGd3L1GN2yrvd0vtzxGRUo8ks5p7J41Kjj9UJBYAAKDtjPNf8gDQRn0TI31uH9w72q/lBMeKwtIqrxkGG3fn6a7n5ni+ga9pZmlBnUCbWWeNS1LvbuGaMq6HLjy9r269aKjM9V6GI1llkltYocoqh2ocLpWUV6uqQZ2O/OKqFpdaZOdX6IWPVmvj7twmi5W2xupt2XI0EeRUNhifr8MiwwI8P1stJr+CiqKy6g5ZrlNSXqMxAxOaLMpqNpt0/fmD9M/7Tteg3tGaMWensgvK9Y97TtM9l43Uvoxir2U3N1wwyPN8rN13yD5skWblv613flzpmWFS7XDJ6ZK27M3Xd0v3aenGDM3JjFKR2/eSoPiwSD1yxSQFBVp87u+bGK4Hrh59BK8CAABALZacADjuXXBKbx3MLdU3iw4XOgwLtumR68d5HheVVim/uFJJCWGdPmvD6XKrusapoECrSsurVVxWra6xIeoSE6IR/eO0bufhGQ5FpdVatilDJw/p2qigpy9VNS5t3pOnm349ROMGdZEkzV6R2mhWhy8Nu4P4UlF9+EINwwx/ZRWUK6ugTaf6VHBoFovJ5D1bxV+TR/dQem6Zlm3K9Dz/UQPiNTolXvFRQfrbeys7rNaILzvTCtQjIUx7DxY32udyuTWwd7RWbsnUX95ZLre79nnfcMFglfkoQLpsU4Z+Mb6XvlywS5mVIXLmJ8gSnaXMsgxJCY2Of/vLTXKr7nX0HarsTCvUZz9v1+VnJcvpkj7+cZsch1rl9u8eoed+d7rMHTF9BQAAnHAINAAc90wmk845uZdmLd7r+UA7eWySp5Xppt25evKtZaqsdmpo31g9ecv4Tpu5sXpblv781rJGH5C7xYbo91ePVv+kSAUFWrV0U4ZnX/f4MG3aned3kcmDuWV6+r8r9MlT58oeaNPG3bl+nXf9BYP1w9J9Sssu9fv5HEvcbum2i4apotqh/83ZobIK/+ppzPBRW2Tz7lztP1gss9lUWznCJJ0+MlHb9hV4un6EBtvkcLhaXfyzJVU1Tj107Vg9+eZSZeR5dxgxSXro5UVe29xu6Z2vN+uO3wyTSd4zcN7/dqtMJpPSc8olJcqZ200BA1fI1MQETn+Dm7mr0yWla8rYJH3wxLlauC5dQXaLThmWSJgBAADaDYEGgOPSrrRCfTJ7uzbsylV1jVOXn5Wiey4bqR+X71f3+FBddc4Az7FfLdzj+dC5cXeutu3L19B+sUd9zDUOp88wQ6oNIR58aaGch2YInD4yUQ6XW6NS4jVmYIL2ZRS3qhCly+XWe7O26NaLh2tkSrzmrEpr9nizWSoqqTRsmFFnT3qB9mWU+B1mNKWqxqWqGu/lMPPWpGvcoARPoFFWUaPwkIB2DzSG9Y1V15gQZRUcnpFjD7QoKSFMO1ILmzzvg++3NlpOVFnt1H+/3lxvi0mO7ETZyuLaZayrtmXpd1eM1C/G92qX6wEAANRHoAHguFNcVq3HXlvsVW/iw++36c1Hp2iKj64mMfUKRppNUlR44FEZZ0NfLtjT7DfgznrLPaxWs35/xSgVlVbpx+X7NWPODkWHByosOEC704v8ut/iDRm69eLhOmNUd7306VpVN7NExOWSPpuzy+/n4mt5R0tLVmxWswb1jtT6na1rf9oaP65oPrg5Umu3Z3t+drtrlwTVafiaWCwmr99pS8YOSlBiXKgSooJ1y99my2wyyXUooggPDlDPruHNBhrFZdXytUykukE7WFded9WVmq3rDtOSAKtJJpOp0TKjwcdhW2QAAHDsINAAcNzJKShvVXvOa84dqKpqpw7mlukXJ/dU9/iwDhxd04rLqprc1zUmSHlFVZ4Pn6OS4/XT8v16deYGrw+cBSVNX6Oh8JAAzV6xX/17RCkmIkgZR9CmtCG3W5o4rJtSekZpX0axDmSX+PywHRFiU1FZbW2HGodLG3d1XJjR0RLjQpWe0/wMlj7dwtW/R6RSekbL5Zb2ZxZrzqpUrxkj15w7QBVVTn27eK/Kqw5vn3rOAEWFBerGv/zoCb7sARZVVjuVXVChlZuzNKRPtLbvL1CNr6DEViXV1IV39VusNq1hmGExm3x2yrnojP66+tyB+nrBbn3y8w653W6dNa6nptabCQUAANDeCDQAHHesDYp6mky1oUWXmBCfxwfbbbrn8pFHY2jNim2mjWVGXu3yApvFrLsuG6G5aw5o1dasRsc5/VxyIkkHskv070/WyWoxyd2WapktWLzhoM6f2FsXndFPX8zf7TPQKCn3LlTZ8LNyWwt5Dukbo02781p/YhtEhNrUIz5cKT2jNG/NAeU10ZnF7Zb2HCxWn+6RSs0q0RfzG9fmkKQDWaW645LhSssq0fLNmZKkhOhg9ewSppzCCq/XqP5ylsLSKpWUV6tbXIjSshoHK5a4NDkze0sui5oLM+pCEl/GDExQYWmVdh0o9MwusVpMmjy2dubTL0/rq1+e1rfJawMAALQnk7sj/isWADrBlr15euGjNbUf+up96jttZKIevHpMJ47MP0s3Zuiv765o8bjIsEAVtmImRlvYAyyKDAtUZoOik60VG2GX0+VWl5hgbd3XfOsSi0lqOLHgksn9ZHK79dkc3x/+mzKwZ5S27m99q5SQIGur62vUD13sAWb1TYzU5r2HZ5oEBVhUUS8gMJtMig63K7eo6a40EaEBXstVrBaTBveJ0WVTkvW/OTu1dntOk+eG2K2NZihFhAaoqKJMctrU3OyMCcO6ymI2aeG6gz73B9ut+uDJc2WzmrVpd6627c/XqcMTldBEWAgAANCRCDQAHBfyCit0w19+bFT00Gw26ZHrxurkIV07ZVyt4Xa79cbnG7Vo/UHZA83KzGu5DWtHue/KkUqMC9XvX1zYaWNois1qUo2j5X+6mpvd4auex0mDu2jt9uxGNSXaYkDPKO1MK1SAzayKqsazHRoGFv4KCrRoSN9YrdzSeHZOU2Ijg3TdeQP1/Edr6m1tHGr06x6hX4zvpa8W7FFqVkmT17vyrBRN/QVLSQAAQOfrnL6EANCOHA6nXvlsXaMwQ5L+cdephggzpNr2sr26Rai4vLpVYUbvbuHqFhui0GBbq+9pNkkPTB2lhp00YyOClJwU5fd1jmab26F9YxuN1xe3W+oeH6rQIO/X5aRBCfrsbxfovqmjvLbnFVW0S5gh1dbGcLrcPsMMqbZYaGRY64vPVlQ5tWGnf212B/aK1tC+Mbr1wsH6dsm+Bnsbv4C7DhTp5c/WNxtmSNKMeTt1ILv5YwAAAI4GAg0AhlZWWqXXn1ugbduyG+279twBSu7p/4fyY8H0H7d5LZdpitVS+4E0xG7VyUO66mBumUrLa2S1mPwo9XiYyy298r/1jWpXpGWXHuqK4Z8ah0unj0hUn8Rwz/iCAjvmnxizqXGtjaYcyC5VaYV3nY6DeWV64F8L9E+vGQvyuzuMP5oKMuqzmE2aMKyrbFbv31hyUmSznXaqamqvHRtpV6+uTRew3bovXxt35+npd1dp6762F1sNCvD+PVbXuPTzyo7tFgMAAOAPioICOOY5XW59t2SvMvLKdM5JPdUjIUwHskv16oz1qjpQrIgql7rJpO315mgM7x+jS6ekdOKo2yYyLFC5h4pKmk0muRqsmQi2W9W7a7inRkNZpUMf/7jds7+5tqhNqax2Nupe0T0+VGHBAa2qKTF/XbouPL2v7r1itHp3qw020nNK9PyHq7Uzrf3CglXbGtePsAeYVVnt3+yKQJtVuw4UNtp+tBdg5hVVasmGDM/jyNBAPXv3KeoaG6qfV6bqxU/WyuWubSs8ZmCChveP1bPTVnuOj40M1rYjCCrqCwq0NBnCXHhGf/VNjNBT/z1c3yU+Orhd7gsAAHAkqKEB4Jj35hcb9dXCPT73jZRZ1kNzEmrkUu+xPXTySUka1DvmaA6x3aRlleiNzzeqrLJGO9MKj/h6NotZNa3ofFJn8tge2p1eJLvNom2tLK4ZE2HXqw9NVlBgbWZeXlmjt77cqE178pTcI0rz16a3ejzt6fyJvTVr8d5OHUNTLjqjn2785WBJ0vbUAr35+UZlF5ZreP843XPZSH34/VbNnLtLVqtZPeLDtOfgkQdFp41M1D2XjdA3i/aqrLJG0eF2lVZUq0t0iLrGhiilZ7Qk6asFu7VyS5ZSekVp6tkDZPZn3Q8AAEAHItAAcEyrrqnRVf/3fZPfvg+XSVaZZJZJJotJjz1znkwG/KBV43BpX0aRZi3eq4oqh84+qaeenbZK5ZVNz46wmCV/sorWLNFoL3deMly/GN9LpRU1Sssq1kMvLfJZ46Qz+CoI2pHMZsnlZ6YUGRqgyDC7ggKtslnN2rDrcL2MiNAAVVQ5ZbOaPLNm/HkuZrNJ4cEBslnNyilsXJvlnJN76q5LR/j9fAAAAI4VBBoAjlkzNn+r9z/LlKuk5dkWfWXWuWf2k2KCtG1fvuIigzWgd7RGJsdpf2aJ0rNLNbRfrMJDAo7CyFsnu6Bcj/xnsbLzW98i1Ww2edXcMEmNggN/g4+2aLhUpU5YsE33XjlKf39vZbsV2jxWtGZ5iyQF2syKCLOrsLiyVa9FgM2s6pqWj3/shnF69oNVqq5x+ezscuqIRP3hmjFyOF3auCtXX8zfrTXbD9ecufa8gbp0crLf4wIAADhWEGgAOCbllxfqt/99STV7hvl9TmiQrVEByIG9oj0FEWMj7Xri5vHq2SW8Xcd6pN79ZrNmzN3VpnMDrOZWBwYWl0Px1QUaUbRDeQERWhE1xPuafn6QbnZcNou6xYZoX0Zxq847fWSiFq5L92tGicVsksVsavfAJMBq1uA+0Vq7o+luIgE2i6prWi782ZSUpEhtTy1s9pjI0AAVttDaNSE6SI9eP06SSd8t2avvl+1vdEygzaLXHp6s2Mggz7Y5q1K1YG26eneL0FW/GCCrhRrhAADAeAg0AByTCiuLdf2/psmZ073dr53UJUxP3zaxTW0zO8KMOTv17qwtbTq3a0ywMvJaN7PjF9lLNaJ4p+fx290vUI492vPY1yyP1gq2W1VR5Wiy0GbDmQRHcxlIclKkCoorlVNY6XP/BRN76ZvF+5q9xpC+0dqyN9/vpSS+jB/aRZt256uk/HBoUfe6mE3SkL6xCg6yatnGTK/zfAV3XWKCNaxfrH5cnurzXn+9Y6KG9o1t+2ABAACOQXwlA+CYFGkP10n9e9Xb0n4fdlMzS/THVxd5HucXV+qT2dv1/dJ9PpdPdLSkLk233mxJ/6TWt6UNcHl/GLa7vGcBtPUVMJtNio+qnQVQXtl0mCE1XhZxNGta7EgtlMstTRnbQ8P6xeiUYV299i9cf7DFa4TYbeoWG3JE41i/I0fjBid4bat7XVxuacOu3EZhRqDN3CjMkKTMvHIVl1WrrnxMXVtfSeqREKp+3SOPaKwAAADHItq2AjhmuYvjJNW1taz9gGY2SRaLSTWOI/sAnJpVqgVrD2j80K56+OVFysgrkyTNmLtTFVUOdY0J0T2Xj1SPhLaHDU2pqHLo1RnrtT+jRCNT4vTlgt1e+wNtZvXpHqGdqUUymWoLhvpiMknlPj7ctmRp1FAlVWQq1FmpbSE9lRaU0GzbTn+5XG5lFzQuOlmne3yIDmSXHdE92kteUaVmr0zzPA6xW1V2qABrUQvLPCRp+easIx5DeZVT63fmtGrZUHOdRZZtqg0/+naP0B+uGaOKSoey8ms7pNR1nAEAADiesOQEwDGpssqh6//8g+dDZkN1U/OD7VaNSonXonrfqo9IjtW6Zuof1AkKtKrG4WxydkByUqSe/93pXtuWbDioV2dukNVi1n1XjtSwfnE+zy0qrZLNalaw3dZo33uztuh/c3b6OOuwQJtFVYdqNATazBo/tKvmrTnc7tRsNmnK2B5yuqSfV/peZlDf0H6x2rwnz1NA1Ox2KcBVrUqLvUOLhtYXFFi7DAWN+Vu3JMhuVcWhv4mYCLtOHtJVW/flKyuvzOtv5f0nzlFUmL3DxgsAAHAsYMkJgGPOii2Zuurx7xqFGZZ6307XRbHllQ4lxoXq3itG6uQhXXTNuQMVGxEkf1RUOZpd6pCd7z3bwOVy64WP16iwpEq5hRV64s1lWrUls9ESgA+/36arH/9eV/3f91q4Nl0NFZVWeT2O8lHLo6pewcmqGpdu+OUQ3XvFSPXrHqGhfWNlMZv04/JULVrf+PqSZA+weD3euCvXqxuKy2RWpcUus8mkiCOoJdLUfIH+3SN0xdkpXl1lOiLMCA8O0LXnDdQFE3t7vT+MprkwY2RyrKLD7RreL9YTZkhSeEiAbrt4mP59/xka0OtwDZSw4ACF+AjSAAAAjjcEGgCOOe/P2uLzA15T9S1iIuyaPDZJf7zhJF02JdmrXoDJx2fclJ5R6tOt5U4nI1K8iyi6Ja9QoMbh0pNvL9eVj32r6T9tlyTlFVV4fnY4XXr/u8bFPn99Wl9FhNZ+0B/cJ0b/vv90/f6q0V7BhkmHw4KJw7spOrz2Of7zvjPUv0ekZxlKVbVT5gZP0mySKqudsll8f8CvX1/BZjOr8giWmrglRYc3ngmw80CRpv+4XcVlLS/f8Ffda1afw+XSpZOTdctFQzUyxfdsmc6SnBTZ7BKROjZr8/8Ub9qdp3NO7qnHbjpJ0eGH3yP13+f3XjFKU8YmafzQrvrzLeMVYLP4uBIAAMDxhSUnAI45t/xttjJyfddaCLFbNX5oNwUHWbUztVADe0XruvMHeX1wdLvd+m7pPu09WKxThnVTalax3j0UkvTrHqG/3XGKKqoduv9fC5RbeHgWhsVs8oQmYcE2vfHoWQoN8v6me/aKVL34yVqfhTPfeGSy/vT6EmXVm9nRr0ek/nnv6Y2OraxyqLC0SnFRwXK5XMrMK1dYsE2f/LRDmfnlOndCL3WNCVFZZY1SkqJkqhdazF9zQM99uFpS424h/jh3Qi+VlFVr6caMdimCajabNGlUdy3blKmySt81Peq/tm0RFGBRRXXj4MVski6e1F9fzN8tq8WkSh/HdIYhfWL0tztP0a4DhfrDSwubrIMSHhKgh64draf/u1LlTSyvqvPPe09XkN2qbxbtUWRooC46ox/BBQAAOKFRJQzAMWdo35gmA43ocLvuvGS4Zs7bpciwQPVJjGj0LbjJZNJ5E3p7Hg9PjtNpI7srp7BCPbuEyWa1yB5o1e+vGq1H/7NIdZ+zH7vxJPXsEq6MvFL16x7ps/7FlHFJslhM+tf0tV6zNQJsFm3clecVZoQEWdU3MUL/nr5WvbqGaezgLuoWG6oah0sFJVWKjbSrvLJGD728UGlZpbJZzRreP053XTpcMQ2WzZRW1Kii0qG4qCCNHhDvad3pdkuhQVaVVvi3nKN7fKi2789XcVm13wFDVFigCkqqmtxvMZuUXVjeZJghNT27xl++wgypthtIXT0Sh7N2qU21wyW3293qoKc5ZkmtKTNS957s3S1CTX1vEBZs07N3n6qKKodnRpLJJJ0yvJsWrT/YaPw1Dpf6xYXq1ouGteEZAAAAHH+YoQHgmLMjtUAP/HtBk/tjI4M8MytMJukfd5+qlJ7RTR7fnDXbs7VuR44G947WSUO6tnzCIdkF5dqRWqAZc3aqstqp688fpPJKh174eI3nmACbRdX1amEEBVr151vH68VP1iotq1RdYoJ19kk99f63W72uPSI5Tn+5dYLn8Yotmfr7eytV7XDpF+N76ZRh3fTY60s8+3t2CVNadolcR6GwZ2ewWc1NznBoaEifGJ0yvJte/3xjOzb6rV32s2l3rqcDSliITSVl3gFOVFiACkpq99960VBdcEofSdL/ft6h9xr8ji1mk566bYKG9I3VF/N36+2vNjV7/1OGd9ND145tr6cDAABwXGCGBoBjTnJSlMYOStDKLb5bY9ZfJuJ2Swdzy9ocaIxKideolPhWnxcfFaz4qGCdMjzRsy0zz3tWicPhPaugosqhz+fuUlpW6aHjy7X3YHGja+cUVGjr3jztyyzWyYO76uMft3vaen6/dJ+Wbjzo1QXlYG5ZozCj/n6j8zfMkKS07BJ9/NP2dg0zpNolQv++/wxN/3G75q5OaxRmRIQG6OUHJ2vJhnTFRgRrzKAEz77zJvb2CjQiQwP03/87R1ZLbe2MQb2jm1w61L9HpK45d6BGtuE9CgAAcLwj0ABwzJm/5kCTYUZD8VFBzQYSDqdLr3y2Xht352pEcpxu/81wTzcMp9OlL+bvVlZBuc4+qadXkcW26BITotsuGqrpP+1QcVmVGq6yMJuknl3DtWRjhmdbjcOpwX1itD+jWKUVNTKbpPjoIP3h5UWSpLe+3Kz+PbzHVTdLQJJGD4jXtn35ng/9JpPUs0u4poxLUlpWiRZt36Lq6J1yFcbKmdf9iJ5fu3G7NSV3hQaV7FOqPV7fdjtVJluAqvxoW9qS+q9Ne6qqcSoiNFDpOaU+x1lUWq0Faw94ZlrcdekITR6bJKm21W99o1ISPGGGJCUlhPkMMwJsFt192Qj17hbRjs8EAADg+EGgAeCYs3lPnt/H/vmW8copqFBggEX2gMb/L+2HZfs1e2Wq5+cBPaM0ZVxPSdK077ZqxtxdkqQFaw7otYenKNJHC9NZi/dq5tydio0M0gNXjVZ8VLBcLrdWbsmUyWTSmIEJnpoJ55/SR6u3Z3sFMqcO76bwsECNHZigUSnxqq5xaunGDFVWO7RsU6YkKTEuVE/fNkEhwQG689k5nnOra5zqER/a5Guyelu2wkMO1/pwu6V9GcV668tNGtQnUkED18jlKJM7OlNuR4BcRcfAN/0mkzaF9dXQ4j1KKU9TkTI1t8Y7bElKCFXqoZksTRnQM0rb9he0aQhnju6uxRsO+hWiBAZYtGl3nq5+/PsmZ4vERNj13rdbPG2AX/xkrYb2jVV8dLB2pxd5HTu0X4zXY6vVrGC71VMUtEeXMP361L4a1DtaPRLC2vL0AAAATggEGgCOOSNT4vXd0n1+HfvQy4tUVFatxLgQPXv3aQoP8W7tWd6gUGXZoQ+Nm/fkadbivV7bM/PLPIHG7BWpWrElU93jQ/W/OTvldkvZBRV66OVFeuuPZ+nf09do7uoDkqTJY3vo3itGea4VGXo4FDGbpKvPHahucaGebbGRQTrYoOhpek6pYqOCFR4SoIiQAGXXW1aTWO9cX4rLfBfj3JKapaDY2vuYTFJI350qWXMMBBqSMu2xWhuRrC2hvZStmEb703MahxkmyWspyZF0NJlz6HfXkujwQOUX1xZELavwfp1tFpOmnNRTFVUOXTY5WX94eaGk2jG53NLbX23WI9eP1YRh3fT90n1yON0KDwnQ8P7evwOrxaw/3jBO783aInuAVbddPIwgAwAAwA8EGgCOKW63W0WlVbJazHI4W/72vKisdolBek6Zlm48qHNO7uW1/5yTe2n+mgPan1miPokRGjc4QX97d7mWbMz0Oq5HQqh6dQ2XJK3fkaN/f7LW5/1yCyv0woertXhDumfbwrXpXoHG9RcMVvmhgOSCiX28wgxJ+vnQjJH6BvaKVlhw7UyLJ28dr7++u0IlZTU6b2IvnX9Kb82Yu0uFpU13GvHJEahhsUO1IXdj7XO0DtGW1l2h3ZjNJq+uMJKUGRitbHvjMEOSfP3qG67KSM9ufgaHxWySySTPrIm2qAsz6sRHBSm7oDZsmjg8UXf8Zrhn39W/GKDXZm70PF666aAWrk3XqSMT9a/7ztDejGIN6ROj2EjvDjaSNKxfnJ7/XeP2vgAAAGgaXU4AHFNmzt2l/36z2a9jrRaT14fVwb2j9YsJvXXK8G5eNQpWbcvSR99vU0WVQwd8fAg2m6R3/nS2dqQWKDrCrl1pRXpt5oZm720xmzytSFN6Rum5e07za8yS9M+P12jOqjRJtZ1Prj1voKaMS/K5ZKbOtU9832zr1HPH92o0q+UXJ/fU7ZcM07ac3crMqda/3tnV7sUy/RETHqi4qGDtTCuUy+2WzWJWVHigsnLLJLO52XMbzsroSPV/pw1FR9gVHxmk2y4epiffXqaCQ0HH7y4f4VnCJEkvfbpOPy7f73ncNTZEbzwypWMHDgAAcIJihgaAY8qOVP9rItSFGXUfRDfvzdfmvfl64cPV+sO1Y3TK8ESVV9bomfdWqqqZ5Qk2q1m///cC5RZVSpImDOvqVdPAF6fLrQlDuyo+OliXnNnf7zFL0m0XD1NUWKAKSqr069P6qk9iy0Ufk5OitHxzZqPtQ/vF6sYLBjWq02APsOjOS0dIkgbF99e2zd5hhtkk3fDLwZJqa4lU+1mQs3tcqA74WA5iNpsUE25XTr2lMlJt6FRW6VBevVoX1Q6Xpp4zUAvXHdCqrdlN3isxLkTnnNxT73zt/7yS5kKJljhdbo1Oidfq7d5jqmsNHB8VrA27cjxhhiR9s2ivosLtGj2gtqvJrRcN1YK1BzzLYcKDvZdAAQAAoP0QaAA4poxMidPiBl0hWuJ0uVT7XX4tt6SXP113KNBwNBtmSFJVjUtVh8IMSVq6IUOnjkjUgnXpTZ4THhKgOy4ZrojQxkVEWxIUaNX1Fwxu1TkPXDVan/y0XfPWHFBxaZUmjkjUnZeMkD3AIqlxHY1fjO/l9Xh4/1iv1qAJMSG68PR+kqQVm7O0cXeuX+PwFWZItUHHK384U5l5Zfroh23KK6pU9/hQnTS4ix5/c1mj4zPzytQ3MdJnoHHu+F6KCg/Ul/N3652vt2hEcpwG9IxSYUmVNu3J8znLpo7T5VZwoEXlVW2rrzGoT4w27s5RteNwWHbLRUMVHxUsSTKZTF7H704v0hNvLtOFp/fVTb8aogCbRY9cN07vfbtFQYFW3XnJ8Eb3AAAAQPsg0ABwzHA6XdrbYKaBf0yNtlRUO7V6W5ae+3C151t7f5cvmMwmnTG6hxZvOCiny62IkAD9+ZbxKq2sUUZuuQpLK3XqiMQ2hRltVReCNBWEjBoQr5t/PUTLN2cqpWeUrvrFQK/9fbtHKsRuU+mhwpYZuWWqqnEq0GbRnZcO17+nr1VxWZV+eUof7Ugr9CyJkQ7Pemhu9kNda9EuMSG6f+poSbUFWZ98q3GYIdUu0xnWL045heWas+pwgc7YSLuuv2CQ/vHBak8B13U7cnTdeYOUGBeiK//0XYuvVY2j7YtUZszZoZjIYGXklsliMem68wbpF/XqspSU+W4LO3/NAd30qyGSan8XowYcG8VXAQAAjmcEGgCOGe/O2qJZS/a1y7VcLreefHOZV4ARERqgwlLfH0hNptqlJyaZdOelwzV2UIL+ed/pSs0s0dB+sYoOt0uShvVrl+F1iF+d1le/Oq1vk/vHDkrwdGYZ3CdGgbba2R2JcaF69u5TPccNzijW8s2ZKquoUXx0sH532UilZhVrYK9ozV+brs/n7VKAzaxzx/dWeWWNwkMCdPlZKY3uN2vxXm3Zm99ouz3AouSkKGUXlHva1tYpLqtWUKBVIfbDrWhNJinYbtWKLZl+LSdxHUFpqIpqp8oPdaBxOt165+vN2nWgUA9ePUZS7esWFxWknALvpTX+LBsCAABA+yLQAHDM2LjLv2UP/mr4sbaoiW/XbVaz7rxkuCaPTfLa3rtbhGfmwfHgd5eP1LB+saqqcWnymB5NHtera7hefehMpWeXqk9ihILtNg3rHyupdqbH1HNSZLNaZDE3nhlTn7nB8oxh/WIVGmzTr0/rq7DgAL3z1eZGdUocDrecTpfCQwIUYrfKbDbp2vMGqVtcqM8aIr6cNLiL0nNKtT+zxK/j64uLPNzFpM6Ctem6+9IRsgdaFREaqH/ee7o27cmrDVk2ZSowwKJLJie3+l4AAAA4MgQaAI4JTpdbmXllHXb9rjEhio8J1vodOY32ud3Smc18wD9eWCxmr44czYkKsysqzO5zX3PdWOo7f2Jvbdidqy178jRqQLx+f9UY2ayHu5rYAy2Nzrn+gkGatyZdXy/a49kWFGhVUWmVpn231a/71jhc+v3Vo3X3c/P8Ol6SRibHqaS8WrsONF7yFBMRqMCAw2ONCA3UxGHdDp3H0hIAAIDOQqAB4JhQUeXw1Ew4EmeO6aFt+/J1MPdwOHLHJcM0eUySbFaz3vt2qw5klWjXgULlHSoEGh1hb1TsEUfOHmjVkzePb3L/1HMGKCO3TKlZJTptRKJ+c2Z/Hcgq1Sezt3sdl1dUqaLSKtU4vDuxXDKpn75dsrdRAdC07BL16hqhh64do1dnrG9UMLWhoECLLp2SrGffX+Vz/yPXjeP9AQAAcAwi0ABwTAgNsumkwV38XlbQUJ9uYfrrHacqJMimzLwyPffhahUUV+qyKck6p15Rx+vPHyRJSs0s1jtfb5bL5fa0L8XRFRYcoCfqBR4bd+XqsdcWq36ZjIToYE0a3V0RoYHqEhOszLxyz74xg7ro6vMGyel06Zn3V2rllixJ0pRDS4dOGZ6oft0j9eRbS3Ug2/fsn99M6qdLzuyv0OAA/eq0Pnr/29pZIAFWs2xWs67/5WCl9Ixu76cOAACAdmByu4+gehoAtCOny62127MVFGjVzLk7teLQB1RJOmV4Nw3pG6PNu/O0eW++YiPtKiqtVnWNU7dcOFSnjEjsxJGjPUz7bqs+nb3D8/g3Z/bXFWcle5a4lJZX65n3Vyorv1xnn9RTl9arW+F0urR2R45C7DYN7N04gHC73dq2r0Cf/rzd0yrWajHp73edquSkKM9x+zOLVeNwqV/3yA56lgAAAGgvBBoAjkkOp0tP/3eFVm3NUvf4UD112wTFRAR19rDQgdZsy9YTby2V213bKvbZu73DhvayaXeutu7L17B+scy+AAAAMDACDQDHtMpqh99FKGF8a7Zna+vefI1MidOg3jGdPRwAAAAcwwg0AAAAAACA4ZhbPgQAAAAAAODYQqABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGgGPeSy+9pJSUFJ155pmN9h04cEApKSlKSUnR8uXLO2F07euaa65RSkqKHn744c4eClrQ0nvvzDPPVEpKil566aVOGJ00c+ZMz/gAAACORwQaAAAYSGcHJQAAAMcKAg0AAAAAAGA41s4eAADgsGnTpnX2ENBO5syZ06n3v/jii3XxxRd36hgAAAA6EjM0AAAAAACA4TBDA0CruVwuzZo1S99//702btyogoICBQcHq0uXLho9erTOPfdcjR07ttF5OTk5+uCDD7Rw4UKlpaWpoqJCsbGxGjNmjK699loNGzas3cdaVVWlZcuWac6cOVqzZo3S09NVVVWl8PBwpaSk6LzzztOFF16ogICAJq+xY8cOTZs2TStXrlRmZqacTqeioqIUGxurUaNGafLkyRo/fnyj89asWaOPPvpIa9euVU5Ojkwmk6KjoxUfH6+xY8fq7LPPbvScr7nmGq1YsUIXXXSRnnnmGZ/jycjI0GuvvaYFCxYoJydHkZGRGjVqlG666SYNHz682Ws8/PDD+vzzzzVu3DhNmzZN27Zt01tvvaUVK1YoPz9fUVFRmjhxou644w4lJSW14RX37aWXXtLLL7+sxMREzZkzRzt27NDbb7+tZcuWKS8vT1FRURo/frxuvfVW9e3b1+c1Go59/fr1ev/997V69Wrl5uYqPj6+0ayIrVu36qOPPtKKFSuUnZ0tt9utbt266dRTT9WNN96ohISEZse9YMECvf/++9q4caMqKyvVpUsXnXXWWfrtb3/b4nM+88wzlZ6errvuukt33323z2Na87dU9/zrvPzyy3r55Ze9rlf/XjNnztQjjzwiSdq+fXuT45w/f75mzJihtWvXeu7fp08fnXXWWZo6daqCgoJ8ntfwfbZq1Sq98847Wr9+vYqKihQfH69Jkybp9ttvV2xsrM9ruN1uzZo1S19++aW2bt2qwsJCBQYGKjo6Wt27d9eECRN0/vnnq1u3bk2OHwAAnLgINAC0SkZGhu68805t3rzZa3t1dbUKCwu1bds2ffjhh40+QH333Xd69NFHVV5e3uh6X3/9tb7++mvdc889uvPOO9t1vM8//7zee++9Rtvz8/O1dOlSLV26VDNmzNCbb76p8PDwRsfNmjVLf/jDH+RwOLy2Z2VlKSsrS5s3b9ayZcv0zTffeO1/++239eyzzza63sGDB3Xw4EGtW7dOO3fu1Ouvv96q57N69WrdcsstKi0t9WzLycnRDz/8oJ9//llPPvmk39f69ttv9dBDD6m6utqzLTs7W59//rnmzJmjadOmdUiHjPnz5+uee+5RZWWl132//PJLffvtt3rhhRd09tlnN3uN6dOn689//rOcTqfP/W63W88995zefvttud1ur327d+/W7t279emnn+pf//qXTj/9dJ/XeO655/Tmm296bdu3b5/efPNNzZo1q8nAyV9t/VtqL9XV1XrkkUcavXeLioq0du1arV27Vh9++KHefPPNJkOmOu+++67+/ve/y+Vyebalp6frgw8+0Jw5czR9+vRG4ZHT6dTdd9+tn3/+2Wt7TU2NSktLlZqaqiVLlshsNuumm246wmcLAACORwQaAPxWXFysa6+9VqmpqTKbzbr00kt14YUXqlevXnK73dq3b5+WLFmimTNnep03f/583XfffXK73Ro9erRuuOEGDR06VHa7XampqZo2bZq++uorvfjii+rSpYt+85vftNuYw8LCdMkll2jixInq0aOH4uLiZLPZlJmZqZ9//lkffPCB1q1bpyeeeEIvvPBCo+f72GOPyeFwqGfPnrr77rs1fPhwRUZGqqKiQnv27NGyZcsafSDdu3evnn/+eUnSkCFDdPvtt2vAgAEKDw9XSUmJdu3apUWLFqmkpKRVzyU3N1d33HGHSktLFRISonvuuUdTpkxRcHCwtm7dqn/961968sknFR0d3eK19u/fr4ceekjDhw/X7bffroEDB6q6ulo//PCDnnvuORUVFenxxx/X9OnTWzXGlpSUlOjBBx9UXFycHnjgAY0dO1YOh0MLFy7UCy+8oPz8fN1///364osv1K9fP5/X2LNnj/7yl79o2LBhuuOOOzR48GBVV1dr69atnmOef/55vfXWWzKZTLrwwgt1ySWXeD6Ub9y4Ua+88orWr1+v3/3ud/rss8/Uv39/r3vUhVySNGDAAN1///0aOnSoysrK9NNPP+mll17So48+2ubXoS1/S3/+85/1pz/9SRdccIEOHjyoW2+9VbfeeqvXdW02m99jePrppz1hxmmnneaZHVNYWKhZs2bptddeU3p6um666SZ99dVXPgM/SVq5cqW++OILTZ48WTfeeKP69Omj0tJSzZw5U6+++qoOHjyoZ5991vM3UWfmzJmeMOP888/X1KlT1aNHD9ntduXl5Wnr1q2aM2dOs7OnAADACc4NAH56/PHH3cnJye7k5GT3rFmzmjyupqbG83NlZaV7woQJ7uTkZPcDDzzgdrlcPs959tln3cnJye7x48e7Kysrvfa9+OKL7uTkZPekSZManZeWluYZ07Jly1r9nLZt2+YeOHCgOyUlxZ2amuq17+eff/Zce+vWrX5f8/3333cnJye7Bw4c6C4oKGjVeK6++mp3cnKy+6GHHmq078knn3QnJye7BwwY4F6xYkWj/RUVFe4LL7zQM2Zf13jooYc8+2+66Sav31Wdd955x3PMrl27WjX+ptT9DpOTk90TJ050Z2dnNzpmx44d7qFDh7qTk5PdN998c7Njv/LKK91VVVU+77Vp0yZ3SkqKOzk52f3JJ5/4PKa6utp95ZVXupOTk9233nqr176qqir3SSed5E5OTnafd9557pKSkkbnL1682HOPpt57kyZNcicnJ7tffPHFRvva8rfkz3XrmzFjhuceDW3dutWz7+677/b5d/nDDz94jnnmmWca7a97ryYnJ7sfe+wxn2P4y1/+4k5OTnYPHjy40et41113uZOTk90XXXRRs88DAACgKRQFBeCX0tJSzZgxQ5J0wQUX6LzzzmvyWKv18OSvWbNmKTc3V0FBQXr88cdlMpl8nnPXXXcpODhYeXl5WrRoUfsOvhkpKSkaNGiQ3G63lixZ4rWv/nKG+Ph4v69Zd15QUFCT32q3lsPh0FdffSVJOuecc3zWKLHb7XrggQf8vuYf//hHr99VnYsuusjz88aNG9sw2ubdfvvtiouLa7S9f//+mjp1qiRp4cKFys7ObvIaDz30UJPf3E+bNk1ut1ujRo3SZZdd5vMYm82me++9V1LtDKLi4mLPvjlz5qigoECSdP/99ys0NLTR+RMmTNBZZ53V5Pia09a/pfb02Wefea7/2GOP+fy7PPvss3XqqadKqp2xUn85SX1BQUF68MEHfe6r67JSU1Ojbdu2ee2rW8bl670AAADgDwINAH5ZvXq1p9ZCa1pB1oUEI0aMkNlsVllZmc//uVwu9e7dW1L7f4guLCzUG2+8oWuuuUYTJkzQkCFDlJKS4vlf3f327t3rdV5KSorng96jjz6q/fv3+3W/AQMGSKr94PrYY48pKyvriJ/Dzp07PUtUJk+e3ORxEyZMUHBwcIvX69Gjh+f1bigyMtKzbCU3N7cNo21ec/Ux6va5XC6tW7euyfENHz68yWvUvecmTpzY5PutrKzMs6TF5XJ5LRtavXq1JCkwMFCnnXZam55Hc9r6t9SeVq1aJUkaPXp0s2FdXdhSVFSkHTt2+Dxm+PDhTQZ39d9jOTk5XvsGDhwo6XDh1Yb1dQAAAFpCDQ0AfklNTfX8XPdBxB979uyRJC1dulSjRo3y65z8/PzWDa4Z69at0+233+7XNRvWtEhKStJVV12lDz74QHPnztXcuXPVr18/jR49WmPHjtXEiRN91qs4+eSTNWnSJM2dO1czZszQzJkzNWjQII0aNUrjxo3ThAkTfH7r35z09HTPz00FEZJkNpvVs2dPr3oSvrQ046Sus0X9wp3tITw8vNlv5OvXzaj/nOvr0aNHk+eXlZV5AqSXXnpJL730kl/jqv/+qLtvz549m61J0VSNj5a09W+pPR08eFBSy8+h4e+jLqyrr7n3Uv0OKQ3fS9dff71mzpypjIwMPf3003ruuec0YsQIjRkzRuPGjdOYMWM6bIYKAAA4PvBfCgD8Ur+rRkhISJvO81f9rhtHorS0VHfeeafy8/MVHR2tG264QePGjVPXrl0VHBwss7l2ktpvf/tbrVmzxmfHjMcee0wpKSl6//33tXPnTu3atUu7du3SJ598IqvVqrPPPlsPP/xwow4OL774ot577z1Nnz5dBw4c0ObNm7V582ZNmzZNgYGBuvDCC/Xggw8qLCzMr+dSVlbm+bmlGRj+zNCwWCx+3dfdoEPIkWrN2Os/5/qaaiMqte39JtW2961TN1OgPV5nX9r6t9Se6l7blu5ff39Tv4+2vpfCw8P1v//9T//5z3/09ddfq7i4WMuXL9fy5cv1yiuvKCYmRr/97W91/fXXe/5WAQAA6iPQAOCX+jMKysrKFBgY6Nd5dR/6zj77bL+/LW8v33//vXJzc2U2m/X+++836mRRp6kPapJkMpl02WWX6bLLLlNGRobWrl2r1atXa+7cuUpPT9e3336rdevW6csvv/Sadh8QEKCbb75ZN998s/bt26d169Zp5cqVmjdvnnJzc/XJJ59o48aN+uyzz/z6Frr+B8uKiopmjz2Wp+63NLb6+9vyYb9+yPDYY4/pmmuuafM1WjPW1mjr31J7CgkJUXFxcYf/PloSGxur//u//9Mf//hHbdmyRevXr9eyZcu0cOFC5eXl6e9//7sOHjyoxx57rN3vDQAAjI+vPAD4JSkpyfNzS8sZ6qtbHlB/mv3RUleEMCUlpckwo7q6Wvv27fPrel27dtV5552nP/3pT5o9e7anAOfBgwcbtaqtr1evXrrwwgv19NNPa968ebrqqqskSVu2bNHcuXP9une3bt08Pzes9VGfy+Xyu9ZHZyguLm5US6G+Xbt2eX5OTExs9fXDwsIUGRkpqe3vubr77t+/XzU1NU0eV3+srdHWv6X2VPccd+7c2exx9fe35ffhL4vFoqFDh+rqq6/Wyy+/rHnz5mnkyJGSpA8//LBdl6EBAIDjB4EGAL+MHj3a803y559/7vd5p5xyiiRp+/btbf4A2FZ1S1d8LSWp8/3333stN/CX2WzWzTff7Pk2v65WSEtsNpvuuusuz2N/z0tOTvZ8s//zzz83edzSpUuP6RkakvTjjz+2uM9sNmvEiBFtun7de+6nn35q0/Kl0aNHS6pdhrJgwYImj2vuebR0/bb8LdWpm9HT3Pu6JWPGjJEkrVmzptnCr99//70kKSIiQsnJyW2+X2tFRUXpuuuuk3Tsh3QAAKDzEGgA8EtoaKguueQSSdI333yjH374oclj69oxStKvfvUrxcbGyu126+GHH25UeLOhtLS0dquh0b17d0m1oYGvWQ1ZWVl67rnn2jyW7Oxsz/KPulkBkrRv374mW1xK3jMH6p/XHKvVql/+8peSaj9k1nXiqK+qqkrPP/+8X9frTK+++qrPWRo7d+7URx99JEk69dRTW9Uqt77rr79ekjzFJpv7XUjS7t27vR6feeaZioqKkiS98MILPpckLVmyRD/99FObxtfWv6U6dWNrrq1tS+ruX1NTo6eeespnrZTZs2dr/vz5kqTf/OY37V7HouHr3lBaWprnZ3//TgAAwImFQAOA3+677z4lJSXJ7Xbrvvvu0xNPPKG1a9cqPz9f+fn5Wrdunf7zn/94tbMMCgrS3/72N1ksFm3cuFG//vWvNW3aNO3atUtFRUXKy8vT5s2b9cknn+iWW27ROeec0+bCjg2dc845slgscjgcuvXWW/XTTz8pOztbmZmZmjlzpi677DIVFxc3OZX+iy++0KRJk/TUU09p3rx5OnDggIqLi5WWlqZvv/1WN9xwg9xut8xms84991zPea+99pqmTJmi559/XosXL1ZGRoaKioq0f/9+/e9//9M999wjqbZWw6RJk/x+PnfeeaciIiLkcrl0yy236P3339fBgweVn5+vJUuW6Nprr9WOHTvUpUuXI3vhOlB4eLiqqqo0depUT42TrKwsffbZZ7r22mtVVVUlm82mP/zhD22+x9ChQ3XbbbdJkqZPn66pU6fq22+/9fz+srKytGrVKr3xxhu6+OKL9bvf/c7r/ICAAD344IOSapeVXHXVVZo/f77y8/OVnp6u//73v7rzzjuPaAlGW/6W6gwZMkRS7Uyd5cuXq7y8XA6HQw6Ho8Xwps6AAQN0xRVXSJK+++473XbbbVq9erUKCwu1b98+vfLKK7rvvvsk1S61uv3229v8XJty880367LLLtM777yjtWvXKicnRwUFBdqxY4deeeUVvfjii5KkwYMHN9vZBwAAnLgoCgrAb2FhYXrvvfd0xx13aOvWrfr444/18ccft3jeaaedpv/85z966KGHlJ6erqeeeqrJYy0Wi99dE1rSs2dP3X///frHP/6h/fv3ey31kKTAwED94x//0AcffNBki9Dc3FxNmzZN06ZNa3K8f/zjHxu130xPT9cbb7yhN954w+d5drtd//jHP1o1CyEuLk6vvPKKbrnlFpWWlurpp5/W008/7TWWJ598Ul9++aUyMzPb7XVsT2FhYfq///s/3XPPPY2CBKl2Sc4LL7zQ5paode69917Z7Xa99NJLWrt2rdauXdvksYMGDWq07Te/+Y327Nmjt956S1u3btUtt9zitb9r1656+umnPcsiWqutf0uSNHXqVH322WcqLCzUtdde67Xvrrvu0t133+3Xdf74xz+qtLRU33zzjebNm6d58+Y1OiYxMVFvvvmmV8Hb9rR+/XqtX7++yf2JiYmGmHUEAAA6B4EGgFbp1q2bZsyYoa+++krffvuttmzZoqKiIoWFhSkhIUFjxozxmq1Q54wzztDs2bP16aefav78+dq5c6eKi4tls9kUFxen/v37a/z48TrnnHMUERHRbuP97W9/q759++rdd9/Vpk2bVF1drbi4OJ188sm6/vrrlZycrA8++MDnudddd5369++vpUuXatOmTcrOzlZBQYFsNpsSExM1btw4TZ06tdGH79///vcaP368li1bpq1btyonJ0eFhYUKDAxUz549NX78eF199dVehT79NXbsWM2aNUuvvfaaFixYoNzcXEVGRmrkyJG64YYbNGrUKM8H4/rdNI4lZ5xxhj799FO99dZbWrFihfLz8xUZGanx48frtttuU9++fY/4HiaTSbfffrsuuOACffzxx1q2bJnS0tJUVlamoKAgdevWTYMGDdIpp5yiyZMn+7zGgw8+qJNOOknvvfeeNm7cqMrKSnXt2lVnnnmmbr755iOuVdLWv6W+ffvq448/1ptvvqm1a9cqLy+v2eKlTQkICNDzzz+vX/3qV/rf//6ndevWqaCgQEFBQerbt6+mTJmiq666qtk2uUfirbfe0uLFi7Vs2TLt27dPOTk5KisrU1hYmPr166fJkyfr8ssvb3N7XAAAcPwzuX0tnAUAGJLb7dbYsWNVUlKihx9+WDfccENnD0mS9NJLL+nll19WYmKi5syZ09nDAQAAwHGAGhoAcBxZsWKFp/Dq4MGDO3k0AAAAQMch0AAAAyksLGxyX1lZmZ555hlJUkJCgqf9KAAAAHA8ooYGABjISy+9pL179+rCCy/U8OHDFRUVpeLiYq1evVqvv/66pxXm3Xff3a5FQaurq9tUpyEwMFBWK//UAAAAoP3xX5kAYCBut1uLFy/W4sWLmzzmpptu0qWXXtqu93399df18ssvt/q8v/3tb7r44ovbdSwAAACARKABAIYydepURUREaOnSpcrIyPAsQYmNjdXo0aN15ZVXauTIkZ07SAAAAOAooMsJAAAAAAAwHIqCAgAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAwP+zd5+BbZVnH8avoy1ZlveecRJn7x0SAoS9N7SsFgq0jE5moS20lAKlb0sLlLJa9t6bMLL3Hs6yE++9be1x3g9yZMuWHTuJkxDu34fWOkuPZAf7/PU89y2EEN85EmgIIYQQQgghhBDiO0cCDSGEEEIIIYQQQnznSKAhhBBCCCGEEEKI7xwJNIQQQgghhBBCCPGdI4GGEEIIIYQQQgghvnMk0BBCCCGEEEIIIcR3jgQaQgghhBBCCCGE+M6RQEMIIYQQQgghhBDfORJoCCGEEEIIIYQQ4jtHAg0hhBBCCCGEEEJ850igIYQQQgghhBBCiO8cCTSEEEIIIYQQQgjxnSOBhhBCCCGEEEIIIb5zJNAQQgghhBBCCCHEd44EGkIIIYQQQgghhPjO0R3pAYiBeffbQj5YXERKvIXbr5xKUpz5SA9JCCGEEEIIIYQ47BRVVdUjPYhjnaqq1De7iLboMRkHniEFAiovflrAmoIaSmvaQtuPn5jB7VdNPZRDFUIIIYQQQgghvhNkhsYgaWpzUVlnJyc1mn++uZEVW6qwmvXcf8Ms7E4vm3bXMXZoIkMzY1i4rpz6ZieTRyYzZWRKj2t9u66Md74t7LHd4fJSWddOfIyJFz/dTklVKydOyeLk6dmH4yUKIYQQQgghhBBHjMzQOAC1jXYKK1pQgJT4KPIyYkL7/AGV/3tlHUs2VaCqEB9tpLHNHdo/ekg8O4obCXS86zqtgs/f+S34/XUzyM+Ow2jQoqrwv4+3samwnora9rAxWM16/AEVp9tHcpyZ2iZnaN/ffzmPYVmxg/LahRBCCCGEEEKIo4HM0Big9xbu5vmPCsK2jc1L4C83zwHgixV7WbyxIrSva5gB4PUFQmEGEBZmALzy+Q6KKlrQaRXioo3UNbsijqPd6Q193TXMAKhrdvYINLbtaWBNQTXDs+M4bnx63y9SCCGEEEIIIYQ4ykmXkwF64ZOCHtu27mlgw85aALYXN/V5/pmzc9BqlF73F1W0AMGgo7cwY38yk61hj/dWtnDvU8t459tCHnphDUs2VPRyphBCCCGEEEII8d0gMzT6we708t6iIjxeH/5A5GMKy5sx6LXUNDp6vY5GUXhvYRH+wOCt8jEbtSTGhnc+2V3WHDYTZEdJI3MnZQzaGIQQQgghhBBCiMEmgcZ+tDs83PDQ17TZPX0e19zu5q4nlvZ5TEBVKa1p7/OYg6XXafl2XRn1zU6S4yzMnZjB2KEJmI06nG4fGoWIhUeFEEIIIYQQQojvEikK2gtVVfm/19azcF35fo+dOiqZ+hYXxZWtYdv1Og1eXy9TOg6TIWk2/u9X86hpdLBxVx1DM2MYmRN/RMckhBBCCCGEEEIcLKmh0YuCvY19hhkWY3Byi06jcPK0bHJSo8P2J8SYeOPPZ3LO3Dy6V8wwGbSHeri92lvVSn2zk4wkK2cdN0TCDCGEEEIIIYQQxwQJNHqxtqC6131GvQaH2weAL6Dy/McF3HLJRCbmJ6EARr2Wa88Zw7LNVZgMOrpOgYmLNvLyH8/goZvn9CjeaTHpmDUu9ZC+DrNRi1Gv4cH/rua6B77k5c96FjUVQgghhBBCCCG+a6SGRi9Wbus90HB7w5eRmA1aTAYdf7pxNl5fAKfbx6//sShigdDmdje1jQ7SE6Mor+2sp5GeGMXjt59EcVULK7b0/twD5XT7+fGfFoQKkb7x1W4SY82cPmvIIXsOIYQQQgghhBDicJMZGr1IS4zq13EJMSZ+efnk0GO9TkNheXOv3U5UFW565Bte+mw7FlNnnpQcZ0Gv05CRZCU7JTriuQeqe1eVlVsPXWAihBBCCCGEEEIcCTJDoxe/uGwSf/nf6mDL04BKoJdWqydPy2ZYVmzYtswkK0aDFrfHD8CJU7IwGbSs3FpFU5sbgAWrS7n3x9P5YHERVouBKSOT+fnfvqWq3o6r47zBMiE/aVCvL4QQQgghhBBCDDYJNHoRYzXy0C1zQ48vvuujHktNjAYtk0b0DAeS4y386YbZfLuujPQkK+fOzUOjUSivbQ8FGmajlle+2EFxVSuTRyTz+FubBvcFddBqlB61O4QQQgghhBBCiO8aadvaT0++s4nPlhcDYIsy0Gr3AMHaF/+5++R+XaO2ycHDL66hpKoNg15Dm8M7WMPtU7RFz5N3zCc22nhEnl8IIYQQQgghhDhYUkOjn266aAJ/unEW918/i64ZUGW9Ha8v0MeZnaxmPcWVrbi9/kENMzTd+8R20+bw8tgbG8K2tbS7e9TaEEIIIYQQQgghjlay5GQAJuYnAzB/WjbvLyoC4ITJmeh1/cuFPN4Ani7hh0Jw2Up8jInKOvshG2dADV67r3hiw85aPlhURHldO9uLGympaiU1wcKff3YcyXGWHsfvKGnkmfe3oCgKN5w/jvzsuEM2XiGEEEIIIYQQYqBkyckB2lJUj9cXYOLwJDT7mxLRxd1PLGHrnsbQ49FD4rGYdKzdXhvxeLNRh9PtO+jx9tfs8Wncfc30Htuvuf8LGltdACTGmfnvvacetjEJIYQQQgghhBDdyZKTAzRuaCKTRyQPKMyoa3KGhRkAeytb+jynv8tZujPq+z+urrYW1dPS7uaTpXtYsaUKAFVVabO7Q8fUNznZVdp0QNcXQgghhBBCCCEOBQk0DiN/oGc44XT7abP3Xk/D5z+wQMPtVRnerZ1sf7TZvdz2z8U89d4WHvzfat78aheKojB/ek7YcR90LLkRQgghhBBCCCGOBAk0DqPUhCgumT88bFtOWjQ2q6HXcwYwAaSHovLmAZ+jAtUNjtDjtdtrADhzdi5Kl7HESIcUIYQQQgghhBBHkBQFHWTNbW6izDr0Oi0AV5w2kkn5yfzu6eX4/So1DQ5SIhTh3OdgGo8ciqYlo4fEo6oqzW1uzj5uCAV7G8lMjuas44awp6KFnDQbVfXtvPnVLlZvqybKYuC2H04hNtqIXqchMdZ88IMQQgghhBBCCCG6kaKgg0RVVR59eR2LN1YQbTFw2xWTeeGT7eytaiEjyUp5bXvo2MQYE/UtriM42sgUBd5/5FyeeHsTX64qAWDyiGQCqsqWwnr8AZXRQ+LZXdaE19f5Y2SLMtBq96BR4MYLx3Pm7CFH6iUIIYQQQgghhDhGSaAxSHaUNHL7P5eEHqclRFHVcOhasx4uV50xile/2M4BlvIg3mbkhT+cfmgHJYQQQgghhBDie09qaAwSi1EXVnPCoA9/q+dMSMdk0B7mUQ3cS59tR1H6X8hDoyiYjZ0rmeJspsEYlhBCCCGEEEKI7zmpoTFIYqNNRJsNtDqCSy+mjU6hpLottH9LUT0uj79f19JpFXz+IzeRZiDP/eNzRjMyN54XPinAoNdyw/njBnFkQgghhBBCCCG+r2TJySBZuK6Mv726PvQ4K9lKWZe6GRaTDofLdySGtl9aDQzPjmNHcVOPfQadgsfX80dmYn4Sp8/M5bgJ6YdjiEIIIYQQQgghvudkyckgsVr0YY8d7vDw4pw5eei1R+fb7w9ATYMj4pKYSGEGwMZdddQ1OyLu64vb66eirh2vr3+zVYQQQgghhBBCCJAlJ4PC5w/w7AfbQo/zs2OJizbR0FId2lbf7ESjUeAovY9vanMP+JxlmyupbXJi1GuYMDyJsUMT0UUIbVra3awpqMZk0PHfj7dR2+QkKyWah2+ZQ7TFcCiGP6g8Xj+fLNuLx+vnjNlDsEUd/WMWQgghhBBCiGONBBqDoKHFRUVd5/ISl8fPzy4aT5vDQ8HeRgC+Xlt2pIYXkdmow+3xEziIFUg7iptCy1Te/qaQ5Hgzv/nhFJ58exONrW4uPyWfk6dnc9s/F1PdED6bo6ymjcXryzlrTt5BvY7D4f9eW8+yTZUALN9cxWO/OSG0r7S6FUVRyEqJ7nGex+unpLqV5DgLMVbj4RquEEIIIYQQQhyTJNAYBAkxJrJSrJTVBEONicOTSIgxc8KUrFCgcbSZPT6NhevKoZc8IzPJSnmXkKY/ahud/O4/y/F4gz1fn/1wK/E2U48wY5/Y6O9GR5SCPQ2hr/dUttDU6iLOZuLFTwt46+vdAFxx+kguP2UEdc0O/vK/Newuaw6dYzHp+NONs8nPjjvcQxdCCCGEEEKIY4YEGoNAp9Xwl5vm8PWaMmxRBk6amgXAyJyj9wZ20foK/IHIaYbFqOXKM0fyyEtrCQQGdt19YQaAqkJSnJkokw57R0HU/OxYfH6VqaNSjvqCol6fn/LadsYPS2LRhvLQ9mv++AXnzc3jw6V7Qtve+moXFTXtLNpYTvdJLw6Xj89XFJOfHUdDi5PPVhQTbTFw5uwh6HVHZ10VIYQQQgghhDjaSJeTwygQULnmj1/Q3KU+xbRRKWwvbqTd6T2CI9s/vU6D19e/NKN7m1m9VoNfVblk/nBsFgMLVpfi8wc4aUoWF500HI1Gwe70otEomI1HZ8bmdPu464ml7KloIdqiZ+bYNBasLj3g60Vb9PzwtJF8sLgoNGPllOnZ/PyySQAUljXz9dpS0hKjOPu4vGC9FSGEEEIIIYQQIUfn3eMxSlHg+EkZfLi485P8gQQF+3Mor9XdQK57yfx83v22ELc3WPH0itNHct7xeTz+9ibeWLArdNyny/dy7ryhfLakmOc/2opWo/DzyyZx4pSsQz7+g7V2ew17KloAaHN4cboPruVum8PLf97b0uM5Xvq0AIfbx1erS3F5gu+fw+Xj8lNGHNTzCSGEEEIIIcSxRgKNw8Tl8fGHp1f0qKGxfEvVIXuOwQozBiI22siFJwxjzoR0Fm2oIC0hipOnZ/P+oiK+XhNeCLW+xUVxZQvPf7QVVQWfX+X5j7aFAo3GVheF5c3kpceQGGs+7K9lw85aHnl5LX6/ynnHDw3bl5tmo6XdzZaihl7OHrimNjdvdtTg6KqwS/0NIYQQQgghhBBBEmgcJss3Vx1QQVCdRsHXS22Lo4lWo+APqDS3ubnryaU8+vPjueqMUUCwRe073/a8UY8y6XnsjQ1hNSb21ZCoqrfzm8cW0+bwEGXS8citc8lOtUV87kBAxen2EWXWD3jcC9eX88z7WzAatPzmh1MYk5dAQ4uTvZWtPPTCmtAsk7e+3sX1541l6aZK8jJiuPDEYVx2ygj+8do6vl5bvp9nOTgzxqYO6vWFEEIIIYQQ4rtIKhAeJlGmntmR0o+yCIMZZqQnWg7ZtayWzjChqLyFWx/9ln3lWf7z3uawuiEAGgXsLm+oE8w+qfEWthbVs2JLFW0ODwB2l49Xv9wZChe6+mTZXi6/9xMuv/dT7n92JT5/cJZKq91DQ4uzzzF7fX4ee30DrXYPdU1OHn9rI2U1bdz812+5/9mVYc/nD6jYXV5G5sbh9fl599vdON0+brp4IsMyYwbwTg2c0+VDVVX++9E2bv7rNzzx9qbQ6xRCCCGEEEKI7yspCnoYPf7mRr5YVRJ6nGAzkZ5kYUtR/2dudO0QcjSxmHQ4uo1ryohkxgxNYN2OWrbt6f/SDK1G4dpzxvDMB1vDto/KjecvN89Bq1H4dNle3ltU2KMFrKIEw5J99/tnzxnCjReMj/g8Hq+fS3/7Sai7S1piFCdOyeLVL3b0OFajUQh0C5fMJh1erz+sAOpguOCEYQzPiuWRl9aGtv3w1BH84LSRg/q8QgghhBBCCHE0kxkah9ENF4wLqwXR0OoaUJgBHJVhBhBx9sS6nbW8+Ol2rGY9Rr2239fyB1S0Wg03XjAOnbbzR3R7cSP1zU5e/3IH/353c48wA4KtYbtOXvh46V5KqlojPo9Br+VnF43HoNNgNev56YXjyUyyhh2TlWIlIymqR5gBwZkTgx1mxFgNnDI9m1Z7cLZKnKad0fpyPl+4NTSDRQghhBBCCCG+j6SGxiBotXt47sOtNLe5ufCEYURHGXj+o60oisItF09g4+46vl5bSpv96G7V2p0CRLp9VxTw93Fjv3FXLVedMYpnP9zW6zEp8WZqm5yoarCOxvhhiTzz/pawpRXxNiOx0UbeW1Q0oHFvKaonJy28/sbusiZe/3IXFpOOp+6eT1Js5/KbFrubjbvqcLi8h7To5/7kpEXT7vDi8wXISLZyztw8JuYnYzXribOZWPDZYm4wfYpJ8dESMFNaNIG41DRsUQasFsNhG6cQQgghhBBCHA0k0BgET76ziWWbKgEo2NuA1aynvsUFwNaievx+NWIwcLTrbcz7W7Tk9gZYvKECq1lPuzMY4kRb9LQ5OgOdWKuJmsZgzYtAIBhi7CptCrvOb66YwoufFAyom4sCDEkPr3Hh9QX4w9MrQzMcmtpcPPDT40L7j5+UyQeLiyLOABlMx41L54QpWTzw31XsrWxh2aZKZo1LB4KFVb2KiafaTuY881qG6Ov58uNP+aQ+F4Newy8vm8zcSRmHdbxCCCGEEEIIcSRJoDEI6po6b4RdHj8uT+dyjP4uUTAbtTjdPZdxfFft6mg9mpMazQ0XjEcBfvvvZaH9Lk/nUhp/ACrq2rFaDGFLbP73cQG7+9HCNMqsY8rIFHRaDdNHpzImLyFsv8vjC1uuUdMYHlxsLqyLGGakJ0ZR3WDHbNKjUQgLZA6FL1eXsn5nLaXVbQAs3VRJUfnXzBibwrJNVdQ5TICJZ9tP5M9xb7Gj2QSAxxvgr6+sxdLxuvvL39EdxnoA3WGEEEIIIYQQ4kiTQGMQHD8xg12lzQd1DVUFs1GHy+Pb7wyIwdZ1qUlOqo2S6sg1KfQ6Ba+v78GWVLdRXNnCiVMzyUmNpqreTlZqNJfOz+eRl9biD6gkx1sYk5fA6Nz4sLChtinyjIkYq4GW9s6AIinWwu1XTu11DNEWAydOyeTbdeUoCpwzNy9sf0aStUcR0GiLnqvPHM1b3+yitd1D/X46qBwIg04TqpWxT1WDnfcX7QnbZldNvNA2hyJfZztXVYV/vbkRf0DF5faRmx7DTReNJynOEjGwKKlq5fdPL6ex1c3xkzK47YopKP1puyOEEEIIIYQQRwnpcjIIbnzoKyrr7Ed6GIecogRvnHurpTF7fBrLN1ft9zpnzxnCgtUluD2dS0ceunkOVoueitp2xg5NxBZl4B+vr+frNWWhY+ZPywo9npifxJwJ6QzPiiMtMYof/+lL7B3LWWaMSeXea2f0OQZVVdld1ozZqCMrJbrH/hVbqnh9wU7KatqIizZy1zXT+N/HBWwurN/v6ztQCnD5qfm8/uWu/S5J0mk1/WrdqlHgF5dP5qSpWWHbH3lpLUs2VoQe/+Wm4xg7NPEARi2EEEIIIYQQR4bM0DjE/P4AVfUHFmYMSbdRUtVKhIYag0qrUUKtS/uyL/pSAYNeg8cbvKFOiDFx+SkjWLGlstdzjXoN7o7jP166t8f+LYX1XH7qCHJSO4t3rimoCTtmwrAk5k/Lxu3xM2lEMlpN54yC+66fydtf78YWZeCas0bv97UoikJ+dlyv+0fkxLG3sgVVhdomJ899uA2v78CWAHUPgMwGLU5Pz2upBJeZXHP2aFxuP+98uztivZCUeAvxNhPbi/ffISegwoufFvQINEyG8K4zJuPh+U+Bw+Xlg8V78Pr8nDM3j7hoU2if0+3jjQU7abV7OPf4oeR2KeTq9QWobXIQZdIR23FO285dBLxebGNGy+wSIYQQQgghvock0DjEtFoNM8emsWLL/mcqdJUUZ2ZvZeSlHANhi9LTOsDuKUMzYwa8ROa8uXlEmQ1YLXpOnJKFVqPwxNubej2+a/gQicPdsx2tyagLW4IxJi+e5PioiOePzInf76yMrp55fwtfrCohM9nKPT+aQVKcOWy/qqphS32qG+y43H40ikJggJOauh89b0omn68oiXhsWU07//u4gEvnD2dIui3i92VUbjxXnTmK5z/aRnltO6XVrX0uS4ru0gGlttHBewsLURQYMySB2mYHZ8zKZVhmbJ+vobbJwUdL9tBq9+D3B8hJs3HhCcPQagfW+fmvL69j7fZgULVyazX3/WQG/3lvC/6ASmu7h93lwdf71ZpSFEUhL93G5afk87dXN+Ds+BnRKBCt9XNS2WJG2MtomTyPnflzyEy2MjQjhjibqUchWCGEEEIIIcSxR5acDIJWu5tr7v+yX0sCjrQokw6nxx+qF6HVKKQnWSmraYt4vNWsx+HyhW7qrzxjJAvXldPu8GI0aEKdSrrrOkMjkpljUtmyp4HslGjuvmYa/oDK+p21PP3eZtzeAJefms8Vp406yFcbtG1PA3c9sTT0+JTp2fz8skk9jnvnm928/PkOjAZtaDkLwJSRybTYPRT2o0BpJJefMoLXF+zs85jeZs0MzYzhnh9NZ+mmShpaXJw2M4f3FxXy5arSiNeJsRr43bUziLYYSIozc/Mj31LVYA89x19umsOoIfF9jsXvD/DTh7/uUSj1h6eN5Aenjug8LqDy8mcFrNleQ06KjWvPHUNCTDAo2rCzljXba/hqdWkomDhYuoCPk+pWsyBpJqomPFi57vRhzNbWoY+xETdl8iF5PiGEEEIIIcTRRQKNQbJ6WzWvfbmTwo5PnA+l3mpYHAqnz8xh4+7IXT5MBi2ZyVYKy1v6Na7+jnP8sAQ2FzaEHo/JS2D73gYCKpw/byhXnDbykC6J2FJUz2+f7OywMn9aFr+8PPJNr8fr40d//DKso4lRryUlwYLZqGVnSfOAnnvuhAxy0qN5+bMdBzR2nVZDfnYsBXuDy01iogy02j0R32e9VuEvN8/hoRfWUN/iIic1mpLq8KBqwvDEsJa1+yzbXMm67TWMHpLA1FEpXHXf5z2OibeZOG1mDpedMgKtRuGtr3bx4mfbQ/vNRh1P3TWf+mYnt/9rSViR1UNCVYOFXSJsv7X4LaL8wVbJsVMmM+b39xza5xZCCCGEEEIccQObLy76zaDX0NjqGpRrD2YCtWRjRcQwA8Bi0vUaZkDPcUUap8moRacNvwntGmYAFJY1h+qIvL+oKJiMHELjhiZyxqxctBqF7NRoLj5pOJV17RFrZHy2oqRHe1a3109pdVu/w4wEm4l5kzKYMjKZuZPSqaxtP+Cx+/yBUJgB0NJLmAHg9au8t6iQ+pbgz2H3MAOCoUN3WwrrefjFNSxYXcpjb2xgS1EdI3J61htpbHXx2pc7+WhJEQAL15eH7Xe6fRTsbaCoomVQwgyN2suMH0VBq3Z+L5vXrcfT3PvPrRBCCCGEEOK7SWpoDJK/vbqe5jb3ER3DgczkUP29F750ug+sKGZXrv1cIyXejNmop7gqWE8k2qJHr9P2ec6BuOniCfzsovE0t7m584mlVNXbyUiK4qGb5xIbbQwdt2RDRR9X6R+DQcOijuus21F70Nfral/nmd5s3FXX675Yq5HrzxsHQCCgoumoc7KvGOo+izdUUljWBMDYvASGZsbwweLOVrIfL92Lw+UjOcFCaZelSgrBNr+lvbT53R+LUYujy89LXkYM0RY9m3bXg6IQUCL/XGgDPgyBbstaAkf/8i8hhBBCCCHEwMgMjUESqTuFosAlJw/nrqunctKUTKxm/aCOYfR+aiNE4vD0Xt/gYGofmI1azMb9BxM1jU4m5icxeWQyY/IS+N21M/dbULS//P4Az3+0jbueWMr7i4pQFIWv15aFutJU1Nn5Zm14LYpDUe+hqj7yjJdDIVKY0fXtsjt95KRGk5cew/nH5zF6SDwKkJ4YxSO3zsVo0PKrvy/kvNs/5LdPLsXl9jF1dApRHT+bBr2WkupW9pWD2bqngflTs0lL6CzOWtPo4LUvd5KVbMViCmakeq2GO66ewuNvbeThF9fu93UMzYzh6btPIt7WGSb95Lxx2KI6C5qmJUQFw4z90Kl+2gzW0OOMC87DEN97RxshhBBCCCHEd5PU0BgkC9eX84/X1kcs7HjFaflcfuooymva+Osra9lTcfDdTSKZNS6VmkbHoF1/IBTguAnpLN3Ue2vXfXRaDe8+fPZBteL0+vysKajBatEzflgSAB8sLuLZD7aGjrn/hlk0tjh57I2NoW2/vHwS86dlhx4/9+HW4LIXgrNFui8/6W4w65v0V4LNSENr+OwgnVbB71dDY7vpovGcMXsI//t4G+98Wxg6Lj7ayDP3nEJzu5sdxY0My4zlP+9tYf3O4MwSk0HLC384DQi+n69+0VncdP60LH520QSaWl0kxpi49dFvKa/ru4XxCZMyGT88kbkTMzAZdTS0OFm7vYbM5GhGD4nnsns+Cc0MMht1eHw++phEFHL1acM5e1wchrg4tCbT/k8QQgghhBBCfOfIkpNBcsLkTOZOSOeq+z7vcRP8yhe7+HZdBa0OD+37uUHuzb57/b7iqBVbqntsi4s2YtBrqWkcvFkDkajQZ5hhNupCsyFirYaDCjMCAZX7nlnJ5sLgp/lXnj6Sy04ZQX1zeAeWhmYn86dlU1Ldxubd9UzIT+LEKVlhx1x7zhiqGuwU7GlgRE48M8em8uTbm+itJMSRCjOiLXpG5cZjMuo467gh3Pn40rD9Pn/4yBZvqGDG2LQeM1Aa29zc8Jev+NHZYzhhciYAt146kafe3Uybw8Nlp4zg8xUlrNxaxdDMGNITLVTWOzDoNMyfmo1eq+HLVSWs3V7TI8wwGrTMGpsWVmsjPSmKU2bkhB4nxJg5bWYuEGyd27X2htPtw6DToGjV0OtRFLjjyqlMHJFMdX07bQ4v0VGG/bahFUIIIYQQQnz3yQyNQdTS7ubKP/TsDnGwLCYdZoO2x6fw+5ObFs3wrDgWrI7c4vNQios2khxnoaSmlYQYMxW9FMKcPzWL3PQYRg+J54VPCvAHVH5y7liGZcUe8HPXNzv58Z++DD3OTLby7zvnU1bTxt1PLqWl3UNmspVHbp1LtMXQx5Vg06467v3P8tDji08azqbddew+wJat+8RaDbQ7vPgOoFimRqOE3ehPG5XCnInpPPHWJjy+QFg4tD+91eDQahSeu/eUUNvVfdZur+H+Z1eGHv/orNEMyYghPTEKg17LO9/s5sMle7pfLiQ7NRpVhbKaNlLiLTx8y5yw5/D7A/z73c1s3l1PQoyJbXsaeoREs8enMWtcGhlJVoZlxh5U+CWEEEIIIYT47pIZGoOoqGJwOis4XD4crsg3rFazHkVRaXOE79dqoLiqjeKqnp0uBoM/oHL23DxOmJzJjpJGbv/nkh7HaDQKPzp7TKgI559/1rN96IGIsRqIt5lCXWaGpMcAkJUSzVN3nUxNg53MlGiM+s6aHnanl1e+2EFLu5sL5g0LBSp2V/gMmsZW10GHGQDN7Z4DPjcQUIm3GXG4fJw0NYsVW6pYs70mtH9/YUbXEKO3ONMfUHl/USG2KCO7Spqwu72cP28YTd1CtMLyZspq2/H7A6zaVtWjcKzVrMfu9IZCidLqNt7485m0tHtIiDFh0IfXVVmwupQvVpYAUNUQebnK8s1VbN5dz+O3nyhhhhBCCCGEEN9jEmgMosxkK3qdgtd34JNgslOjibEa2NKttWlv2p2Rl7D4D0GTB63qZ3xrIVo1wCbbMLyankVN9VoFr1+l1e7hb6+s459vrCfKFH6cosDwrBh+ct64sI4ih4pep+XBm47j/UVFRFv0XDI/P7TPatZjjbAc4fE3N7J0c3BJzOpt1bx43+mYjTqmjU5l4vAkNu6uIynOzJmzc/lmbVmfz282aElPtlLUR4vbg5WRHE1Ng51VW6tpGmA3nXibiYaW/bcUfn9R+EyLLYUN3PvjaaQmWKhucKDQ9zIiAKtFz8T8pNBxU0elYDHpsZgiF8R1uCL//FrNeuJjTJR2tJ5td3rZWdLE7PHmiMcLIYQQQgghjn2y5GSQ7Shu5Jt1ZXy+orjPehe9iY028tJ9p/PSpwW8+fXuQz/AATi/ahEj7cFPz0tNKbyaedoBX+v0WbncfPEEABauK6Oizs7xkzLISok+JGPtj2WbK3nl8x3YogyUVbfS2qWeyc8uHM+Zxw0BgrUcGlpcLNtcicPpxeP18+7CIgJdvqGxVgPzJmdi1Gs5b94wfvef5ewZpBk6USYd9l5m6OyPyaAhKc5CVb0dn19Fp9XgG0DaZdBr8PsC+Afws2yL0tNq92I2annwpjkUV7aweEMFw7JiueK0kWi1nc2WWu0e7vn3MoqrWklNsKDVatAoCj+7aDyVde08/tYmINg151+3nURKvKX/AxFCCCGEEEIcU2SGxiDL7miZqddq8ERo5bo/cdFGahsdh6XuRW80ikKs0soITUVoW7arBo0aIKAcWOfffQU6319UxHMfBjuPfLR0D0/ecRLxtsHvStHu9PLoy+tCN/NGffjr+HpNaSjQUBSFN77axecrigFIS4zi1T+dwVX3fR5qz9tq9/DB4uCMhiEZMWHtRvuiUei1wGgkeWk2NDoNhQe47MXlCVBWE6xn8sNTR/Dqlzv3c0Y4j7f3n2G9ThOxXXGrPRgUOd1+Hnt9fWjZ04ZddWzaXQcE34PrzxvL6CEJ/OPXJ9Da7sZmNYa17B03NJEos56SqjZmj0+TMEMIIYQQQojvOQk0BtGO4kbufWo5bm8/+kxGoNUo3H7lVP7++voBLys4VCaNSGKauYyRJe+jjVVxt0DjTigzJR9wmGE0aDl/3lAACvZ2LqWxO70UV7UelkDD7fGFzUyIjjLi7tIFJb5bMcxtezrHWVVvx+708usfTub5j7YRCKhhSzjWba9l3qRMNu2q22/Xk4HWBN1b1TrgTipWk452l69HAdDSmjZ0WiXUMUSnDYYH3Tui9FekMKO77jVcdpU2h77+ywtreOm+09FqFOJ6+RmYMyGDORMOaHhCCCGEEEKIY8yB3ZGKfvnLC2sOOMyAYDcTnVZDcVVrv8/p8oE2Wg2cODkDRQlO0e/tE21NH3UVC/Y0YCxahFYJ3uQaY2Bd2mjeSp8fOsZm0WPQ9+9H6dQZOTz721OYMDwJgMQuwYGiBGekHA4JMeZQqGI0aLn54gmcPWcIBr2GtAQLPzlvbNjxU0Ymh74ekm4jIcbEnAkZPH/vqfzlpjkYDZ3FLcfkxbO5MDzMSIkzM7XLNQ6ExagbcJihUUCj1fDD00aEzXYAWFNQjV6nJTXBwrhhCfj8ar/CDEUBW5SBaaOTOdiSnF2HZHd6kRVwQgghhBBCiP6SGRqHkNfnxx9QMRmCb6u9lwKd/WHQa7jyjFHc8a8ltDv6f52un/j7AxATbeK9R84N3cw+/OKaHoUc+5ol4PYGaDBYGUawi4ZH1bLSOgaP2lnUsbWP8V179ij++/H20I346oJqbr10Ymi/t8ssCVWFkuq2UFeSg9HS7sbp9pGaENXrMdedO5aLTxqOQa9Fo1F49oOteLwBqhocLN5QHlZM9NpzxjA8K5Y2u4d5U7LC6j6kJUbx0M1zWLmliiHpMRw3IT2si4lWo/D7n8wkO9XG429u4ItV/Vs+NGNsKlpFIcqsZ/qYVArLmnnjq10Deh8CanA5zGtf7OwRhri9ASCA0+2jrskZ6fQetFoFf0fR1zUFtaQnRlFZH7kbSW9mjUvD7w+QHG8hOc7C/z7ehgpcc9Zo6VoihBBCCCGE6DcJNA6RFVsqefSV9fh8fn58zhjOnzeMq88cxTMfbD2g63m8Af730TacngOf4QHBWhV1TQ62FtUzNDOWK88YyfItVQQGsNbhXcc0fKqGWI2DRa5RtKmRO0ukxFuoaXSEHlsterJSbMREG2nuWDKTGBt+7rDMzvBCq1HITbMN5OVFtHRTBX97ZR0+v8oZs3O56aLe1yjEWIMzQvZWtlBR1x7avqagJizQUBSF4ydl9nqdYZmxDOvSPeWCE4YBUFLdyrxJmWSnBl/XLZdOYsHq0v0uNTEZtMTbTHy2vBgItjMdlROLQa9BVVU0ioKiUXC5+/fzsb/vtr+fPw/+bjM4poxKwbOlkvrm/XdNgeDsjtuumBLWrvXk6dkEAmroeyGEEEIIIYQQ/SGBxiHy7Ifb8HQsL/nvR9s4Y/YQzj1+KG9+vZuW9p71L/pTDPJgwwydVmHWuHR++fdF2J1eNApkJFuxmnU4XL79Li/YV3PBpRp4yzGrz5tis0HLH34yk9v+uRhHRweOdoeXh19aywM/nc2rX+xEr9Nw3bnhSzlOm5kLKOypaGb2uPRDEmi8sWBX6LV9tryYy07OJyGm7/aeKfEW4m1GGluD36uRufG9Htvu8LBqWzXDs2JDQUV3Wo3CxScNj7hv5tg0lm+p6nM8v7t2Bg/8d3XYtu0lzV0eBV+fyaAhxmoKC5IOVkq8hYQYEwV7G0PblI7/6b4iJN5mJC7a1O9AY/qo1LAwAyDa0r8CqkIIIYQQQgjRlQQah4ipSw0FvV6LVqPg9flx9LLsZKDFIAdCo1EIBIL1EJZvrggtfQmohDpcdHf9+WN5/cudtHVZPtL15lUFokx6VNRQYNGV2aTn0+V7e+xze/3kpNq4/4ZZvY73tJk5QE7/X+B+xHb5pN9o0GI27v/H3GLS89DNc1mwuoQEm4nTZw+JeFxjq4vrH1wQ6vbxi8sncfK07H6NS1VV3v22EBWYMzGd8pp2SqpbUVXCCnZqFBiaGYvFpMPp7rs9q8sTwNXoYFRuHNuLm8L2mQ06vP5Aj7as+5aN9HgPjDpmjUvjx+eM4Z6nloXt++GpIzGbdTzbbcbRyq3V/PC0Edz/7Kpexxht0XP+vGGYjTpOn3Xovs9CCCGEEEKI7zcpCnqI/PLySeSm2UhLiOL2K6ag02qwO31hNSIGU5eSDmHLSQrLm/d7brRFT22jIyzMiGTa6BT+/st56HQ9f2waW118vHRvj+3HjU/H6fb1e0nDoXDrpROZPDKZ/OxY7r5mGhaTvscxgYDKp8v38uKnBVR2LDVJS4zi6jNHc9acvFDNEZfHx8MvruG6B77kmQ+28N7C3WGtS98aQE2LT5cX879PClixpYplmyqxWvShEGPf/ytKsLZHYXkz58zJC52r1Sho+qgvUd3g4Ednj2ZETlxom9PjY8bY1LDjxuYl8OsfTMZq1tP9cjqdwo0XjifGaqSyrrMuhkYDl582IvQ+ddXu8PDg/9b0+bqdbh9nHTeEc+bmoddp+zxWCCGEEEIIIfpLZmgcIsOz4vjXbSeGbYuOMqDVBItzDjZ/gLAWnKExWAwEVPos+tjm8PLB4j19Xj/eZuSK00eSmhDFDeeN5cl3Nvd5/L7XvXRTJUs3VZKeGMWpM3NoafdwwuRM8jIOvvBnb5LjLdx/fe8zQgBe/nw7b329G4AFq0r5913zsZp7Bh8fLC4KFVH9cPEezjouN2x/fEzk9qK7y5pYsKqUpDgzF5wwDJ1WQ3ltZ8tSVSVi/QtVheVbqnjmg60oCpx/fB5J8RYmj0jGaNDy8Atr2Nml1ek+TW1uXv5sBxedNIydJZ0zNSYOT6S4sjVUH2Trnga27mlg3qR0xuQlhn0fW+1e7nx8Cf/8zYnMnZjBN2vLADh+UiYFextC9Ty6qm50RJzt0ZXPr9LQ4iQqwvsrhBBCCCGEEAdKZmgMotpGx2EJM/aJVBOjsLyl3x0sIkmwmXjqrvm88IfTQx1DJuUnoemj16vVrOvxuivr7fzv4wLeW1jInY8voaHlwMd0KGwv7qwP0dzuprqXTh3Obkto8rPjmD81iyizniHpNu69dkaPc5raXNz71HI+W1HMi59u5+XPtgMwb3JmqL1rYqyZGy8cR3KEVrrb9jQAwXBjc1ED584dilajoarezo0Xjg977zOTrKGvff4Am3fXMWF4IulJUUwfncK00alkp0b3eI5FGyojhlKl1cHQ5eeXTmT8sEQANu2u455/L4tcQ6UfE28Meg3pXcYphBBCCCGEEIeCzNAYREb9d2t6vcWk61EDY+KIJDK63YyW19l7dElRlGCNjdQEC7/8wWQefXkdxVWtEZ/H5fFTUt2230Kdg2naqFS2FgWDg7SEKDKTI99wnzM3jxVbqqistzMmL4HjJmRw0tS+a2bUNDjC3sc9FS0AjMyJ54nbT6Kspo387DhWb6uidj/FPJtaXXy6fC9PvbMZFdDrFH79g0mU17YzJD0GW5SB3/57WWjJStc6GpV1dtb+6UvMpv7/M99XlHV1QTWbC+s7xtCzqO0+/VlKdP/1s9BpJTsVQgghhBBCHFoSaAwii0kXKtB5tBuRE0dijJllmytD2yaPSOYXl00CoKKunQ07axmaEcvwrFgSYkw0tAQ7W8wen8aFJwxjRE5nZ5AHfjqbD5cUsaWwgcr6dlraPaF9Bp2G4Vmxh+eF9eLCE4eRmWKlvtnJcePTMfVSODQhxsy/75xPm8ODLcqA0kcdi31y021kpURTVhOc7TB3YkZoX0q8hZSOWRmfRFjC0V1Tm5vnPtgamgjh9ak8+sp60hKjOGP2EOJtJu6+ZhqL1leEfe/2Cahgd/ZdWHSftAQLE/OT2birlk+W9ayHMlBmg5Yn7jiRpLiog76WEEIIIYQQQnSnqGr3RoziUPloyR6efn/LEXnu1AQLw7NiWbKx501uJDecPw5VVXmmo4uFRqPwj1/NY0h6DC98XMC7C3cT6OjG8fPLJjIpP5m/v7aBzbvriI4yYDbq8AdUZoxJ5cozRoXVo7A7vfzq74uoaggu67jpovGc0UsXkWNFu9PL+h01JMdZem0B+8hLa/r1/dFpFHwRQrFYq5Fzjs/j5U+392flx0GzWvQkxZgZnhXLup01NLT0PnPDqNfyxB0nhcIbIYQQQgghhDjUJNAYRJ+tKObJtzcdkef+5aWT+MebG/p9/Dlz87j+vLF8sLiIvZWtzJmQzsT8ZO59ahkFexvDjtVpFe66ZhoPPL864rVGD4nn4Vvmhm1rtXvYuKuWlDgLeZmx6CN0Svm+aXd6ueHBBaHuMrlptlAb166mj05h3Y6aQ16PxajXYDbpaW7rPZgYKI0CZx03hFNm5DAkffAKvwohhBBCCCGEBBqDyOsL8JvHFrG3MnItiaPJ1FHJDM2IodXhRatRuHR+Put21PLYG5FDkXPmDuGjJZGXJShARrKVqno744Ymcs+Pp2My6li1tYpHX1mHxxfgR2eNIinOQmKMudcZDN8Hja0u3vl2N1qNhotPGs4zH2xh4bpyINiqdV+NinPmDGFHSRO7y5pD50Zb9LQ7vT0CkP7SKHDqzBzy0mN57sMtuL2HJjF54KezmTA86ZBcSwghhBBCCCF6I4HGILvqvs8P6Sfgg0GhZ7OKEdlxnD4rt9dAY0iajb29FP3s7tpzxnDG7FxufuQbaiN0XLnp4gmcMSt3YIM+Rnl9ARasLqG6wc57C4tC24dlxdLY4qSxS4HOP904iy9WloTayh6opFgzdc2d3xejQUtqvIXaJidOd//qb3T13L2nkBwnS02EEEIIIYQQg0vm/Q+y5LjOTh46bWdByYQY05EYTkSREq3C8mZsVgO9dWftb5gBsHJrFZfc/UnEMANg0fryfl/rWKfXaThz9hCuOmNUWOeVySOSSUsM78Ry3zMrqKxri3idxNj+/3x1DTMAHv358Tx++0k8+LPZYT+z/XHK9GwJM4QQQgghhBCHhQQag+yOq6Zx3Ph0xg1NQNOlQ0ZSrJkXf38aOanRh3U8/WjSAQTbcf75v6sYSIMWk6Fnm9oR2bFhNTi0GoV4myns2CHptv4/yTHM5w/gcAXraXi8AeZNymTuxHRuu2IKV50xijuumsr00Smh4/0B2FMZOdAw99K1pT/ibcEwJDvVxrihiX0ea9BreOTWOcyflsUvL5/Izzu64gghhBBCCCHEYJO2rYMsJd7CXddMY8GqErYUNYS27yhp4v3FhaHWnofL/hYYxVoNNHe0WA30o6SCRgnOKvAHVM4/YRiL1pVR1eAA4Fc/mAyo7CztXLZiMel44Q+nUVjezOcrikmIMXPxScMO9OUcVVRVZWtRA3q9hpE5A6sLUrC3gT89t4p2p5dz5uaxvbiRwo56GQa9lnmTM4m3mThrzhBWF9REvIYC5OfEkZ1iZcHqsgN6DdedOwZ/IMDa7TW8+dUuthc39nn8jeePZ1RuAqNyEw7o+YQQQgghhBDiQEmgcZgMy4pFUcIDhXe71Eg4WuwLM/ZJT4yist4esc4GBMOMfcUk3/56Ny/+4TQ2F9aj12uYPjqVDxcX9bgewLDMWG65ZCIQbOu6q7SZjCQrsdHGQ/2SDpt/vL6Bb9YGg4RLT87nqjNGsWprFf94fQOqqnLrpZM4bkJ6xHNf/mwH7c7g7IyPluwJ27dkYyVJsRYuOyWfoRmxGHQaPL6eaZMK7CxpYmdJ0wGN32TQMm10Cjf+5Sucbv9+j73z6mlMHZXS53FCCCGEEEIIMVgk0DhMhqTHcM+Pp/PM+1txe/20tLsPuDvFwdBqFJLjLFQ12Pt1/KQRSVTW2yOGGUBYZwx/IMDKbVU8+fYmfH6VE6dkMn1MatjxU0aFP25qdXHbPxdT2+TEatbz0C1zyEnt/xKUirp2Vm+rJifVxuSRyf0+71DzeP2hMAPgi5XFXHXGKP711sZQUPHPNzf0GmiYjJ1LcDQKZCZHU9oxe8fj9fP6gp2oqIzOTRjQMqBIlI7n6x5axNmM3P/Mqv2GGRBckiRhhhBCCCGEEOJIkhoah9GMMWk8e88pvPiH0wZ03sDKMvYuM9nKQ7fM4ZqzR/Xr+HibkU+WFff7+j84ZQSfLNuLzx+84/52XTlDM2I4bWYOtigDU0elcN7xeWHnrNxWHSoW2u708u3a8KUSgT7u3uuanPzmscU8/9E2/vDMChYeweKiBr2W5PjOYpiZycHaKEo/v3s3nD+OUbnxJMdbuOniCfz0wnGY9OE1Scpr2vlwSRE+f99rgUbmxmEyajHqI//zVkP/E66q3tHvoGtGt6BKCCGEEEIIIQ43CTSOAEVR+PFZo0OPzUYt2i7tRIzdbmQj3dIbdAP/1pXXtrNqSyX/enMj6Draf2q9vR7ftUXoPqOH9F4boqiiBatZH3qsKKDXaTl+Yganzsxh+uhUlG5VSVPiwztiLN9SxZKNFXh9AR54fhXn3/Ehv/nHIlrt4UthAHaVNWF3do5/w87aXsd2OPzphlmcOCWT02bmcOdVUwG49bKJRFsMWM16ftFHwczUhCgeuXUuz91zCqfNzOXNr3bj8nbOlNBqYP60LJIidBDpHplU1tl59renYDHpexy7j6a39jX9kJpg4Y6O1yeEEEIIIYQQR4qiqkdi4YMAaHd4QFGwmvWs3V7DW1/vwmzUkRhr5ouVJYP63NqECvQ52/FWDMNfk9uvc6LNOjJTbL0WisxNs5GeGMXyLVWhbakJFqo7ioQCZCVbmTMhnTFDE5kwPAmAz5bv5a2vd4fah2o0CtecOYr/flwQOi8jKYrHbz8JnbYzyKlpdHDro9+Elkj8/NKJnDIjp39vwFHuD0+vYH2XgOZ3182gYE8DawpqQktRemMx6Yi3mSivbQ9tM+o1BFTwRqi9MVAZSVaeumv+QV9HCCGEEEIIIQ6GBBpHoT89t7JHJwudVgkt5TgkND6MI9fg3jkV/L1/kr+PXqchMdbM8KxYFm+oAIIzAwx6Le6OmQTGLl/vj6LApfPzqWlyMDInnnU7aljT5TVrNQr+bstNbrtiCvMmZ4Zt21vZwsotVeSk2Zg9PnJ9iu+i0upWHnpxLY0tTi6Zn09lg50vBznk6g+NRuEXl03ipKlZR3ooQgghhBBCiO85CTSOQr99chlbiupDjycOT6K0po3GVtchfqYAKCqo2oh7f3bReLKTrdz97+WhbVFmHXanL/R4dG4cBcUH1lWjq4tOHMbHy/bi9vQeiNx59VTmTMiIuK+x1UW7w0NWSnSPZS3fdZX17dz08Dc9Ap7D7bpzxzB3YgYJMeYjOg4hhBBCCCGEAKmhcVRqbHWGPd64u47GVhcaTXCmxsHSh66h6TXM+OFp+bg9Pv7w7Kqw7a5uHTBMxv03yslKtqLdz7hVFZ757cmcPWdIj3MtJh0nTc1i9rjIMzCWba7kuge+5Oa/fsujr6zb73i+S2oaHfz80YUHFGYcbK6TFGsOtdGdPCKZs+fkSZghhBBCCCGEOGpI29ajUGKsmYq6YLeJrksvAgEI9NpAFaJMOuwuX6/79/FGWLpi0GvwdGnB+uoXuyKeOyk/idomJ6U1bWSnRvPzyybx7reFLNlYQVNbzyKiGkXBbNLh7/KcqfEWqhs762rotRp2lTbx638sZsaYVMYOTWD73kYmj0zm7mumoddFDl32eeeb3aHlOIs3VHDF6SNJT7T2/SZ8Rzz+1sZ+L+PpLtqsp9XRe9HX/RmaGcMdV02l1e4h3mY65ma+CCGEEEIIIb7bJNA4ytQ2OdjRZQnH/j6Zj7EacLp9eLyBfoUZ3el1GoZlxlLT2E6jt2cnka7G5sWzdkewUKVGgYtOHE5CjJnrzx/HxfOHc+9TyymtDhasjDJpsbv8BFSVXaXNYdfJz44NCzSmjUlh+eZgIdFPlu3l99fNYNpN/W8LGm8zhb426LVYzYb9nuP2+vlk6R4+WbaXgAo3nD+WWb3MADmS+lqCsz8HGmYoQFK8havOGIVep5VZGUIIIYQQQoijkgQaR5FXPt/O6wsiz4yIRKdVaGnvO4TYn+yUaKrq22nux3W27unsbhJQ4V9vbuC4CekY9Vriok08cftJOF1e2pxe3ltYyMdL94aOH5kTh9PtY97kTM6ek4dOp6WkupWTpmZR2xi+xMbpHlgwc/PFE9DpNDS3ublk/nBsUX0HGl5fgHueXMbO0s7g6NFX1vPmn1PRao+uVVhXnjGS3/1nBYHDVD8jK8XK/dfPitgeVgghhBBCCCGOJhJoHEXe+baw130aJRgidHWgRSLzs2NDsyaKKloO6BoAfr9KfZMDl8dPbpoNrVaD2aTHbNJzwuRMFqwuxe3xE28zctc104gy69FqNOh1Gn71g8mh69Q1OVldUE1VvZ0JwxOZNS6t1+dcva2at77eRWy0kZ9eOJ6EGDNxNhN3XT2t3+MurW4NCzMAfP4AAVWl78Uth9/4YUnMGpvKss2drXDjbUYaW3su7zkQU0clU1lnZ2J+ElecMQqbZf+zW4QQQgghhBDiaPC96nLy5aoSXvpsO9EWA7dfOYUh6TFHekhhfvi7T2nrtkxgRHYct181FVD5xf8tDOswcjhFaqMaF22k1e7BH1CZMDyR+6+fFTbDobrBzsuf7WDppnKMBh2OjiUxCTEmfnn5JCbmJ4eODQRUHC4v1j5uqFva3fz4T1/i9QVrfcwcm8o9P54x4NfS0u7m+ge/Cs0EURS48fxxnDUnb8DXGkxen5//fVLAh4v3hLbptAr3/HgGf3p+1UHN2ogy65g6KpWCvQ3ER5v49RWTj5m6I0IIIYQQQojvh6Nrfv0gqKxvp7K+nZZ2N0+8vYnmNjdlNW38+53NR3poPfzu2hkY9eHfktnj0zEZtPzh6RURw4y8dNthGVukupxNbe5QyLFpdz3/emsjz324lfpmJ7tKm3jzq10s2lCOP0AozABoaHFx/7MraWnvnGWg0Sh9hhkAdpc3FGbse/7+qKhrZ9XWKtocwWU1W/c0MHdiBtNGp3DRicN49U9nHpVhxt1PLgsLMwAyk6OZOiqF3/xwci9n7t/xkzJ44vaTWLKhnLomJztLm/jPe1sOdshCCCGEEEIIcVgd00tOXl+wk1c+3wHA2XOGhH2i7fUHejvtiKisa2dzUT23XDqRResr2LirlrF5iZw5O5ev15SGup50l5cRw57K1l6vm54URUq8hV2lTQc8u+Omi8azYHUpu8ua+zzu6zVlAHy8dC++/by/Pr/KE29tZGhmLOt21FJa3cqJU7K48cLxvZ6TnmjlhCmZLFxXjl6n4eKThu937JsL6/j9f1bgD6jodRouOGEob361GwCzUcdPLxiP1azf73UOt12lzewsCV8Wo9dquOfH0wGYOiqFuGhjj1BHUYKdZXpbjjRrXCq3XzmV6gZ72BIm1wDrlgghhBBCCCHEkXZMBxpvfdVZYPPjpXs5fWYOX64qIcqs57pzxhzBkYVranNx2z+XhGYQ3HD+OP7wk5mh/fExpojnKUD0fgpgahSFzbvrB1RvY1J+Eht21WEx6bjr6mlMGpHM6LwEbvnrt/06f39hxj4rtlazYmt16PHHy/YyY2xq2FKU7n7zwyn84JQRRJn1xFiNvR63p6KF5z7cSml1W+i1e30B3lvYWafE6fZRVNFMcvzRVwAzIcaETquE2tHG24zcfc10UhOiALCY9Dx0yxwWrCol1mogJtpItNnAiJw4fv/0il7Dp2hL8D1LTYji/HlDeX9REVFmPVefOfqwvC4hhBBCCCGEOFSO6UBDr9Pg6bJEoc3p5Z2Hz0GrUVAU5QiOLFxxZWsozADYUlTPOXM7l0DMGpfOFaePZMGqEuqaneyreqICny4r7rNIZNdlIRD8BF9Vg5/2R5qlkhhroqajpapepyGuoyWq5yDahw7Evhv4rorKm/F4A4waEg9AepKVr1aXsrqgmpE5cVxwwrAe388//3cVtU3OHtfy+jqvbzHqGJ4Vd4hfwaGRmhDF3T+azmfLi0lLjOLqM0dhMoT/c01PtHLNWT2DiHuvncHrC3Zid3qpbXJQWWfH6wswJN3GlaePDB133blj+eFpIzHoNEdddxchhBBCCCGE2J9jNtB4/sOt2F3h0+jjbSZ0EW7cGlqcvPL5DvwBlctPGUFaYtRhGeP2vY18u76MmChDWNHNCcOTwo5TVZXTZuYwfXQqv/i/hWH73F4/bm/vYcP8aVls39vI7rJmzEYtN14wjn+9uanXJTf1za7Q1y3tHt7+ejfzp2XxwPOrIh5v0GvweA9u+Y7Vosfu9HL8xEzG5CXQ3OYmNjo4k+CJtzby+coSAE6els0vLp/Ept11PPbGBgBWbKki2mLglBk5YdeMVF9DIRgC7XPtOWNIjDUf1NgH0/TRqUwfnTrg8+JtJm66aELocUlVK/98cwOtdg+7y5qZPqbzmmbjMfufACGEEEIIIcQx7pi8m9m2p4H3FxWFbUtPigr7dLqrB/+3OtTGdGdJI0/ddfJgD5GaRgf3/mc5nghhxH/e3cyyTZXce+10Plqyh1e/3DngjhZajUKUWc9HS/agqsGb+duumEpirHlAy0+izDreW1QYNtOlq8BB1iLR6zQ8cstc0hOjKChu5Ed//AKHy8dpM3M4flJGKMwA+GpNKTdeOI7Kuvawa1R0e1xZ105SrJnK+vC6I3MnpbNiSzVeX4Ds1GjmTso4qLF/Vzz2xobQEpSHX1rLq386A6P+aGtQK4QQQgghhBADc0wGGu8tLKT7LftZx+VhMUUu/lhR23lDXFVvxx9Q0WoGd0lKWU1bxDADgrMIthTVc80fv8DlDj9Go0B/8gh/QKXV3rmMRQV2lTYxbXQKx01IZ9mmyrDjxw1NYEtRQ9i2UTlxXHH6KO58fEmvz9M95+g+C6Iro16Du8tsDq1G4bYrppAYa2bF1iqeeX9LqBvKFytLeowRgq13Y6IMxEQZaLF7MOo1ZKVEhx3z6CvreoQZAIs3VHL1WaPIz4ojPzvuezM7ob1LK2CP14/PF5BAQwghhBBCCPGdd0wunI/q1rVi5thUzj5uSK/HnzYzN/T1ydNzBi3MqKxvp2BvA35/gJE5cSTH9b3coXuYAaDT9f4t02oULEZdxK4dGgXGD0+ktLqNsupWoi0G8jJiQvu7hxkAu8tb2LanHp22/+/HBScM7XXfb388HaupM0TwB1SeencTdz+5lIdfXNujDki709v9Erz6+U4efWU9LXYPaYlRuL0B/vH6Bi6+62Pue2YFbQ4PTa2uHuft88rnOxiaEfO9CTMg/N9DQowJry/Qa5gmhBBCCCGEEN8ViqqqA1vLcBRbtbWKz1eWUFjeRHNb5+yEy07O58ozRvV57va9jfgCAcYNTRyUsS1aX87/vbaeQEBlYn4S910/i/KaNm55dP+dQ/QdIUZGopUWuztifQiA5Dgzz95zCvc/u5J1O2pD2ycOTyQtyYrL7WPZ5qoB3cxajDp+cOoInvtoW2jbsMwYMpKsLNpQEXasosAPTh3Bq1/sjHitjKSoXtvPHkparYI/QnHRfZ695xRSjsLOJgP1xcpiSqvbmDsxg5G58RGPUVWVH/zuM+zdwiGrWc99189kRE7k84QQQgghhBDiaHfMfExd3WDnoRfXROyS0dIeOQDoal8HjcHyybK9oToYG3fVUV7TRnyMKawYaCQzxqRyx1VT+dur61i+uQpDHzM0apucnH/HhwS6LQPZUtTAxt31/RqnXqeEdQJxenx8u76c4ydmUNvsICPRyo/OHsM3a0vDAg29ToPVrOez5cW9XvtwhBlAn2HGydOyj4kw46Mle3j6/S0AfL6imH/dfiLpidbQfofLywPPr2bbnnpirEa6v/PtTi+vL9gV1h5YCCGEEEIIIb5LjplAo77ZGTHMADhlevZhHk1PqQkWthc3AsGlIZ+vKGbmuDSMei0Ot6/H8YoCs8ens3l3Hbc9tpi9Va0AvRbn3Kd7mAH0GphEW/TcduVUNuyoZcXWKgKqyg3nj+O9hYUU7A2OVVVhT0ULeypauOOqqSTFmbn/2RU9lod4fYGIM0diovSgKLS0e3rsO5xuumg8E/KTwm76jwZ7Klr415sbcHn8XHvOGKb1s6vJrrKm0NceX4CSqraw1/b5ihK2FAVDrKY2N4mxprAONgBRvdSUEUIIIYQQQojvgmMm0PhmbVmv+zQRWrUebjdeMB6jQceSDeXYXT4+XraXhevLI4YZEAwS9hXFbHP0rCXRXwkxRlravfgidCOZNzmTySOSmTwimevOGxvaPnNsGoXlzfzq74vCjv98RTE7S5twe/peshJvM9Lu8OILqLTYD3zsBys7NZqYKCMT8hM5Y3bvNVSOpL+/tp7ijrDqkZfW8toDZ0ZsLdzdrLFpLFpfjqpCXLSRkblxYfs13S7R2BIeNk3KT+Lac8cc3OCFEEIIIYQQ4gg68nf6h4DD5WXB6tKI+8bmJbBiSyX/eXczmwvr+iwYOZiizHpuvngCri5hgMM1uDf7UWYdE4Yl9QgztBqFWy+dyPXnjev13GGZsT1ukjcX1vcaZijKvvNi+Ped83nhvtMH3Gq2LydOyQwrohobbeSl+04j2mIIbbN0KfSpUeD0mbk8eNNxXHbyiEM2jkOta6Dl9vojBk+RzB6fziO3zuXnl07k77+aR1y0KWz/6bNymToqBZNBy6xxaYwa0vm9HDs0gT/eOJt4m6n7ZYUQQgghhBDiO+OYKArqD6hceOdHEW+gk+PM1DY5Q481CvzqB5M5YUrW4RxiyF9fXsvijtoTs8el0erwUNPowO704HAdWIvWrgx6DbPHpbJ+Zz2tdg+KEpztsY8tysBNF03guAnp+72Wy+3jtS93sHhDJfUtzl6Pu+7cMWQmW7GaDQzPjkOrUVBVlfPviPw96U33+h0aJfh65kzI5NZLJ1Kwt4Hf/Wd5aGnR3ddMIznewjvf7KbV7mFzYXidEJ1W4bUHzsRkOHonIi3dVMH/vboenz/AVWeM4pL5+Yf0+v6Ayt9eWcfSTRXYoozMn5bJZSeP6LWFsRBCCCGEEEJ8Vxy9d3oDoNUoTB2Vwupt1T32dQ0zIBgQvL5gZyjQqG928sZXu1CAy07JJyGm71aqB+vXP5zCcePTURSYMSYNTUeL2Evu+rjHsQEV5k3KYOXWatz97Ezi8QZYuL4y9LhrmKHRKNx6yQQCarBQaozVGHZufbMTh8tLwd5G3vp6Fy6PD7vT16MGh16nwdullsei9WUUlreiUeDik4azdkctTrcPW5Q+rNtMX6JMuh6vcdroVO69dkbocUu7J6xOyqpt1fzqB5O58+ppLNlY0SPQCKjAUR7XzZmQwdRRKfj9ao92wwer3enlgedXsm1PsB5KS7sblycgYYYQQgghhBDimHBMBBoAd1w1lTv+tYQ9FS37PVbZtz4CuP/ZFRRXtQGwu7yZv/9y3qCNEYLhy+zx4bMj6pqcuHoJLBZtqGD66BRWF9QM6Hm6z8wACARUHnxhDaoaDCWiLQbGD0skOzWayrp2vlrTex2SfVITLNQ2OsK2FZYHa0AEVHjz690DGuc+DpcvLHu4+sxRnHv80LBjhqTbMOg0ocKoI3OCyyicbh8ZyVbmTcpgdUENHq8fRYHrzx+HyXj0/4gP1gySFz8tCIUZ+6zbXoOqqmH/BoQQQgghhBDiu+jov9vrJ6Nei8sTucBmd1X19tBNXUlHmAGwtx9hyGCwWvRYTDocrsjjX11Qw9yJGSzdWNGvCQcXnTiMUbnxrNhaRVWdnYLizpvafSGH1xegsdXFwvXlAxqrTqsZ8DKY/uh6SaNBy/nzhqLXacOOSU+y8uBNx7FscxW5adGcNDWb2kYHdz6+hPqWztoo588byo/PHhOa/fJ9FaleTE2jg7pmJ8lx3/3WtUIIIYQQQojvt2Mm0ACIjzZSWWff73GBgIqqQqvdHX4jrddGPL7d4cHt9Q/achSzUccffjKTNxbsZP3Ouh77tRqFmy4az2Un57NtbwPV9XbeW1QU8VrjhyVyxemj0Os0DM2M5boHvgztO5CaHN0pvUQqWg0k2MzUNvdea6M/YqwGJuYn8ZcX1jB6SDwl1a2s2lqDosCpM3Jwe/00t7mZNTYNgK/WlIaFGQDvLyrighOGfe+LXnYtmNqVyRD551wIIYT4PlpbsZkWVyuzsqZgMQzu0mMhhBCH1jETaOwobmTb3sb9HwjkZ8ei0ShYTHpiogy02IN1Hkbmxvc4dummCv72SrBo4/nzhnLduWN7HHMojB6SwP03zObX/1jE7rLmsH1nzM7FajFgtRhIS4zi3n8v6/U6mwvrefOrXVxx+ki8vkBYgHGw5V/1OoVTZuTy/EfbeuzzByArNfqgAg2FYJ2MReuDRVPXdFtm836XEGfT7jqeu/fUiKGFQafpNZz6PmloidzRp3tNFCGEEOJY522qxrlnE6ac0ejj02ld9zmu8p1sdzfz30ANTq2GT7d9zkNn/h69LvIHAkIIIY4+x0TbVoDC8uZ+3bDrtAr3XT8bCNaRuP+GWcwal8bJ07L55Q8m9Tj+1S92hFppvr+oiJZ29yEdd3cP3zKXUd3apa4p6Cx2+shLa9le0tTnNaobgrNU0hKjuOjEYUDw0/oxeQkHNKbcVCsP3jSbh26aw/8+KYh4zJB0G1nJ1gO6vtGgwWrWDah+p8Pl4++vrWP+1CzMXepkKArcduWUQ15g87vIoO/5zzs22tijxasQQghxLHPu3UzZv2+h/vOnKf/PL6l6/c80fPk89oJlZBdt45clDYxsd1PmqGfJkzdgL9t5pIcshBCin46ZGRrDs2L7dZzPr/L+okKuPGMUAEMzY/ntj6b3enzXaftGg3bQP/nX6zTcdPEEbn10YWhbTaOTxlYX8TYTmwt7LkkB0CgKAVXFoNNw6oyc0PZrzhrND04biV6rwR8I8OXKEt5bVERNt8KewWsAihLWajU5zszdP5pBepKVv7+2Pmzf0AwbeRmxpCVGccbsIbzz9a79vj6jQUt2ipXdZZ31StyeAG4CfZwV2eptNfzgd5/i8QZQAJNRx69+MJlZ49IGfK1jUaSaLOfMGXIERiKEEEIcGX5nG42LXgubpuoq3hJ2TExA5ayGdorNcTyVYuarrx7h5ynTSD3zp4d7uEIIIQbomAk0Nu6OfKMfSUl1a9jjxlYXtU0O8tJjMOi1BAJqqKDkLy6bxBNvb8Lu8nLl6aMOS9eM3LSYsKUwABV17cTbTIwbmhix40lAVUmKM/PQzXNYu72Gv7ywGq8vgMcbYNSQeH537QyizHrOmpPHog0VEQONC08cxtvfFIYejx4Sz8O3zA09drq9YcfbXT5+flnnrJb+vDduj58rzxjNFytLWL65stfjdFqFgEpYgBLxet7OIMTt8TEiJ66Po79fxuYlhLWyHZ4Vy9lz8o7giIQQQojBt6exhMUlq0k12hj59bsEWsPbuqv+AEq3SYxLY824tMGNVUYdOwq+JfH4y/HUltC8/F1Ur5v4k67CnDOGgNdN28avQVGInjgfTccSFV9rA67KXRhThqCPSz0sr1UIIb7vjplAYyAzJ2aNS8ffsYzk76+tZ/HGClQV8jJsTBiexIeL95AQY+J3180kN83Gn3923GANm6WbKthR3MTUUclMzE8Obb/6zFH8661NAKTEmxmaEQPAvMmZvbZwNeq16LUa/vPu5rDaGdv2NPDxsj1cdvIIAK47dwy//fcyPN7wWRF5GbHodRq8HW1R9y1Rcbi8rN1eQ26qjRVbOpe/dK1f0Wr3UFTeTLRFj8vjD10jEluUgduumMItlS1U1vdexNVi1NHu9Pa6v7uASp/P+31z+akjSIw1U9fsZPb4dHLTbEd6SEIIIcSganA0cd+3f8flc6MLqNzT3oBfq/BWso1GvZZZzU6mVTvRd2v2NbrdjT4AxSY911U1Yw6oFP3zOvwomDpmd1S9/Ht8BhOmuDR8NXsBcO7ZSOqld+Ntqqbiv3cScLaj6I2kX/UAxjT5EEEIIQbbMRNoDKQDyT9eX8/fX1vfY/ueilb2VARnb9Q2OXnhkwL+8JOZEa9R2+SguKqV4VmxB1yTYNnmSh5+cS0AHy3dw19vnUt+dnCGwakzc8lIjqa6wc64oYmUVLawbmcdxVWRW8vqtAo/u2g8/oAasZOJRulsYToiJ56n7jyZPz63ktLqVvR6LecdP5S5EzOwmvV8tboUo1HLlqJ6bntsMS12N9UNwRkd+dmx7CptxmLSoaDw4z9+wZyJGazbXk1ZbWc4MSwzhsLyFnQaBV+XAaXEWxiWGdsxjrheAw2fXx1QmAHBdq0p8dKOdB9FUTily/IjIYQQ4mgScDuofuthXGU7MOdNJPWi21B04TWwVFVF9bjQGPv3d15FSxUun5scp4fT69sxB1TeSo5mZ5QRgI+SrOTZPaT6/WHnjXB6GeH04lQUzKrK1igDr6fE4Ffg4tpWprQFa6jpPC68NXvZ91eVc+9mAByF6wk424Nj9rqx71wpgYYQQhwGx0ygURthCUVv+tvtw+X28e26MtrsHk6cmhWqp7G3soU7H1+K0+0j1mrkb784nuRuN9KVde089e5mXB4/V505inFDE3tcf1eX4p6BgMrusuZQoAHBGRI5qdHc9s8lVNS19znW9CQr44clAXDF6SN59YsdaDUKiqIwJi+Bs44Lr52QFGfmX7ed2OM6k0YkM2lEMtc98CW1TT07lpgMOl5/4Eze+XY3b329GwjvPrLPnspg8OLrlq7kpNq47Z+LSYmzMCInjm/Xlff5ugZic2Fd2HIhIYQQQhwZ7uo9eBuqsO9ahbuyEEPqEExZo4kaNhmNyUrbxq9wVezEVbIVAGfhWvY+8kPMueNIOucWdNHx+FobqHrlPryNlZjzJpF66Z0o2vDAw1G0AdXnxZgxnJo3H8JavYdfGfWkuDqLuCd5/JxW3872KCOlZj1OFPxu0Bp7jtvc8UfiZwlWfB1/T3iV8L8ruj4y544DwJCUFXaMIVk+UBBCiMNBUdWDbeZ5dKhusHPbPxfT0u7BqNfg8QUG3KY0I8FCTbMTnz94YrRFT5sjOEsgOzWax359Ajqthhc/LQjdzAPceMG4HrUJbn7kG0pr2gCwGLW88qcz0WnDF2xuLarnnn8vI6CCVqNw1zXTmDk2vKDl12tK+cfrG/Y79gnDE3ngp51LY/z+ANqO51u1tYqNu+sYPyyRWePSI56vqiqfryimYG8j+dmxvPDJdtxef4/jzjt+KD85byzPfrCVDxb3DDL2R1E6A6XEGBNNbS78h3CVyPGTMvj5ZZOkbasQQghxGKmqSuPXL2LfsRI0GnxNNRChf5nGFAX6aBo2VBPwgTUNjDHhx+gTs/Dbmwh43ODvnK1pHjqZ1Mt+i9IRMNR/+Rytaz4FQBefhq+xqs8x+oAv4qM4rUGL32fEoKtD6eUzkH9mxlFpCoYn8xrtnNEYPqPUE2Uj7bhLgjU09MFkpL1gGY7C9ZiyRmKbdEqfYxFCCHFoHDMzNFITonj8tpPYW9lCbroNvVbDXU8spaS6rd/X0Bt0oTADwOnu7BJRWt1GY4uL3WVNFFeFFxXNSo4Oe/zipwWhMAPA4fbjcvuxWsIDjbFDE5kzMYPFGyrwB1T+8foGnr47AVtUZ2eVpLi+p1hazXqGZsZw66XhLWf3hRmbdtXxwH9XA/Dx0r3cd/1MpoxM6XGd9xYW8d+PtwGwcH05CTEmPK3BQOPc4/PweAMkxpjR6xUef2sjE4YnkZYYRVUfNTAi6Roy1be4Ih5jNmpxunuGKf2xeEMF6YlWrjh95AGdL4QQQohO9p2rcFfvxd1mxF5SjSEhkeQT52FKCdb9UtUATYvfwLF7LZ6a4v1eL+Cy077Xjs8JPjc0F0HyJMKCBW99WcRznUXradu6GE/5Ttp3rCDg6vwbZH9hBgT/6D2r0Y6rFZp2QlQa2DomVhgzR+Au72zXenFtG++k2HArkOP0hF3Hr0Dm2bdgHTYlbLt19HFYRw9e3TUhhBA9HTOBBkBstJFJIzoLaz5++0k88/5mPlyyt8exuanReHwBAmqA6gYneq3ClaePpLC8hdcX7ESnVUiIMVHTGFx2kZ4YxXsLd/PxsmIg+Is3JyWaMXkJGI2dswE8Xn/Y7I19fvbwAm44fwI2q4EJw5NC2xtbO2/q7U4vtU2OsEBj/LAkJg5PZOPu8Ard+7Q7vSTHWXqtHbG7vDnscWF5c49AY+mmChauD//joaHFxR1XTmHM0MRQ8c/3FxXy3IfB0OPrNWU89pt5fLqsmE+W9Xx/D4bVYsDp7rncpTdx0Uaa2jqnlu4saTyk4xFCCCGOZa0bv6Jt49foEzJIPPW6UL2K9q1LqP3gH7RXQluXFaJVn3zCpH/+HW/dbmreeRQCvX8Ioar0mAVhTgjOzPC5wR65znmv5zctfgN/cy8nKRpQ9z/t02gDnRkwpmIZnkXUiOlYx59I67ovaFjwXwj4SPf4uI0U3KXbe5xviE0lasiE/T6PEEKIwXdMBRqRXH/+eNITrTz9/hYMei3XnjuG4ydmEmXuXIPZ0OLEZNARZdYzY2wacyamc+e/loTCjMkjkvjFZZP4yYNfhc5RVSiubqO4uo1Plhdz/ryhXHfuWN75pmeYAdDc7uWRl4MFQK85azQXnzQcgOMnZrC1qAGA3DQb2SnRPc79442zWby+gk+W76W0uhW7yxe2v7aps35IdYOdT5cXExNl4Nzj85gyMpnXvtyJx+vHoNP0CDPeWLCTlz/fEXHMj76ynlsvncjJ07MB2FPRWZDU5w9QUWvnnLl5LFpfPuACnn2pi1C7oy9NbW4sRi2OjlkdG3bVsWxzJceNj7y8RgghhDgWtG7fQfFLr+CqrCJ+2hSG/uxGFI1m/yd24aktofqdf2OvAb9nF/Wbyxh+6z14W9twlAQ/xHCHT0zF19pG++5CWhb/q9cww14DzoZgcBCTAygQ6PjzRdvxuY3OGJwh0duyD+i5r9cwA0JhhqqCvRr0lp7LWfZdU2+BtLMvIOWUk0Pbo8cdj6euGMeuNSgmK9ZxJ+Iu6xlo+JuqaVryFvEn/KD3sQghhDgsjvlAA+CsOXmcOjMXjUZBG6FgZPcOKc1t7rDQQK/TsrO0qc+WoJ8t38t1545l6ebK/Y5nyYaKUKBxxuwhZKdE89nKYlQVtu5pYHKXWSYQ7FYxb0om86ZkUtvo4I5/LaahtaPatlbhnI76HW6vn7ufWBpaylHVYOeWSyby2K/nsX1vIyNz48nqFpis31nb6zgDqsprC3Zy4pRMNu2uZ0hGDIs2VBAIqCTGmBg9JJ4Yq5FTZ+Tw7sLC/b7uUTlxbO9SCDXsNRJppW3/ObotUSnY2yCBhhBCiGNWxQcfUfz8/0KPa778CtuYMcRPHYfq86KPTe5xTnthEaWvvoanqRl9bAzx06bhzDXTrijE5gR/C7dXFrLm2htQvV5ixuZjNoMhGjxdQg2NyUTUkFxavvX1eA4ATzu0lgS/9raDVg/RmcH/766vMENVwecCVEJtVpfaTBzX6mJ/5b/t1WBJBl2UAa0uuGREJfj3hkOrpfaKs5k8PxhmBDwuWtZ8Quv6L/G3dsyIbW+mYcFz9PYXirehYj8jEEIIcTh8LwINAL2u/59Y5GXEEG8zhZaDTBmVgsfb9xRGq8XA4g3lNPRSF6L79bvaUdLIovXBX4zLN1fyz9+c2CN42Cc53sJTd51MdaOdXSVNrN1Rw46SJibkJ9Hc5g6rS7GzIzzITI4mMzny9cYOTaRgb+9LNNRAgJ88+BX1zcFZE+fOzSM/O44Jw5OIsQaLYI3Mjev1/H3GDU3kwZuOo6nVxdX3fxG277SZ2SxcV457P+9xf2kUmDKiZ52Q74ttexr4eOkeEmPNXHH6SEyG780/cyGE+N6o+XJBj23VH/6X9mVtgErMzPNImH91aJ/q91PwxwfwtnQmE6+b9rCzzYRuVCI/rG5htMODKR7ayoOzLlt37EI3OhpLuoa42dNwle1Ga4km5ZyrMSYlEXf85TR+82LwYlo9+L34CavjCYC/SwkKV2NwqYmh488SY0oc3vomfG5wNUFMNiha2OtNJKnFTtue4N8fSprCN1OsbLaZsQRUJre76UvC6OAMEOh88q/io2jQa9lj1tNWv5JxraeSYUul9oPHcOxa3fMiXje2KafjKFqP1hpPwNGKt7ESNDpMOWOw71iFKXcsGqMZ1ecNFQcVQghx+MidTgTRFgN/+8XxrNhSRVpiFFNHpeD1BZi8roz1O2pJibdQ061N7MnTs/nbq+sJdGlTmhBj6hFwmA1a9lS2cP+zKzhzdi7/fHMTLV1+Kfv8KuW17b0GGgAmo46EGDPPf7S0YyZJNW0ODz+7cDxDM2MoKg8uDZk1Lq3Xa+xz5ekjSUuwUN/iYtOuWrbuCQ836ltcYYU81+2o5frzx4UdM2tcOr/+4WRe+LiAhtbIgU5dk4NPl+8lN7Xn6/piZel+x9lf86dlcfrMXEbmxh+ya36XNLW5uO+ZFbg8wRkrbo+fmy6Wdb5CCHGsMWdk4CwPnyVgMLXS2vEr1e/9gLg5l6AxmnE3NNC2c1dYmNEUrWVnbrBGlk+jsDAuitEOD06vBgh+wBCbBwZTsMi5t+RrdKjQDu3r3sfTeAK2cfOJnno6eFz47c0Uff4fVmwqIbfehd4EGhdoLCYSTpiEv3w1BPy0lnYJOBRItTShMweXpmi0sKI8m6KEbPJPOB3ry48AwUAjUKWy1Rocr0vb94dUirIvzAhXZdBRYN23Q6XdEywq6q7Y2fNgQGuNI+74y0g8/frgGNxOXOU78DZW0/Dl86AG0EYnoHqcBNwOUDQoBhNJ59yKdcT0PscohBDi0JBAoxeJsWbOmdvZilWv03D/9bNweXxoFIU7H19CYUdwMG1UCpPyk3hjwa6waxgizApxevzsqWhhTwVs2FmHPxA+jdGg1/LRkiKSYs0My4rtdXwNLa6wZTGl1W1otRoe/NlxLN9cic1qZPro1P2+TkVROHl6Tmi83QON7q1vs1KsEa9z4pQs/vlG7+1lqxsd/PudzZgMA1vbO1Czx6d/b8MMgIZmVyjMACivbT+CoxFCCHEoqYEA9UuW4XPYGfKTazEkxNO8aTOuiuBy16ZdEOiYHeFsgTwV7CWlbLrjLlSXO6x3utETQOtX8WuDizf0xihq83MYOfsqql9+G0dZOTpzZ8Fwpcuyi7Yty6l9eTnGlGQmPPoIelsMitHMbp+VEYWdH2x8M8XKziEmAqZibr7idlKbmvDv+B94gh/kaHTBOp77aAwwY/YUzrrwYuJsJjZ+kYSvNRjCOM0KAY1CdADGdvkgSGOOJuBspz8LV09osrPHrMel1TA5Lo/kkkJKX/8rqr/z96YuIZ2oYVPQxSQRNWImWout87mMZgzJOTQsfB1XYwBFCwYaOt4fQA2guh3Uvv0w+p/8DWNK7n7HJIQQ4uBIoDFA+6bvP3TLXLbvbSAx1kxmcjR+f4CJw5PYuLsOCP7NcMn8fFZurWJ1QeQCVl3DDEWBpFgztU1OthQ1cN+zK/jdtTNIiY8iNrrnxwyZyVZG5MSFlpWU17bxxcpixg5NZOXWalQVUuMtZKfaepzbm/PnDeODxUU0dtTnGDs0nvJaO81tbhRg+thUfnHZpIjnqt2Tj164PAHmTQq2qj3QmhlGvRZ/IBDWYnef/Kz9L385luWk2RiZE8eOkiY0Cpw6I/tID0kIIcQhsve5/1L18acARA39hgmPPkTdosXs/se/gM4wAyDghE233401Pz8YZgCoKhqTCa9fxeJ2M2tTO8smWlE1CrVqgBFn/5xYcwyxd95GaUMpy176PTPsHW3otYbQ1Ip9RULdNbU0b9pM4uzpVL18H9rNRaHn9yuwdZgJVatB4/fxzNrXUL1u4maYOWWljxiPH0ueDkNqLp7qQlQVPM5Y8s8/G0NHd7WRd/yabb+9FdUfID5T5VclDfw9O56q0VNRNSbyZ19KVHwaropdNHzxHI72Jt6MVigwKYxqd3F5bRv78hI/UFOlcM3KBjxWLZOvOIWmz58OjVcxWkg85cfoYlOp+/Ax/C47ikaHbcpptG36Bmf5TlBV2guW0bTdRcAHxiHQ2yKTqpd/T9ZNT6A19z7jVgghxMFT1P7eiYr98gdUymracLi8JMVaSIoz09zm5qr7Pt/vueOGJlBW205zW/iaULNRxwM/nU1+ds8bdbfXz52PLwktMQGwmvWhjiMp8RaeveeUAb2GdoeHz1YUY9BrOWNWLm0OD1uKGshNs5Gb1ns48tyHW3l/UVGv+/fRaRWuOH0Ur3+5A19AxR8hlNifCfmJbNrV2cZWUYJ1M64+cwwXnjgMAK/Pz3sLi2hpd3PmcUPISIo8s+RY5PH62bangfgYEzkDCLSEEEIc3db99GZcVdWhx9P++yyepiZW3H0HFnfk36cas5mA00mFKZFyUwp59nISE21QVcaSiVFsGB0VOvan067ipLzZANz55YPUVBYzpt6Fz2ZkVt6JaD9+j6j2AM66Lk9gNpH/06tpW/Y0DbvA09y569P5Ns512Unw+qkw6clwefEr8HqKjW1WE1pV4ce7VRqdzRSmGZiYnMnZl/05dL63sYqy//wi1EnFrcA7yTY2RwcDj/yEPP44/zdoOqZ5vFfwOa9t+SB0/sU1rUxtC84YeT7GxhkLOpfcRGUlYkvr/FsCrY68u96g4vk7cFd1/D2jaIg/6Soav34hdJijAQgEW88q+5l02jBqKmnzf0RmzP6XAAshhDgwgzv//3tGq1HITbMxekgCSXHBzimx0UZ+esG4HkVJuy//9PlVLj5peI9q3063j89XFEd8PqNe26PgY9f2qTWNDirrBrbkwGoxcMn8fM47figGvZaEGDMnTM7sM8zYWdLIh4v3H2ZEmXVkp9p486uduL2BUJiRnx1LWoKl32PsGmZAcPZstMUQCjMA/vPeFl76bDsfLtnDb59cissduRL7scig1zJpRLKEGUIIcYyxjRoV+tqckY4+xkbBnx7sNcwACDidlJmSeTnjdFbEjSXa70SpKkMBhpV0/m5UVBXef5K6L18LnldVx5WfNjJ7iZ1Znzei+9c7WFoDmOKCHUtCbUacLgpefQufRodWG/7cU9tdJHn9aIAslxcNoFfh7Prg3ybzVrcQtbaWrG0exq1x8oq/nrItX4dmfdZ99h8I+FEJLigxqvDDmlamtgbrauxq2EOzs5WAy46jcD0+R3h/WV2XJR+NhvDBaSzhH3TYpp5J+44VBNxdWserAZrXfB1W5NRghfZKaNzZ0R62Bmo3QsN28HerU7qpuoC7FzxEeUtVz2+MEEKIQ0KWnBwGZ83J46w5eQQCKmW1bdQ0OMjLiOFPz61iT2VwdsWciemcO3coM8akUljWzCMvrw3Vr0iK6/1m/6ozRvH7p1fg8UbuA//12jKuOmNUxH2HyiMvryPQj4kWdqePPRUtPVrn7iptPugxNLd7KKtpCxVT3V3Wec3GVjeNrS7Sv0ezNIQQQhx7ht50I1F5ufjsDlJPOwVVVfG2dM7SVIE6fQzJ3pbQY4AScyqqosHms2MKdHb9SGtyM7+inZpoHWMcbnKdblpXv40hYxzztrgxdwQlej9o9MEioYoCxAYnTdg77tObXa1YFRVbFnidwRv7XXlGTNEKhGcMACh6IwnmOLJqGkLbElv8GD0q5Z//B1PJDpLOvhmfsw2vEgxBusp1ellrM5NoiceqKpQ/fwe+pmrG6PRsGjuK3fYaJqWO4Xg1ntbCHQD8IDqV5RM8TNlmJ3aIkfjRZgxJJ6PRGzHnTaR52du0rvowOD6DGdXnhkCAQGt5WHkOnRGsGdCyJ9ietqUkmO34PdBaBnEdn624FIUlsRbcfg9ba3fKLA0hhBgkEmgcRhqNQk6qLfTJ+V9uPo7VBTUk2EyMG5YIQGpCFKkJUbg8fhauLyM3LYaLTxre6zXH5CXwr9+cwE8f+jpiTYrEGNNgvJQwdoenxzaNQq8hR0q8hap6e9h4R+XGsb04WA/EZtHT6vBGPrkPFXXtvP3NbqItBqaPTmFPRfAPumGZMSTH938GyNHK7w9QWN5MXLTpmHg9QgghBkaj15N+ztlh2zIuOI+Kd95DBdbZRhDnbSPZ28LamJF8kzgFfcDH7MYtKGqABkMMVcZ40tzBAuAKMHaRg+mpYE0N1urUmaHosQeIb1DDfk9rDYTNIlXMnV/HtvlxrQbVBr6OJnBDi9wsybEyBdACdo2CU6Pg1Wh4J8FEg7OJ0jQDsbuDMyLqYnWM9LhJ8fhp3fwtL8cZ2BjjxWVN4qQmB6e2elB9XkAhYeRszkpK4YzhJ+At24GvKbgMx+Tz8nN/PEmX/B5FUdj78A9CY8wsKeSK2x/Dt2Uxvm9fx1OxHU/FdlJ/8Dv0sSm4y3cSAF5LsbHVauK2EpWEgCv02rtSA8ECporSOVEFQO34bEkF3kyx4dRq0CoahicM6ed3WAghxEBJoHEEWUx6TpicGXHfydOzOXl6/wo6pidZuWpGLi+vKu5otBYMMuZNzuS0mbmHZrB9+PE5Y3jync0EAioGgwZFVXD3MmMEoL7FiVan4PN1fPKj1/Dgz+Zw/3MrqKyzMzInnsUbK3o9X6FnLfPJI5L55xsbaOsIQuZMSOf+G2bR0u5m5tg0dPtp8Xa08/sD/OGZFWzaXY9Oq3DHVdP61ZZXCCHEsS336itJPulENvzyN0xu3YkG8Cg6vk6ciqpocGu1bI4ZxuWVCygzpeBH2+Majmpw1ELiqGDnkdgcL61asFd2HuNzBWdf6M3B2Rld62joOv74cDd1btMEYFqLi44mKkQFVN5JtnVpmwqLp0aTMXYSW0s2M97s5tKOZbLVei0rytcHD1IUvo6P4vzz78VUXoghOYe8nDGha3jig+1SUYODMCRmoHQkLzpbIt7G4IvQ2hJIj06hweWic04L+JpqMGWORBsVw1ZcbOmoz1GkU0noWJHj94KiV1BUFb8nOAMlYSToTGBOBGc9KFqwpgeXofgVqDJqUYAfTbqEofE5/fhOCiGEOBASaBwjLrl0AtOmZVJQ3ET+sMQ+W74eaqfNzGXOhAxU4N6nloUVKY3E4w2EPfZ6Azz59kY2dtTGqG3qPcw4fmIGtU12dpQ0h21fv7M27PG6HbXcefW0/r+Io9zeylY27Q6+Pz6/ysdL9/QINBZvKOebtWVkpUQzZWQydpePqaNSMOp7/vEqhBDi2GHJzCD78kspfekVINhiVaFzhoVGDZDjrCHHGbnrGgRnIeg764MSnR6sD8G+WQd+sDen4y+uxOcK76gSiQrUmXUMdfnCtmpUlUBH4JBsSyZx9glsXFFIkc9IS6MDnaKwIM4cdi2NosEcl4Y+MZvtdYWktFaTYQu2pjckZ5Ny8R20b12MISmbmJnnhc5LueROGr95CVSV+JOuCr6ucSfQtuErAq52dDFJWEZMR2MwkXbF/exe/iq4igF4L8OGf08rOU1enEYNQ/U+UIJLTmxZnWMzJoAtOxho7JvBogBJbh9Neh2Nzr7/JhJCCHFwpMuJOKSu+P1ntNp7LkHpTqtRwtvW0p8O8gPzw9NGcNLUbFKOgeUZDS1Orn/wK7y+YBh0yvRsft6lhe7eyhZ++X8LeyzzGZUbz19untOjbokQQohji9/lZMMvfoO7OhhabLUO4dvEqRgCXs6pWUq6u77P8xUNJI0PX17RWgr26sjHG1NTic424igtwdWoEPB0+QWk0WA57xQSzjqVne//FXNTHbH+AJaASrlRz6rMdFSdgSuOv56E+Ezu/+bvFDWVEKU3MzNrMl/vWRZ8Dq2BKIOFS8eew+ysyfz2q0cob61Cq2j4zXE3MjVj/AG9V97mWuo+fgJPYyXW/OkknHYd9j3FoNXycu1iVpStZ749QHpdDWUmPaUGDY1GPQkeH5fXtIU+DfQHehZ53ycAPJsey0Un/pSJtkx0sckoGvmAQQghDjUJNMQh9e63hfz34219HvOT88YyYXgif/7vaqobHIM6nnibkSfumI/VrB/U5zkc1m6v4aOle0iKNXPtOWOwmPS4PD6a29x8u6qE177ejUrPcOiZ355MakJUL1cVQgjxXWffuZqa9/6Pus1efPYDv47WCJaU4OwLTxvEDoX6LaHVHGgMBgKe4IcW0aNGkn35pUTlZeNuaGbTr25nXzXzjIsuIPfqKwFodbXxxZM/Y4qzs3tIvV5DojeAeehk0i6/B1/AT3V7LfHmWCx6M+srt9DucTAjcxJGnYEXN77DgsLFuP2dH5jMyJzEb467YcCv0dfaQOuGBTQvfSu0zaMZQ/OGbVgzwJiUjClnLN7ib0L7P06IYmlcFGPaXVxVHaHKKcGJLJqOX777Zmq0Zo8gtr6KgKMVY+ZI0q74AxqdIeL5QgghDowsORGH1IUnDmPG2FR8vgBarcLWonqeeHtz2DFRJh25aTHMGJPKB4v3DPg5YqIMtPRjFggEO5xU1LYxIid+wM9zNGhpd6PRKERbDEwdlcLUUSmhfeW1bfz2yWU0tYX3iesaZsRajcRGGxFCCHHsqvn4Oeq39gwzFG1nocr+8LuhrbTzcf3WzjDDlJ7G8J/fQtmbbxNwu2nbuYttf/gjlpxsxj/8IMN/eSu1X32DOSuTrMsuCV3DZoomqjUAXT5XsHoDqICvKdgmRafRkmlLY2vNTspaKpmUPpZUaxIAO+oK+XjnVz3Gum/JSXcNK1bRsGo11mFDST/7zLB9jYteDwsyIJjBGALbSBoXnKWCWotz+zfouqx6ifEH3wSv0vtsx0KLniynF0uXX8LRpTtDtc3c5TtwFm0gasSMXq8hhBBi4CTQEIdcRpf2qBlJVhatr2DrnmBrNq1GYWhmLG6vn6/WlPZ2iV5NHZXMTRdNxGLSUdvkoLy2nUdeWtvr8TqtEmrlCsGlG1+uLMFo0HLajByiLAZUVQ0VEDta+P0B7npyGTuKG1EUuPWSiZwyI7yo2Cuf7+gRZnT36ysmYzLIP3MhhDhWVX/xJVWLIy8nUQMRN/db1zBEFxWFxmhkzB/uZcfDj6L6grUxHCWllL35DnWLl2CM02KONtG66gNiZp5H5cef4aqqItufSb1uL0aNirtdywd5URRG6TmjuZ3xT/6UtNR8NhsCPGcvwtbuZ2MDXH32zWSMnoAvEJ7IJEclcHzuTC4cfUaP8dZ88Q6FT74KQN23Cyl99XXGPnA/1rwhtDmaeWTPAiqHJDKh3c35de3BWiP76l50WTqi0QffO0UT/JCgxBhMY3ZZDCyJMTOh3U2lUUexSc9Ih4dKo45PE6KY1eLkrIbOVKn7XxbaqJgD+0YIIYToldzpiEGlKAp/uXkO364rY29lKzPGpDIkPYa9lS3Ynb6wY0+fmcOusmYcLm/EpShXnDaSy08dEXo8xBzDkPQYahrsvLuwkHanl+4LqKKMOiym4B8iXp+fu55YGrr2C58UMH1MKqsLarCa9dz3k5kMz447xO/Agflo6R52FAfb6qkqPPfhVk6ZkcPWonq+WlNKRpKV1duq+ryGQath9JCEwzFcIYQQR4C3tZWifz/d+wGHcFFx++5Cttx9L5P++XeMyUmdOxSFinffQ6OHuBxw7a3BtXctjWuWU724DICEsZDYsR7SovcxY3E7sbPMHN/YDrThbKpjXXI00Ro9py9rJa3BR/GKB7D+6T7GjBnNiUNms7B4BWnWZH57/C0kWxN7jM9TV0rdZ6+FbfPb7ex85FEm/O0RPtj9DXssweUeW6xGzqpvw9DL++NzgaHjsxkF0AdU9AGV2S0O3BqFx7LjMWoN2BwOFsZHBX9RKwozW129vn+KwUzrui/Q2ZLQ2eR3sxBCHCoSaIjD4sQpWZw4pfNxSryFWKuB5vbg0pHxwxK5+ZKJAGzaXce9Ty0PHZsab+HH545h9rj0iNe+eH4+F8/Px+cPsHJrFX99eR2BjuqYF5/cGYA0tLjCgpKACiu3Bqudtdo93P74Eow6LQFVJSPJyvjhiWwvbmRMbgInTcuipd3DyNw49LrBL+rV0h6+pEav11LT6OAPT6/A4+v7IzejBoZnx3PTpROlw4kQQhzD1ECAHkn+IAq4XGz/819wlJSitVhQ/X4C7uBMQa0Ruta89NaXhbqp6rosN9HoIaHVz9AGT9gUBodWQ5tFy5unxTOm0MnJq9toXLOWmLFj+Nn0q7hx6hVoNL23YPc112GMUdHowzuwuKqqKfjTg/i7FNLOcXnDwgxVDbat1ZmDLVr10WYgWPPDroENMWYmtLk4ocmBOaAyo91L7JX34XvxD7QSoF2jsC7GTGyXlvX7alqFHnuctG9djLehgoxrH+nP2y2EEKIfpCioOGIq69r5clUJ8TEmzpo9BG2XUuHfritjbUENo4bEc/acvAFdt93pZfueBlITo8KWm/j8AX7xfwsprW474DGPyo3nzz87ju3FDWzf28iE/CRGRqjP4XB5URQFs7H3zNAfUGl3eLBFGXosealusPObxxbTavdg0Gu490fTWbypkq9W971M52cXjuPM4wb2fgkhhPhuUlWV5edfPGjX10VH42vr/J2pMZnA7yIqBQL+jg4ood6wkDhWQW8Kbti3ZMNRBz6tCVt8cPZCe3WwTse3c6I5M2An1hegRavh4dyEUDtXgOvfqWPHvDxKh8Vw9cSLGJcyss+xBjwuKl+4B2d5MR67hubdXcJ/jYZRLz/NA9/8jQp7PTNbHJxbbw8LHOq2BEOZ+HwIGKMoiYvB1lDD/1JjqOv4XZ7t9HJTRRMAitmG6oxcILRPigZj+nDi5l6CZeik/R8vhBCiTxJoiO+VNoeHFz8pYM32GhJsJtpdXirrBlYS/obzx/LMB1tR1WCNjr/eejzDsmJD+x9+cQ1LN1UCcO05Y7jghGGhfQ0tTj5fUYKiwNdrSqltcqLRKEzMT6S13YPL7eMn541lyqhUXG4fdc1O4m1G/vjsSgqKm/oc14M3Hce4oT2n4QohhDg2+RwOVv3gqrBtURlgrxj4tQxJSfja2wk4naDTYs3LwpKTR+2CYLcPRasl/eIL8Gx/G50peI6zHpo7ansnHj+HoTdeS/nTvyDgDP/gIPmSe6lSPDR++An6CgeJ06eTfNG5/OL9uzE72qg3aPFqNKFsxBjQMKFOz+qU4OwPi97M8xc8SrOrlS8LF2HRmzlj+InotZ1TP5rWb6B500aisuKJn34chU/9j4ZlKwCImzKZ0b+/B4DmjV/h2rUWT30pvqZgi9uAH1qLwZYDXr3C0xmxVJh6dkdTVJU/F9XR+zyRcLq4VAJuJwFHS89r6Y3k/PwZNCbpQiaEEAdDlpyI75VoiyG0tAXA4/Xz8dK9rNhSyY6SvgMDAINOQ2W9PTTD1+dX2ba3IRRoVNa1h8IMgBc/LQgFGt1reOwTCKis31EXenzfs6v46QXjOGtOHo+8tIbiqv3PKDljVo6EGUII8T3Tuq2gx7YeYYai9GtZit9hD4YZgE7vx2orpmltcWi/6vcTlZlGYG/nOfqOOhMag4G8G36CzhpNxo8epOr1P+Nrqu48LiaO4Sm58JvODh9un4emgIumjuAg1mQjPzEPh8fJJWPP4u/LnwVXMNBwel14/V7u/+bvVLXXAlDaXMktM38EQPPmLRT88c+hWhZj/phH/q9/Sd2UyRAIkHTCPAC21+3m7eZtRGUkcNUpV6MufY+2bRtxNnqJGdqGAhREGSKGGQCmgMpTGXH8qKoZS6D391QXl0ZU/lRMWaOpef8fwW3xGRDw4WsOhiiq103A7ZBAQwghDpIEGuJ7zaDXcuGJw7jwxGGs31HD7rJmLEYdtc1OdhQ3UtVgZ0h6DJnJVuqbnZw5ewgajcKny/YSUEGn1TAmr7O4l9sbXo1d02X6bPcaHn15+v0t1DY6+hVmDEm3cdPFE/v3goUQQhwzwopz9iZSmNFRoLMrv73z95PPCfU7QO1Si0IfE4Nt3ATcu/Lw1ASnZaj6JNA0EPB4KPzXE4y86w708emkX/Unat//B96mamKmnYkxJbfHELw7V3MDibzrqabeoCN7UzUzNhSRMHkyI+bkYtFbaHYFl3SoqDyy5KlQmAGwq6Gz7XvLtoLO16mqtO3cRez4caTMP6ljU4DaVR/yl+IvcHU0UnV4ndx7zs9JPgfaNn1D3cdPADCu3U1aaQNvpNioMupBVRna5qFaq8MepaXUrMGh1WAJ9N4PN+nMGzHnjqP6jQfBFwxlfI0VKAZT6M2PnnASuph+fP+EEEL0SQINITpMHpnC5JEp/Tr2wZvmsL24kQnDExmWGRvaPiQ9hikjk1m3oxaNonDjBeNC+xJjzeSm2SiuCv6BFhdt7LXtakCFosqeU1T3+cVlk2hzelCA02fm9mvMQgghji2K5gALP3cJMxSdhuhRo2ndsjXsEF9759faKAsT/vYwxrg40q95AHvBMhSjmcq3XyBxdAB3CzSuWkP77kKiR+Sji44n/ao/hl/P4WTvc8/jqqomflwy7j0LyQNu1en50KdnzrpgoNK0dh1FX39BTZfwAmBL7Q4sejMOb3AWyZT08aF9rsrwrl/mtLSwxy0rPqBq8au4hnTOZGxwdM7KNOdNRDFGobrt6IBUj58Latt4IyeNXweSsY4Zw927PwsdvyzGzLn17T3asoJCzKzz8Tta8TZVQ7f6WKonWEck8cyfYpt0So+zhRBCDJwEGkIcgDF5CWEzM7q67/pZtDs8GA069LrOlbY6rYa/3DyHRevLsUUZmDMhnd1lzWzb00C0Rc9jb2wMHZuRZOX844eyaXd9aFtWspXxwxK54YJxfVZ6F0II8f2gj7GhGAyoHs/+D44g64KpKFHDKX35tT6P89sd6KKDRbY1eiPRE06idf2X6JQ6sIDeAl6ngi7a2us1Sl56mdqvgvU4tJ4CTB1d0o0+L8ne8GCmbOVS/CP9PQIBh9fJZWPPIcOWSnp0Cp/u+oZh8bmovvA28Dpr+DIOd3UR0f4AU1qdrLOZUVA4d2RnoKCLjifjx3+h/Kmfh7bpVZXGgIfUqWfQvvoTzjEl8pbaQEABS0BFAep0Gqz+AOaOgEjRG2nb8CUtLjuKTo/q8xKJt7GKiv/eBapKwqk/xpTZd8FTIYQQvZNAQ4hBYO3odd9ju1nPWccNCT3Oz44jPzuOirp2dFoFnz/4V9Hs8WlMHZ3Kn386m7U7apk+JpWxvQQoQgghvp/0Nht5N1xH0eP/PrALGPOo/erbsE1aI/i7TB5UgXazhhVrFzB7xqk4SsrR2aLxO8I7fKScMBtzeuT26gCe+rpgW1Q3uFsIBRqKxUbdsOHElW4mqSEYABg37Gai1sbGfFPYNRQUThgyi5a6an775UN4VB8aRcMvTzgXzfoNBFwuovKGUL98Ja3bd5Bx4flojUaiRs7Cvn0ll9S2Mc9rJPeye0hNyO58jarKyrZy9GNnkLR1FR6NwieJ0eQaY6l/+xFUn4dJwHCtgh+FGH9w2UqrXhuspdGx3CXgcYUymN7CDIDWDV+huoMFyatee4DcX/0XRRe5bocQQoi+SZcTIY4Sqwuq+XpNKRlJVn5w6siw2R1CCCFEJKqqsvOvfwt19BgslQla0r1+aAVFq2HozTfQtuJ5NIoHrwOUxOPI/9WvI57rd7ZR9vRtBNrr8XvA7R9G7hXn42upxesw0bB2Cz6fj5ZVa0LnbBlt5puJ0WHXGZk4FI/LRWtFKfUxnbM6zh15CpfmzMdVXcWOv/wVb3MzAMknncjwX9wCgKtiF97GSix5k9BGxQDQ6mpjQ9U2NtdsZ0nJagDSTHHkp+SjAhemTsD1ygM9Xo8KBBT4v6z/Z+++46uu7z2Ov84+Odk7kJCww5aNCAqKiqKoWLVVS9Xauq3a1m2d1dprHa2jrVtxLyiIgiKCyhQIe4+EhOw9TnL2/ePAgZAEEvZ4Px8PHz3n9/uuc8K9OeeT7/fziaOL18gleaUYgLoiiGjXpPlemiYwCe81kuQJd+2vo4iINEM7NESOEUN7pTC0V8rRXoaIiBxHDAYDPe75M5UrV1E6bz62+HhyP/6EgLflpJUHwtEQgJ1VzgM+P0UzZ1Oz0Y3JCj43mCNWtNi3bv1C/LXBI5QmK8R2sOCrKcOU0Is1dz8Afj8rutrJiDARU+ujwWpgaeewJuOsL90SfBBtClU0gWCgwxoTjb+hPhTMAKjbtrskiz21O/bU7qHn83J+5sVFb+MP+BvNUdBQwb29ziPeEcfLC9+mX0Q4nWsbl3evNRoID8DdFzxEtNfM+huCR1XqbAYqUuPI7NaRzt2GYbTYqVnxPfVbl7MriGGwhRFwNU4Q3pC3vsX3riW1a+fhLsomvMep2Np1aXN/EZEThQIaIiIiIse5mH59ierZg5xJ72OOisZTXn5Q45nCHTTYTFjKa/AaYXMHG4PX14fu25KTCPh81G4OBhkie2Q26v9D9iJeX/ohqSVexv9UBXUQlQ6OJHDlrsOVu45AWHfwBwMKnfLdlMaayepnp53NTzc8LAmYmuTR2CW+ykenHS6GjL6I3iSy6v6H8NbWEpaaSv2OYO3ahJEjmu3r9/t5ZfGkJsEMCO6f8Ph9fLVxNgt3ZLEo2UF6lBlrAFLcXjo7PWx0WPAbDNwcmYTDEkbqhEvIW/I/PhkWR7XFhMm7nRvXOhmQeQb1W7MajW80W/HtFdBwdO7f8g9ip4DPQ8WPn+GpKMAcFU/VwqkAVC6aRtrvn8Uan7rfMURETkQKaIiIiIicAHZ8MYX8/007uEGMkHL++aSMPYflfwgeIQkAgzbWE9fbjrPUTETmKXS+4XcAFEz/GqPZTLsLx4WGqF7zI/9Z/SFeApw6v4xATXC3SFUO2ONhV3EWo68QW1IiruISopx+opxuutW5SeoO1EGMx8fs6HD85sZBDQPQyZLAb04fQ8pZZ7Pq/oeoXrsueM9iYd7pyRRaXZgi1vK072JMpsZJR/0E8PkbJxLdJUBw90bhziorAYOBHIcNgE3hNn6M2b0zpPuWnxjf4xxSLzqHZZVfU20JzuMzGFhSnUf6N2/uHjcQXHni+Nvw1pTh3LQUjCbCuw0ios8Z+/2xlM/9iKoFU3a+AXscSfV52Mrxca0AAMt9SURBVPHG3aRccT+2nTtQjBbbfscTETlRKKAhIiIicgKoy807+EH8wRKsVct3HyGx+MEaH0fPp15r0jz9V1fgddaT+9EneKpriOmdStXCSdA5EYx77a4wGLGndsVduBGA8MyBJF12Ecvv3J17w7BHwZaODR4M0XtNGAgQMBhYEl5JTEwRNwDe2t01ZgMeD2sSfdTbrVC1g9eXfcRV/S7mtSUfUlRXwnldR3Nm59O4buAveXPZxwRomkpu5ua5XNJzLAvzsprc23PHyKay7NCakt1ejIEA/p33U9xe8PsadStcGqDTvX0wmM04ugzEGBaB0RxMIu6tKqFoyvN4q0qIHnYRMcPGN5rWU7pjj/eg8c6SgMdF8dR/4asLlnuPHnIB1uSOhHcfitHW9OiOiMiJRAENERERkROA2W7ff6NWcJeWNrnm6NCBdU/9HYC6rdvAaMTevh2uwiJcxcUEfMEv72XzrST2gsuLq5mSGMnPw+IZt9CJwe2l02+vIenMM6hZ+T1b83ewzAIUL8YeZSa22ovfABE7C6X4feDJCTCioJasng5qwnfusjAYiK72UhVlZva2eUzs/wvSr76Sjc++gN/tJndIOvX2htC6S53lvL9iMgvzlgHwnyXvkZnQmbHdRnFW59P4cNVUvtwwq9Frrfc2cEpKT+ZvX0JO1Q5aMrB9HwAsce3odeplXLN0KqsibWRg5ZxTLqZ+2wpcucGdI+5aCPjA53JR+vnfqd+ShSk8hnZXPYI1KZ2y797BlbcBgPJZb+PoOrDRMZLIfqNxbvq56SJ28tVWhKqtVC0KHkepiE6i3dUPY4ndb6ZSEZHjlgIaIiIiIieA8E4d992gaYGNVjFYLFQub5r001VU1OSar95N0QpIMbj4U6qPno/+E8utKVQv/w5PWR51GxZRtGge3gXraFcD1Q4jUc7gjgNbKoTFBcep3AIxlV4G4KVHjotXL43H6g0wYK2TongzVVFm/IEALq+L+FOHMeSdN/C73XQ01DP1m6fw+r0YgAszxzBj05zQ+gKBADXuYJJPi8nCb/r/gjq3k++3zQ+1SQqPJyMmjb+dez//nP86i/OyCOyVy8NhsTO60/DQ89jTr+D8069g5JofKfnyFSoLPwJT8GO23wuVW6HDlb/EU7SJ+i3BnR++ukoqF/6PpItuJ+BxNxp/7+fhPU7F1qEHrty9EoiazFiiE/HWVRJw1Te65a0qJu+1P5N63dNYEzs0+VmJiJwIFNAQEREROQGknHcupT/Np3rt2ib3DBYzaReNAgLEDT+H/GlfUzL3h1aNG/B42rSOgDcYN6nJ9lI8ZxGO5ADFX02iJg9iu4DZCHE9oHwjRFbtcXyiEnztwQR49sibGebyc/MnJZj8YApAUayJshgzQ/uOIiYseCbF7HCAw0EqMbxy4V9ZU7KRDlHtSY9JxWaysaZ4Iw1eF3FhMYRbHKGxC2uK+SF7Ueh5SkQifz/3AUxGE36Pi1OXL+biqkq2hVl4p100bmMwf4XN1DRPRe3qHyn53wu7L/iCeTqMZuh+61XEnfELCjY33mVhDIsIjpfWA+fmZUCAsK6DsMSlUPDRX2nYvhZbanfaXfkX4s++jvz3HgaPK9Q/vPdIfJUleMoLmv9ZeBrIe+NuwjOHkjyh+bK6IiLHM+P+m4iIiIjIsc5gMtHnqceJG3Fak3sBj5e8KXPI/Xw2K+59kLKFi5oZ4dDLfvtdtrw5hapsMFl257M0GMAWCW7L7p0Phe2SyE1KYVmkjcqU3Yk8nRFmJo+L5ZuzotjUwcon58ZRE2FmWd4KKmrKKflxHnnzfuCurx7l6k9v59UlH5ARnYbL5yYQCNAjsQtxYTEAlNdX8pfv/oF3Z7ChoLYEX2B3rguryUKYJXh0p2b5d7SrqsQIdKn3MLR691GWawdc3uS1Vi6Y3OL7YEtJZ93Wn7l72dt8FR9Omc2CpetAYk+/goDfR+VPn7Jr+4ynNJfqJV9TvyWLgMdFQ/Yqtr90C5bYZDLueB1LcqfgexgWhdkRTcP2Nfv+Ifg81K2dR+5rd+H3uvfdVkTkOKMdGiIiIiInCGd2DuULFjZ7b1eeC3x+/L7df+XHYAjlX2iLyJ498NXX4K/agacefA3Nt3OV1OAKh/CaYD5LgzE4XZ7JxNRzoukdlcFFnUZz6uBhvP/mTRTZrQzo6CfW7sM08nIeq/0er9lIYaSF4kgzflMwCFLhqeXb158ldc56NmTY2DEiuFtjyY4VrN2chdNh4oyMYfx+8FXk1+w+HlPncVLjriM2LJrE8LhGa61z73Fsw9D4735mk5VYexSX97mQ4emDQtfza4rYUV1IbGQ0xuLd7R3dhxLwugjrPAB7Wg++/fCPuCPM/BAbzg+x4dw0ZDQpDXUUfvI3AnsGGvx+Av7GiT99NaUUfvp3EsfdRNyoX+EpL8C5YTFVC//X4s8nEGhc9dZdvJ01/7qeqFPGkDrsEkzhURgM+tumiBzfFNAQEREROUE0FBbBXl+G98eamIi7uLjZe5YI8NYHE1rurW7bJhIyfZiSgoGK6jxwFjZtFwDM9eAOQNk6sEaBpxbCnT6MvWC73UVCZi+mbvyOL6ODVT+yIu3cl9KeQHok3o27v3Sb9viCbgwYsGVtAqAkdo+PtAYDAzY4WdoznB9yFtEvuScmgym0E8NuthFjjwIgyRFPlCWcqNwKoup8xA/uFRomqv8Y6rctp37bSkxpmdx0+X0YLTa2V+7gr3P+hdvnZmTGUN7O+hSv30tCWAx/zByCo76O2JGXE9apX2ishtx1JDqdEBGc1+APkLp+OXmrXmoUzGiosuKtisIXXoXBYifg2R0lcuVvIu+1PzaqnrIvhr2LzADh9U58C6exfeE0PEYjFkxEDz2f+DHXtGpMEZFjjQIaIiIiIieI6FP6EtYhjfrcvOA3WqMRfPv+Aux3u8FsBq83dM1oMeFIjaA2u6rZPuaoKMzmanalkjAYITo9GPioL9ndzmcI5r0w+YOBDXcdeOp2jgF0zHfRefFGlr/9e5afkwKJwXteo4F1WbmM7TuePk4vqx1mrH4/l5bVkGeKoTgunrNHX47hx7eor8qjS66L5ZkOfCYDNpefbttdeOKMLM4I56XFb+Ow2HGYo7CYLdx56vUYdn7bt5qt3FGZSfXsGQDUr1/I3521nJMXRpQ1nDX9M6nu1o2xXUdhtARf7BNz/kmVqwaADaVbQnlWSxsqWV1ayCl17lAJ1V2siekMJwJ3aQ25NgvnOFKxZM1ulKPVXQsVG9zAVmo2bCXtsouhch6+6mDVGVNYFL7a8hZ/joFAMNZhauWne4vfD/ipWjiV8B7Dsad2b11HEZFjiAIaIiIiIicIs8PBKc88Te3mLdhTUljzt79Tv2XrPvt4KyuDgY89+D0+6otbzrfgra6GsKbHGuyxjQMabguE7THMnpsGAkB6vot2ZcFASpd15axPiCZgMBBV6yNhawVr/vJXLu6WzPkJJYQHAtj9AbqFu+n4mycBcD3+CPlTp5FmtdLJ4mX5j1/TvsRDjNvP+Q1OlgQc+A0GnJ4GLu99IRdkjmnyWgLrt4Ueh1U1kDk5i/pKH/WAb76ZaefHsSB3Gf8c9ygGDKFgxq7XsIsxECDB6STg8VLw5YuURTk4pV1vfsxZjAEDJaeeiamigJvSh0HOWqq3rWu0Dt9eb7e7spaut75C3fqFBPw+6nPWULs8WGLW5wJnSTDhqCM5GEgqWx/838S+TU7L7NfeVVVERI4XCmiIiIiInEBMYWFE9+2Dc/v2/QYzQpo5ppI4ehSFX81osYu3fmd51c67v0DX7FUbNsy7+5kB8LM7I70BqIgy0aFkZ0Ajz01mdgMRTj8D1zuxe4I9azcXkRKzR+DEt3sniS0+jk7XBY9LZADhK2fj9rmwx4HZFMAcCODe2TE1ql2oX/ncD6le8jWW2BSienajZsMGIFhGNrZm946WhEovBAKUOsupaqghITyOPkmZrC7eEGpzbpczcHob6LZ8Ae3dwbV5/X6em/8a7aKSKahpfJwn22rirs4jqF7ydehaQ2XwzfE5wOQMvklJY0bjc9ZQOe8z3MXbMdjCgODxnrJ1uwMg3gYwh4HXGTzOcyBpMewZvfbfSETkGKSAhoiIiMgJaPPL/zmo/oUzvsFos+F3uVps01AOpfUQnmrDYI1kvbuOruyRWNO/e1dGnd1ASUo4HbNrAfCY4MeBkRgMBjrmu9mRaGFTup3MHV7CXHWhIQxmCxH9zqBu1XfBId0NVC6aRsyw8U3Wk3r5NZRMfwX8PmJOu5Rfp6WyvmQz/dv1pn+74Jd2V+FWKn/6LPi4YAu15cEdFwEDFMSaiGow0K4sGNTYmGEHg4EucRmhSikPn3kn7634gtyqAkZ1PJXTdiYIdSYNIHfyc7g8TiYnRoLB0CSYYXX7qV23lnp/UuhaZTbU72yWn2RmwYhIHA4rp0RHU/rt27iLtwfX56on4A8GMvbczeGuCe7SiO8J5vAWf1QtSjj/RiUHFZHjliEQOIC01iIiIiJyTPJU1+Ctq2P9/z2Lc2srd2gcBJPDgb/BSUQqGC1QkwcEwO/Z3SaiXx8KsjcQVu0hLMqGr8FFXqqFT4fHNhkvptrL8JV1dN/uwhwVSbc7bidu8CByX78bT9Gu12Mg/Q+vYY5s2t9XV0XA58UcFd/seht2bCL/7fuCbd3BXSbumqbt/AYojzKSM6YXN1z9AHazrcX3wOusx1VURKnVxfdTn8Lq9fJTjINS6+6/HUbXeLnqmwqsrgAmK0R1gspNwR0Xe3r9ojjO/rmWjgVuojpBeGLj+wE/lK4J7pABiGgPkWktLq2R5Q4rPZ1udr2SiH5nkjT+ttZ1FhE5BmmHhoiIiMgJomLpMtY//Qx+t5vwzp332z4sPR1rbAzVa1ZiMDQOQuzNEhuLp6Ii9DyqXx/Sf3UFm/71MvYUJ46E4HV7NBSv2N3PmphA/eatRDqDg5ssLhJ6QBIedlQ6WRFmJ7zGi9dsoDzGQmWUmRmnRRFfVc6ACy4gbnBwB4TRYm12XZ6aGtxl5YSltsdosWAKj27xNQR8PvKn/0DZ5ggslloi0poGMywRwRwVMenQPs5P5sbVmJ21ENV8QGPH1C/JmfQ+Abeb2EwDZ0QH/1bYs87N/3WMxwecH55OrzUFeF3Bez43VG5uGswAuGtTOV4PBOLAsVdMZlfZ2/ieUF8WDCCFxTUdoyX9nW5sQ8ZhDYA1PpWoQee2vrOIyDFIAQ0RERGRE0TeZ18Eq5YAda3YnVG/fTupF5xKmG01Bvz4DEkUL2pawjV2yCDSr7qSVfc9iN/lwmi30/0Pt2NLTCBp9Cgq532C3xvcNeCuA4Mp+OW7vmcqvvPOxPT8e6GxXJXBZKLbw8x0q3MzbKEbf7mbz8bEhNoEjAbCfzGOtPG/CF1LOOc6ir74B766KmJHX4k5MpbazVtY/fBj+OrqiOjejT5/fQyTreWdFEXfzaZg+lcAuAke0TA7gvknAAxmiO8BVTkQtjOYYHVA5YIpJIy9vsl4ZYsWk/3GW6HnZuvujc/RPj8On58as4nkzasIr3bTqPbJXmVVAUw2cDjA0BG8rqb5MKoKTJgNPhp8FiKTfdisfjDbgo13sdgxmi3464ORGnvn/kT0Og3nhsWEdT6F6MHjWnx/RESONwpoiIiIiJwgLNFRu58YDMHIwX5UL56KyRTcKmAKNA1mAFSvW0/p/AWhaij+hgYKZ8wkoltXcj/5DPxQV9h0h0ds0Q4Kl35CtBEMO3cjBAJGFp06hillwW0c7c1uzp/npSDBEupnNBjZkRFJgN3f+23tu5J+W+O8IAXTv8ZXF8y3UbtxE5XLVxI3eCC1m7dgiYnBnpzUqL23eq/tGMZIYrvWUJMHFgeEJQSDCGF77YwwmC00p27rtkbP68t2H//YFGahxmQkwe2lU70ba0JwZ4a7BmzRYLZDxaady7BAZJoBe0wAo2lnCVYPELZrnSaSL7ub9kk9KFyzlYyMJKLap+BvqMVoD8ddkoensghHx74YrXYAPJVF+OqqsLXrgsFoIuqUphVeRESOdwpoiIiIiJwgOt/wewJ+P+7yCtqNv4DqNeuoXr+e+pztLfbx1DRgigk+DmAkWIukMV9tHTs+/bzRtfXL5lG54GvSdlZIaXJcxQDhKdCzwc22DpE4ijxYY2MwX/cLvt70CWG+APV2I/nJVopjTfhNu7csGDxepq/7loSwGMY1U2p1F2tc4xwa1pho1j7+JJXLV2Awm+n+pztJOG146H7S2WMo+u57GvLzCeuQRuc/3ce6x/5KQ2UhUelgsgaDCbaoncc7LBbsqd2IGT6h2fnjhg1hx+T/hRKn+n3gT0hlU3pnAmnd+JMtisjJL2PbGZmJTN3d196xH7GDLNRtWIo1IZGYM66kfNZb+BvqqNnup6HSQMrINCwRdmJH/QpH5/4AdDztlNAYprBIAGxJ6diS0hutzRKTjCUmucX3TkTkRKCkoCIiIiInuJ+vvxF3aWmz94xWiO4IRjM4ep6JKbYTOW+/S8DrbaaxMVTiNbDzv5bqY8T3AmtEsHnJimDAI7JnDxZlWuk+bSVmHyztEcaS3uFcN6WUr06PIae9FaM/wLifqnDU+9neK4E/3PR3zBERzc7hc7nY9sZbOHO2k3TmaCK6d2PFXX8O3Y/q05u+Tz7eqI/f48FdXoE1Pg6j2Yy3ro7KrMVUz30p1MYc246ki27DntajhVe3W31+PrWbthDepSOWSBtgoPDDx/GU5ePoOoiowedT+Onfwdc44mNJTKfDDc/j97gwWmz8kL2Ij1dNJdLi4Ma+vyQtKhlLZOR+5xcROZlph4aIiIjICc7RIa3FgIbfDRUbwWA2kfq7cUR26Uzq+Avwu91sfP5flC1YCIEABpuNsOQknNtzQ333DGaEd+lE8lnDyf30K7w1lfhc4A5AbcHu3RsNBYV0KvNjDlZFZdD6ehLLvVh9cNHcSkpizDhcfiKdwaBJxJIiir6bTerFFzW7dpPNRtdbbgo9d1dUYLRaQ3lE7EnBIyee6mpmz/qE7+s3EpGaxm3DrsFuDn4MNoeHE9O3D9VzDQRDNGCJTsCWmomrtAyf04ktIYbCT/+GK38L4T2GkXTxHRiMJgDC2rcnrH370BpKv3kTT1k+AM7NS2nIW98kmAHBpJz+gJ8Xl7zH+pItlNUHE66WUM7bG/7HY2f9qdnXLCIiu2mHhoiIiMgJzlVaxtZXX6dy5Sr89fUttjPHRNP74YewxMRgiw+Wz3BXVlK7cROOjhl4KipZ89hf8dXV4TOAaeenSJ8BOv36Kjpc9guW3ngrDYWFu8d0gCNhZ5LLiA7UF5TgdzYAwdKoxv18Eu1y682knHt286+rpISNL7yIu6yMtF9MIPmcs6lYlkX+tOnY4uPpeN1v8Hs8LLvrT/jKK/GaYPKZMXQbega3Drum0ViVi6ZS/v374PPu3IkSoK44QHU2JI/IwOjJCbVNmvBHInqNaHZN5d+/R+X8yS2+ngCwLi6Gz2NthIXHUuosb9KmU0wH/j72gX2/MSIioh0aIiIiIic6W0I8PR+4F+f2XJb/8W4Cnubrs3orq1jxx7sBsMbHYU9JweRw0PHa32BPSsKWkEDckMGUzJkbCmYApIwZQ4fLghVJ/B53ozFN9mAuDYDq3Fz8zt339hXMMDnCSBgxguQxZ4aueaqrMdps1OfmEQgEyPvsC6pXrwFg8yv/Jab/KcQOHEBkj0wqlmbhzM2jMmsFvvJKAMw+yMxxUTegodFcnupqAqZEAm4vBhOhYzXhSVBfCs6cHCLa0yrRwyfgKsqmfutKCPiabZNl8RPw+5oNZoSZ7fy6/6Wtm0xE5CSngIaIiIjIScKR3oGut9/Cpuf+ud+27rJy3GXBL9wNBYUMfPmf5E/9kpI5c5u0rd20iZpNm4ns1pX0q65k84svh+65yoPVPUzWpolDqx1GKqJMZBR6cFkMTB8ZTVG8ma47PDx87+sEGlz46usxR0Sw/v/+Qdm8BWAygS8YKLDG71GOxO/HV9+Az+Ui6+57ceflh27tWS2lLt7BL3rvLl1al53NqvsexFffAEZIOgVMexU1cVbYiB+SgbtwG44ewwjvcWqL75vJHo4x4TSKJ2cR37PpWABXF1VTZjbyXHocPuPugzuPnvlHuid0xrzzOIuIiOybAhoiIiIiJ4mA38+2199qcz/XzvwbztzcZu/X52xn/d/+jyFvvkry2Wex+eV/h3Y5AJRtgNguYIsN7njYpTbMyE8DIkj4vpKV3RzktrMCsLaTjYVTP4B3pxHw+TB1y8C3MTvYybd714O7rCyUqDT5nDGYo6NYcvNteMsa73zYFcywd+nIH/70N6xWa+he4YxvgsEMAD9UbIaEPmYMGPD44gnrGE+HX15OTL++zb72gNdD2ex3cRdvJ6LPGUT1H0NdXh6+BihdC4m9gwlXg4wYdlaRiff6GetII6nHaWytzOWsTiPoldSthZ+AiIg0RwENERERkZNEwOvFW1PT5n7JZ4/B63LRkF/QYhtPdTWBQACDwUBkt67UbNgYuuerh8qtEN8DDKbdJzFKY8xc+l0lYe4A/r3KpfinfIdhZ6UV78ZsDLRgZ+Bk+w9zKF66hEB5VYtrbNiSzcYn/0afxx4JXbPGxjVqY7DE0fm+11ocY2+V8ydT/fNXwfFz1mBNymBxiptUA+CC8iKIaw9GA9jTe9KwPXhExmC2cvUZv8cSm9LquUREpDEFNEREREROEkarldRLLmLH5P81uWewWgjPyMBgsVCzdl3ouik8nIIvp1M8+3t8TmeTfsHOBuKGDSXr9jsx2WwEMGCJjcZTsTu4EPAFdyrE9wSvIYPZ/nLWZJjptyW4O2LAeie56eEURxoYlNqPgC0rFMRoMZixB5vLh99Vtd+2VctX4qmuwRIVLImadtkEypcsoXbjJjAa6Xjtb1ox226eij2DPAG8lcWsMJXxzfg44qp9XOmqwegLBl0atq8hdtSVeCuLieg3SsEMEZGDpICGiIiIyEmk47W/Ifmcs8FoxO9qoHLFKqxxcSSeHqzaUbt1K2sffQJPVTX29u1CuzKaC2YYLRDbHcwxiRTNX9DomAlAeDuoKwAMEJFqxrcz6aY1KoquS3OpsodRFW4kus6PwxXgnqgxtL9sAvmfTWZrcRkG9h3MMIaFNara0prAhyUuFnO4Y3cfk4lTnnkaV2kZRqs1FOhoLYPF1ui531VHpDWcLRFmaiPM1ObWEbszoGGwhhEz/GIMzSXWEBGRNlNAQ0REROQkE5a6u2RHeMeOje5FdO7M4Ddfw+esp3DGTLa//2GL4/g94K4Cg7EY/E3v1xWBLQZSzhmEc8NSTDtTV/jrVhHjs3Hm0joAjDYr6VdfRerF46nLzmb7+x82+pC6Z1LPRvPvowTtLrHDhlK7ZQve6hoiu3Wly803YjA1TbppS4hvpvf+mSP3OrJisnBqhwEsLwweLfkkOYpflbvoGJFM/Fm/VjBDROQQUkBDRERERBoxGAyUzP0Bd0UlccOH4SoqxpoQT8XiJU3ael2AwUjABAbfXlENP7gqwdL+NIzbstgV9TAYIeBzBR9bLPR75u+EZ6QHu7gal30FMHTvCLuSggYXCIEWar7uUQUlont3ej1wbxteeVMFn71Izaof8dabSLzoVhJHjmx0P2rIBdRvW0nDjo04ug0movdIutYU0SuxG1UNNQxNO4WRfS/GYGjN/hEREWkLBTREREREpJHtH31C3iefAcGAQ8KI0zA5HM22baiCQIl/n8c9alcvIuHc31I+6w0COwMRiX2gbC343J5Gx1kiM7sTN/xUyhcsBCAsLY0+DzzEmkefwJmdg8FkwtEpg7rNW5udK/mcMdRu2IQ5KpKut94EgN/rZdvrb1GzcSNxQ4eQ/qsrWvU+1G1aQv2GOZitYLb6yP/wXyQMH47BZCLv88lULl9BdJ/etP/VQ1T//BV+Vx2FJdn8Zd7L1HuDuUFSo85TMENE5DBRQENEREREGqnduCn0OODxUDJnLuaoqFCJ1NA9oB4DVXEmksu9mO3ga2g6ninMS8yw8/E3VFH506dgAJMV7HHg8SbgyEjHW1tHfX4+YWlp9LzvbjxVVXhr67CnJGMwmRjwz+dCVVQKvp7J1s2vNrv2mvUb6P/Cs42CCIVfzaDw6xkA1G3ZSkTnTsQNHbLf98HvrG703GgKvvbSeQvIefe94HzrVuHa9i1GXxkAa7YuoD5y9+6R1UUbOKPjsP3OJSIibaeAhoiIiIg0Ej/8VCqXr2h0zVtdTdypQylfuDh0zQCEuQNYqrwUZZhIyfE1O54tJRMAa0Jao+sxg4YRf/pZuIryWfPo3/BUVmKJiaTbrVcTM+RsDBYrDUVF2JODQQ2DwYC3uozE04dTNn8BVStXYbDbCTTsjqI4s3NY99TfiRt8CmZDAX63i+JZqxrN665subTrnsJ7DKd87mf4aorwuSHh3KswmEy4SkpCb0B8D0LBDID2ZSWExaZS7w0eqemTnNmquUREpO0MgUBLBxBFRERE5GRVtWo1BdO/pmzn0Y+ILukkXzCeLf96udn2eyfuNFrB74awDqn0+7+/Y3aEAVC5aBoNOauxpWZSs+I7vBWF1BZaqNnuCfWNSoeEkcPZPm0V3ppaovr0ptcjD7Fh+j/5sXAV0T4YmTaW5LPGM/PhPxO7rYy9xXYHe0zwscsL5cuCjy3xcQx88QXM4eH7fP05pdtwrl9IClbCuvTHEtsekz34GlxlZay85wG8VaUkD2jcz5aWif+S21iav4r06PYMbN93n/OIiMiBU0BDRERERFqU9/6/qF42F7MD6usScOZW43cHE3e2VH3EZIPUyybg95ppP/5CLJERTdpUL/+O0umvAOAsgaptu+/FdgNbnJXCRbsThHb4wzU8Xvgl1eZghZLTC+oY2e5s3ij9gV9+W4ExEFyP2Q4RqWCMM2A37P6Yu2aTkYJYK9WDunD+OVfTu4WdE67Cbbw9/Wm+izACcFZ5HePt7Um97ulG7bxOJ87cXKrm/hdPSQ4AYZ1OIfnyezHuVcpVREQODx05EREREZEW+crXYLJDySogUBq8aDQSO6A/tWFGGuYtwbTnn8cMENW3P9vfnwxAzdp19PnrY03GtcQkhR6HJYA1rT/Va9dhdbiwxwK2OKAw1KYy3BoKZgDkhFsYvHYjZb3tvDU+js75bqLsdi5wlVJgM2H1B7B7gwtb57CyoJedzRl2oITFc17g8TP/RI+krk3WVf79+8x17A7T/BDj4Nytm6jP20BY2u4giNnhICozk/CMJ6hdNRdTWCT2HsMxmvXxWkTkSDEe7QWIiIiIyLHLmtCB6u0Etz/s4vdTsXQZ8VGJjYMZQLuLxlO3LTf0vGrVary1dU3GDevYl4Tzfk9Yp1OIHfkLOt/6Z+ztMiAADbVRJF5yJ2Ed0jBFhJM8qg+JzmISTGGh/h1y3KT27McVNR3olO8mrsrHyB2leID2bh8JXj8+4LPESCYnRlCREdlo/h9zFlNUW8IXa7/mx+w98oKYzMR4d+cC2fW44J0HKJ/zYZPXYbKH4xhwHv9YYGLCvdO5+ZlvqKp17f+NFRGRg6YjJyIiIiLSIl99DSvuvIP6wuYTadoSE0NJMg0WC/2f/wc5777Hpg3LKIk109ETzmmPPElYclKz/Xcp/GYWeR/8m9jOgBGqC+Jx5gVzYxhMkHQKNMTHsXXYOMzZRQxO7EXS6DPIuuNPOLOzQ+NE9wBH1O5xJ8VGMi6/jjmpDlaG2/GYDfiNcEu383g/dz5VrhoArup3CZf0HIunPJ+VU/7BNGMNxrAozs3JI8njBcBoDyfx9v8wed0MGrwuLso8B7vFzl+/+IJ1S6JDcw4ZZOfhq8a29a0WEZE20p44EREREWmR0R6BJSmd+sJVzd53lZRQ2DOJhupq4gxhlMybR7aphg/Pi8NnMmBz+XHffQdDb76D+OGnNupbl7Odra++TsDrJfqUfkSlB4MXAJ7K3Yk+Az7wucFRVc55nYZgHbK7WorRYsEWA2Fx4HFCQyHYI8FogNoGA2d9U4PHCKetquU0anHbTET0tlCz4yOq0mJD46wp3sAlPcdiiWvPoN8+xyBga/l2at+6H3YGNMwxKfxr4VtkFawGYNbmHzEaTTRUJAD9Q2PlVecf+BsuIiKtpoCGiIiIiDQr4Pez4f/+QfXK5oMZu6SsK975qIG8Dz+hqGMYvk7BIx4um5GcBCNpX37VJKCx8dnnceZsB6B+Rz5x3S1AsNqJI9lMVZ0PAgEsEWCygiWxA5aY5EZjRPdKx5e/CYMBwoCqHKjcasLv8uGpCwSThe5RTdbq8hHY4CM+HWITPVTYLAD0Te7Z+LUHAvztx5exJDk4tzyAwxbOmZf9mZy5z4fa+Ang93sxxRXir9qBryIJY0Ql/fraW/P2iojIQVJAQ0RERESaVbtpM2ULFmE0gyU8uAPC79l/v7ia3REEgz9AYqUXe0bTIyeeyt3HWLw1NVSsh+jOYA630+mmOwmYE3CVlrLjs08pWrYFS3Q1bt4hZey5hGekAxA/tC8l//suNE5YYjjtr/4jm//xBJ7a4DWLI7j2XYwWiIyEP26u4HuDnXYZA7ioxzkALM5bzpIdK+kU24GqhmqwmvkgJZoYexTnRicxqH0/vt3yQ6PXYTCAtfPuoE+UY8z+3yQRETloSgoqIiIiIs0qN3soamchtk8w0BCZDkZr8N6i3mHU2Jsr2grxZW7OWVBN301Oxv9QRUqZl7ihQ5q0S7/qV2Dc/XHUUwelq6BiayTh3YcQ0bkTAa+Xmg1bgverqiic/jWr7nsQV1k5AI5O/TBHJQQHMJnJuOFeonr1p/1FYzHt3CixZzDDYIbojsHHFhv0LWpgtjmX4royNpZu5dl5rzInewFvZX1Cv+QewT4YuKjHOfj8Pioams8lsiev37ffNiIicvC0Q0NEREREmpi/fSkvLn0T35mxdK50c8HXlRj3SCVfGWnG5m3aLz/BTG6KlQ6Fbnptawhdr1iWRfzwYY3appx3LnHDhuD3eFn316dCx0+ieu0+/mG0WpvM4XM6Kdm0jrT4EZjCo0m9/h805K3HmpCKJa59cOxLbsCV8zP1ReWUrdnd1xIePL4SWleYmQKbmzumP8JpHQYS2KOcS4foVH7T/zKsJgspkUm8tuQDluxYsc/3zWEJC+32EBGRw0sBDRERERFpYubmOfgCfgC2xlgpjzKRULV750H/DU6s3sbF8nKTLEweE0vAAIv7BLj82wpSyoJRjwDNF9azxgYTc/b562MUzvgGU1gYKeedG7ofN3gQ7cZfwI5vvsHoCp53qbMbWWouZVdqUJMjuKNjb+2ufIiy7ybhadhK9bYqjGbwOqGuGKzhUFsJHw+PAcAX8PHT9iVEWMOpdddhMVkY3mEgTk897634ApfPzbqSzft932Lt0SSEx+23nYiIHDwFNERERESkidiwmNBjszeAoyEY3HBZDCwa24mYGi+JC/IxuoMBi4TRZ7C+g5eAL/il3280kJ9oCQU0EvZKCLo3S1QUHa64rNl7nX/3W3LH9OJ//3uVmGofW9NsXB0bv9/XYE3KoN2VD9HuSij54Uc2PvcCBKA6O3h/+zVn4vKsadTnkTPvJL+miIyYNOLs0dw47X7qPQ1Nxm7JjppCal11RNjCW91HREQOjAIaIiIiItJEjC1YpcTkDXDh3EocruAOi9JYM1lRtRAFUXdexKiCMMI7dSR20EB8xZv4Zs7zBAIBTEYTIy+aSExmAdF9ehM7cMBBref0jkPJHpXHyqJ1jEzqzpmdTmtT/8QzTsddUUn22++C309E1y788sIbOKUymxcWvEGd28mV/S4mIyaNjJjg3o9SZ3mbghm7WIz6iC0iciQYAoFA8/v/REREROSk9eqSD5i15UcABq5zctoqJ4FIBx+faqE0NljqdGhqf/488sZG/daXbGFj2RZ6J2XSJS7jiK97f+p35OMqKSGyZw9MNlvoeiAQwGBomuT0hfmvMz93aZvmuOu03zG8w6CDXquIiOybwsciIiIi0kTHmNTQ42U9HSzr6QAgLiwG6isxGAyMyBjcpF+PxC70SOxypJbZZmGp7QlLbd/kenPBDIA7hl+PwxrGrC0/tXoOA82PJSIih5YCGiIiIiLSiN/tZs1nHzG6uJoF/SNw2XaXVh2ZMYSucR1JiUikY2yHo7jKI2ND6ZY2BTOGdxjE0NT+h29BIiISooCGiIiIiIS4SkpZes+9pFOD12RsFMwAGJJ6CpkJx+4OjEPt5UXvtrrtVf0u4ZKeYw/jakREZE8KaIiIiIhIyNJHHqHAUEtKmY/SaIiq8VIdGfzIOCx1wAkZzKhuqOG1pR9S5qxgfI+zQ/kvyp0VFNWVtHqcJMf+K6+IiMiho4CGiIiIiACw43/TKKotJqUqWKI1ocrHaSvraLj4DJJSOnBRj3OP8goPj7eyPmFRXhYALyx4g65xHUkMj+fDVVPbNE61u/ZwLE9ERFpg3H8TERERETkZ/JzzMzF1jQvgJWZ05ZYxN3FZ7wuwmixHaWWHV5mzIvQ4EAjwxdqvAQgz21rq0kSkLYKB7fse8rWJiEjLtENDRERE5CRWVO6kps6NuWIpXXasodq7+16dzcDZN9199BZ3hAxLG8D60i2h58V1ZQBc2ut8Zmye22wfAwZi7FEM7zCIHold6J7QOVgBRkREjhgFNEREREROUq98toIZC7MJBOCRxA+ICYMSqwGbO7hLY0N3O+eGRx7lVR5+YzqP4OtN34cCGbuqlMSERXNN/8t4Z/lnACSExWE1W+mR0JmJ/X9BuNVxtJYsIiKAIRAIBPbfTEREREROFAWldfzfe0vYnFsJgCk+n3ss35Pi9tHggm21ZkoiTfS+8naG9Bh+dBd7hFQ31PDzjhUkhsfTL6Vno3u1rjowQIQ1/CitTkREmqOAhoiIiMhJ5o7n5rB1R1Xoubn9FjJjVzOuvA6Hz88PMQ6Sep/Nr0dOPIqrFBER2TcdORERERE5yZRUOBs9D5S3pyBjB684rEQHzPx+wFUM7nHaUVqdiIhI62iHhoiIiMhJ5tPvNvLuV+sAGNQjiVsuO4Uwh5+86gI6RLfX0QoRETkuKKAhIiIichLKLarB5w/QsV3U0V6KiIjIAVFAQ0RERERERESOO8ajvQARERERERERkbZSQENEREREREREjjsKaIiIiIiIiIjIcUcBDRERERERERE57iigISIiIiIiIiLHHQU0REREREREROS4o4CGiIiIiIiIiBx3FNAQERERERERkeOOAhoiIiIiIiIictxRQENEREREREREjjsKaIiIiIiIiIjIcUcBDRERERERERE57iigISIiIiIiIiLHHQU0REREREREROS4o4CGiIiIiIiIiBx3FNAQERERERERkeOOAhoiIiIiIiIictxRQENEREREREREjjsKaIiIiIiIiIjIcUcBDRERERERERE57iigISIiIiIiIiLHHQU0REREREREROS4o4CGiIiIiIiIiBx3FNAQERERERERkeOOAhoiIiIiIiIictxRQENEREREREREjjsKaIiIiIiIiIjIcUcBDRERERERERE57iigISIiIiIiIiLHHQU0REREREREROS4o4CGiIiIiIiIiBx3FNAQERERERGRkIkTJ5KZmcmLL77Y5F5mZiaZmZksWrToKKxMpDHz0V6AiIiIiIjI8eq+++5j8uTJTa4bDAbCw8NJT09n5MiRTJw4kaSkpKOwQpETl3ZoiIiIiIiIHCSLxUJCQkLov+joaGpra1m7di2vvvoq48aNY/ny5Ud7mSInFO3QEBEREREROUgDBgxg0qRJja65XC6+++47HnvsMSorK7nnnnuYOXMmBoPhKK1S5MSiHRoiIiIiInLSqHd52ZBTzvKNxWzIKafe5T1sc9lsNsaNG8cDDzwAQE5ODlu2bDls84mcbLRDQ0RERERETng5hdVMn7eNOUtzqXf5QtfDbCZGD+rABSM6kZESdVjm7tmzZ+ix0+k8oDF8Ph/Tpk1j+vTprF27lqqqKmJiYkhLS2P06NFccsklpKSkNOmXnZ3NW2+9xcKFCyksLMRoNJKens4555zDNddcQ2Rk5AG/rr3l5+fzxhtvMH/+fPLz8/H7/cTFxZGSksKpp57KpZdeSkZGxiGbT0QBDREREREROaFNmbuFN6etJhBoeq/e5ePr+dnMWJDNb8f34ZJRXQ75/OvXrwfAaDTSoUOHNvcvLS3l1ltvDeXgMBgMREVFUVNTQ1ZWFllZWXg8Hm6//fZG/T799FMee+wxPB4PAGFhYXg8HtavX8/69euZPHkyb731Funp6Qf3AoF169YxceJEampqADCbzTgcDgoLCyksLGT58uVERUVx/fXXH/RcIrsooCEiIiIiIiesKXO38MbU1fttFwgQaneoghput5vZs2fzt7/9DYCLL76Y2NjYNo9x8803s3LlShwOB3/+858ZP348UVHB3SQ5OTnMnDmT6OjoRv3mzp3LX/7yF2w2GzfddBNXXHEFSUlJeL1eVq5cyZNPPsnq1au57bbbmDJlCkbjwWUjePrpp6mpqaFfv348/PDD9OnTB4PBgMvlIicnhxkzZjS7g0TkYCigISIiIiIiJ6ScwmrenLb/YMae3py2mgGZiW0+fpKVlcWIESNCz71eL5WVlQC0b9+eW265hVtuuaVNYwJ88cUXrFy5EpPJxGuvvcbgwYMb3c/IyOCGG25odM3n8/HEE08QCAR4+umnOf/880P3zGYzAwcO5I033uDCCy9kw4YNzJo1i3PPPbfNa9vTrt0jDz74IH379g1dt9lsdO/ene7dux/U+CLNUVJQERERERE5IU2ft63ZYyb7EgjAV/O2tXkuj8dDaWlp6L9dwQyA2tpaampqcLvdbR538uTJAJx//vlNghktWbx4Mbm5uaSmpjYKZuwpJiaGM844A4Cffvqpzeva265cHMXFxQc9lkhraYeGiIiIiIiccOpdXuYszT2gvt8vzeXaC3sTZmv916WhQ4c2KtsaCASoqalh2bJlPPfcc0yaNIlly5bx3nvv4XA4WjWmx+Nh9ergDpNRo0a1ei1ZWVlAMLiw566Rve1KUFpQUNDqsVsyatQoPvvsM+69916ysrIYM2YM/fr1w2q1HvTYIi1RQENERERERE442wurG1UzaYt6l4/cohq6p7ct38WediXuHD16ND179uSCCy5gzZo1TJo0iRtvvLFVY1RVVeH1BsvKtm/fvtVzl5SUALt3jexPQ0NDq8duyT333ENOTg4///wzb775Jm+++SYWi4W+ffty1llncfnllxMTE3PQ84jsSQENERERERE54dS7vAfXv+Hg+u8pOTmZ008/na+++orp06e3OqBxoHy+YCBn+PDhvP3224d1rl2io6N57733WLx4MbNnz2bp0qWsXbuWZcuWsWzZMl5//XX++9//0r9//yOyHjk5KKAhIiIiIiInnLYcF2m2v/3QflVq164dALm5rT8GExMTg8ViwePxkJ+f3+p+CQkJwKE5StJWQ4cOZejQoQDU1dXx/fff8+yzz5Kfn8/dd9/Nt99+e8TXJCcuJQUVEREREZETTnpKFGE20wH1DbOZ6JAceUjXU1RUBASrjLSW2WymT58+AMyZM6fV/QYMGABAdnY227a1PcHpoRIeHs6FF17Ik08+CcD27duPSpBFTlwKaIiIiIiIyAknzGZm9KAOB9T3zEEdDnqHx54qKiqYP38+AL17925T30svvRSAGTNmsGTJklb1OfXUU0lNTQXgqaeeCh1BaY7H46Gurq5Na9qb1+vF7/e3eN9ms4Ueu1yug5pLZE8KaIiIiIiIyAnpghGdMBja1sdggHEjOh2S+QOBAGvWrOG2226jvLwcgN/85jdtGmPChAmccsop+Hw+brjhBt5//31qampC97Ozs3nhhRf48MMPQ9csFguPPPIIRqORH374gd/+9rdkZWWFgg5+v5/Nmzfz6quvMnbsWNatW3dQr7OwsJCxY8fy3//+lw0bNoQCKIFAgBUrVvDYY48B0LFjRzIyMg5qLpE9KYeGiIiIiIickDJSovjt+D68MXV1q/v8dnwfMlKi2jxXVlZWkxKptbW1oQoiRqORP/zhD5x11lltGtdisfDKK69w8803s3LlSh5//HGeeOIJoqOjcblc1NfXA3Dbbbc16jdq1CieeeYZHnzwQRYuXMivfvUrrFYrDoeDuro6PB5PqK2hrVGfZmzfvp3nnnuO5557DrPZTERERKN5oqOjeeaZZw7JXCK7KKAhIiIiIiInrEtGdQHgzWmrCQRabmcwBIMZu9q3VXMlUsPCwujYsSODBw/myiuvDOXDaKuEhAQ+/PBDpkyZwvTp01m3bh21tbXExsbSo0cPzjrrLC6++OIm/S688EKGDBnCe++9x48//khubi41NTVERkaSkZHBwIEDOeeccxg0aNABrWuX5ORkXnnlFRYuXMjy5cspLCykoqICi8VC165dGTlyJNdccw2JiYkHNY/I3gyBwL7+z1pEREREROT4l1NYzVfztvH90lzqXbtzSoTZTJw5qAPjRnQ6oJ0ZInL0KKAhIiIiIiInjXqXl9yiGuobvITZzXRIjjykCUBF5MhRQENEREREREREjjuqciIiIiIiIiIixx0FNERERERERETkuKOAhoiIiIiIiIgcdxTQEBEREREREZHjjgIaIiIiIiIiInLcUUBDRERERERERI47CmiIiIiIiIiIyHFHAQ0REREREREROe4ooCEiIiIiIiIixx0FNERERERERETkuKOAhoiIiIiIiIgcdxTQEBEREREREZHjjgIaIiIiIiIiInLcUUBDRERERERERI47CmiIiIiIiIiIyHFHAQ0RERERERE56WRmZpKZmcmiRYsaXV+0aFHonhzbzEd7ASIiIiIiIicCt9vNl19+yZw5c1i9ejUVFRV4vV5iYmLIzMxk5MiRjB8/nvj4+Eb9XnzxRV566aVG14xGI+Hh4URGRpKenk6vXr0YM2YMgwcPPqC13XDDDcydOxeACRMm8PTTT7e673333cfkyZMPaN7bbruN22+//YD6iuyPAhoiIiIiIiIHacGCBTzwwAPk5+eHrtntdmw2G8XFxRQXF/Pjjz/ywgsvcNddd3HNNdc0GcNoNBIXFxd67nQ6yc/PJz8/n4ULF/Lmm2/SrVs3nnjiCQYMGNDqtX355ZehYMaBiIiIICEhocl1j8dDVVUVALGxsZhMpiZtHA7HAc8rsj8KaIiIiIiIyEnD767HXZKL312P0RqGNbEDRmvYQY351Vdfcffdd+P1eklLS+PGG29k9OjRJCUlAeByuViyZAlTpkzhyy+/ZNasWc0GNNq1a8fs2bMbXXO73axdu5ZZs2bx8ccfs2nTJq6++mqeeeYZLrjggv2urbKykqeeeorIyEiSkpLYsmVLm1/fQw89xEMPPdTk+qJFi/jNb34DwGeffUZaWlqbxxY5GApoiIiIiIjICc9dsp3qJTOoWT2XgLshdN1gtRPZZxRRg8/Dmpje5nG3bNnCAw88gNfr5bTTTuOll14iPDy8URubzcaIESMYMWIE1113HR988EGrx7darfTv35/+/fvz61//mptuuol169Zx33330b17d7p167bP/k8//TRlZWU88sgjfP311wcU0BA5VimgISIiIiIiJ7TKRdMon/UOEGhyL+BuoHrZTKqXfUPc2dcQM2x8m8Z+/vnnqa+vJzExkRdeeKFJMGNvvXr14vHHH2/THLukpKTw8ssvc+GFF+J0Onn55Zd54YUXWmw/f/58Jk+ezCmnnMKvfvUrvv766wOa90iqqanhgw8+YPbs2Wzbti303nbu3JmxY8dywQUXNHuMZcGCBXz00UdkZWVRXl6Ow+EgMzOTSy65hEsuuaTZ4zAHatmyZUyaNImsrCxKS0uxWCzExcWRkZHB6aefzuWXX05ERMQhm09apoCGiIiIiIicsILBjLdb0TIQatfaoEZxcTGzZs0CYOLEiURHR7eqn9F44MUmU1NTufTSS3nvvfeYNWsW9fX1hIU1PTLT0NDAww8/jNls5vHHHz+oOY+UFStWcOutt1JSUgKA2WwmIiKC4uJiduzYwY8//kh6ejrDhg0L9fF6vTz22GN88sknoWsRERFUV1ezePFiFi9ezFdffcUrr7yCzWY76DV+/vnnPPjggwQCweCY3W7HYDCQl5dHXl4e8+bNY/DgwfTt2/eg55L9O/b/VYuIiIiIiBwAd8n2nTszWq981ju4S7a3qu2iRYtCX2zHjBnT5vUdqFGjRgHBpJzLly9vts0///lPcnNz+c1vfkOPHj2O2NoOVF5eHr///e8pKSkhIyODf//732RlZbFo0SKWL1/Op59+ysSJE7Hb7Y36Pf/883zyySe0a9eOv//97yxdupSlS5eSlZXFc889R2JiIj/99BN///vfD3qN9fX1PPnkkwQCAS699FJmz57NihUrWLZsGUuXLuX999/nl7/8ZbMBJjk8tENDREREREROSNVLZtDcMZN9C1C9dCYJ5/1+vy03b94MBPNcdO7cue0LPECZmZmhx7m5uQwfPrzR/TVr1vDOO+/Qvn3746Zk6nPPPUdVVRXJycl89NFHjaq9mM1m+vXrR79+/Rr12b59O2+++SaRkZG8/fbbdOzYMXQvLCyMCy64gPbt23PllVfyySefcMsttzRbraW1Nm3aRF1dHQ6Hg7/+9a+NjrFEREQwePDgAy6rKwdGOzREREREROSE43fXU7P6wEqV1qyag99dv992lZWVAERFRR3RIx0xMTFN1rCLz+fjL3/5S+h/j4eyqU6nk5kzZwJw6623Ngpm7MvkyZPx+/2cffbZjYIZexowYABpaWl4PB4WLVp0UOvclRfD4/FQUVFxUGPJoaEdGiIiIiIicsJxl+Q2qmbSFgF3A+6SPOyp+64gcix66623WLNmDeeccw5nnXXW0V5Oq6xatQqv1wvA6NGjW90vKysLgJkzZ/Ljjz+22K6qqgqA/Pz8A18kkJGRQceOHcnOzuaKK67gqquu4vTTT6dbt27HRY6SE5ECGiIiIiIicsJpzQ6LfQm0ov+unRLV1dUEAgEMBsNBzdlae+7K2HO3Rm5ubqhs7EMPPXRE1nIolJWVAcGjJcnJya3utyt5qNPpxOl07rd9Q8OBBbh2MZlMPPfcc9x2223s2LGDZ555hmeeeYaIiAiGDBnC+eefz7hx47BYLAc1j7SeAhoiIiIiInLCMVoPLjGjoRX9u3btCoDb7WbLli2h54fb+vXrQ487dOgQevy3v/2N+vp67rrrLiIjI6mrq2vUz+fzAcHKILvuhYWFHbe7C3a9njvuuINbbrnliMzZu3dvZs6cyaxZs5g3bx5Lly5l27ZtfP/993z//fe8/vrrTJo0qVGgSQ4fBTREREREROSEY03sgMFqP6BjJwarHWti2n7bDRs2DIPBQCAQ4LvvvjtiAY25c4O5QSwWC/379w9d37FjBxCs/PH888+32H/atGlMmzYNgClTptCzZ8/Dt9hW2JWo0+v1UlRU1OpdGgkJCWzbto2CgoLDubwmrFYr48aNY9y4cUCwfO/UqVP517/+xcaNG3nmmWd48sknj+iaTlbHZyhORERERERkH4zWMCL7jDqgvpF9R7dqh0dSUlKoXOukSZNCuRr2x+/3H9C6IBi0mDx5MgDnnHPOCVEitE+fPqFjGt9//32r+w0YMACAH3/8MbRb42hISkrid7/7Hddddx3AQScfldZTQENERERERE5IUYPPA9qa18JA1KCxrW595513YrfbKSkp4c4772xyzGNva9eu5eGHH27jmoIKCwu59dZbcTqdWK1Wbr311kb3//e//7Fhw4YW/xs6dCgAEyZMCF072rszABwOB2PHBt/zV155hfLy8lb1mzBhAkajkYKCAl5//fV9tm1tsGlf3G73Pu/b7XYAXC7XQc8lraOAhoiIHFV19W6e+2Ap/3h/KSUV9VTXuamoaX57sNd34H/REhGRk481MZ24s69pU5+4s6/Bmpje6vbdunXjySefxGQyMX/+fC6++GI+/fTTUMJKCH7BnT9/PnfffTe/+MUvyMnJafX4breblStX8uyzz3LRRRexbt06TCYTTz/99BE74nIk/PGPfyQ6OpqioiKuvPJKZs+eHQogeL1eli9fzgMPPMCKFStCfTp37sz1118PwHPPPcejjz7a6L11uVwsW7aMp556inPOOeeg1zh9+nSuvvpqPv3009DxHgj+jGbMmMGbb74JwBlnnHHQc0nrKIeGiIgccRU1Dbw/Yz0lFU7W51TgbAiWavtpxQ58vgAADpsZu83EH64YwKCeybz95Romz9lMTKSNv1x/Kl3TYo7iKxARkeNFzLDxAJTPegcI7KOlgbizrwm1b4sLL7yQ2NhYHnjgAXJzc0MVRux2O1arlerq6lDb8PBwzjvvvGbHKSgoYMSIEaHn9fX1OJ1OAoHd6+7WrRtPPPFE6LjFiSI1NZVXX32VW265hezsbG6++WbMZjMRERHU1dXh8XgAuPjiixv1++Mf/4jH4+Htt9/mww8/5MMPP8ThcGCxWKipqQkd7zGbD/6rbyAQYMmSJSxZsgQAm81GWFgYVVVVoZ9RZmYmf/rTnw56LmkdBTREROSQe2PqahasKqB7h1j+9OtBlFbWs2JTCZ3bR9O1QwxPv/Mza7c13U66K5gB4HR5cbq8PPr6Qp64aTiff78ZgPJqF+9MX8sTN552xF6PiIgc32KGjcfR+RSql86kZtWcRolCDVY7kX1HEzVobJt2ZuxtxIgRfPvtt0ydOpW5c+eyZs0aysvLqa+vJykpiczMTEaNGsX48eNbrIDh9/spLS0NrstgwOFwkJycTEZGBr1792bMmDEMHjz4gNd4rOvfvz8zZszg3XffZfbs2eTk5FBfX09ycjJdunTh3HPPpV+/fo36GI1G7r//fsaPH88HH3zAkiVLKCoqwul0Eh8fT9euXRk2bFgogefBOOuss/j73//OggULWLt2LSUlJVRXVxMdHU23bt0499xz+dWvfoXVaj3ouaR1DIE9w30iIiIH6at52/j3FytDz0f2a8fidUW4PcG/kJzaJ4VFqwv3+Tey/RncM5lHfnfqQa5URERORn53Pe6SPALuegzWMKyJaQdd4lVEjg7t0BARkUNq9tLcRs9/3iOYAbBwdeEBj202GUhLiuR3F/c54DFEROTkZrSGYU/tdrSXISKHgJKCiojIIZWZHtvoudViOmRje30B0pMjSU2MOGRjioiIiMjxSQENERE5ZDxeH9vydyc+s1tN2K2HLqABsHxTyf4biYiIiMgJT0dORETkkPlpRT6rtpSGnje4fTS4fYd0jugIGztKaol0WCmucBITYSMhRmefRURERE42CmiIiMghYzuEx0taYiDATU9/h8lowOcPYDYZufc3gzm1T7vDPreIiIiIHDt05ERERA6Zfl0T6JIafVjn2F5UC4DPH6yT4vX5+d8PWw7rnCIiIiJy7NEODREROSTyimt46D/zKatqOOJz68iJiIiIyMlHAQ0RETloPp+fvxyFYEaH5HC6dYhTGVcRERGRk5ACGiIictDqGryUHoWdGTVOL3ddOfCIzysiIiIiR58hEAgEjvYiRETk+HfVX76ixuk54vMaDZASH85tV/Snb5eEIz6/iIiIiBwdSgoqIiIH7fPZm45KMAPAH4D80joefXUBJRX1R2UNIiIiInLkKaAhIiIHbebCnKO9BNxeP398YY6CGiIiIiInCQU0RETkoHi8PpLidlcZiY208fD1w47KWipr3SxcXXBU5hYRERGRI0tJQUVE5IDll9TywL/nUVbVQHyUnV6d4+jfLZHvl+ZhMhrw+Y98mqZtBVX8uHwHp/dPPeJzi4iIiMiRo4CGiIgcsClzt4RKtZZVN9CrUzz/mbwKj9d/VNZjMsK3i7bz7aLtFJTWccXZ3Y/KOkRERETk8NORExEROWARDkuj5/Uu71ELZgD49pg6a2PxUVuHiIiIiBx+CmiIiMgBu3xMd07vn0pqYgS/OjeTM/qn0j4h/Kitx2wyhB73UwlXERGRE1ZeXh6ZmZlkZmaSl5d3tJdz3Jk4cSKZmZm8+OKLTe7tel8XLVp0FFbWNjpyIiIiByzMZuaeiYNZn1PO468v5KNvNjCoRxL5pXVHZT0j+rWnQ0okiTFhnDmow1FZg4iInLzcbjdffvklc+bMYfXq1VRUVOD1eomJiSEzM5ORI0cyfvx44uPjD8l81dXVvPPOOwBcc801REVFHZJx97Ro0SIWL15Mamoql1566SEf/1j3xRdfcP/99x9Q36FDhzJp0qRDvCLZkwIaIiJy0D6YsZ4apweApeuP3lGPytoGbhl5Cg67Zf+NRUREDqEFCxbwwAMPkJ+fH7pmt9ux2WwUFxdTXFzMjz/+yAsvvMBdd93FNddcc9BzVldX89JLLwEwYcKEwxLQWLx4MS+99BJDhw49pgIaFouFTp06hR4fLna7nYSE5nd9lpaWAhAREYHdbm9yPzo6+rCtS4IU0BARkYMWZm/+18mwXsksWlt0xNaxYlMZn363iWsu6HXE5hQREfnqq6+4++678Xq9pKWlceONNzJ69GiSkpIAcLlcLFmyhClTpvDll18ya9asQxLQOJklJyczY8aMwz7PuHHjGDduXLP3MjMzAXjwwQePqWDPyUQBDREROWjXX9SHBSsL2LtI65EMZuxSWll/xOcUEZHjR4OngdzqAuo9DYRZ7HSIaofd0vSv6621ZcsWHnjgAbxeL6eddhovvfQS4eGN80nZbDZGjBjBiBEjuO666/jggw8O9mWICApoiIjIIbBtR1WTYMbRkhATdrSXICIix6DcqnxmbprLDzmLaPC6QtftZhtnZAxjbLdRdIhu3+Zxn3/+eerr60lMTOSFF15oEszYW69evXj88ccBCAQCjBkzhh07dnD//fdz7bXXttjvr3/9K5MmTWLIkCG89957TJw4kcWLF4fujxkzplH7CRMm8PTTTze6tmXLFt544w0WLlxISUkJNpuNrl27cv7553PllVditVpDbfPy8hqNuXjx4tCOhF3effddhg0bFnoeCASYPn06X3zxBWvWrKGuro6YmBgGDhzIxIkTGTJkSKP+U6ZM4d5778VoNDJp0iQGDx7c5HV/+umnPPTQQ5hMJt59991Qmz3X991335GWltakr8vl4tNPP2XmzJls2rSJ2tpa4uPjSU9P5+yzz+aiiy4iNja2+Tf8KPD5fEybNo3p06ezdu1aqqqqiImJIS0tjdGjR3PJJZeQkpLSpF92djZvvfUWCxcupLCwEKPRSHp6Oueccw7XXHMNkZGRh2yN+fn5vPHGG8yfP5/8/Hz8fj9xcXGkpKRw6qmncumll5KRkXHI5tsfBTREROSgeXxHr1Tr3uatzOeXZ3fHbtOvOBERCfpyw3dMWv45gWbC7w1eF99s+YFvt/zIxP6/4MLMMc2M0Lzi4mJmzZoFBKtGtDZngtEYLDZpMBi4/PLLeeGFF/jss89aDGi43W6mTZsGwGWXXQYE8zPExsZSUVEBQGxsLCaTKdQnIiKi0RhTpkzhwQcfxOv1AhAZGUlDQwNZWVlkZWUxZcoUXn/99VDCUpPJREJCAk6nE6fTicViafL69sxd4XK5uOuuu/juu+9C/SMiIigtLWXmzJnMnDmTm266ibvuuivU55JLLuGHH35g+vTp3HPPPfzvf/9r9OU7Ozubp556CoAbb7yx2YBHS7Kzs7nxxhvJzs4Ggu95VFQU5eXlFBYWsnjxYiIjI4+ZoyKlpaXceuutLF++HAj+24iKiqKmpib0M/J4PNx+++2N+n366ac89thjeDzBXGZhYWF4PB7Wr1/P+vXrmTx5Mm+99Rbp6ekHvcZ169YxceJEampqADCbzTgcDgoLCyksLGT58uVERUVx/fXXH/RcraVPeyIickC8Pj/vTF/L5rxKhvdpx5Beyfy8tohwuxkDUNvgbdLHZjHi8hze4EdBaR1ZG0sY3rfdYZ1HRESOD19u+I53l3+233YBAqF2rQ1qLFq0iEAgGCTZe4dEa/3iF7/gpZdeYtOmTSxfvpz+/fs3afPNN99QWVlJVFQU5513HgAvvfRSo10Kn332WbO7FABWrlwZCmacdtpp/OUvf6Fz5854PB5mzJjBo48+ytq1a7nrrrt45513MBgMtGvXjnnz5vHiiy/y0ksvMWDAgH1W7HjmmWf47rvvMBqN3HXXXVx11VWhgMa//vUvPv74Y/7zn//QsWNHJkyYEOr32GOPkZWVxY4dO3j00Ud59tlnAfB4PPz5z3/G6XTSv39/br311la/p9XV1Vx//fXk5eWRkJDAPffcwznnnIPD4cDv97N582amT59+WJKoHgi3283NN9/MypUrcTgc/PnPf2b8+PGh9eXk5DBz5swmAaW5c+fyl7/8BZvNxk033cQVV1xBUlISXq+XlStX8uSTT7J69Wpuu+02pkyZEgqkHainn36ampoa+vXrx8MPP0yfPn0wGAy4XC5ycnKYMWNGsztIDicFNERE5IB88f1mpszdAsDqLWU88rth3Peb4FbSX9z3ZZP24XYzYXYLrhZyXMRG2qiocTV7b3/aJYRTsLNUrMEACTEHfhZaREROHLlV+Uxa/nmb+kxa/jmnpPRs1fGTzZs3A2C1WuncufMBrTEpKYkzzzyTb7/9ls8++6zZgMZnn+0MtFx4YbPVNPbnhRdewOv10r17d/773/+GjpZYLJbQF+cbbriBRYsW8cMPPzBq1Kg2jV9QUBDKC3LHHXdwww03hO4lJCTw+OOPU11dzddff83zzz/P+PHjMZuDX0UjIyN55plnmDhxIl9++SWnn346l1xyCS+++CKrVq0iPDycZ555JtS+NV577TXy8vJwOBy89957oWooENyp0b17d7p3796m13g4ffHFF6xcuRKTycRrr73WZCdKRkZGo/cUgsdTnnjiCQKBAE8//TTnn39+6J7ZbGbgwIG88cYbXHjhhWzYsIFZs2Zx7rnnHtQ6d+0eefDBB+nbt2/ous1mO2rv6cGFaERE5KS1YlNJo+ff/ZyL1WLim0U5Tdp2SI4gMyOOWqe7xfEONJgxtFcyt152CheO7ETfLgncdnl/unU4ds7DiojI0TNz09xmj5nsS4AAMzfPbVXbyspKAKKiog7qr99XXHEFEKyW4nQ6G93Lzc1l4cKFAFx++eVtHruqqor58+cDcMMNNzTKk7HLqFGjOOWUUwCYPn16m+eYOXMmPp+PiIgIrrvuumbb7DoqUVRUxM8//9zo3uDBg0Nf2J944gkmT57Ma6+9BsBDDz3U5uMSkydPBoLHgPYMZhyrdq33/PPPb/WxmsWLF5Obm0tqamqjYMaeYmJiOOOMMwD46aefDnqdu44DFRcXH/RYh4p2aIiIyAHp3TmelZtLQ8/TkoJndT/+dmOTtrlFteQW1R6WdSxeW8SSdUX85fpTuXFCv8Myh4iIHH8aPA38kLPogPr+kL2IX/ebcFDVT9pi5MiRpKamsmPHDr766qtQngyAzz//nEAgQO/evenVq+1lydeuXRs6FnPaaae12G748OGsWLGCNWvWtHmOXX0GDhyIzWZrtk2XLl1ITk6mqKiINWvWMHz48Eb3b7/9dubPn8/KlSu57777ADjvvPPanOMiLy+PkpLgH13autPkaPB4PKxevRpo23qzsrKAYHBhxIgRLbbbFSArKCg4iFUGjRo1is8++4x7772XrKwsxowZQ79+/ZoNkh0p2qEhIiIH5PIx3RiUmYTJCH06xzOkVwoTH5lBZe2B7bQ4GP4ALF5TiMd77CQnFRGRoyu3uqBRNZO2aPC6yKsu3G+7mJgYIJizYVfQ4EAYjcbQ7otdx0sgeKxg11/v9wxytEV5eTkQPF6yK+Fnc3blPigrKzvgOZKTk/fZbl9zmM3mUAJQgPj4+FA1mLbYc+zU1NQ29z/SqqqqQola27dvfZWdXUEbj8dDaWlpi//tCmg0NDQc9FrvuecehgwZgtPp5M033+Tqq69m4MCBXHnllbz22muhHUtHknZoiIjIAbGYTTx6w+6/rjz19uJ9BjPamiPjzEEdcNhMTJ+f3ar2C1YX8PWCbHp2iuPx3w9XlRMRkZNcvefgvsDVe/ffv2vXrkAwqeOWLVtCzw/EruSgWVlZbNmyhS5duvDTTz9RWFhIWFgY48ePP+Cxjxeffvpp6HFlZSWbN29m0KBBR3FFxy6fzwcEd9a8/fbbR2TO6Oho3nvvPRYvXszs2bNZunQpa9euZdmyZSxbtozXX3+d//73v83mgTlctENDRET2q6C0jn9/voJ3pq/F2eBpto3BsO8xfnlOdyb/3/jQ0ZT9WbKukNlL81rV1mg0ULkzWLJuWznfLt7eqn4iInLiCjvI4yJh5v33HzZsGIadvwB3lSs9ULuSg8LuXRq7/nfs2LGNypm2RVxcHBD8S/6+dl8UFgZ3pOxrF8f+5igqKtpnu33N8dNPP/Huu+8C0L17d3w+H3fffTe1tW07spqQkBB6vGPHjjb1PRpiYmJC5W/z8/Nb3W/X6zwUR0naaujQodx33318+umnLF68mGeffZb27dtTWVnJ3XfffUTXooCGiIjsk8/n58H/zOOr+dl8NnsTL3yU1Wy7ay/oTcd2UVjMRjLaRXLJqC6N7ucU1uDx+kmMCWvVvDVOD/WupqVfmxPwN97m6/Mf+LZfERE5MXSIaofd3Hw+h/2xm22kRe2//GRSUlKobOqkSZOoqqpq1fh+f/NHJHclB50yZQqFhYV8//33QMvJQPdMRNrSkZdevXqFgi4LFixocU277vXp06fR9V1993WkZlefrKwsXK7md2Nu2bIlFPDYe46Kigruu+8+AoEAl156KZMmTSI5OZkdO3bw2GOPtThvc1JTU0lKSgJgzpw5bep7NJjN5tD70Zb1DhgwAIDs7Gy2bdt2OJbWKuHh4Vx44YU8+eSTAGzfvv2IBlkU0BARkX2qcXooqdhdanVbfvMf1tolhPO7i/sQCEBOQQ3zVuYTGxn8IGk2GTmlWwK3PTObrI0l2CwmjPvZ0QG0qg3QKH+92WSkR0ZM6zqKiMgJy26xc0bGsAPqe0bHYa1OCHrnnXdit9spKSnhzjvvpK6ubp/t165dy8MPP9zsvV3JQcvLy/njH/+Ix+OhU6dOLVa+iIjYveuxpqam2TbR0dGhpJGvvfYabnfTimNz585lxYoVAFxwwQXNzlFdXd3iazr33HMxmUzU1NTwzjvvNNvmxRdfBIJ5NPZ+PQ899BAlJSVkZGTw0EMPERMTw9///ncMBgNTp05tc+WVXYlE33vvvaP6Zb+1dq13xowZLFmypFV9Tj311FCOkKeeeip0BKU5Ho9nv/8u98fr9bYYiAMaJYNtKah1OCigISIi+xQdYaV/t8TQc4vZxLrscmYv2U5xeePScnOW5uH1BX/ZlVTU8+vze3L/NUN48c+jKSpzUrwzMOLy+OicGr3PecNsJm67oj/h9rblwvD6/Dz86oJGQRgRETk5je02CgOtjI7vZMDA2K6trzbRrVs3nnzySUwmE/Pnz+fiiy/m008/DSVthOAXvPnz53P33Xfzi1/8gpycpiXOoXFy0KVLlwL7TgYaFRUVSsQ5ZcqUFr/U3nHHHZjNZtavX8/NN99MdnY2EPyi++WXX/LHP/4RCB6hOf300xv17d69OxDcYbEr6LG3du3acdVVVwHwwgsv8Prrr4e+QJeVlfHwww/z9ddfA8EAkNm8+3f7xx9/zKxZszCbzfzjH/8gPDwcCOaG2FUC9tFHH23TcYzrr7+etLQ0nE4nEydOZOrUqdTXBz8X+P1+1q9fz5NPPsm3337b6jEPpwkTJnDKKafg8/m44YYbeP/99xsFqLKzs3nhhRf48MMPQ9csFguPPPIIRqORH374gd/+9rdkZWWFgg5+v5/Nmzfz6quvMnbsWNatW3dQaywsLGTs2LH897//ZcOGDaF/a4FAgBUrVoR20nTs2JGMjIyDmqstDIGDSccrIiInjBqnm+c/XEZuUQ1nD03nl2dnhu5tyavkzufnhp4bDBAIQESYhefvGkVKfPDDxxffb+KtL9cCwbwW//zjaOxWEz+vLWJTXgXfL9mdEyMxJoySyuaDDmf0b095jYv12RU47Caq65rP27Evj/zuVAb33He2dREROfF9ueE73l3+2f4b7vSb/pdxYeaYNs8zb948HnjggVCeCAC73Y7Vam20uyE8PJw//elPXH311c2OU1xczJlnnonX68VisTB37tx95rV46aWXQrsfbDYb8fHxGAwGxo4dy7333htqN2XKFB588MFQRY3IyEgaGhrweIK/Y3v27Mkbb7zRZC6v18sFF1wQCoLExMSEgg7PPfdcKAGky+XizjvvZPbs2QCYTCYiIiIaVYC56aabuOuuu0Jjb9u2jQkTJlBfX88dd9zBLbfc0mhut9vNL3/5S9auXcvQoUN55513Qsds8vLyQsd9vvvuO9LS0hr13bZtGzfeeGMoeGQymYiMjMTpdIZ2qfztb39rc1nYPWVmZh6ScQBKS0u5+eabWblyJRA86hMdHY3L5QoFY2677TZuv/32Rv2+/PJLHnzwwVAVE6vVisPhoK6uLvSzBfjggw8aJVidOHEiixcvbnbMXa/r3XffZdiw4C6nPd9vCB6ViYiIaDRPdHQ0r7/+Ov369Tuo96ItlAJeREQA+GDmen5eGzzb+t7X6zmlayI9OgaTfNXtlQh0Vyi8tt7Dik0lJMaE4fUHuHhUV3z+ANn51ZwxIJU5S3P5/PvNzc7XUjAD4Iflu/8KU13X9lKssZE2unWIaXM/ERE58ewKTkxa/jkBWv5brgEDE/v/4oCCGQAjRozg22+/ZerUqcydO5c1a9ZQXl5OfX09SUlJZGZmMmrUKMaPHx8q99qcpKQk+vfvz5IlSzjzzDP3m6TzlltuITw8nKlTp5KdnR3ayVBRUdGo3SWXXEKfPn144403WLRoEcXFxdhsNnr37s24ceO48sorsVqtTcY3m828/fbb/Otf/2LhwoWUlJSEynPuebTAZrPxyiuv8OWXX/LFF1+wdu1a6urqSEhIYODAgfz6179m6NChofYej4c//elP1NfXM2jQIG688cYmc1utVv7xj39w6aWXsnjxYl577bVm2zWnU6dOTJ06lY8++oiZM2eyZcuW0HrS09M555xzOOuss1o11pGQkJDAhx9+yJQpU5g+fTrr1q2jtraW2NhYevTowVlnncXFF1/cpN+FF17IkCFDeO+99/jxxx/Jzc2lpqaGyMhIMjIyGDhwIOecc85BV4tJTk7mlVdeYeHChSxfvpzCwkIqKiqwWCx07dqVkSNHcs0115CYmLj/wQ4h7dAQEREAnv9wGbOX5IaeP/b74QzsEUyq5fP5eeDf81i7rbxRH6MBbpjQl3e/Wke9y8tlZ3UjMz2WpDgHdquJG/52cBnf2yop1sFlZ3VlSK8UElqZfFRERE4OuVX5zNw8lx+yF9Hg3f1F3G62cUbHYYztOooO0e2P4gqDqqurOf3002loaODVV19l1KjWH38ROdkooCEiIgDkFtXw0H/mU17dwLDeKdx/7VBMe2Tl3LKjkjuf233sJNJhoWfHOFZtKWtSjcRogI7totia33ICsdYwGqA1BUsiHRbOHprBJaO6EBd1cGX6RETkxNbgaSCvupB6bwNhZjtpUSmtTgB6JLz99tv87W9/IzU1lVmzZjWqZCIijSmgISIiIT6fn7oGL1HhTbecArz06XJmLszBZjHh8rScTRvAbDLg9e3/V0xitJ2SqoZm78VH2SirbjlTtsNuJiUunNuuOIVuHWL3O5eIiMixbMuWLVx99dVUVFRw//33c+211x7tJYkc0xTQEBGRNqmt9/D8h0tZvKao1X36donHbDKyZUcV1XVNy8UdjInn9+DyMd0xGNqWxV5ERORYceWVV5KXl0dJSQmBQICuXbsyefLkZnNaiMhu2r8kIiJtEhFmYUjPlGbvGQyQnhzZ6FrfLvE8dctIHr/xNP7y22GNjrEcCpO+Xs+VD33FknWtD7CIiIgcS4qKiiguLiYmJoYLLriAN998U8EMkVZQlRMREWm13KIaXp28itp6N8mxVooqGu+2yEiO5OJRXfhk1iYKyoL150cN7BC6n5YcSVSElYp9HCNpiQFazE1f1+Dl35+v4I2Hzm3zuCIiIkfbrlKnItI2CmiIiEir/d+kJTQUb+emiFlEG53Md3TnU+epofvZhTX88+Pljfqs3FTC2FMzAPjv5JUHFMzY5b5rhjCiX3u25FXyxZzN/LQ8H//Ok5MmkzYdioiIiJxM9OlPRET2y9ng4e0v17CjpJZxYcuJNTkxGmCkfSMdTKX77LsptzL0eO3WsgNeQwD4at42ALqkxXD3rwfz518PIjrCSmJsGLdf0R+AmQuz+ct/5vP2l2vw+fwHPJ+IiIiIHNu0Q0NERPbrH+8t5eedOSq8gcaxcIvVisllwNdCfdXaejfXP/ktv7uoD13SYiiuqG/Sxm410eDed9UUgOQ4R6Pnp/dP5fT+qaHna7aW8dKnKwBYvqmEucvy+O/9Z2O1mPY7toiIiIgcXxTQEBGRJpZtKGbR6gI251aSlhJJ1sbi0L1p9QOJN9WSYKzhZ/rS/9SB/GFAKu0TIpj241Ymfb2u0Vg1Tg81Tg/PvLeEB68bysbtFdQ3eAhgoN7lBaBXp3iWbSimJWE2E6MHduDaC3vtc93FFc5Gz0urGvjbOz/zyO9ObaGHiIiIiByvVLZVREQA2LqjkvtenhcKMrTVr8/vwdBeKfzh2Tmt7mMxG+nZMY7T+6fy8mcrQtf3TABqNMCdvxrI6EFpGAwGnA0eNuRU0D4xosmOjU9mbWDS1+sbXUtNDOc/9519QK9JRERERI5d2qEhIiIAPPzfBQcczACY9uNWzuifRvuEcArLnfhbOIKyJ4/Xz8rNpazc3DgPx549/QF47sNlLFhdwG2XncI9L/3IjpI6rGYjj94wnL5dEkJtf8ja0WSO84Z3PNCXJCIiIiLHMCUFFRERAOoaPAfXv97D/733M/mldfsMZhgMBzb+glUFzFiYw46SYDlYt9fP90tyG7XpkBwZemy3GnnshlO5ZFTXA5tQRERERI5p2qEhIiIA9O+eyJJ1Leex2Fukw4LZbAyVYfX6AmzOrdpvv6vP68H0n7ZRUdP28q3Td1Y52aV9YkSj57dd3p/46DCq61xMGN2VTu2j2zyHiIiIiBwflENDRESA4PGPD79Zz+I1BdTVeyitanvAoTW6dYhpVMr1QE0Y3ZWJ5/Vg6o9b2ZxXyWn92nN6/1QKy+rI2lBMp/bR9OgYd/ALFhEREZFjknZoiIgIEEzQ2SE5kk+/23RY5zkUwQyAi8/ozDeLcnh7+loA5q3Mp7Csjo++3YDb48dogAevG8bQ3imHZD4RERERObYoh4aIiITk78xPsYvpAPNdHG7dOkRjMhrJLa4NXQsE4N2v1uH2+IFgMtHFawuP1hJFRERE5DBTQENERELOGJBKRJgFgHC7GV8rDyXarKbDuKqmNuVWcfP/fUefLvFYLcG5w3eue089MmKP6LpERETayuPx8N///pcLL7yQfv36kZmZSWZmJnl5eeTl5TV6LiKN6ciJiIiEdEiO5JV7zmJ7YQ0Ws5EH/j0P3z4qlrSLdzCsdzKL1hRRXuPC5fYdsbXWOj1k51fTu3McOQXV9O4cz/yVBfj8AQzAFWd35+yhGUdsPSIicnLJzMw84L7fffcdaWlpADzxxBN8/PHHANhsNhISguXITSYTPt+R+70qcjxSQENE5CTibPDw2v9WU13r5uJRnenXNbFJm9goO7FRdgCevHkE3yzKoaSinpJKJ4VlzkZtC8qcTPlhW5MxjpRPv9vIrnjLj8vzuWBEJ5LjHPTsGKeEoCIicljtCjzsraamBpfLhcViITq6+WpbJlNwd2FtbS2ff/45APfffz/XXHMNhj3qm2tXhsi+KaAhInKS8Hj9XP3w13h3niPJ2lDEm38ZS0ykrcU+vTvH07tzfOj5glX5PPX2z4d9ra219+aRsqp6brq039FZjIiInFTmzZvX7PX77ruPyZMnM2DAACZNmrTPMbZu3YrX6wXg8ssvbxTMEJH9U0BDROQkMPvn7bz02YpQMAPA4wtQUdOwz4DG3sqrD08p10NlRL/2AOSX1PLCR1lU17m4emxPTh+QepRXJiIixwpffT3O7bn46usxhYXhSO+AKSzsqKyloaEh9Dg8PPyorEHkeKaAhojICe7Ln7by38mrmr2XnhzZprGcDZ5Gzzu3j6Z3l3jWbi1jy46qA17jofLZ7E14fX4+m72ZHSXBCijPfbiUU7onEhVuPcqrExGRo8m5fTsFX82g+Pu5+PcIJBjtdpLOHEW7cefhSE8/Imv54osvuP/++xtd2zMnx4QJE3j66aeb9CsqKuLll1/mhx9+oLS0lPj4eEaPHs0f/vAH4uPjm7QXOdEpoCEicoIqLKvjhQ+XsWZbebP3xwzpgMnUtmJXY0/tyNxleeQU1mA2GUhNCue6C3vz7eIc/v35ykOx7FYzGgz4A43PnOQU1vDPj5c3uub1BXB7lFRNRORktuN/08h+651gje+9+BsaKPx6JoUzvqHjddeQevH4w74eu91OQkICHo+HqqrgHwT2zMkRERHRpM/GjRt54IEHqKioIDw8nEAgQGFhIR999BHz58/n888/Jyoq6rCvXeRYorKtIiInoKpaF3c8N6fZYIbNYuTR3w3jzl8NbPO4UeFWfnFmVyAYKPhxeT5fzd/G2FM7csmoLmSmx9JzH8k4E6LtbZ6zOXariUtHd25V2wmju5IQc3S2EouIyNG343/TyH7z7WaDGY0EAmS/+TY7/jftsK9p3LhxzJs3jxdffDF0bd68eaH/HnrooSZ97rvvPjIzM5k2bRrLli0jKyuLJ598EqvVyvbt23n11VcP+7pFjjUKaIiInEC2F1bz0TfruefFH3E2eBvdMxrg9P6pfPDE+disZjZurzigOer3Ks3qbPBiMhq4/qI+/OOOM3jwuqF0SIqgubxmpVUNjZ7vahNmM9G9Q/OZ4Jvz6/N7MuHMbuwrdVr7BAfvPjKW347v3epxRUTkxOLcvj24M6MNst96B+f27YdpRQcuKSmJ1157je7duwNgtVq57LLLuOKKKwD4+uuvj+byRI4KHTkRETlBrNhUzEP/WdDsvZT4MO6dOJSuHWJ49oOlzFkaLAN35bmZXDW2R5vmGT0wjVmLt7Mpt5IOyZGMO61jo/vzVxWQWxzMX2ExG7FajdQ5dwdXDEAAMBkN+HaWKfF4A2zMbV0Ojj9fPYhRA9MAePyG4bz79TpKKuuprAkmLE2ICePcoemcN7xjqPysiIicnAq+mrH/nRl7CwQo+GomXW76/eFZ1AG69tprsVqb5oM6++yzee+998jLy8PpdOJwOI7C6kSODgU0REROEG9/ubbFe/dMHELXDjE0uL2hYAbAzIXZbQ5oOOwWnr3jDKrr3EQ6rBiNjfdJLFtfFHrs8fqJdFipIxjQMBjgnl8PJirCynMfLKNs544Nn9/fqrmH920XCmYA9M9Mon9mEi6Pj6/nb8Pt8TPutI5EOJQAVETkZOerr6f4+7kH1Lf4+zl0vObXR636SXP69u3b7PWkpKTQ45qaGgU05KSiIyciIicAZ4MntCtib+cOS6dbh1gAbBZTo3wS7RObJh1rDYPBQHSErUkwA6B3591Z1sPtZsqrdx8ziY+yM7J/Kv26JvLnqweRlhRB+4RwkmJb/vCVEBPcZXFKtwT+dPWgZtvYLCYuGdWVK87urmCGiIgA4Nye26iaSVv4Gxpw5ubtv+ER1FJZV5ttd/l1j8fTbBuRE5V2aIiInAAWry3C5W5ayWNY72Ruv2JA6LnBYODxG4bz8bcbsVlN/Pq8tu3OaI1LRnUlJsJGfmkdp/Vrz7PvLyW7oBqAQT2TQ+36dEng3/eOASC7oJon31xEYbkzdL9nxzguPqMLI05pj8/nb3NFFhERObn56uuPan8ROfwU0BAROQHERdmaXEuJd/DgdcOaXO+QHMmff938TodDZfSgDqHHT948glmLcwgPs3D2kPRm23dsF8WNl/bjsdcXhq6d1q8dI05pD6BghoiItNnBHhc5lo6biEjzFNAQETkB9OuayG/H92beinw6p0Vz/fje2KzHxv+Ljwq3cumZ3fbbbnDPZH4zricLVhWQmRHLhSNbV5ZVRESkOY70Dhjt9gM6dmK023F0SNt/QxE5qo6NT7siB6G23kN1nYuUuPBmz/OLnCwmjO7KhNFdj/YyDsrlY7pz+ZjuR3sZIiJyAjCFhZF05igKv57Z5r5JZ47WDg2R44ACGnJcW72llMffWES9y8uQXsk8eN0wTApqiIiIiAjQbtx5FM74pm2lWw0G2o0be/gWJSKHjA4ly3HtizmbqXcFy0H+vLaITbkVR3lFIiIiInKscKSn0/G6a9rUp+N11+BIbz7nk4gcW7RDQ46oWYu3sz6nnKG9UhjaO+WgxnJ5fFjMu2NyRkPwrL6IiIiIyC6pF48HIPutd/a9U8NgoON114Tai8ixzxAItGX/lUjrVda4eG/GOtweH1ec3Z0teVX84/2loftDeyXhbPARF20jKTac80/rSFKso9mxXB4fxeVOkuIc2CwmSirqueP576mp82A2GeiQHMklo7pw1mBF00VERESkKef27RR8NZPi7+c0ShRqtNtJOnM07caN1c4MkeOMAhpyWCxeU8jLn62gvDr4yyIxNoyRp7Rn8pwtLfZx2M1ceFonNudX0S7eQXS4jcG9komPDuPO5+dQUe3CbjXhcvvY+x9tVLiVB64dSu/O8YfxVYmIiIjI8c5XX48zNw9ffT2msDAcHdKUAFTkOKWAhhxy67PLufelH/Hv9S/LAE0CEftjNMBpp7Tnp+X5+20bZjPz1l/OJTzM0sZZRERERERE5HijpKByyG3Lr2oSzIC2BzMA/AFYsGL/wQyAepeX6jr3AcwiIiIiIiIixxsFNOSQ65ASdUD9jHv8azQEfIR5g8dVjN7WBSkG90wmJb75HBwiIiIiIiJyYlGVEznkNmSXt6n9rqMofv/uaxnOIrLD2wPgMVmxeV24zLYmfY0G6N89kbMGd+C0fqkYDIaDWLmIiIiIiIgcL7RDQw65KXM37/P+rpjD4J5JPH3rCNJTIpu0ifbWNnruMjVXjjWAPwDLNpTwj/eX8asHp/Pz2sIDXbaIiIiIiIgcRxTQkEPG5w8wd1keVbUtHxExABee1ol+XROoq/fi8wcYM6Rpeaw8ewKJDWU4vE5iXZW7oyB76G7a0ei52+vntSmrD/ZliIiIiIiIyHFAR07kkPnXx1nMXpK7zzYBYNq8baHnj7++iD/8qn+TdmW2uNBjp7lpXgwzXjb60ppeNytGJyIiIiIicjLQtz85JDblVjB/ZeuqkezJ5fHxzKSlbe7nbSYWZ7ea+MMv+7d5LBERERERETn+GAKBwIFU0xQJ+XjWBt77en2z92IjbVTUuI7IOob3bUdaUgRzluWRkRLFn64eRESY5YjMLSIiIiIiIkeWAhqyTz6fn28Xb6e23sM5Q9OJjthdaWTl5hIKy5y8P2M95dUNh2X+bh1iKCito7beA0BkmIWanY/3ZDSAyWTE491dKuWSUV24/qI+h2VdIiIiIiIicnQph4bs038mr2LGgmwAvl+ay7/+dCYmo4FnP1jKnKV5AJj2Ori0qwzroXD5mG5Ehdt45LUFuNy+4ODN8AfAv0cwA6DB7TtEqxAREREREZFjjQIask8rN5WEHm8vrKGq1kVBaV0omAHgaxxHOGTBDIDPvttERruoYDADqHE23Z3RnJhIG5eO7noIVyIiIiIiIiLHEiUFlX3q0TGu0fM1W8uY+sOWwzbf3tVZd5TU4vc3DpE4bPuPw1XVuCgsqzuUSxMREREREZFjiHJoCAA+f4A3pq5m1eZSTumWyBkDUtleWM2Okjo+m70p1C45zkFRufOQzduzYxyZGbGUVdUTCMCO4hq2FdQ0aRcTYSXCYWFIrxQmz2ldQGVgZhJ/vGpgo7wfIiIiIiIicmJQQEMAmLkwh5c+XX7E5z13WDoXn9GF9JQoAEor6/ntX7+huX+VGSkRZLSL5oesHXtdjyIp1s66beXUNngb3YuLsvHsHaNIiAk7bK9BREREREREjjwdOREAquuOTGnVvX27eDu3PvM9r3y+AgCb1USPjFisZiORjsYlV3MKa5sEM4wGmHh+D9ZlB4MZEWEWUhPCQ/fLq10sWlN4+F+IiIiIiMhhkJeXR2ZmJpmZmeTl5e2/g8hJRAENAeCcoRm0T3AcsfnsVhPhYebQToyv52dTV+/ho283sC67ArfXT43TQ2pi+D7H8Qfgr28tprY+uDOjtt5DZsfYRm0KSuua5OEQERERETnavvjiC1588UUWLVp0tJciclxSQEOAYFWQl+4ew3Xje2E0tlAb9RA4Y0B7rji7GzdO6EeHpMjQ9XC7mS9/2kpOQXWj9lef1wO71dSmOerqPXRsF4XVHPzn/b8ftvDGtNUHv3gRERERkUNo8uTJvPTSSyxevPhoL0XkuKSyrRJiMRu5dHQ3LhrZhV8++CVub3BXg8nYtDTrgbBajPyQlR963jUthlP7pFDr9JBdWM17M9Y36bNodSEuj69N8yxaU9Tk2urNZW1fsIiIiIiIiByzFNCQkLp6D+99vY6NuRWhYAYcmmAGgNvTeKDNeZU8+vvzyCuu5b6Xf2q2z9y9cmYcqP7dE3F7fJRXN7B6Syld0mLo1D76kIwtIiIiIscPt8tLcWENbpcXq81MUkokVpu+Fokcj1TlREL+8d5S5mYduURD7eLDOffUdJwuL98szKGq1r3P9iYjJMU6cHl8lFe3Lolpp/ZRXHRGF+avyOfndUUYDITydvTqFMd91wwhNtJ+sC9FRERERI5xxYU1LJmXzcqlebhdu3cAW20m+g1KY/CIjiSlRO5jhP374Ycf+Oijj1ixYgVVVVVERUXRt29fLr/8cs4+++xQuy+++IL7779/n2Nt2LABCCYFHTNmDADfffcdFouFl19+mR9++IHS0lLi4+MZPXo0f/jDH4iPj29xvOrqat59911mz55NTk4Obreb5ORkTjvtNK6//noyMjKa9HnxxRd56aWXGDp0KJMmTWLq1Kl88sknbNq0icrKSl5++eVGr0vkSFMoUkLySmoOyTgGYF9RMrPJwLjTOrG9sIZ3pq8DoF2CY78BDZ8fCsqcWMytT/2yLb+a+SuDwQygUTnYtdvKue3/vufsoen85oJemA5j7hAREREROXoWzt3KN9PWNvsh1e3ysWR+DksW5HDu+F6cOqpzm8cPBAI8+uijfPTRRwAYDAaioqKoqKhgzpw5zJkzhwkTJvDkk09iMpmw2+0kJCRQVVWFx+PB4XDgcOw/Qf/GjRt54IEHqKioIDw8nEAgQGFhIR999BHz58/n888/Jyoqqkm/lStXcvPNN1NaWgqAxWLBbDaTm5vLxx9/zNSpU3n++ec588wzW5z7r3/9K5MmTcJoNBIZGYnRqHSMcvRph4ZQ63Tz9vS1zFuRT229p8V24WFm6nZWEzlYYTYzXp8fj3f3MZQ9d08cabGRNv7wywEM7pl8dBYgIiIiIofFwrlb+Wbq2la3P/eitgc13nrrLZ5++mkArr32Wm688Ubi4uKoqanhrbfe4uWXXwbg9ttv57bbbgv1mzhxIosXL+a2227j9ttvb3bsPXdoREdH07NnTx588EG6d++O2+1m6tSpPPbYY7jdbn7/+9/z5z//uVH/wsJCLr74YiorK5kwYQK/+93v6Ny5M0ajke3bt/PPf/6TL7/8EofDwbRp00hLSwv13bVDw+FwUF9fz2233cZvfvMboqKiqK2txeVy7XNXiMjhprCa8NJnK5i5MGefwQwAu+XQbeipd3kbBTMcdjPd02MO2fhtVVHj4ul3f8bdxgSkIiIiInLsKi6sCe7MaINvpq2luLD1O5fr6+t55ZVXALjiiiu4//77iYuLAyAyMpI//OEPXH/99QC89tprVFZWtmk9e0pKSuK1116je/fuAFitVi677DKuuOIKAL7++usmfV544QUqKyu56qqrePrpp+natWtod0V6ejrPPvssp59+Ok6nk7fffrvZeZ1OJzfccAO33XZbaAdIRESEghly1CmgIRSU1LWqXVl1w2Fbg7PBy+bcqibX+3aN57rxvWkXH96moyYHwuX2kVdcS4Pr0OxCEREREZGja8m87H2fhW5OYGe/Vpo3bx7V1dUYjUZuvfXWZtvcdNNNWK1WGhoamDVrVhsXtNu1116L1Wptcn1XHou8vDycTmfoekNDA9OnTwcIBVWac+GFFwLw00/NJ+o3mUxce+21B7pskcNGOTROcj6fH5//EJUxOUg+f9PfNtsLaygur6eo3NlMj5ZFhVuwWcx4fH4qa1qXQBTgL/+dT3Wdm47torhxQl8+mLGewvI6EqIdnHdaBmcNTm/TOkRERETk6HC7vKxcemAJ71cuzePsC3u2qvrJ6tWrAejUqRMpKSnNtomKiqJPnz4sW7aMNWvWcNlllx3Quvr27dvs9aSkpNDjmpqaUD6O1atX43YH89T98pe/bHFcjye4U7ugoKDZ++np6aFdJyLHEgU0TnJL1xeT04YtdUdaVa2bKvadLLQ59W4fl4zqytfzt7WpX3VdcK7sgmoe+s/8UJClpLKBdTnlZG0s4U9XDWrzekRERETkyAqWZj2w48Rul4+SohpS02P327a8vByA5OR952LbFewoKys7oDUBhIeHN3vdZrOFHu8KTgCUlJSEHu9KCLovDQ3N78hWMEOOVQponOTsNtPRXsJh4fH4eferdW3qYzYZ8fp271ZpbsfIgpUFcNVBL09EREREDjP3QR4jdjUc/7nV/Dt3YpvNZtasWXPA45hMJ+Z3Bjn+KYfGSa5f10S6dog+2ss4Jnh9fpJiw4iJsJES33zZrPho+xFelYiIiIgciNYcF9kXm711X+J37V4oKiraZ7vCwkKAI5pIc9dcXq93v+sTOR4poCGkJzetVX209OgYS9hB/vI5GG6Pn0mPncfTt44kPSUSgOhwK5EOC93TY3j6tpFHbW0iIiIi0npJKZFYD3A3stVmIjE5slVt+/TpA8C2bdtaDBpUV1eHdkjsag9gMBgACATamrm0dfr27YvFYgFgzpw5h2UOkaNJAY2T3LL1xXRuf+zs0OjdOZ64qKaZm1vLbDIQF2XbZ5uwffxiG9IrePYxPjqMl+8+iy/+fiHvPX4+HzwxjmfvGEVspHZoiIiIiBwPrDYz/QalHVDffoPSWr3DY8SIEURHR+P3+/+/vfsOkLMs9z7+e6bP9t6zyab3QhoJhITQOwiCHlE4oEcRBAuKIlheyxEsSBVFEFEOHZWmEAgllfTek0229953yvvHZCc7O7N9N8kk388/Zp56z2TN8vzmvq/L3761qyeffFKtra1yOBw677zz/NujoqIk+QKP4RAZGamLLrpIkvTEE0/46310p7Y2uOsgcDIj0DiNPffOLv34qTX68xs7FB0x8BBhKL22/IAKy/vX0aQzl9urppb2Ho8ZmxUni9nwv46PtivSaVFirEOzJ6YEHGu1sF4QAAAgXM05a5Rk9HpYIOPoeX3kdDr19a9/XZL04osv6oEHHlBNTY0kX8eRRx55RE8//bQk6Stf+Yri4uL8544bN06StGLFCpWVlfVzoH1z9913KyEhQSUlJbr++uv17rvvBhT/LC4u1muvvabPfe5zev7554dlDMBwoSjoaeyTzYX+P9c3tWn2xBRt3DM8/5AOhxsuGK+Xlu0L2t7S1nMb2oOFNbrrhln6ZEuh0pMilVtUp+0HKtTY7NKv/75RM8YlK+okCXgAAAAwcClp0brwisl6741dfT7nwismKyWtb8tNOtx0003Kzc3Viy++qGeeeUbPPvusoqOjVV9f7y/MefXVV+u2224LOO+qq67SM888o8OHD2vx4sVKTEyUzeb779Dly5f3awzdSU9P1zPPPKPbb79d+fn5uvPOO2U2mxUdHa2WlpaAcGPx4sVDck/geCHQOI2NzoxVaZVvNkRKvFNWS3/j6xPnsoU52rqvvPcDQ2hqcWvNjmL96NYzJUm3/vw9/z63x6st+8t19ozMIRknAAAATqwzF4+WJL335i6pp1IVhi/M6Di+PwzD0E9/+lMtXbpUL7zwgrZt26a6ujrFxsZq2rRpuuGGG3T++ecHnTd69Gg9++yz+tOf/qRt27apqqpKbvfQd1eZNGmS3n77bb388st6//33tW/fPjU0NMhut2v8+PGaOnWqzj33XC1ZsmTI7w0MJ8M7XBVocNJramnXax8eUG1Dq/blVSu3aHjW7g2luCi7Jo6K19odJSH2WeWwW1VW1aTOHVdz0mOUWxz43s6cmq4f/vc8SdIvn12nNduL/fu+9pnpuuysnOF5AwAAADghykrqtWHVYW3bWKC21mOhgc1u1vTZWZpz1qh+z8wAcGIRaECvLd+vZ9/u+zS848VQcIh+zqxMbdhdqqaWvvcVT0uMUEnlsbocEQ6L/vj98xR3tMDngfwa3fP4CrW1exQbZdPv7lqslITQbVsBAAAQ3tpaXSovrVdri1t2h6+byWBbvAI4MQg0TkMfrM/Trtwq5WTEqKSySYVl9dpwEtXOMCQtmpkph82s99blBexz2ExqbfeoPz+1CdEOVdUfWxv43I8vUnxMYLeSkspG5RbVacLIeCXE0MkEAAAAAE52BBqnmVVbi/Sr59YHbTcM9SskOB5CjclkSGmJkSqqaOzzdcwmQ16vVx6vdPGCUbr9uhlDPFIAAAAAwPHG3KrTzMHCmpDbT7YwQwo9JrvNrEinVVkpUZK8Kq5sVEfdpO5CGbfHqwXT0lTX2K75U9KGdcwAAAAAgOODGRqnmf351fr+46vU1j701ZNPlDGZsVpyRpbeWX1YpdVN8ngCf6StFpPaXcdauZ4/d4Tu+twZx3uYAAAAAIAhRKBxGioqb9A7q3P1r08ODcv1R2fGKMpp1bYDlYO6jtlkyGI2yeP1BgQS/WWzmtTWHnh+hMOih7+1RGlJkYMaIwAAAADgxCDQOI2t2FKox17Z0q+OIb2xW31FOyVfvQvPIH66vnr1NP393T1qbG7v8bj4aLuq61v9r7vet7ulKHarWa/+6vKBDxAAAAAAcMJQQ+M0tmhmpqaMTtSHG/P1t3d2yz2Y9OEol/vYNQZ7ua0HKnoNMyxmk+750hy9veqwVmwpVEykTfffOl8Oq1mfbCmU1+vVq8sPhDy3td0tt9sjs9k0uIECAAAAAI47Ao3TXEKMQxEO65CEGZL6fZ1vXD9TOw5W6MONBUH7xmfHKTHWobdX5XZ7vsvtUXlNi773xTn66jXTFOGwyGoxS5JGZcSqrd2tjXvKlFtUF3RuTKSVMAMAAAAAwhSBBhQTYQvc4PX61mkcB3UNrfr2f81WTUObNu8t82+fPjZJ1547TiaToSmjE/Xg3zb490U4LP5lMjarWelJkfJ4vIqNsgdd32Y164E7FmnLvjIlxjqVlhihJ17dJsOQbv8s7VsBAAAAIFxRQwOSpIde2KjlG4JnSRwPX7lqqq48Z4we/Nt6rd9VqpFp0frJVxYoKsKm1na3/vLmDr296rD/+HNmZeqs6Rnan1etzfvKdbCwVhlJkfrl189SYqzzhLwHAAAAAMDxxXx7SJImjkw4Yfd+f32eKmubtXV/hVra3NpfUKu9edWSpCde3eoPMwxDmpAdr5svm6KF0zOUnR6jg4W1kqSiika9MUxdWwAAAAAAJx8CDUiSpo1Nkun4rDIJkhzn1PaDlaprbJMkeTxerd1RIkk6UFDjP87rlb73pTlKjvfNwnDYAldMOR2soAIAAACA0wWBBiRJWSm+ZR5O6/FPNfblVSs13ilTp5/GtIQISdLZ0zP82yaMjA9YUnLm1DRddc4YpSRE6KwZGbr6nDHHbcwAAAAAgBOLGhoI0Nrm0nU/ePu43/fe/56nB/663t8lZe7kVP3o1jMlSZv2lKmusVVnTksPmpUBAAAAADg98XSIAHabRSNSo5VfWt/vc80mKTbKoeq6FvUnJYuNsikxxhHQ8rWuoc3/5zMmpvR7LAAAAACAUxtLThDkp19ZoEsWjtIVi0Yr9ejSj75we6SquhZlJkcG7UuOcyoiRI2L8SPi9OA3Fml8drwumJctyddq9YYLxg/8DQAAAAAATnksOUGPvvyLZSqtahrUNVITIvTbu86R1WLS9x9fqdyiOv++W66YrGuWjPO/LqtqUoTDoqgI26DuCQAAAAA4tTFDAz1aMC190Ne4buk4xUbZFeGw6obzJ/i7qWQkR+rys0cHHJuSEEGYAQAAAADoFTM00COv16snXtum/6w5LEkypJD1MdISIzRvcpreWZ0rl/vYERNHJejBO86WYRzrnlJQVq/KmhZNykmQzWoe3jcAAAAAADglEWigT7YfqFBpVZOKKxr08gf7JUk2q0kj02KUkRSpmy+foqQ4p/JK6rR2R7EqalqUkxGjC+ePlNnMRCAAAAAAwNAi0EC/eL1e/WftERWVN+jc2SM0OjP2RA8JAAAAAHAaItAAAAAAAABhh7UAAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAOCUdaS4TkUVDSd6GAAAABgGlhM9AAAAhsMfX9+mt1blSpKuWzpON102+QSPCAAAAEOJGRoAgFNOS6vLH2ZI0qvL96uytvkEjggAAABDjUADAHDKsVrNQds+WJd3AkYCAACA4UKgAQA45ZhNhqIjrAHb3F7vCRoNAAAAhgOBBgDglHTF2aMDXs8cl3yCRgIAAIDhQKABADglOZ2Bda9Lq5pO0EgAAAAwHOhyAgA4pZRVNenPb+zQocLagO35pfUnaEQAAAAYDgQaAIBTym+e36jdh6uCttc0tJ6A0QAAAGC4sOQEAHBKqeimPWtjS/txHgkAAACGE4EGAOCUcu2542QYwduzkqOP/2AAAAAwbFhyAgA4pVx2Vo5mT0zR+p0l+tO/dkjytXE9a0bGCR4ZAAAAhhIzNAAAp5y0xEh9uKnA/9rt8Sq3qLaHMwAAABBumKEBADjlvLhsb1CXk6f/tUMJ0Q6lJEYoIynqBI0MAAAAQ8Xwer3eEz0IAACGyhsrDuqpf+7odr/ZZOieL83RgmksQQEAAAhnLDkBAJxS3vjkUI/73R6v/r3m8PEZDAAAAIYNgQYA4JTS0urq9Zit+8q1L6/6OIwGAAAAw4VAAwBwSkmIdfR6jMcr/fyZT4/DaAAAADBcCDQAAKeUiaMS+nRcY0v7MI8EAAAAw4lAAwBwSrnp0smymIxej3O5PNq0p+w4jAgAAADDgUADAHBKiXRalZ4c2etxHq/05sqeC4gCAADg5EWgAQA45dz33/OVnRatrvM04qNsMneavZFXUqeGprbjOzgAAAAMCQINAMApJyM5SufOHiHv0dcmQ5qQHafffWuJlpyR5T+urLpZz7+7R+0uj3757Dpd94O39JOn1qilrfdOKQAAADixDK/X6+39MAAAwofb7dE133tTnX/BpcRHyOP1qqKmOeDYJbOzNHV0oh57Zat/2y1XTNE1S8Yep9ECAABgIJihAQA45VTVtahrWt/U0h4UZsRF23XduePk6XKwp+sGAAAAnHQsJ3oAAAAMtdqG4LoYTrtZDc3HWrXeePFEfebcsbJazEpPitTaHcXasrdMk0cn6pKFo47jaAEAADAQLDkBAJwy8krq9OOn1qqmvlUOmy/AMJkkj+fYMYYhzRiXpG99brZyi2uVmRyltERfVxSv1yvDMORye/z/+7vnN2rr/nJFOq36+rUzNHtS6gl6dwAAAOiMQAMAEJZeXLZXb608pPTESH3vi3OVHO/Ul3++TKXVTf5jMpIilRjn0PYDlUHnO+1mNbe6JUkXzM/WLZdPkc1q1gfr8/THf2yXxWLS7ImpWr2tKOC8e2+epwXT0of3zQEAAKBXBBoAgLBzqLBWd/3uI//rJWdk6TtfmK0bfvi2mlqGrkOJzWpSW7sncJvFpPtuma9ZE1KG7D4AAADoP4qCAgDCTrvL3eW1R+0ujyLtQ1saKibSJovZCNjW5vLoJ0+t0aHC2iG9FwAAAPqHQAMAEHYmjEzQxJHx/tfxMXY99soWlde29On8GWOTNHl0Qrf7oyNtykiK1HdvnKNff2NR0H6PV3r9w/36eFOBVmwulJuuKAAAAMcdXU4AAGFn3a4S7TlS7X/91spcJcc5Qx4b4bAELUPZfaRar/3qcn3n4Y+1L68mYN/8KWm69+Z5Mpl8MzMO5Afu77ByW5E+3lwoSVq8M0t33zh7gO8GAAAAA8EMDQBA2Fn26ZGA12aTodZ2d8hj7/niXF1+do4/oJCkcSPiJEmGEbic5Mnvn6f7bpkfcOyYrFgtnpUlSTJ1Ot7tPjYrY82O4oG9EQAAAAwYMzQAAGEnMzkq4HVspE1V9a2SfOFGfIxdDU3tGp8drw835SsnPVZ//dFFemPFQZkMQ1cvHiO326PkOKf25VXL65UWz8oKuq7kCz3uvnG2brlyih5/davW7SwJOmZ8dtywvE8AAAB0j0ADABB2vnDxRJlMhorKG3XB/Gz97v82+fe5PV5V1PhqaWw7UCFJ+kgFspgNfenSyf7jXl2+Xyu3+lqyGpKuWjw66D4H8mv00rK9Kqxo1ISR8TpjfHJAoDF9bJIm5STo6nPGDMfbBAAAQA8INAAAYcdqMQeEE3MmpWj5hoIez3lz5SFdtGCU7FazJKmwvMG/zyuppLJJ40YcKzRa19imH/5hpZpafUtZ8kvrVTUhRUvOyNKnO0uUnhSpz10wXsWVTVq5tVBrtpfI7fHqgnnZWnxG1hC+WwAAAIRCoAEAOGntPVKl/fk1mjk+WVkp0QH72trd+stbO7XjYIVqG1plyBdMdKekskmPvrxZd39hjv74+ja9vy7Pvy8zOUqzJqQEHJ9fWucPMzoUljcov8yr5laXDhXW6od/WB10z+0HypWdFq2cjNiA7XkldSqpatLU0YmKcFj7+hEAAACgGwQaAICT0ua9ZfrJU2vk8UpOu1kPfWuJMpOjtD+/Wk++tlUHCurk8favXerHmwq142CFKmtb/dsm5yTox18+MyhkePjFLUHnl1c3B9wz1N09Xqm8pjkg0FizvVi/em69PB6vstOi9Zs7z5HTzq9gAACAwaDLCQDgpLRxT5k8RxOD5la3HnhuvQ4W1OhXf12vffm1/Q4zOnQOMyQpMdYZFGbsy6tWcWVjwDazSX2+56othQGvl2/Ik+fom8krqdf3H1+h2obWUKcCAACgj/h6CABwwnm9XpVXNys60uafuTApJ0H/+uSg/5jcojp979EVMkxGd5eRpIClJyaT4Q8SQomPtuumyyYHba+oaQ54nRLvVE19q9weT7fXsttMam3z7V++sUDFlY06WFCryAir0hIiA449VFinF97bq699ZnqP7wUAAADdY4YGAOCEcrk8+vqDy3XrL5bpxh//R3uOVCm/tF5ut0ffuH6GzJ1+U7W5PJo5LinoGh3HxEfbA5aB9BRmSFJ1fWvImRK5RbUBr79+7Qxlp8X0eK2OMKPD7sPVanN5VF3Xqt2Hq2QxG12OD6zPAQAAgP4xvN4BztkFAGAIPPziZr2//liBzqQ4h2rq2+RyexQbZVNLmzvg4d9pM8tkMtTY4vJvmzE2STdcMF6vfLBfm/eVd3svsyEZJkMu97FffWaToS9cNFERDotiouw6e0aGfvLUWm3aW3bs+uOStHV/RZ/eT2ykTe0uj5paXUH7RqXH6HBxnVISIvSzry5QRlJUn64JAACAYAQaAIATpqXNpS/c/2+1ubpfyhETaVNdY1vANos5MJTokBznVHmX5SIdTIb0P1dPk81m1iMvben2fmdMSNbsial66l87JElx0XbV1Pe93sV1S8fp1eX7Q+4bnx2nX3ztLNltZhmGoX151TKbDI3Jiuvz9QEAAOBDDQ0AwAlTU9/aY5hhMqQpoxO1ZntxwPbYCJsqQ4QMba7QyzhuvXKK8krq9ezbu9Ta3vNSj017y3Xh/FG6/5b5Kqlq1MSR8freoyvl7mX5iuTrmBLl7P5X64GCWv3smU81ZXSiGpra9ObKXEnSDeeP142XTOr1+gAAADiGGRoAgOPG7fFq7fZieeXVgmkZkqR7n1ipXblVAcdNyklQQrRdDc3tAUs9Ogp+RkfY1NLWrnZX4K+w8dlxOlhQGxQ+TBgZp71Havo8zpyMGM2emKrV24tUVN4os8mQ3WZWU0vwMhKL2dDdX5ituZPT5JX06Etb9PHmAv9+u80csl6GYUgdv4EjHBa99IvL+jw+AAAAEGgAAIbYvrxq/fPjg4qNtOniBaOUkRwpq8UsSfrt/23URxt9D/tnz8jQPV+aq7Z2tx782wZ9urNEkmQxm/SbOxfpvj+uVkNTe7f3ueLsHM2bkqbahjbtPFSp4soGbdkXus6F2WR0O8PCbDYUH2lTRd3A2qh++/OztGB6hn729KfadqBCyfFOlVf7lr3YrWb9+s5F2rq/Qqu2FmrPkWr/eZ2DjtGZsXr420sGdH8AAIDTFUtOAABDpqG5XT/642p/wc63VuUqNSFCv7r9bCXFObV6a5H/2DXbi/Xu2sPKSI7S6MxYf6Dh9niUV1rfY5ghSW+uzJXZbNLItBit3l6k5hCzJzr0tFzE7fYOOMyQpBVbi5RXUq9tB3xhSnl1s5ackaWcjBidOTVdGclRysmIDWhBK0nt7W7NnZwqp92iL116rHVsWVWTvJJSEyIGPCYAAIDTAYEGAGDI1NS3BHQfkaTSqiZ9+/cfa8a4ZKUlOpVX2ihJ8ni9euyVrZKkMVmx/uO9Xl+o0Rf//PigfxlKVwkxDrW73HLYLDIMqaw6dLHQwVq/q1Trd5UGbMvJiNHI9Bg9/cZOpSQ4ddOlk2UEdm2VxyvdeuVUZSYf63Ty2vL9evbtXZKkL14ySdefP35YxgwAAHAqINAAAAyZ9KSokMs7qutb9dGmgoBtnRc8llU1yWoxqd3lUXK8UxmJkX2+Z3dzL6rqWiRJ9Z1mephMUk9ZSWq8UxEOq3KL6/p8/86sFpNmT0zRvClpuvO3H6n9aMHT5haXGpsDZ5wsnTMiIMyQpBeX7Q34M4EGAABA9wg0AACD0truVlNzu+JjHEdnS/S/NJPb41VMhFWVda0qr27WPY+v6rY162D0NvGjtLpZ0sBncrS7PLrlyikqKmv0hxmSr65I54KiI9OilBjr0DNv7pDXKy2Ylq7JOYmKj3GouMI3gyUmwjrgcQAAAJwOKAoKABiwfXnV+vGf1qihuV2LZmbquzfO1q0/X6bymmOhQITDErI7yGCcNT1dI9Oi9eKyfepDN9UgNqtJX7pkkt5amauSqqYhHZvTblFzq0vx0XZVH20tGx1hDZgp0pXFbNLD314sj1f69d82KK+0XpJ01Tlj9OWrpg54LDX1rTpYWKNR6TFKjHUO+DoAAAAnIwINAKedkqI6vfLsBtXVtWje4tG64JKJJ3pIYetnT3+qdbtKjr3+2kL9/oVNqqz1LfcwmQx5BpI49KK3gKAvrBaT5k9J07lzsvT4K1tVNYjCoJKvDWtc1LEQo+MenWdq9OSKs3O0L79GR4rr1NKpzesLP7tEkU6rnn93j7btr9DM8cn6r4t6/5ktrWrS3Q9/opqGVkU6LJo6NkkbdpVqVEaMfnTrmUqIcfT/TQIAAJxEWHIC4LTzxstbVV3p+1Z+9fv79c9N+Xr8hxec4FGFJ6vVFPD65WV7/WGGJDmtJjW2urueNmiDDTMk3/KQlVuLtGpr0QAWyQTzehUQZhiGgsIMwwisHdLZ26tyg2abOGxmVdW1aMWWIr20bJ8kaffhKmUmR2nxGVk9jmftjmLVNPjG09ji0qc7fMHTwYJavfLBPn31mun9eXsAAAAnHQINAKedovJGdTyGGzJUUtWkK77zL33tmqkal52gEanRctp9/zxW1jbr/XV5io2y64L5I2U2Gd1f+DRUcrTeQ4ftBysDXg9FmGG3mpUc71RRecOAlpf0puslewod+iIm0iav1xuy7Wx3142wW9TUemxZToTDoqzkKFksJt3+6w9lMQcGR5W1vdf56FpwtDOja8sVAACAMESgAeC0EzkqVrV7KmSRVCSv2o5uf/IfOyT5lkn81wXjdfW543TPYytVerTGQn5Zvb5y1bQTM+hhkl9arw835istMVIXzMvu84NublGt1m4vVv7RWg/91Vu3kQ4xEVbNm5ymqvoWFZQ1BOyLjbRp6dwR2ra/XAcLB9aVJJT/vnyKnnlzZ8C2eZNTta5La9bu1DW29X5QJ2aTERBmSFJKfIS+du10ffv3n0iSXG6Pvz2tzWLS5JyEXq+bkxETsORlTGas8kvrNSojRp89b1y/xggAAHAyItAAcNq57cbZ+vx9/+52v8fj1d/f3atXlu9Xa/uxp+4Nu0r1pUsny241H49h9pnH49W/1xxWUXmDFp+RpfHZ8X06r6a+Vfc8tsK/fKO2oVWfPa/nNqFer1fvrMrV02/u7FNtiLSECFXWNqm900SNa5eO02vL9/dpjHVN7Xp/Q37Q9szkKJ05NU2XnpWj0qqmQQcacVF2JcU5dN3ScfpkS2HQ/s37ygd1/Z50bXErSYeL62SzmANqkHQc1eby6Ll39uiXXz+rx+sWlDUE/B0lxTn1+28vGaphAwAAnHCm3g8BgFNLlNOm8+dm93pc5zBDkooqGnXPYyvU0ja0HTsG67UP9+vJ17fpjRWH9MM/rFJ5dc/LEQ4U1GjHwQrll9YF1KLYlVvV673+/K8devIf2/tc6LK6oVU267HsfMLIeMVGDr4daWF5g1778IDueXSFLpyXLZtlcEsoopwW2axmvbb8gFZvKw7a3/F+o45jK9Wy6ibddcMsxUXZg/aVVDboB4+v1Ofvf0f/7+m1qq5rUUVN4N/72Kw4pSVGSPIto1k4PaPfY/B6vWpudcnlDvz7bmt3q9019LVRAAAA+oMZGgBOS3d9bpaWnJGln//l04COEr05WFCrjzcV6KIzRw3f4Pppf36N/88tbW4VlNUrOT50i85XPtin597ZLUlaOC1dSXFO/4Pw3MmpkqTWdrdefn+fqmpbdNnZORqbFec/f/X24If9nrS2udW5d8jNl03Wpr1l/bpGTypqWxQX7dAvv75Idz/yyYCvU1DeKJU39npc17oYyXHOgBa1Q2n1tmLd9blZkrx67JWtASFSeU2Lymt8xVfX7yrVTf/vXXm90jmzMnX3F2bLMAxFOq266bLJeuSlzerII1xujwrLGpQY61BUhC3gfh6PV+t3lai6vlUrtxbqQH6NmlpcvmUuVrN+dMt8zRifrP+sOawnX98mwzB01w0ztWT2iGF5/wAAAL0h0ABw2poxPlkv/eIy/eSp1dq8r6LP5z3+ylZ5PF5dsjBnGEfXdwunpWvN0aAhOd6pcSPiuj32ndWH/X9evb1YT3xvqbbtL1daUqSinFat2FyoDXtKtfzoMo+1O4r11A8vUJTTNzNhQna8PwAZSPHMSKdVH20s6PPxvd0jOsKqw8V1faopMRAWsyGXu/sBxETahi3QMBnSmu1FevjFzb0WQ+34jD7ZXKjNe8t027UztGhmpp59a5eajxZmffTlLXrl/b0qKG+UzWrSA7cv0thOPyuPvbJFy9blhbx+W7tbz769Uz/JWKA/vLb16Hi8+tM/d2jxGVnatr9CZrOhqWOSehijN6BGS3OrS2+uOCSX26MrFo1WdJeABQAAoDeG1zuYWu4AEP5yi2p1528/6tc5o9Jj9Ojd5w7PgAZgV26lisobNXtSiuKjHd0ed9+Tq7R1vy+8SYix65n7L5LZZOiD9Xl6+KXN8nolm9Wktk7LbS47K0fnzR2hcSPi1dLm0qsf7Nc/Pzmo1m5mtuRkxqi4olEtXTqc2K1m3XLlFD3/nz39LpzZWWKsQ2Oz4rR1f7l/dk2Ew6KmlqFdCmRIunThKL3dKQTqzGRIE0cl9GmpzkBFRVhDdkvpjdlk6JX/vVy3PfCBv6ht10KsE0bG6zd3nuN/fd0P3ur271TydWJxe7xq7VQQxWySIp02/9+nzWKSV9KI1CjFRtq1cHq6kuOcevSVraqsbVGU06qHvrVYaYmR+umf12rDbl+h1bEj4vTQNxf3+30CAIDTG4EGgNNeu8utO37zoYr6sOSgw8Lp6frBTfOGcVSDV1PfquUb8hQTadfSOSNkMhmqrm/R397ZrZY2t244f7xGpsdIkn78pzU9LgWxWkz63TcXa1R6jDbvLdOP/rQm5HE2q0l33TBLhmHo13/fEDC7YkRqlPJLG0Ke19nYrDh5vB4d6lTos3O3DkmKdFjUOMQBRigdnUX6akRqlJpbXKqobRmuIfXZ9LFJ8sqrw0V1crs9Sk+O0sGCWv/+0ZmxevjbS9Ta7tZvn9+odTtLQhYoHWoOu1kOq1m1jW0BPx//ePCKoPa0AAAAPWHJCYDTntVi1kPfXKwVWwrldnu1+Iws7TlcpZ/8eW3AcZNGJSg+xq6YSLu+dOmkEzTavml3uXXPYytUVOELaY6U1OnWK6cqPtqhO2+YJUlqaXXp2bd2qqquRU5Hz51b2l0e7T5cpVHpMcpIjgrovtFZW7tHv/77xqDtI1Ki+jwr40BBTcBrkyGNSI3WocJjD+N9CTP6GkYkxtp16cLRemd1riq7BBH9fbxvaXPri5dO0kMvbO7nmYNnt5oCCtluO3BsJs7ZMzP079VHAo43mQx9uDFf1XUt/iVLx0NLqzto9s4ZE1IIMwAAQL8RaAA47by/7oiWrctTVkq0vnLVVDnsFkU4rAGFPmdPStVPvnKm3lt7RFGRVp0xPkXzp6aHzUNXeU2zP8yQpK37g9uO/uIv67Tl6HazqecuIWaToYqaZn3+vnfkleSwmfu1xCO/rEEpnQqVjs+O01nTM/SXt3b1eq7Hq4Awoy/sVpNkSK1tgd05QtXEcNosSo5zqrpu8LMqrlw0Ws//Z8+grxOKw2ZSS1vo7jKGEdyVp0NVXaveWxtcG+NAfo0eemGTLpw/ckjH2V/nzMzUNz8/64SOAQAAhCcCDQCnldyiWj3y8hZ5vb42pZFOq265YkrIY2dPTNXsianHeYRDIznOqczkSBUeXUYzY1xywP7V24oCQo7ulhqMTIvWkZJ6uT1evfz+Pv/2gTRJLevUTnbK6ETtPFQ5gKv0TXcP94bhq/PQ1mn5SkF5o373wqaA4zISI1RU2dTn++VkxOiuG2bq481FQbM8umOzmBThsKqmobX3gzsG342ui0dTEyNUenT8o9JjdLi4LsRZvvPGZsVpf2aNDhXWauLIeB0uqQuaQTFcTCbp+gvGy2rpeYYQAABAKAQaAE4rlbUtAQ9/lbXD06HiRCuuaNQlC3JUWdus7LQYLZ1zrLXm71/crA/WB35jbzYZuuLsHP3zk0MB24+U1Ie8/mArLWzZV67cotAP2WaTMWy1HGIi7Krsw0yMsppmTRgZp71Havp03YKyBn330ZUBdT564/J4+h5mSAGFWntTWtkkw5C+evU0FVU0dBtoWMyGzpqRoYsXjFJLm0sOm0XvrM7VH17bFvL48SPitK9Tm+DsOEP5NW55NbCZS7//5hKNTIsZ0LkAAAAEGgBOeW63Ry+8t1eHi+tUVHGsKKXJMHTF2aNP4MgGxu3xdrtEZHdulfYcqdKzb+2Ux+v7Uv+/Lpyo+55cpcLyBs0Yl6wPQ7RNHZEWrQ17ui8KOhQ66m5YzCaVV3cfJP33FZOVnhilDzfmaeXWvtV26EsLWavFpPrmvtXxcLm92nc0zIiLsqmmoefz+hNkdPD085RQNUt64vX6flZ6WhrkcntltZhUVt2k/Xk1GpMVqyk5ibKYTXK5gwd41eIxeuTlLf5uKPV1dfIqun9v5KiLzhypnMzYAZ0LAAAgEWgAOA28/tEBvdRpuUQHj9errNSBPYydKC8t26sX3turmEib7rtlvsZnx/v3vbp8v/76dmBNCq9Xev7dYzUdQoUZknS4m9kSQ8nj8eqCedmqqGnW5n3BNT06HMir1VXnjFVslE2f7iztU1jQU5hhNhmKjrAFzYYwju5zdRMUdGztLcwIJe3oko8T2UbMbjNrxvjko2PI92/vPAPGbDJUXNGoHzy+Uo0tLjntZj1wxyL97KsL9MK7e1XT2Kq8o7N00hIjNHdymn7+1YV6/rUVqiytUL47qZu7e6QeZm3ERtl0x2dnDsXbBAAApzECDQCnvOKK0O1YbRaTIh3h889geXWz/n604GR1fat+9vSn+p+rp2nRrExJ0vvrggs/htK1+0fXlqgmkyGz4VX7AMooLJqZrsZmt/LL6jUyNVq7j1Srsbndv//9dXm9PuSX1jTp/XVH9OgrW/s9KyGUSxeO0qa95UGBhleDXzrTnZKjSz6G+gYZyZEqLm/s8bIOm1nXnz9eZ05N14jUaI1IiZbXKx0oqNae3GqVVvtqa1jMhu763Cxt3lvu6xpjbld74kE9u65aY2yztO1gRcB1G5vbVF3foomjEhRr82qPO/RSkauWZCsxNkLP/Kv74qjXLR3X7/cOAADQVfj8lzwADNB5c7P10aaCoG/6rzxnjIweCi2ebEymwKUVNQ2tevDvGxQdadXM8SmyWXuvY2C3mfXlK6eotrFN08YkyWI2KdJp1e0PLvd/a+/xeNX/BRQ+K7YcWyISallJX57vDxbU6K8VDUMSZkjS26tyu/177kutjlnjk7X7cKVa2jwyJDntFjW1umQ2SRaToVZXNzM8hiEtKSpv1IxxSdqXV63mbgp3/uxrCzV+RLyefXuXth+s0KzxyfriJZP06vL9+nhTof84l9urjMQoxUTYJUm28Rtljq7R7tb92r/HLCky4Lr1TS69+N4+GYb08WFDkjXk/T9cX6I/33u+1m4r067cqqD9d14/QxfMHzWg9w8AANBZePQfBIBBmDI6UbdfNyNg2+iMGN102WT/6w/W5+lv/96tvJLhX3rRmw835uuJ17bqw435eu6dXXrohU06UlKnxFinvnLVNFktgf90Hy6u0/YDFd0W2eystc2tx1/dptLKJk3OSdT47Hgt+/RInx7sU+KdysmI6bXF62C1tXtUU9//ZR7d8XgVsMSivxlWS5tb2am+2QheSU2tLi2Ymqbv3jhHT99/odITIyT5wo3jYV9eteZPSQ+5z2RIH67L0//+dZ3+8dEBHciv0Ssf7Nf3H18ZMmBZtv6IJo6KV0q8U21756jtwAx5vYaaPKHb5H64MV/LN3QsXwn9fusa23TTT9+V3WrW77+1WDPHJcswfDN/br50EmEGAAAYMszQAHBK25dXreq6Fk0bm6S4KLt/2cHlnYqBvv7hAf3lrZ2SpHdW5eqJ7y1VfIzjhIz3N8+v18ebiiRJ/1592L/9400FumrRaH26q1RTchK1+3ClWts9inRYNHdymvYeCf4mvCfL1uXp6sVjlJ0Wo/qm9t5PkPTNG2bp/z3z6bB1IDkenrr3fFXUNuu+P6wOaN3ak92Hgz/bNTtKtGZHScC21MQIZadFa8123/akOIdiIqw6VFQftMxnMKwWs775uVnac6RKJZXHlo8YhqF2l0fvrD0SdM6u3CrNmZQik+ELeDr8Z80RNTS1H22pa5G7Kl2muHLZvFEaTP+f5ja3Nu8rV0PzVv3um4sHcSUAAIDuEWgAOCW98sE+vfDeXv8ykwkj4/XAN87Wht2lykqJ1hkTUvzH7sqt9P+5obldeSX1JyTQKCpv8IcZXbk9Xr3+8UFJUmF5gy5eMFIzxiVrfHa8UuIjVFPforTECJVUNslsNuR29/74/MSrW/WrOxbpqnNGa9mnRwIeuM2G1PkShiE9+soWtbQNoLBGJzGRNtU1dj/7ousD91C763cfqbXN3ecwoz8KyxtlMh2bPVNR06LKGl+L2KF8S9csHqMDhbX+MEPyhRyTcxK0sYdONc+9E7qmxcqtgT9zrqLRcrVEDclYK2t7b5ELAAAwUAQaAE45ReUNeu6d3QHb9h6pVnu7R1cuGhN0/JxJqfp0p+9b9YQY+wlrJfluiG/Wu+P1SgunZeiD9Xl6b12e9hydRZCRFKmiboqgdlV49LjstBg5HZaA9p5d8xCvVyru9ADdm45goqNVa8e2nsIMScrJiNHBwuFb9tPX2SgDlV9aH/C688fYNazJyYhRQWm92rt82LajRVq7hiC3XjlFE0cm6JUP9uuv7+wOmPURF23XqIyYHgMNGW7Ja+4yuuBlI95OYYbZJIXo3hpkVFq0UhIitGF3acB7vP48in8CAIDhQ6AB4JTjCVEsINJpVWJs6FkXFy8YpaQ4p4orGrVgWrpiIm3DPcSQutbG6Cwt0ama+ja1tLmVEOPQ2TMydN+Tq7W9SyeKkqq+hw4JMQ795Kk1mpyTqIQYh5paGgY89q48XmnupBTdft0M5RbXa8WWwk61F47JTo1SXumx+x4aojDDbvWFAsdzdczV54zWPz851O1+j9c3Q+Ubn52psdlx+subO+Wwm3WooE6tnVrKfOfG2cpJj9XPnlmr/E6fzZxJqfJ6pXW7fOGbV7732druUXFFo15bfkCzxifrcHGdqutbu95ehrNR3qbOnUl6r/nRNcyIjbKpNkQb2/PmjdTVi8eosrZZL7+/T1aLSZedlaP0pKGZ6QEAABAKgQaAU0plbbM27w38ljo53ql7b5qnqIjug4o5k1KHe2i9So5zdruvpPJYRYMbLhinB/+2IeRsg/50BjlU6Cv82OO3+oOwfneZ1u8u0+IzstTS5goZaOSVNgTMXAhsJ2to2pgkbT9YGdShpjfnzMrSsj62sR2sKaMTVFLZpNXbizV1TKJ2HKzs9ti6xja9uGyvoiNt2rKvPOQxf/rHDt1+7XS1dlreMzI9WrFRdnk8XtmsJrW1+z6P1vbAz2XzvnJlJkeFDDRMMWXyeIyjMzBChxkmQxqdGacDBTUh908alaA5k1K1dkextu6rULvbo5HpMbrsrBxJUmKsU7ddOyPkuQAAAEPN8HqHo7EcABx/f3x9q95adTho+wXzsnXnDbOO/4D66WBBjb7z8CcnRdHNmeOTFeWwaOW24t4P7kFHm1mr2QhaWtGZxWzIbDKCHtBjo2xKinXqYGHorhvdcdjMamt392uGhtViUk56jPbl1/TrXl1NH5uobQeOhRoRdrOaurRYTYixq6ouOHTo0F0R0c8sGavSqiat2ha61kp3Lpo/Qu9+mqeeZmU4bGbddu10fbypUJv2dh9yPXXv+UpL9LV0bXe5ZbWYuz0WAABgONG2FcApYcPukpBhRmZypG64YMLxH9AAjMmK0/23zte0sYmaOCr+uN03OsIatO2Ks0frG0MQAnVE5j2FGZLkcnuDwgxJqm1oCwoz4qJ6XxLU0uYLM1LinXLaAx+4IxwWzRibpJz06IAWtAunpQ86zJCkbQcqtXBamuKj7TKbjKAwQ+q9lkd3n9brHx1QeW3flxVJ0vwpaUqKj1RvS0xio+z6YH2+f+ZOd/78r+3+PxNmAACAE4lAA0DYyz9crb+8vj1oe5TToie+d55SEyJOwKgGZvmGfG0/UKk9h6tl9F7iQJJ03bljNW5EXJ8e9LsyJN16xZSQ2/vzsGoxm0IGI8Nh8RlZAa97+pgamtv9yzM6jM2M1a1XTdWM8ckBs2H2HKkesjGu3l6i6vrWbmfbtLs8ShvAz6Uhad+RmmOve3jzU0YnKCcjWm63V++s6r62R4fSqiZtO1Dhb23cnU93lmrN9v7NEAEAABgO1NAAELaq61qUf6Rabzy3SQ0eV9D+n33tLJlMfUwFThLbDxwr8tndgsDEWIeqalvklWQ2Gdqyv1wHCo59q97dcoVQvJJ+/9KWoA4cZdVNamkL/ky743J7lJoQo2uWpGvT3jJ5PV6lJUZo6/4KVQxx6873Pg3sBuP7HEJ34+jcuaVDVV2rvvPwJ0F1OUr7UVB1KFTVtWjq6ARV1LaotKpJDptZ40fEa8mcEXpnVa72d5ktEuW0qqH52MyOkWnRqqpr6Xa2x85Dvs43uUX1Iff3VWpChNrb3arqVJdj75FqLZiWMajrAgAADBaBBoCTXkVNs37xl09VVt2shdMzNGt8srYdKNfbqw5rrAzFy6SRMqlFHjVJMpmkb39+tsZmxZ3ooffbjPHJ+mhjgSTJZBhBHVuSYh0BLT3dHm9AmCH1PczojsmQZk9KlWEYmjU+WZu7KV7Z1YGCGjU0t+rzF07S0jkj/NvfXpWrJ1/fJunobAqj+7CmL5pDLOHoT62M+Fi7CsqHrqPLQLW5PNpxNHSQpJZWt645d6xmT0zVhOx4/ebvG1VV16S5U9J18ZmjlJoQoS//YplajhYLTY5z6kjJ4MIKyfd3Mm1skrYfrJDX6wvJ3B6vLGZDcdEO3fW5WYqLsus7D3+s5la3zCbjpCiiCwAAQFFQACe9e59Yqe3ddI6YLZNMnRYd3HT7Ao0cnXi8hjbk2trden9dnuqb2vT3/+wZ9PWsFlO/O4RIvvaidY1tMpsNuXupf9GVYUh/uf9CJcYe69ry17d36qNNBYpyWnW4ePAP4QNlGNJ5c0bo/fXBHVdOBmfPyNAXLp4oh82i4spG/fhPa9Tu8ig6wqof3Tpf2w9WatXWIuUW18nj8fZrNk53rj9vnL546WQVVzSqpc2l5DinahvblJ4YGTDDqbC8QdsPVGjciDiNCcOwEAAAnHoINACctFpdbXpz8zo992qJvK7Q9RnSJUXJUKwM2Z1Wff/nFx/fQQ6RnYcq9eGGfH28uUCt7W7fLJT9FXL1MPUg1AyOUBw2s/9b/aFktZhkGAqqUSFJ58/L1p3Xz9SHGwu0flexVm4dXLeUcBbptKqppV0Wc+/hUkcAZTIZSox1qLz6WLvejo4xRpcZLr11TEmOc2rOpFTZrGYtW3ckaBnORWeO1B2fnTmg9wYAAHAiEWgAOCm5PW7d++5vtevDHMnde7HLOElfvX6mXll5SAVl9YqOtGv6uCTdeNFEvb8uT/llDTp3zgjNm5w27GPvr417SvXTP68d0DIMm9UUECiYTJKnjxMyzB63PIYhrzH09aHNJkNXnjNa//joYL/Oi3RY1NTiGvSsg+FmNqS+TlwZ6CyKvsyusZgNPf3DC/TLZ9drb161rGaT2rsUEzljQop++j8L/K9XbC7QY69uVVOLSyZDuu+W+Zp7Ev7/AgAAoDcEGgBOSiX1Zbrtj3+Xq3jMoK7T9YH/2qVjdc3isYqNsg92iEPm6Td26J8f9+/Bv4PdagrZ7rQnKa2VOqNmryY05qvCFqMXMi+UxzjW0STiaKgwGImxDhlSvwqCGpLGjIjTgT62TrWYTXKFqgTai44aEd2ZMzFFXnm1cU/3tUOiI6y9tl7tyeTRCcotrFNza+Dn3Lk467gRcSooawg6RpIsJsnlkew2sy6Yl62zZ2Rq055SvfzB/pD3e+hbiwNqypRXN2vr/jKNTI/RuBHHr0UwAADAUKJtK4CTUpwzVlYNvt1q1+UQry0/oC/99F19urNk0NceKlMGUfNj4siEfp+zsGq7ZtYfkNPTqhEt5cpsDnxwH2yYYbOYVFnb0q8ww2I25JX6HGZIGlCYIUkp8U4tmJau5HhfjQ9zl0Y4Xq96DDMk6azpGUqJd/Z4TE92HarSmMxYjRsRG7Dd4/V1bHHazMovrVd8dHDwZrWY1DFxo7XNrbdW5ureJ1aqpIcuLZ4uAU5yvFPnzxtJmAEAAMIagQaAk5LDYtd5E2dI5o5vwYduMpnH49Vv/r7BP51/9bYi3fnbD3X/k6tVWtWk/NL6gNoFw6GppV1F5Q1yuz3avLdswNdx2PrfrKreEun/s0eGmiyOAd8/cCxmJcc51NbNMglL1+SgE1c/C48ORnFlk9buKFZrq0uRDotysgJDhe2HKro585hV24pUUTO4n5G9R6o0JjM4UHB7pOY2t1ra3CqqaAzY57CbQy5D8XilsqpGRTp9tWbGZsUqPTHCt/Rn0WiNzya4AAAApx6WnAA4aX3v0RXafbgqYFukwyKrxayahu6LIPa1ZsF5c0Zo+rhkPfLS5pBLEO66YabOnzcyYJvX69Wu3CpZzIYmDGB2hCQdLq7TD/+wSnWNbcpOjVZeaWDXD5NhaOH0dK3ZXtzj0oi4aLsmZMf3abaJ1WKS1+ub1WD1tGtpxUYltNdpS8w47Y7OCVjqMFzSEyNUXNn9LIITyWySpJ6XogyX/nSiibBb1BRiCUpnSbEOPfXDC2Qxm+T1emUY3QdJAAAA4YwZGgBOOl6vVx9tzNeeLmGGJDW2uILCjNuvm67oCF/hUIvZpHNnZ/XpPss35OuhFzZ1+xD74nt7g7Y9+vIWff/xlbr7kRX687+2hzyvqaVdb6/K1fINeSGv/cYnB1XX2CZJQWGGJHm8Xq3aWhRw7r03z1Vc1LHiqImxDmWnRkt9fFZNjnP4lx20m6x6N+VMvZB5oXZH58hptwxLmGGzBv6KOVnDDMk3K+JEhBmSfF1Nuvl7NHfZ0e461q0mJyNGv75zkb506SQlxh6bZVNR26L6oz9fhBkAAOBU1v+5ygAwzJ55c2e/imSWVTfr4W8v0c7cSuVkxOiNTw716bzeHl+77m93ebRsXZ7/9b8+OaSi8kbNn5qmxbOy5LD7/kn90R/XaG9etSRpV25VUEvMuC51Ec6cmqZ1O0sDWrB2vrfFbGj62GT95q7FWrGlUKVVjfrPmiOq7KFGRXy0XTX1rf7rFFWEDhOsFpOinNaQhSf7wmI2Qi4XGTciVjarRbtyK2Vo+GZ/xEXZ9cjdS1Tf1K4f/3F1v+p2nEy6+3zcHq/OmpauuGi7xmXH6/cvbvbvM5kMTRyZoIkjE9Tc6tIrRwuCThmdGPQzBgAAcCoi0ABw0lm7vbjXYwzDV7zRZDI0a3yKkuOdWhLvm5lx3twR+nhzgVrb3EqIsauusT2ggOTnL5yg+qY2vbUyt8d7XHVOYIcVq8Wk1IQIlXYqvrh+d6nW7y7V++vy9OA3FmnN9mJ/mCFJG/cE18e4/rzxqqpr0eHiOp07e4T/Pg+9sEnLN+RLkpJinYpwWtTU3K6bLpusSKdVkU6rrls6Ts++tbPXz6e6vvslOXFHww7JtwSlfBC1IFxur5LiHKqoCQwS9ufX+v/slYZkSUtclE01DW0B25pa2xXhsGrvkWqlJUacNIFGpNOsmy6Zon98clDFXepgdJWZHKXC8oZu96/aXqyxWbG66fIpWrm1SBt2l8owpEsX5viP+dKlkzU5J1GNze1aMC2dmRkAAOC0QA0NACedbz70kQ4W1IbclxTr0O2fnan4aLu2HazQpFEJITt9lFU3qbi8UeOy4+TxSg/930blldZr6Zxsff7CCfJ4vPrFs+u0rlP9iVFp0aprbFNdU5sWTsvQd784J+i6ReUN+v7jK0MGBr+87Sz98A+rAmZXLDkjS9/5wuwe3++eI1XavLdco9Kj5bCZVVnbqrmTU7ttLZtbVKvvPrJCre3uoLa0vTEM6Tv/NVsVtc169q1dfTrHYpY6rXQIec1vf/4MvbM6V7sPV3d/4CD0VBdlRGq08kMs3TmRpo5J1P9+/Wy1tLl0w71vdxvmzJ6You/eOEf3PLZCxRWNslh8dS+aW4M/8F/ctlBTRidpz+EqxUTaNCI1epjfBQAAwMmNGRoATjoLpqZ3G2i4PV7ZrWY98tIW5RbXasG0dH3vxjkymwPrNaTERygl/ljb1/tvPTNgv8lk6OvXTlduUa3Kq5sVF23Xvf89X+lJkepJRnKUfnX72fr9i5t1uLjOv1QjKyVKheX1AQ/d8dF27TlSpc/d947SEiJ0/rxsXX72aO09UqVtByo0OSdRdptZP3h8pX/ZhsVs0g9unhsQZni9Xn24sUB1ja06d/YI2axmtR1NGNraPcpIigzqhtEdm8Wk3zy/sU/HdrBaLHK5u1+S4vVKD7+0eVg7lfR05c5hRnKcUynxESosrw+azTEYUU6rGprbez/wKJvVLMnXhSYu2q6quuAAbEJ2vO6/9Uyt2V6kIyW+99Dm8mjciDgdLKgJCEFMJkPJcb6uJYNp8wsAAHAqIdAAcNK56MxR+r9394T8Vru6vlX3PbnKv2/1tmKt3VGis2Zk9Ps+ibFOPXb3uSooa1BGcpSijra87E1GcpQe/MYitbW79dbKXDW1tuuys3KCQpi6xja5630DPVhYq4P/2C63x6tn39opl9srkyFdelZOQBDgcnv017d3ad7kNP+2Z9/apdc/OiBJ+tcnB3XzZZPVeW5dXztkSFJrP2ZzdOhLfY3hDDPMZkPuPl4/MyVKkU6rduZWDukYFp+RqZr6Nq3aViTD8AUnZZ1a+5oM32yc5RsLFBtl040XT/Tvu+eLc/X9x1f6QxnDkCaNStD9t8yX2WSoqq7rcp2agNdOu0V3Xj+z17ANAADgdEOgAeCk47CbNWNcsrbsKw/5zXzXoMNs7rleQFNLu4rKG5WRHKkIR2BoEeGwanx2/IDGabOa9Zlzx/pfTxxpUlSEVQ1N3X+Tv/NQpf/h3+P1hRFdC2s6bBb977PrVFLZqEvPGq0t+8r9+ypqWvSb5zcp0mFRY4tLNqtJlXXBNTCyUqJUUNZRl8Ej36KNwddV6K4IaH+ZPS7Z3W1qNtvlNZl7PLavYYYkbdlXLqtl6Bt45RbV6YE7Fulv7+zSyx/sDwgzJMlht+iOz87U1LFJslrMGp0R69+XnhQZ8HOcmhChB+5Y5H+9eFaWnn1rV8hg6qIzR+qWK6YE/dwCAACAQAPASej1Dw9oc6eH+O6YDOm8udkBsxm6Kqtq0vceW6HK2hYlxzv1628sUmKsU5JUUtmoB55br7LqZl29eIw+e974kNdwuz06WFir+GiHkuOd3d4rKsKmB+9YpMdf3aKdh6qC2oAmxzt14fyRWrezRG6PV4ak7QcqFB9tV2pipEoqm5QQY1dzq0urjxZGfeyVLVowNV2HigJnfzS2+GZNpCVGyuVy+7uYWMyGRqRGKzHOqRsvnqgXt/xbJbZN8tQlqW3fGRpsqDEkMzG8Xn2m5CONaSpSq2HRfyZdpUPe6IDZI2aT0Wsb1e7Clb7MWIl0WtXYjyUkXq+0fleJ1u4oCbm/qcWlB/++wb//k00F+tGXfcuc3l4VWHx28azAtsIWsylgzB3vfXx2HGEGAABADwg0AJx06pv6VvvA4/UVVXzunV2aMylVU8ckBR3z4cZ8f3vT8upmfbK5UNcs8c2q+MubO3Xg6DKR597ZrTOnpgcUWnR7vJLXq5/8ea227CuXyWTozutn6ry52SqpbNTz7+6RIekLF09SaoKvXseI1GjZbYH/tN5701zFRNk1Kj1GkU6rfvo/C/R/7+5RblGdv/ZFbWO7XvjZJbJZzbr2njcDzo+PsXX7GeSVBBbDdLm9yi2qU25RnXYeKZYxZZMMeWWOK5d11E61H57al492eBmGXk9bopsK3pEhqamuXq2OwOUUCTGOXruvzBiXHLKLTF8kxtplNhmqa+z5Z81mMclmM2v34Sr9v6c/VXfNQ+ZMStWG3aX+1+t3l2rtjmKdOTU9oMOOJGWnBRbzjHRaNTYr1v+zeM6sTH3tM9MJMgAAAHpBoAHgpHPlojFa9umRPtV7+NVzGyRJ//z4oH5z1zkamxUXsD8pzhny9ROvbvXPgujQ8S15u8utXz67Xhv3lGpESrTyjhad9Hi8euyVLZo5Plk/e+ZTf5iQW1SnR+8+13+dGWOTtenog3Z8tF1TxyYpOuJYKLF8Q7525VZ1ubdbLrdHNqtZ08Ym+R/UzSZDcyen653VR3r9LLpqbvYoyjDJ7fUVEI1JalHl4X5fZli4TRZtixmrTTET5Amx5KQvrWSLK7pvdSqpxw4weSU9n9sh0mkN6GhjyJD36AKS+Gi77r5xtppbXJozKVV3/e4jf3FPSfq/d/do7uQ0XbV4jDbuKdPh4jrNm5ymhdOD67387Gtn6b21R+S0m3XB/JGymId+2QwAAMCphkADwEmlpr5Vj728uU9hhsk4Vk/D7fFq35HqoEBj6ZwRKq1q0ua9ZZo6JlH782v00P9tVHuXpQpXLBqt0Zm+ugcfbyrwf9ueVxo8A+K7j6zwz/qQFNRh5DPnjlVyvFOlVU1aNDMzIMyQpLySuqD3cuPFk/zfyN93y3y98ckBFVc06ZpzxyojKUop8c6gug2dhVp+YZZVX5p2g17f95YirU4ZebM0tKUy+y45zhkYUni9KrfGhgwz+qpjmU132to9/e5O0lV1fatMJkOeoz9ocyenavfhKrW0uTQhO17js+PlODoj59v/NVvffOgjf8HW3KI6/eG1rbrjszP16N3nqt3l6ba+R5TTGlCPBQAAAL0j0ABwUvn7f3Zr28G+PXZ3LrFgSHry9W16Y8VBXblojC49K8e33TDU2NyuPUeqtedIdcjrWMyGzpmVqR/+YZUiHRbNmpDS4327zh64dOGooGMWzczs9vzz52brQMF2SdLkHF+3i6hOoYfFbNJnzg2s59FTPYmkOIeuWzpOT76+PWD7T/9ngWaMS9Ylkxbpg/V5+v0HmwP2dw6E+irCblFTH7qedJaTER3QWjUmwqrz54/U2yvNUi/BVVyUbVDtV/sbZoSq3eHxeHXenBHKyYzV7IkpuuPXH8rt8WrtzhL97Z3d+srV0yRJozNj9d0b5+jBv23wn7t577ElMcNRrBQAAOB0RqAB4KTS2uYe0Hkdj6CF5Y36w+vbtPtwlb7zhdmqrG3WGysO9Xhux6yLDgcLa7t0CQnttmuna0xmrCaMTOjXWC87e7TGj4xXbUObZozzdcXozZWLxugvb+30vzYkTR6dqIvOHKlzZ4/Qv9ccDjg+Kc6pGeOS/a8bWwIf7BNiHHr8u+fK6bDqyz9/TxW1ga1Du2N080weF2XXefOy9f66I6rtFEBkp0YrtyhwlktdU7uinFbNnZymlVuLgq7ltJvV0ubWnEmpysmI1bJPjwQs++iOyfB1G2lq6V/g0tnlZ+foX58E/rzERtn0launKdJp1bYD5QGBx4othWpudenGSyYpIcahs6ZnaFR6jA4X+2bhhKrrAgAAgKFBoAHgpLJ0dpY+2lQw6Ous2lqk73xhtkoqm/rdarSsulmXLBgZEGjERdvV2uZSW7tHbo9XZ0xM0UXzR8o8wFoH40b0r1XsZ84dq9kTU/T+hjzV1rdqwbQMLZiW7t8/fWySHDZfEGAY0m2fmRZw/tI52QGtQVvaXIpwWGUyGZo9KVXvrvXV6DAZkt1mVnNr6GCpsTl0WBAXbdfNl03WzZdNVllVk2oaWtTu8spkkr736Mqg400mQ2fPzNSqrUVBrXlvv26mqupa9MybO7V+V6mS4xz60/eXqr7ZpSdf36b9+TUhx+Dx+rqN9NY6tydNrS6lJ0Wq+Ogyopz0GH33i3MU6fQtB+oauFXXt2rZujwVVzbqf79+tkwmQ7+47Sy9u/awIuwWXbRg1IDGAQAAgN4RaAA4aZRUNurpN3f2fmAfuD0ePfDcev8MALvVrEinVVV1vc9EiIu264YLJmhnbpXyS+u1cHqGvnvjHJlNhhqa21XX0Kq0xEiZTINrgdpfI9NjdOsVobuUZCZH6aFvLda2AxUaNyIuKDCJcloVHWHzv/+WVpfcHo9MJrO+es10jUiNVn1jmy5eMEofrM/T3/+zx39uR/2OrJQolVU3hSy0ecG87GPHJ0QoJSFCBwtq9P3Hg8MMSZo5LlljsuJ08cKR+nengqcjU6O1+Iws3f/kav+28poW1Ta2K9Jp7TbM6KypZeA1M5Z9midbp6Uh0VG2gKUi3f2dF5UfC79iIm3dtgAGAADA0CHQAHDSeOqfOwK6RAyGx6uA5Qyt7W61u7pfzhIbadOknARZzSbdfMUUJcY69fh3l8rt9gTMwohyWhXlPDnbaWalRCsrJbrb/TddNkmPvLRFbo9XX7h4kn+pi9Vi0lXnjPEfd+U5Y7Q/v0Z7j1Rr/tQ0fe2a6apvblNMpF07D1XoHx8dVEyETTdfPkm5xfWKibBp7Ii4oPut2VGslhBLiMZkxSo7LUYrNhcGhBmSrwiry+3RxFEJ2rK/XJJvyUdmSpQ297FFq81iDnnfvnDaA2enbNtfofv/uFp/+sH5MgxDZ0xI0dI5I/TRpgI57RY1Hq3RcfGCnAHdDwAAAANHoAHgpFHUSxvOwTKbTfK4gmcXxEfb9cAdi5SeFBnynFPF0jnZmjclXW63R7FR9m6Pc9otuu+W+QHb4qMdkqTpY5M1feyx2hzxMYFtcTsblR4T8PrLV05VQoxDcyanymox6dOdJUHnxETZ1NjcrlVbCyX5wowf33qmoiNs/la2vbli0WjVNrTpvU/73uo2wmFRSnyE8kN0oCmpbFJrm1sOu0WGYehbnz9D3/zcLEnSrtwq2a3mkIEOAAAAhheBBoCTQmu7O6j96UAZUkBdBkPSleeMVmpChP70zx1Bx9c2tiktMWJI7n2yO56zS86ekamWG1zacahSsyekatGswM4vE0bG6+PNvnophiGNzYzV16+bqfc+PaL8o/VLahvatDO3UpFOq5ZvzA8432aR2kKU9Fi/q1S/uO0srdxa2OcCoWdOTde2/eUKVWpl5vhkOeyBvy4Nw7f0ZMroxD5dHwAAAEOPQAPASWOwFSkSYuz62mdmaOXWQn2y+eg3/JE2/ene8xXh8D3Iz52cpoKyBv17da7W7SqVJM2emOJ/QMXQOn/eSJ0/b2TIfVcsGi2n3aK80nqdPSNDY7Li9OxbO7Vme3HAcVFOm2zW4E4wX7t2pnYeqlRtfas27S0LaEEbE2nTH+45T4+9vEXrd5d2O77keKfGZMbqlium6J7HVgTtt1vN+sHN8/r4bgEAAHA8GV6vt++l/wFgGC379Iie+td2WS1m1TW29X7CUSaToftvmac5k9IkSW63R2+vzlVVbYsunD9SGclRQee0uzz6eFO+3B5p6ZysPrVOxfD69+pcPfHaNv/rhBiHFk5L11euniaTydBDL2zS8g2+WRo2q0mPf3ep0hJ9y4T+s+awnn5jhyIcVn3vi3P8Mydcbo9efn+fdhws1768GrV2KWj6laum6sqj9UP2HKnSIy9tUWubS5nJUYqLtuvGSyYpJf70mL0DAAAQbgg0AJyUPt5UoN88v9H/+ubLJ+v8udkqrWrShxvzNTknUYeL69Tu8uiaxWMUH+M4gaPFUHj+P3v04rK9/tdfvWaaLj97dMAxK7cW6nBxnRZOy9DozNh+Xb+lzaWt+8v15OvbVVHTrBGpUfrV7YsUE2kbkvEDAADg+CLQAHDSen9dnlZtK9KYzFh9/qKJMh/nNqk4vsqqmnTPYytUUduizORIPXDHoh6Llw5UW7tbFbXNSo6LCGjJCgAAgPBCoAEAOGm0tLpUWt2k9MTIkHUzAAAAgA4EGgAAAAAAIOww1xYAAAAAAIQdAg0AAAAAABB2CDQAAAAAAEDYIdAAAAAAAABhh0ADAAAAAACEHQINAAAAAAAQdgg0AAAAAABA2CHQAAAAAAAAYYdAAwAAAAAAhB0CDQAAAAAAEHYINAAAAAAAQNgh0AAAAAAAAGGHQAMAAAAAAIQdAg0AAAAAABB2CDQAAAAAAEDYIdAAAAAAAABhh0ADAAAAAACEHQINAAAAAAAQdgg0AAAAAABA2CHQAAAAAAAAYYdAAwAAAAAAhB0CDQAAAAAAEHYINAAAAAAAQNgh0AAAAAAAAGGHQAMAAAAAAIQdAg0AAAAAABB2CDQAAAAAAEDYIdAAAAAAAABhh0ADAAAAAACEHQINAAAAAAAQdgg0AAAAAABA2CHQAAAAAAAAYYdAAwAAAAAAhB0CDQAAAAAAEHYINAAAAAAAQNgh0AAAAAAAAGGHQAMAAAAAAIQdAg0AAAAAABB2CDQAAAAAAEDYIdAAAAAAAABhh0ADAAAAAACEHQINAAAAAAAQdgg0AAAAAABA2CHQAAAAAAAAYef/AweGBCmg/8xMAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "image/png": { - "height": 819, - "width": 538 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "# celltype is the original CellAssign prediction\n", - "sc.pl.umap(\n", - " follicular_bdata,\n", - " color=[\"celltype\", \"cellassign_predictions\"],\n", - " frameon=False,\n", - " ncols=1,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "BIgqSmAZrera" - }, - "source": [ - "### Model reproducibility" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7xIb0z44sxLv" - }, - "source": [ - "We see that the scvi-tools implementation highly reproduces the original implementation's predictions." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 368 - }, - "id": "HjEobt_Grbim", - "outputId": "40a88822-aef8-429f-86ee-05ccb6d0025e" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_2716663/116468542.py:8: FutureWarning: Series.ravel is deprecated. The underlying array is already 1D, so ravel is not necessary. Use `to_numpy()` for conversion to a numpy array instead.\n", - " confusion_matrix /= confusion_matrix.sum(1).ravel().reshape(-1, 1)\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3IAAAMGCAYAAAC3ZLY2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABibAAAYmwFJdYOUAACmgUlEQVR4nOzdd3gU5f7+8XvSSUJCCYTeu3QBC3JQoiJIRxBEQERFBFFUULCiUjwoFopHuqCCgBBBEKSIdEIJvfcaWkJ6z/7+yC/7JSZAQjK72eT9OtdeB2aemfksYTF3nmZYLBaLAAAAAAAOw8neBQAAAAAAsocgBwAAAAAOhiAHAAAAAA6GIAcAAAAADoYgBwAAAAAOhiAHAAAAAA6GIAcAAAAADoYgBwAAAAAOhiAHAAAAAA6GIAcAAAAADoYgBwAAAAAOhiAHAAAAAA6GIAcAAAAADoYgBwAAAAAOxsXeBQBwXMufmWPvEiBpZk3+KQcApPpt9HP2LgE2Qo8cAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghyQR/Tu3Vs1a9bUxIkTM5yrWbOmatasqe3bt9uhMgAAAOQ1LvYuALgX7733npYsWZLhuGEY8vLyUoUKFfTII4+od+/eKlmypB0qBAAAAMxDjxwcmqurq/z8/KwvX19fRUVF6dChQ5o6daratm2rPXv22LtMAAAAIFfRIweH1qhRI82dOzfdsfj4eK1du1ajRo3SzZs3NXz4cK1atUqGYdipSgAAACB30SOHfMfd3V1t27bVyJEjJUlnz57VyZMn7VwVAAAAkHvokUO+Vbt2beuvY2Ji7ukeycnJWrZsmZYvX65Dhw4pPDxcRYoUUbly5fToo4+qU6dOKlWqVIbrzpw5o1mzZmnbtm0KCQmRk5OTKlSooCeeeEJ9+/ZV4cKF7/l9/dulS5c0Y8YMbdmyRZcuXVJKSoqKFSumUqVK6cEHH1SXLl1UsWLFXHseAAAA7I8gh3zryJEjkiQnJyeVL18+29dfv35dgwYNss6xMwxDPj4+ioyMVHBwsIKDg5WYmKjXX3893XULFy7UqFGjlJiYKEkqVKiQEhMTdeTIER05ckRLlizRrFmzVKFChZy9QUmHDx9W7969FRkZKUlycXGRp6enQkJCFBISoj179sjHx0f9+/fP8bMAAACQdxDkkO8kJCRo3bp1Gjt2rCSpY8eOKlq0aLbvMXDgQO3bt0+enp5655131L59e/n4+EhKHa65atUq+fr6prvun3/+0Ycffih3d3e9+uqr6t69u0qWLKmkpCTt27dPo0eP1oEDBzR48GAFBgbKySlno5vHjRunyMhI1a9fXx999JHq1q0rwzAUHx+vs2fPauXKlZn2GAIAAMCxEeTg0IKDg9W8eXPr75OSknTz5k1JUpkyZfTaa6/ptddey/Z9Fy9erH379snZ2VnTpk1TkyZN0p2vWLGiXnnllXTHkpOT9dlnn8lisWjcuHFq06aN9ZyLi4saN26sGTNmqF27djp69KjWrFmjJ598Mtu13Sqtt/D9999XvXr1rMfd3d1Vo0YN1ahRI0f3BwAAQN7EYidwaImJibp+/br1lRbiJCkqKkqRkZFKSEjI9n3T9qhr06ZNhhB3O0FBQTp//rzKli2bLsTdqkiRIvrPf/4jSdq0aVO26/q3tLl2V69ezfG9AAAA4DjokYNDa9asWbrtBywWiyIjI7V7925NmDBBc+fO1e7du/XTTz/J09MzS/dMTEzUgQMHJEktW7bMci3BwcGSUkPVrb2E/5a28Mrly5ezfO/badmypRYtWqR3331XwcHBCggIUP369eXm5pbjewMAACDvIsghX0lbkOTRRx9V7dq19fTTT+vgwYOaO3euBgwYkKV7hIeHKykpSVLq8MysunbtmqT/6yW8m7i4uCzf+3aGDx+us2fPaseOHZo5c6ZmzpwpV1dX1atXT61atVK3bt1UpEiRHD8HAAAAeQtBDvmWv7+/WrRooRUrVmj58uVZDnL3Kjk5WZL00EMPafbs2aY+K42vr69++uknBQUFad26ddq1a5cOHTqk3bt3a/fu3Zo+fbp++OEHNWzY0Cb1AAAAwDYIcsjXSpcuLUk6f/58lq8pUqSIXF1dlZiYqEuXLmX5Oj8/P0m5M2Qyu5o1a6ZmzZpJkqKjo/X333/rq6++0qVLlzRs2DCtXr3a5jUBAADAPCx2gnztypUrklJXjcwqFxcX1a1bV5K0fv36LF/XqFEjSambgZ8+fTrrReYyLy8vtWvXTqNHj5YknTt3zi7hEgAAAOYhyCHfCgsL05YtWyRJ9913X7au7dKliyRp5cqV2rlzZ5auefDBB1W2bFlJ0pgxY6xDLTOTmJio6OjobNX0b0lJSUpJSbnteXd3d+uv4+Pjc/QsAAAA5C0EOeQ7FotFBw8e1ODBgxUaGipJ6tOnT7bu0blzZzVo0EDJycl65ZVX9PPPPysyMtJ6/syZM/rmm280b9486zFXV1d9/PHHcnJy0oYNG/Tiiy8qODjYGrZSUlJ04sQJTZ06Va1bt9bhw4dz9D5DQkLUunVr/fDDDzp69Kg1OFosFu3du1ejRo2SJFWqVEkVK1bM0bMAAACQtzBHDg7t3xuCS6n7x6WtCOnk5KQhQ4aoVatW2bqvq6urpkyZooEDB2rfvn369NNP9dlnn8nX11fx8fGKjY2VJA0ePDjddS1bttT48eP1/vvva9u2berRo4fc3Nzk6emp6OhoJSYmWtsahnEvbzmdc+fOacKECZowYYJcXFzk7e2d7jm+vr4aP358rjwLAAAAeQdBDg4ts6X+CxUqpEqVKqlJkybq2bOndb5bdvn5+WnevHkKDAzU8uXLdfjwYUVFRalo0aKqVauWWrVqpY4dO2a4rl27dmratKl++uknbdy4UefPn1dkZKQKFy6sihUrqnHjxnriiSd0//3331Ndafz9/TVlyhRt27ZNe/bsUUhIiMLCwuTq6qpq1arpkUceUd++fVWiRIkcPQcAAAB5j2GxWCz2LgKAY1r+zBx7lwBJM2vyMzkAQKrfRj9n7xJgI8yRAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAH42LvAgA4rpk1+SckL3jlrL0rwPRK9q4ALi7O9i6hwEtITLZ3CUCBQo8cAAAAADgYghwAAAAAOBiCHAAAAAA4GLsFuZs3b2rv3r06e5bJHQAAAACQHaasVHD58mWtXLlSbm5u6tWrV7pzFotFY8aM0S+//KKUlBRJ0n333aevvvpKFStWNKMcAAAAAMhXTOmRW758uf773/8qODg4w7nZs2dr7ty5Sk5OlsVikcVi0YEDB/TSSy8pLi7OjHIAAAAAIF8xJcht2bJFktSqVat0x5OTkzV9+nQZhqGGDRvqm2++0VtvvSVXV1dduHBBv/76qxnlAAAAAEC+YsrQygsXLkiS6tSpk+74zp07dePGDRUqVEg//PCDfH19JUmJiYmaOHGi1qxZo759+5pREgAAAADkG6b0yIWGhkqSihcvnu54UFCQJKlFixbWECdJTz75pCTp5MmTZpQDAAAAAPmKKUEuba5bbGxsuuM7d+6UYRh64IEH0h0vUaKEJCkiIsKMcgAAAAAgXzElyBUpUkSSdP78eeux2NhY7dmzR5LUsGHDdO2TkpIkSV5eXmaUAwAAAAD5iilBLm1u3Lx586zHFi1apPj4ePn4+GSYO5c2p65kyZJmlAMAAAAA+Yopi5106NBBGzZs0PLly3X69GmVKFFCGzdulGEYat++vQzDSNc+bZuCSpUqmVEOAAAAAOQrpvTItWvXTq1atZLFYtHBgwe1fv16JScnq1SpUnrttdcytF+5cqUMw9CDDz5oRjkAAAAAkK+Y0iMnSZMmTdJvv/2mjRs3KikpSbVr19YLL7ygwoULp2t36tQpXbt2TaVLl1bz5s3NKgcAAAAA8g3TgpyTk5O6deumbt263bFdlSpVtG7dOrPKAAAAAIB8x5ShlQAAAAAA8xDkAAAAAMDBmDa0Mk10dLSOHDmi69evZ9ggPDOdOnUyuyQAAAAAcGimBbmrV6/qv//9r/766y8lJiZm6RrDMAhyAAAAAHAXpgS5GzduqEePHrp8+bIsFkuWr8tOWwAAAAAoqEwJct9//70uXbokwzD0/PPPq2vXrqpcubI8PDzMeBwAAAAAFCimBLm///5bhmHotdde0+uvv27GIwAAAACgwDJl1cqrV69Kkrp06WLG7QEAAACgQDMlyPn6+kqSvL29zbg9AAAAABRopgS5+vXrS5JOnTplxu0BAAAAoEAzJci9+OKLMgxDs2bNMuP2AAAAAFCgmRLkmjRpouHDh2v16tX6+OOPFRUVZcZjAAAAAKBAMmXVyhEjRkiSypYtqwULFmjp0qVq2LChSpYsKSen22dHwzA0ZswYM0oCAAAAgHzDlCC3ZMkSGYYhKXWT79jYWG3dutV6LDMWi4UgBwAAAABZYEqQa9q0qRm3BQAAAADIpCA3d+5cM24LAAAAAJBJi50AAAAAAMxDkAMAAAAAB2PK0MrMHDt2TBcvXlR0dLS8vLxUtmxZ1ahRw1aPBwAAAIB8w9QgFxUVpSlTpui3335TREREhvM+Pj7q1q2bXn31VXl7e5tZCgAAAADkG6YNrTx16pQ6dOigWbNmKTw8XBaLJcMrPDxcM2bMUIcOHXTmzBmzSgEcQs2aNVWzZk1t37493fHt27dbzwEAAACSST1ycXFxevnll3Xp0iVJUosWLdS2bVtVq1ZNXl5eiomJ0fHjx7Vy5Ur9888/unTpkl5++WX98ccfcnd3N6OkAikhIUF//PGH1q9frwMHDigsLExJSUkqUqSIatasqUceeUTt27dX8eLF0103ceJETZo0Kd0xJycneXl5qXDhwqpQoYLq1KmjgIAANWnS5J5qe+WVV/TPP/9Ikjp37qxx48Zl+dr33ntPS5YsuafnDh48WK+//vo9XQsAAADkFaYEuV9++UUXL16Um5ubvvrqKz3xxBMZ2tStW1edO3fWmjVr9NZbb+nChQv65Zdf1K9fPzNKKnC2bt2qkSNHWsO0JHl4eMjd3V1Xr17V1atXtXHjRn3zzTcaOnSo+vbtm+EeTk5OKlasmPX3MTExunTpki5duqRt27Zp5syZql69uj777DM1atQoy7X98ccf1hB3L7y9veXn55fheGJiosLDwyVJRYsWlbOzc4Y2np6e9/xcAAAAIK8wJcj99ddfMgxDAwYMyDTE3erxxx/XgAEDNHHiRP31118EuVywYsUKDRs2TElJSSpXrpwGDBigRx99VCVLlpQkxcfHa+fOnQoMDNQff/yhNWvWZBrkSpcurXXr1qU7lpCQoEOHDmnNmjX69ddfdfz4cfXq1Uvjx4/X008/fdfabt68qTFjxqhw4cIqWbKkTp48me3398EHH+iDDz7IcHz79u3q06ePJGnRokUqV65ctu8NAACA/Ck2NlZBQUE6ePCgDh06pIMHD1o7PYYPH67+/fvn+BmBgYFatGiRjh07pvj4eJUuXVoBAQF6+eWXVaRIkRzf/1amzJE7ffq0JKldu3ZZap/W7tSpU2aUU6CcPHlSI0eOVFJSkh5++GEtXbpU3bt3t4Y4SXJ3d1fz5s01fvx4/fbbb6pYsWKW7+/m5qaGDRvqnXfe0bJly1S7dm0lJyfrvffe0/Hjx+96/bhx43Tjxg299dZbGYZ0AgAAAGbZt2+fXnnlFX377bdavXp1upFrOZWcnKwhQ4bo3Xff1Y4dOxQdHS0nJyedPn1a06dPV7t27awZKbeY0iMXExMjSVlOnWnt0q7Dvfv6668VGxurEiVK6JtvvpGXl9cd29epU0effvrpPT2rVKlSmjx5stq1a6eYmBhNnjxZ33zzzW3bb9myRUuWLFGDBg3Uo0cP/fnnn/f0XFuKjIzUL7/8onXr1un06dPWP9sqVaqodevWevrppzMdrrl161bNnz9fwcHBCg0Nlaenp2rWrKlOnTqpU6dOmQ77vFe7d+/W3LlzFRwcrOvXr8vV1VXFihVTxYoV1aJFC3Xr1o1VYQEAACT5+vqqTp06qlOnju677z6NHTtW165dy/F9J0+erFWrVsnV1VUjRoxQt27d5Obmpv3792v48OE6deqUBg4cqGXLlsnV1TUX3olJQa5o0aK6du2aTp48qcaNG9+1fdrwulvnYyH7rl69qjVr1kiSevfuLV9f3yxd5+R07x2zZcuWVZcuXfTTTz9pzZo1io2NVaFChTK0i4uL00cffSQXFxd9+umnOXqmrezdu1eDBg2yfrhdXFzk7e2tq1ev6uLFi9q4caMqVKigBx54wHpNUlKSRo0apQULFliPeXt7KyIiQkFBQQoKCtKKFSs0ZcqUXFnY57ffftP7778vi8UiKXUepGEYunDhgi5cuKDNmzerSZMmqlevXo6fBQAA4MiaNGmioKCgdMe++uqrHN83NDRUM2fOlCQNGTJEvXr1sp6rV6+epk6dau2RW7RokXr27JnjZ0omDa1s2LChLBaLpk6dmqX2U6dOlWEYatCggRnlFBjbt2+3fkMfEBBgs+e2bNlSUupiI3v27Mm0zbfffqvz58+rT58+qlWrls1qu1cXLlzQyy+/rGvXrqlixYr6/vvvFRwcrO3bt2vPnj1auHChevfuLQ8Pj3TXff3111qwYIFKly6tL774Qrt27dKuXbsUHBysCRMmqESJEtq0aZO++OKLHNcYGxur0aNHy2KxqEuXLlq3bp327t2r3bt3a9euXfr555/17LPPZhqsAQAACprcHBF1q1WrVik2Nlaenp56/vnnM5wvX7682rZtK0launRprj3XlCDXtWtXSdI///yjN998U9evX8+0XWhoqN566y2tX79ektStWzczyikwTpw4ISl1HluVKlVs9txb9zc7f/58hvMHDx7Ujz/+qDJlyjjM0v8TJkxQeHi4/P39NX/+fLVq1Upubm6SUnvm6tevrw8++CDdDx/OnTunmTNnqnDhwpo9e7Y6depkHdJYqFAhPf3005o4caIMw9CCBQtu+7nIquPHjys6Olqenp76/PPPVbZsWes5b29vNWnSRJ9++qmqVauWo+cAAADg9rZt2yZJatq06W1XSG/RooUkac+ePYqNjc2V55oytLJly5Z6+umntXz5cq1atUpr1qxRkyZNrPvIRUdH68SJE9q1a5eSkpIkpS54kvYGcW9u3rwpSfLx8bHp0MVb50Km1ZAmOTlZH374ofX/HWH5/5iYGK1atUqSNGjQoCwP+V2yZIlSUlL0+OOPq1KlSpm2adSokcqVK6fz589r+/btWVrp83bSQmJiYqLCwsIy3ZIBAAAA5kqbJla9evXbtqlRo4YkKSUlRSdPnlTdunVz/FxTgpyUujqht7e3fv31VyUlJWn79u3avn17ujZpwwB79Oih999/36xSYEezZs3SwYMH9cQTT6hVq1b2LidL9u/fb/0Bw6OPPprl64KDgyWldq9v3Ljxtu3S9rrL6UpJFStWVKVKlXTmzBl1795dzz33nFq0aKHq1as7xBxEAACAW82aNUuzZs3K1jX9+vWz+/ZlV69elST5+/vfts2t53JjcRXJxCDn6uqqUaNGqWfPnlq0aJF27typS5cuKTo6Wl5eXipbtqzuv/9+PfPMMw4xZ8oRpPWMRUREyGKxyDAMmzz31l64W3vnzp8/r0mTJsnLyyvTfd/yqhs3bkhKHUJ5pw/kv6V9KGNiYrK0AmtcXNy9Ffj/OTs7a8KECRo8eLAuXryo8ePHa/z48fL29lbTpk3Vpk0btW3bNtdWRgIAALiT5c/MydH1US2jdOXKlexdExWVo2fmhrTv++60LsGt6ypER0fnynNNC3JpatWq5VDfxDuytLlQCQkJOnnypM3mRh05csT66/Lly1t/PXbsWMXGxmro0KEqXLhwhr+0ycnJklJXekw7V6hQIYftTUp7P2+88YZee+01mzzzvvvusw5f3rx5s3bt2qXTp0/r77//1t9//63p06dr7ty5ub4BJQAAwL/ltA/B29s7Wz9ET7umoDI9yMF2HnjgARmGIYvForVr19osyP3zzz+SUnthGzZsaD1+8eJFSakrOX799de3vX7ZsmVatmyZJCkwMFC1a9c2r9gsSJtrlpSUpCtXrmT5HxQ/Pz+dPn1aly9fNrO8DNzc3NS2bVvrakhXr17V0qVL9d133+nYsWMaP368Ro8ebdOaAABAwWM45SzJ5YVhkvfC09NT4eHhd1zE5NaRWHfb5zmrHLPrA5kqWbKkdduBuXPnWudi3U1KSso9P/PixYtasmSJJOmJJ57IF0vd161b1zoc8e+//87ydY0aNZIkbdy40do7Zw8lS5bUSy+9ZP2H8N9zUwEAAEzhZOTs5aBKliwpSXccFnrruRIlSuTKcwly+cybb74pDw8PXbt2TW+++eZdx+AeOnRIH3300T09KyQkRIMGDVJMTIzc3Nw0aNCgdOd///13HT169LavZs2aSZI6d+5sPWbv3jgp9acqrVu3liRNmTJFoaGhWbquc+fOcnJy0uXLlzV9+vQ7ts1qyL6ThISEO55PG4sdHx+f42cBAADcjWEYOXo5qqpVq0pK3Rrqdo4dOyZJcnJysrbPqRwPrUz7xtswDB06dCjdsey69R64N9WrV9fo0aM1fPhwbdmyRR07dtSAAQP06KOPWtN/fHy8du3apSVLluiPP/5QkyZNsnz/hIQEHTlyRKtXr9avv/6q8PBwOTs7a9y4cflqv7K33npLGzdu1JUrV9SzZ0+9++67euSRR+Tm5qakpCQdOHBACxYs0LPPPmvdS65KlSrq37+/pk2bpgkTJujy5cvq16+fKlasKCn1z/3gwYNauXKlAgMDFRQUlKMaly9frkWLFqlTp056+OGHrfvIJSQkaN26dZo5c6Yk6T//+U+OngMAAJAVOR1a6ageeughrVy5Ujt37lRsbGymI9TSVjRv2LBhro1gy3GQS9tC4G7HYDvt2rVT0aJFNXLkSJ0/f9662IyHh4fc3NwUERFhbevl5aWnnnoq0/tcvnxZzZs3t/4+NjZWMTEx6b6+1atX12effWYdVphflC1bVlOnTtVrr72mM2fOaODAgXJxcZG3t7eio6OVmJgoSerYsWO669566y0lJiZq9uzZmjdvnubNmydPT0+5uroqMjLSOozVxSXn01MtFot27typnTt3SpLc3d1VqFAhhYeHW79GNWvW1Ntvv53jZwEAANxVAQ1yTz75pMaNG6fo6Gj99NNPevnll9Odv3DhglasWCEp4/eOOZHj7ybHjh2bpWOwrebNm2v16tVaunSp/vnnHx08eFChoaGKjY1VyZIlVbNmTbVs2VLt27e/7YqGKSkpun79uqTU3lJPT0/5+/urYsWKuu+++xQQEJCt3jxH07BhQ61cuVJz5szRunXrdPbsWcXGxsrf319Vq1bVk08+qfr166e7xsnJSSNGjFD79u31yy+/aOfOnbpy5YpiYmJUvHhxVatWTQ888IB1YZKcaNWqlb744gtt3bpVhw4d0rVr1xQRESFfX19Vr15dTz75pHr06CE3N7ccPwsAAOBuHGF0ZHh4eLq1DNJ+yB4bG5tuOo23t3e676F69+6toKAgNWvWTHPnzk13z2LFiunFF1/U5MmT9e2338rLy0vPPPOM3NzcdODAAb377ruKi4tT5cqV1bVr11x7L4aF7jMA96jr+7/YuwRIeuWsvSvA9Er2rgAuLs72LqHAS0i030Jf+D+/jX7Obs/+64X5Obr+ydk9cqmS22vVqpV1ZfU7GTt2rLp06WL9/Z2CnJS6DdXQoUO1atUqSamrubu5uVnXqyhRooTmzp2rypUr59I7YfsBAAAAALmgoM6RkyRnZ2d99913CgwM1KJFi3T06FHFx8ercuXKCggI0Msvv5zr+/qaEuQmTZokSXr11VezNBfIYrFo8uTJkqTBgwebURIAAAAAEzlCkFu3bt09XZdZL1xmOnXqpE6dOt3TM7LLtCBnGIb69++fpSCXkpJivYYgBwAAADigvJ/j8hWGVgIAAADIMcOJLaptKU8EubSNjXNjSXYAAAAAtmeQ42wqTySn/fv3S5L8/PzsXAkAAACAe+II+w/kI7kS5NIWN/m3//3vf3J1db3tdSkpKbp69arWrFkjwzDy3abSAAAAQEHhCIud5Ce5FuSMfyVwi8WiqVOnZul6i8Uid3f3DLugAwAAAHAQBDmbypUgV6ZMmXS/v3TpkgzDUOnSpe94naurq4oWLaq6deuqZ8+eqlq1am6UAwAAAMDG/t2xA3PlSpD7934MtWrVkiQtX75chQoVyo1HAAAAAMjDGFppW6YsdtKpUycZhsEqlAAAAEBBwaqVNmVK0ho3bpwZtwUAAACQRzG00rboMgMAAACQYwyttC1TOkB37typ2rVrKyAgQCkpKXdsm5ycrICAANWpU0fBwcFmlAMAAADAbE5Gzl7IFlOC3J9//imLxaLOnTvLyenOj3B2dlbXrl2VkpKiFStWmFEOAAAAAJMZhpGjF7LHlCC3a9cuGYah5s2bZ6l9Wrtdu3aZUQ4AAAAAkxlORo5eyB5T5siFhIRIkipWrJil9uXLl5ckXblyxYxyAAAAAJiNMGZTpgS5mJgYSVlfuSatXUREhBnlAAAAADAZoyNty5ShlUWLFpUknT17Nkvt09r5+vqaUQ4AAAAAsxlGzl7IFlOCXL169SRJv//+e5bap7W77777zCgHAAAAgMmYI2dbpgS5p556ShaLRQsWLNCqVavu2Hb16tVasGCBDMNQmzZtzCgHAAAAgMkIcrZlSpB7+umnVadOHSUnJ+vNN9/U8OHDtXXrVoWFhSkhIUFhYWHaunWrhg8frjfeeEPJycmqXbu2OnbsaEY5AAAAAMxm5PCFbDFlsRPDMDRlyhT17t1b58+f17Jly7Rs2bJM21osFlWoUEFTpkxh/wgAAADAQRl32T8aucu0P+1SpUpp8eLF6tGjh1xdXWWxWDK83Nzc1KtXLy1evFilSpUyqxQAAAAAJjOccvZC9pjSI5emcOHC+uSTT/TOO+9o165dOn/+vKKiouTt7a0KFSro/vvvl5eXl5klAAAAALAFRtfZlKlBLo23t7datmxpi0cBAAAAsAMWLLEtmwQ5AAAAAPkbQc62CHIAAAAAco4cZ1M5DnKTJk2y/nrw4MEZjmVX2j0AAAAAOA5WrbStXAlyadsG3Brk7nUrAYIcAAAA4HhYedK2chzkypQpk6VjAAAAAPIxVq20qRwHuXXr1mXpGAAAAID8i8VObIvFTgAAAADkHEHOpghyAAAAAHLsXtfIwL0hyAEAAADIMYZW2laOg9yOHTtyow6rpk2b5ur9AAAAANgAq1baVI6DXO/evXOtG9UwDB06dChX7gUAAADAdhhaaVu5MrTSYrHkxm1y7T4AAAAAbIwgZ1M5DnJr167N9PjFixc1cuRIXbx4UU888YSefPJJVatWTZ6enoqJidGJEyf0119/afXq1SpXrpxGjx6tsmXL5rQcAAAAAHbAHDnbynGQyyx8hYeH67333tPNmzc1c+ZMPfTQQxna1KpVS+3atdOWLVs0ePBgvffee1q8eHFOywEAAABgBwQ52zJl1crp06fr0qVLeu+99zINcbd6+OGH9frrr+uLL77QtGnTNGzYMDNKAoB8a3ole1eA/qeYGmBvs6vzNQDsjSBnW6asLbN69WoZhqEnnngiS+1bt24t6fbDNAEAAADkbYaTkaMXsseUHrmQkBBJkqenZ5baFypUKN11AAAAABwMWcymTOmRc3d3lyQdPHgwS+3379+f7joAAAAAjoUeOdsyJcjVr19fFotFEyZMUExMzB3bxsbG6uuvv5ZhGKpfv74Z5QAAAAAwGUHOtkwJcr1795YkHT58WM8++6zWr1+v5OTkdG2Sk5P1999/q3v37jp8+LAkqW/fvmaUAwAAAMBshpGzF7LFlDly//nPf/TSSy9p+vTpOnHihAYOHCh3d3dVqFDBuo/cuXPnFB8fb90E/KWXXtIjjzxiRjkAAAAAzEavmk2ZEuQk6Z133lHlypX15ZdfKiwsTHFxcTp27FiGdkWLFtWwYcPUpUsXs0oBAAAAYDKGR9qWaUFOkrp27ar27dvr77//1q5du3Tx4kXFxMTI09NTZcuW1f3336/HHntMbm5uZpYBAAAAwGQGwyNtytQgJ0lubm5q3bq1da84AAAAAPkQOc6mTA9yAAAAAPI/w9mUdRRxGzYJclFRUTpw4IBCQ0OVkJCgTp062eKxAAAAAGyEkZW2ZWqQO3nypL788ktt2LBBKSkp1uO3BrlTp07pjTfekJubm37++Wd5eHiYWRIAAAAAM5DkbMq0/s8NGzbomWeese4hZ7FYrFsN3KpKlSpydXXVoUOHtHbtWrPKAQAAAGAiw9nI0QvZY0qQu3Llit58803FxsaqcePGmjt3rrZs2XLb9m3atJHFYtGmTZvMKAcAAACAyQzDyNEL2WPK0MpZs2YpJiZGDRs21I8//igXFxfFxMTctn2jRo0kSQcPHjSjHAAAAABmI4vZlClBbuPGjTIMQ4MGDZKLy90fUb58eUnS5cuXzSgHAAAAgMnYENy2TAlyly5dkiTVrVs3S+09PT0lSbGxsWaUAwAAAMBkBDnbyhP7yEVEREiSvLy87FwJAAAAgHvCPDebMmWxk5IlS0pK3X4gK/bu3StJKleunBnlAAAAADCZ4WTk6IXsMSXINWvWTJL022+/3bWtxWLRnDlzZBiGHnroITPKAQAAAGAygpxtmRLkevXqJUn6/ffftWjRotu2S0pK0qeffqo9e/bI2dlZPXv2NKMcAAAAAGYzcvhCtpgyR65WrVp68cUXNWPGDH344YcKDAxM19v2888/69y5c1q9erUuX74swzD0+uuvq2zZsmaUAwAAAMBk9KrZlmmLnQwbNkyGYWjGjBnauXOndu3aZd3o7/PPP5eUOqxSkl599VUNGDDArFIAAAAAmIwgZ1umrlr5zjvvqG3btpozZ462bt2qK1euWM8VKVJEzZs3V79+/bK8TQEAAACAPIpVK23K9O0H6tSpo3HjxkmSYmJiFBkZKS8vL3l7e5v9aAAAAAA2Qo+cbZmy2ElAQIAef/xxrV+/Pt1xT09P+fv7E+IAAACAfIZVK23LlB65K1euKDk5WbVr1zbj9gAAAADyGoZW2pQpPXIlSpSQJLm6uppxewAAAAB5jGHk7IXsMSXINW7cWJJ0+PBhM24PAAAAII8xnI0cvZA9pgS5Pn36yMnJSZMnT1ZSUpIZjwAAAACQl9AlZ1OmBLkGDRroo48+0r59+9SvXz/t37/fjMcAAAAAyCsIcjZlymInffr0kZS6V9zOnTvVvXt3FSlSROXLl5eHh8dtrzMMQz/++KMZJQEAAAAwEcMjbcuUIBcUFCTDMGSxWKzHwsLCFBYWdsfrDJI4AAAA4JD4Xt62TAlynTp14gsJAAAAFCR8+29TpgS5cePGmXFbAAAAAHkUm3rblilBDgAAAEDBQpCzLVNWrUTBdOHCBdWsWVM1a9bUhQsX7F2Ow+ndu7dq1qypiRMnZjiX9ue6fft2O1QGAACQBaxaaVM26ZG7fv269uzZowsXLig6OlpeXl4qV66cGjZsKD8/P1OfnZCQoD/++EPr16/XgQMHFBYWpqSkJBUpUkQ1a9bUI488ovbt26t48eK58ryIiAjrypt9+/aVj49Prtz3Vtu3b1dQUJDKli2rLl265Pr987rFixdrxIgR93Rts2bNNHfu3FyuCAAAAAZdRDZlapA7efKkxo8fr40bNyolJSXDeScnJ7Vo0ULDhg1T1apVc/35W7du1ciRI3Xp0iXrMQ8PD7m7u+vq1au6evWqNm7cqG+++UZDhw5V3759c/zMiIgITZo0SZLUuXNnU4JcUFCQJk2apGbNmuWpIOfq6qrKlStbf20WDw+P2/4A4Pr165Ikb2/vTLe68PX1Na0uAACAgsxwIsnZkmlBbvXq1Xr77beVmJiYbhuCWyUnJ+uff/7Rli1bNGHCBD3++OO59vwVK1Zo2LBhSkpKUrly5TRgwAA9+uijKlmypCQpPj5eO3fuVGBgoP744w+tWbMmV4JcQebv76+VK1ea/py2bduqbdu2mZ6rWbOmJOn999/PUyEXAAAg32N0pE2ZEuROnjypt956S4mJiXJ3d9dzzz2nJ598UtWqVZOnp6diYmJ04sQJrVq1SvPmzVN8fLzeeustBQYGqkqVKrny/JEjRyopKUkPP/ywJk2aJC8vr3Rt3N3d1bx5czVv3lz9+vXTL7/8kuPnAgAAAAWVoyx2EhYWpunTp2vt2rW6fPmy3N3dVaNGDT3zzDPq1KnTPd0zrTPhToYPH67+/fvf0/0zY0qQmzp1qhITE1W8eHH9+OOPqlatWrrzhQsXVqNGjdSoUSN17dpVffv2VVhYmKZOnZorWxd8/fXXio2NVYkSJfTNN99kCHH/VqdOHX366aeSJIvFooCAAF28eFEjRozQCy+8cNvrPv/8c82dO1dNmzbVTz/9pN69eysoKMh6PiAgIF37zp07Z3h/J0+e1IwZM7Rt2zZdu3ZN7u7uqlatmtq0aaOePXvKzc3N2vbChQvp7hkUFJThL82cOXP0wAMPWH9vsVi0fPlyLV68WAcPHlR0dLSKFCmixo0bq3fv3mratGm66wMDA/Xuu+/KyclJc+fOVZMmTTK874ULF+qDDz6Qs7Oz5syZY21za31r165VuXLlMlwbHx+vhQsXatWqVTp+/LiioqJUvHhxVahQQY8//rg6dOigokWLZv4HbgfJyclatmyZli9frkOHDik8PFxFihRRuXLl9Oijj6pTp04qVapUhuvOnDmjWbNmadu2bQoJCZGTk5MqVKigJ554Qn379lXhwoVzrcZLly5pxowZ2rJliy5duqSUlBQVK1ZMpUqV0oMPPqguXbqoYsWKufY8AACAzDhCkDt58qT69u2ra9euSZI8PT0VHR2tHTt2aMeOHVq/fr0mTJggp3scJurr63vbKUaFChW657ozY0qQ27p1qwzD0NChQzOEuH+rXr26hg4dqg8//FBbtmzJ8bOvXr2qNWvWSEpdBTCrc6LSvliGYahbt2765ptvtGjRotsGuYSEBC1btkyS9Mwzz0hK/cIVLVpUYWFhkqSiRYvK2dnZeo23t3e6ewQGBur9999XUlKSpNSAGxcXp+DgYAUHByswMFDTp0+3LsTi7OwsPz8/xcTEKCYmRq6urhne361/ceLj4zV06FCtXbvWer23t7euX7+uVatWadWqVXr11Vc1dOhQ6zWdOnXShg0btHz5cg0fPly///57utBx5swZjRkzRpI0YMCATIPe7Zw5c0YDBgzQmTNnJKX+mfv4+Cg0NFQhISEKCgpS4cKF88yQyOvXr2vQoEHas2ePpNS/Gz4+PoqMjLR+jRITE/X666+nu27hwoUaNWqUEhMTJaV+aBMTE3XkyBEdOXJES5Ys0axZs1ShQoUc13j48GH17t1bkZGRkiQXFxd5enoqJCREISEh2rNnj3x8fHL1pz8AAACZyuMrTyYkJGjgwIG6du2aqlSpov/+97+qV6+eEhIStHDhQo0dO1Z//vmnqlevrkGDBt3TMyZOnJiuU8VMpgS5tCDTokWLLLX/z3/+I0m6efNmjp+9fft265y8f/eIZVXXrl01adIkHT9+XHv27FHDhg0ztPnrr7908+ZN+fj46KmnnpIkTZo0KV2v1KJFizLtlZKkffv2WUPcww8/rA8//FBVqlRRYmKiVq5cqU8++USHDh3S0KFD9eOPP8owDJUuXVqbN2/WxIkTNWnSJDVq1OiOKzCOHz9ea9eulZOTk4YOHarnnnvOGuS+++47/frrr/rf//6nSpUqqXPnztbrRo0apeDgYF28eFGffPKJvvrqK0lSYmKi3nnnHcXExKhhw4bZ+gseERGh/v3768KFC/Lz89Pw4cP1xBNPyNPTUykpKTpx4oSWL19uyuIw9yLtg75v3z55enrqnXfeUfv27a31nT17VqtWrcoQpP/55x99+OGHcnd316uvvqru3burZMmSSkpK0r59+zR69GgdOHBAgwcPVmBg4D3/tCfNuHHjFBkZqfr16+ujjz5S3bp1ZRiG4uPjdfbsWa1cuTLTHkMAAIDcltd75BYuXKizZ8/Kw8NDU6dOVfny5SVJbm5u6tWrl6KiojRhwgRNnz5dzz33XJ4aJZYZU5aWSetByurKhS4uqXmyWLFiOX72iRMnJKV+Qe51vl3JkiX12GOPSUoNY5lJO96uXbtMV0e8m2+++UZJSUmqUaOGfvjhB2utrq6uat++vSZMmCApNZhu2LAh2/e/fPmydd7fG2+8oVdeecXaI+jn56dPP/1Ubdq0kZQ6FDWtV1BK7RkcP368nJyc9McffygwMFBS6k8Y9u/fLy8vL40fP976dcuKadOm6cKFC/L09NRPP/2kjh07ytPTU1Jqz1yNGjU0dOjQXF3wJicWL16sffv2ydnZWdOmTVOvXr3ShcyKFSvqlVde0bPPPms9lpycrM8++0wWi0Xjxo3T4MGDrYvruLi4qHHjxpoxY4ZKlCiho0ePWnuOcyKtt/D9999XvXr1ZPz/n4SljfUeMmSInn766Rw/BwAA4G4MJyNHL7P9/vvvklIXzksLcbd6/vnnret55Mb3aWYzJcildSfu3LkzS+3T2jVr1izHz07r1fPx8clRb0f37t0lpa5+GRMTk+7c+fPntW3bNklSt27dsn3v8PBw6zDSV155Jd08uDQtW7ZUgwYNJEnLly/P9jNWrVql5ORkeXt7q1+/fpm2SRsSeOXKFe3YsSPduSZNmuiVV16RJH322WdasmSJpk2bJkn64IMPsj0scMmSJZJSh7umbVGQl6XV26ZNmywPHw0KCtL58+dVtmxZa0j+tyJFilh7oDdt2pTjOtOGvV69ejXH9wIAAMgRI4cvE0VHR2vfvn2S/m804L95eXlZv+/LjSlfZjNlaGX//v21cuVKffnll2rSpMkde9pu3Lihr776Sh4eHnrppZfMKOeePPLIIypbtqwuXryoFStWWOfBSdJvv/0mi8Wi++67T3Xq1Mn2vQ8dOmQd/vnwww/ftt1DDz2kvXv36uDBg9l+Rto1jRs3lru7e6ZtqlatKn9/f125ckUHDx7UQw89lO7866+/ri1btmjfvn167733JElPPfVUtuewXbhwwTqhtGXLltl9KzaXmJioAwcOSMpevcHBwZJSQ1Xz5s1v2y7tBwOXL1/OQZWpWrZsqUWLFundd99VcHCwAgICVL9+/Ux/OAAAAGAmI4dz5GbNmqVZs2Zl65p+/frdttPiVqdOnbJ+/12jRo3btqtevbo2bNhgHeWXXWPHjlVISIiioqLk6+urOnXqqEOHDmrbtm26tTNygyk9cjVq1NB3332n8PBwderUSfPnz9eNGzfStblx44bmzZunzp07Kzw8XN9+++0d/1CzqkiRIpJS52Tdbv+6rHBycrL2tt06vDI5OdnaW3NruMuO0NBQSanDKNOGoWYmbW7Tv//ssvMMf3//O7a70zNcXFysC5tIqUNm01b3zI5b7122bNlsX29r4eHh1qGmZcqUyfJ1aWE1MTFR169fv+0rLcjFxcXluNbhw4eradOmiomJ0cyZM9WrVy81btxYPXv21LRp03Jl3ikAAEBWWJyMHL2ioqJ05cqVbL2ioqKyVNuto5fu9P1x2rl7He10+PBhxcfHy9XVVdevX9eGDRv0zjvv6IUXXlBERMQ93fN2TOmRu3WRkatXr2rUqFEaNWqUfHx8rONOb30jPj4+dwwIhmFkeZxq2iqZCQkJOnny5F1XzbyTtEVPgoODdfLkSVWtWlWbNm1SSEiIChUqpPbt29/zvR3FwoULrb++efOmTpw4ofvvv9+OFeVdycnJklJ7UmfPnm2TZ/r6+uqnn35SUFCQ1q1bp127dunQoUPavXu3du/erenTp+uHH37IdMEeAACA3JRy730oklJXeL9bJ0Rm12TFrVOl7rS+RdoWAdHR0dmqo3Pnzmrbtq0aNmxoXVfh/Pnzmjt3rubOnaugoCC9+eabmjlzZrbueyemBLmLFy+m+31az1h4eLjCw8MztL/d8TTZ6aZ94IEHZBiGLBaL1q5dm6Mgl7boyerVq63D19J651q3bn3Pe4GlDTVNTEzUjRs3btsrFxISIkl37LW72zOuXLlyx3Z3esamTZs0Z84cSam9rMeOHdOwYcO0dOnSLH9opNTFVdJcvHgxz6+iWKRIEbm6uioxMVGXLl3K8nVp7zM3hkxmV7NmzaxzTKOjo/X333/rq6++0qVLlzRs2DCtXr3a5jUBAICCJSej4aSsD5PMizLbC7t8+fIaOXKkypcvr88//1ybN2/Wpk2b9Mgjj+TKM00JcoMHDzbjtllSsmRJBQQEaM2aNZo7d6569OiRpb3kUlJSMl0cpXv37lq9erUCAwPVt29f/f3335Juv8jJrfe43V/mOnXqWMPm1q1b1a5du0zbbd26VZJUt27ddMfTgu2dPix169bV0qVLFRwcrPj4+EznyZ08edIa9P79jLCwML333nuyWCzq0qWL3n33XXXo0EEXL17UqFGjNH78+Ns++9/Kli2rkiVL6urVq1q/fn2e79FzcXFR3bp1FRwcrPXr16tDhw5Zuq5Ro0aSUvfLO336tN0WdfHy8lK7du1UrFgx9evXT+fOndPly5dVunRpu9QDAAAKhpScdsmZKG21dCl1esvtOiViY2MlpX4/lVt69eqlWbNm6eLFi/r7778Jcnfy5ptvatOmTbp27ZrefPNNTZo06Y5fjEOHDumXX37R559/nuHcrYuevPXWW0pMTFTlypVvu5LhrX8p0jZp/jdfX181b95cmzZt0rRp0/Tkk09mWJzin3/+0d69eyUpw/Lxac+40zjbJ598Ul988YUiIyP1448/WlegvNXEiRMlpc6T+/f7+eCDD3Tt2jVVrFhRH3zwgby8vPTFF1+oX79+Wrp0qR599NFsLWvfpUsX/e9//9NPP/2kLl265PmVK7t06aLg4GCtXLlSzz33XJZWrnzwwQetf1fGjBmj//3vf7ed1JqYmKiEhIQc/SORlJQkJyen267Oemt4j4+Pv+fnAAAAZEVKDnvkzJS2JZSUOmLtdkEurZPj1vY55eTkpLp16+rixYs6f/587t031+5kguTkZAUGBlr3Mcuq6tWra/To0XJ2dtaWLVvUsWNHLVy40LoYhZT6je2WLVs0bNgwde3aVWfPns30XrcuerJr1y5Jd17kxMfHxzq2NzAw0Dpv6t/eeOMNubi46MiRIxo4cKDOnDkjKfUb/D/++ENvvfWWpNShov/eWD1tUZiTJ09aw96/lS5dWs8995yk1D3rpk+fbh3re+PGDX300Uf6888/JaUG31v3hPv111+1Zs0aubi46Msvv7SGjYceesja3f3JJ59ka9hh//79Va5cOcXExKh3795aunSp9SceKSkpOnLkiEaPHp1nhgB27txZDRo0UHJysl555RX9/PPP6YL5mTNn9M0332jevHnWY66urvr444/l5OSkDRs26MUXX1RwcLBSUlIkybrx+dSpU9W6dWsdPnw4RzWGhISodevW+uGHH3T06FHr3zWLxaK9e/dq1KhRkqRKlSqpYsWKOXoWAADA3Vhy+DJT1apVraPajh07dtt2x48fl6QcTc+yFVN65HJLfHy83nvvPTk5OalTp07ZurZdu3YqWrSoRo4cqfPnz+uDDz6QlDq50c3NLV1vlpeXl5566qnb3itt0ZOkpCS5urqqc+fOd3x29+7dNXHiRP3444+aP3++ihcvLsMw1Lp1a7377ruSpPr162v06NF6//33tWnTJuucu7i4OCUmJkqSateura+//jrDHMFmzZqpUqVKOnPmjLp3764iRYpYw9aECROsC1sMGzZMFy9e1Lp16zR+/HhNmDBB3t7e6Vb0fPXVV9O9n9OnT2vs2LGSpEGDBql+/frpnj106FBt27ZNhw4d0rvvvqsff/wxS/v1+fj4aPr06RowYIDOnj2rYcOGydnZWYULF1ZMTIwSEhKs7zkvcHV11ZQpUzRw4EDt27dPn376qT777DP5+voqPj7eGkL/3fvcsmVLjR8/Xu+//762bdumHj16yM3NTZ6enoqOjrZ+baWcL9ErSefOndOECRM0YcIEubi4yNvbO91zfH19NX78+Fx5FgAAwJ3kdI6cmTw9PdWgQQPt2bNHGzduzHTP35iYGOv+1nfaIiy7UlJSrFtblStXLtfum6eDXJp7/UvRvHlzrV69WkuXLtU///yjgwcPKjQ0VLGxsSpZsqRq1qypli1bqn379tZtCzJTsmRJNWzYUDt37tRjjz1218VHXnvtNXl5eWnp0qU6c+aMtecqLCwsXbtOnTqpbt26mjFjhrZv366rV6/K3d1d9913n9q2bauePXtmuh+Yi4uLZs+ere+++07btm3TtWvXrMvM3zqEzt3dXVOmTNEff/yhxYsX69ChQ4qOjpafn58aN26s559/Pt0m7ImJiXr77bcVGxur+++/XwMGDMjwbDc3N3355Zfq0qWLgoKCNG3atEzbZaZy5cpaunSp5s+fr1WrVunkyZPWeipUqKAnnnhCrVq1ytK9bMHPz0/z5s1TYGCgli9frsOHDysqKkpFixZVrVq11KpVK3Xs2DHDde3atVPTpk31008/aePGjTp//rwiIyNVuHBhVaxYUY0bN9YTTzyR47mC/v7+mjJlirZt26Y9e/YoJCREYWFhcnV1VbVq1fTII4+ob9++KlGiRI6eAwAAkBXJeXiOnCR16NBBe/bs0YoVK/Taa69lCFU///yzYmJi5OnpqccffzzL97VYLHf8ofm8efOsi0E+9thj91Z8JgxLHo7OMTExaty4sQzDyPEwtJyIiIhQixYtFBcXp6lTpzrEptaALXR9/xd7lwBJTnS42l3/U3n2P6UFxuzqubvRLrIvMSnF3iVA0m+jn7Pbsy9eyf7ex7cq65/9ldqzIyEhQe3atdPZs2dVrVo1ffHFF6pbt64SEhK0aNEijRkzRomJiRoyZIgGDRqU7trevXsrKChIzZo109y5c9OdGzJkiCpVqqTHH39ctWrVsnbEXLhwQT///LNmz56tlJQUNW/ePO9vP5DfLF68WHFxcSpbtmyG+WoAAAAApLzbPZTKzc1N33//vfr27asTJ06oa9eu8vLyUkJCgnVaSps2bTRw4MBs3TcsLEyrVq3SDz/8YJ06lJiYmG4vuocffljffvttrr4fgtxdnDx5Uv/73/8kSX369MnSfDAAAACgoElOyfu9slWrVtWyZcs0bdo0rV27VpcvX1ahQoXUsGFDPfPMM9lel0OSBgwYoJo1a2rv3r0KCQnRzZs3ZRiGypYtq7p166pDhw4KCAjI9TULGFp5Gz179tSFCxd07do1WSwWVatWTUuWLMl0zhpQUDG0Mm9gaKX9MbTS/hhaaX8Mrcwb7Dm08szFa3dvdAeVyjKvPzvokbuNK1eu6OrVqypatKgefvhhvfvuu4Q4AAAA4DbycP9QvkSQu41169bZuwQAAADAYeT1VSvzG4IcAAAAgByjR862CHIAAAAAcowcZ1sEOQAAAAA55girVuYnBDkAAAAAOUaHnG0R5AAAAADkGHPkbCtPBzlXV1cNHjzY3mUAAAAAuAtWrbQtghwAAACAHKNHzrZMD3KnT5/W/v37df36dcXGxt71C0xwAwAAABwPOc62TAtyx48f10cffaQ9e/Zk6zqCHAAAAOB4UhhaaVOmBLnz58/r+eefV0REhLUHrlixYvLw8DDjcQAAAADsLIUuOZsyJchNmTJF4eHhcnd319ChQ9W5c2f5+vqa8SgAAAAAeQBz5GzLlCC3efNmGYahd955R7179zbjEQAAAADyEHKcbZkS5MLCwiRJTz75pBm3BwAAAJDHsP2AbTmZcdNixYpJktzc3My4PQAAAIA8xmKx5OiF7DElyDVt2lSSdOTIETNuDwAAACCPIcjZlilB7qWXXpKrq6u+//57paSkmPEIAAAAAHlIssWSoxeyx5QgV6tWLY0bN0579uzRwIEDde7cOTMeAwAAACCPsFhy9kL2mLLYSZ8+fSRJRYsW1YYNG7RhwwaVL19eJUuWlJPT7bOjYRj68ccfzSgJAAAAgIkYHmlbpgS5oKAgGYaR7ot57ty5u/bMGYZhRjkAAAAATMaqlbZlSpDr1KkToQwAAAAoQOiRsy1Tgty4cePMuC0AAACAPIogZ1umBDkAAAAABQtDK22LIAcAAAAgx+iQsy2CHAAAAIAcY2ilbZkS5EaMGJHta1xcXOTt7S1/f3/VrVtX999/PwumAAAAAA6CoZW2ZUqQW7JkSY5DmL+/v4YMGaIuXbrkUlUAAAAAzEKPnG2ZEuSaNm0qSTp//rxCQkIkSYUKFVKlSpXk6empmJgYnT17VjExMZKk0qVLq1y5coqOjtb58+cVGRmpkJAQvf/++zp9+rTefvttM8oEAAAAkEuIcbZlSpCbO3eufvvtN40aNUp16tTR22+/rYcffjhdL53FYtGWLVv01Vdf6cSJExo8eLC6du0qSdq+fbu++OILHTp0SNOnT9fjjz+uBg0amFEqAAAAgFyQnJJi7xIKFCczbrpv3z59/PHHql27tubNm6fmzZtnGGppGIaaN2+u+fPnq3bt2vr444+1d+9eSdIDDzygn376SVWrVpUkzZ8/34wyAQAAAOQSiyVnL2SPKUFuxowZSk5O1ptvvil3d/c7tnVzc9Mbb7yhpKQkzZw503rc09NTr7zyiiwWi3bu3GlGmQAAAAByicViydEL2WPK0Mrdu3dLkmrVqpWl9rVr1053XZomTZpIkq5fv56L1QEAAADIbWQx2zIlyN28eVOSFBsbq6JFi961fVxcnCQpPDw83XEfH59crw0AAABA7mOOnG2ZMrSyRIkSkqS1a9dmqf2aNWskSX5+fumOh4WFSZKKFCmSe8UBAAAAyHXMkbMtU4JcixYtZLFY9O2332rXrl13bBscHKxvv/1WhmGoRYsW6c6lLX5SqlQpM8oEAAAAkEuYI2dbpgytHDhwoJYvX67o6Gj16dNHTz31lFq1aqXKlSvL09NTsbGxOn36tNauXauVK1cqOTlZXl5eGjhwYLr7BAYGSpIefvhhM8oEAAAAkEuSUwhjtmRKkCtVqpR++OEHvfbaawoPD9eKFSu0YsWKTNtaLBb5+vpq8uTJ6XrewsPDVblyZVWqVElt27Y1o0wAyBecnEwZXIFsmFaZeSH29tKxJHuXUOBNr8K/RQUdvWq2ZUqQk6T7779fK1as0OTJk7Vs2TJFRkZmaOPt7a327dtr0KBBGebH+fr66oMPPjCrPAAAAAC5KIUgZ1OmBTlJKl68uD766CO9//77On78uC5cuKCYmBh5enqqbNmyqlGjhpydnc0sAQAAAIANpDC00qZMDXJpnJ2dVatWrSzvKwcAAADAsZDjbMsmQQ4AAABA/sYcOdsiyAEAAADIMYZW2laOg9yIESMkSYZhaMyYMemOZdet9wAAAADgOOiRs60cB7klS5bIMAxJsoawW49llcViIcgBAAAADooOOdvKcZBr2rRplo4BAAAAyL9SLOypaUs5DnJz587N0jEAAAAA+RcjK22LxU4AAAAA5BgbgtsWQQ4AAABAjrFqpW3ZJcilpKRo3bp1OnXqlIoWLarHHntMfn5+9igFAAAAQC5g1UrbMiXI7d+/X5MnT1bRokU1duzYdOeioqLUp08fHT582HqsUKFC+vLLL9WqVSszygEAAABgMjrkbMvJjJv+9ddf+ueff+Tj45Ph3Pjx43Xo0CFZLBbrKyYmRm+//bZCQkLMKAcAAACAyW79/v5eXsgeU4Lcjh07JEmPPPJIuuNRUVEKDAyUYRjq1auXtmzZovnz58vf319xcXH6+eefzSgHAAAAgMlSUiw5eiF7TAlyV69elSRVq1Yt3fGtW7cqPj5exYsX18iRI1WsWDE1bNhQr7/+uiwWizZv3mxGOQAAAABMlmKx5OiF7DFljlxoaKgkqXDhwumOBwUFSZIee+wxOTs7W483a9ZMknTu3DkzygEAAABgMrKYbZkS5NLGuEZERMjb29t6fNeuXTIMQ02aNEnXvkiRIpKkuLg4M8oBAAAAYLKUlBR7l1CgmDK0skSJEpKko0ePWo9dvXrVulJlo0aN0rWPiYmR9H+BDgAAAIBjSbHk7IXsMSXINWrUSBaLRd9//70iIyMlSd9++60sFovKlSunChUqpGt/6tQpSVLJkiXNKAcAAACAySw5/B+yx5Shlc8995yWLVum/fv366GHHlKhQoUUFRUlwzDUo0ePDO23bdsmSapVq5YZ5QAAAAAwGStP2pZpPXLDhg2Tk5OTkpKSFBkZKYvFokcffVR9+/ZN19ZisWj58uUyDEMPPfSQGeUAAAAAMBmrVtqWKT1yktS/f38FBARo06ZNSkpKUu3atfXAAw9kaHfu3DnrqpXNmzc3qxwAAAAAJiKL2ZZpQU6SKlWqpEqVKt2xTcWKFTV27FgzywAAAABgMoZW2papQQ4AAABAwcDwSNuyS5CLiorSb7/9plOnTqlIkSJq06YNC50AAAAADsxCkLMpU4Lc1q1bNWbMGJUuXVpTp05Nd+7KlSvq2bOnLl++bD02ffp0ffjhh5muaAkAAAAg72NopW2ZsmrlunXrdPz4cdWpUyfDuS+++EKXLl2SxWJRoUKFJEnJycn6/PPPdfLkSTPKAQAAAGAyiyVnL2SPKUFu9+7dmW4nEBoaqr/++kuGYejtt9/W7t27tX79elWtWlXJycmaN2+eGeUAAAAAMBnbD9iWKUHu+vXrkqTKlSunO75lyxYlJSWpTJkyevnllyVJ/v7+GjRokCwWi7Zv325GOQAAAABMlpJiydEL2WPKHLmwsDBJkqenZ7rjO3bskGEYeuyxx9Idr1+/viTp4sWLZpQDAAAAwGQWEcZsyZQeOWdnZ0n/F+jS7Nq1S5LUpEmTdMd9fX0lSYmJiWaUAwAAAMBkKZacvZA9pgS5UqVKSZL2799vPXbu3DmdOHFCktSoUaN07SMiIiRJxYoVM6McAAAAACazWCw5eiF7TAlyTZs2lcVi0bfffqvjx4/r5s2bGjNmjCSpWrVq8vf3T9c+LeCVLFnSjHIAAAAAmIw5crZlyhy53r17a/HixTp37pw6dOhgPW4Yhvr06ZOh/aZNm2QYhurWrWtGOQAAAABMxsqTtmVKj1z16tX1xRdfqFChQum6Snv16qVu3bqla5uYmKg///xTkjJsVwAAAADAMbCPnG2Z0iMnSU8//bT+85//aOfOnUpOTlbNmjVVvnz5DO2uXLmiHj16SJIefvhhs8oBHEpiYqJmzpypZcuW6dy5c4qPj5ckrV27VpIUEBBg/X25cuXsVicAAECalJQUe5dQoJgW5CSpcOHCGbYa+Ldy5cpp8ODBZpYB2EzNmjXv+dpbQ9lnn32mX3/9VZLk7u4uPz8/SakrwiYnJ+e8UAAAgFzGNDfbMjXIAQVNWuD6t8jISMXHx8vV1dW63ca/pW3bERUVpd9++02SNGLECPXt21eGYVjbXbhwIZerBgAAyDlWnrQtghyQizZv3pzp8ffee09LlixRo0aNNHfu3Dve49SpU0pKSpIkdevWLV2IAwAAyKtYedK2TA9yFy5c0NatW3Xq1ClFRUVZv0HNjGEY1m0KgIIqLi7O+msvLy87VgIAAJB1jrJqZVhYmKZPn661a9fq8uXLcnd3V40aNfTMM8+oU6dOObp3YGCgFi1apGPHjik+Pl6lS5dWQECAXn75ZRUpUiRX6k9jWpCLiorSxx9/rD///DNL3awWi4UghwJt8eLFGjFiRLpjt86569y5s8aNG5fhuitXrmjy5MnasGGDrl+/ruLFi+vRRx/VkCFDVLx4cdPrBgAAkBxj5cmTJ0+qb9++unbtmiTJ09NT0dHR2rFjh3bs2KH169drwoQJcnLK3uL+ycnJGjp0qFatWiVJcnFxkZubm06fPq3p06fr999/19y5c1W5cuVcey+mbD+QmJiol156SStWrLDuD5cW5ho1aqQaNWrIzc3NeqxMmTJq2rSpmjRpYkY5gEPw8PCQn59fujl0fn5+1pe3t3eGa44dO6aOHTvq119/VUREhCwWi0JCQjR//nz16NFDERERtnwLAACgAEuxpOToZbaEhAQNHDhQ165dU5UqVbRo0SIFBwcrODhYH330kVxdXfXnn3/q+++/z/a9J0+erFWrVsnV1VUfffSR9b6LFi1SlSpVdO3aNQ0cOFCJiYm59n5MCXKBgYHas2ePfHx8FBgYqIULF1rPzZgxQ7///rt27typ//73vypZsqRCQ0PVp0+fu84dAvKztm3bavPmzZo4caL12ObNm62vDz74IMM17733nmrWrKlly5Zp9+7dCg4O1ujRo+Xm5qZz585p6tSptnwLAACgAEux5OxltoULF+rs2bPy8PDQ1KlTVa9ePUmSm5ubevXqpddff12SNH36dIWFhWX5vqGhoZo5c6YkaciQIerVq5fc3NwkSfXq1dPUqVPl4eGh06dPa9GiRbn2fkwJcmk9cb1791b16tUzbePq6qoOHTpowYIF8vX11fDhw3Xy5EkzygHyrZIlS2ratGmqUaOGpNR/iJ555hl1795dkvTnn3/aszwAAFCAWCyWHL3M9vvvv0tK/eF5ZvtbP//88/L09FRMTIzWrFmT5fuuWrVKsbGx8vT01PPPP5/hfPny5dW2bVtJ0tKlS++x+oxMCXJHjx6V9H+bFt/q33tg+fv7a8iQIYqNjdXs2bPNKAfIt1544QXrT3xu9fjjj0tKXWwoJibG1mUBAIACKCXFkqOXmaKjo7Vv3z5J0n/+859M23h5eVmnem3ZsiXL9962bZskqWnTpvL09My0TYsWLSRJe/bsUWxsbJbvfSemBLm0eTn+/v7WYy4uqeuqZFZ48+bNJUlbt241oxwg30obEvBvJUuWtP46MjLSVuUAAIACLC/3yJ06dcr6jLSRTJlJG0144sSJLN87bVTh7UYi3vrMlJSUXBuFaMqqle7u7oqJiUk3mc/X11ehoaG6fPmySpQoka592qowaavHAMia221P4O7ubv11bk6qBQAAuJ2cdqrNmjVLs2bNytY1/fr1U79+/e7a7urVq9Zf39rZ9G9p525tn9V7Z+W+Uu5lHlOCXNmyZXX8+HFdv37dWnSVKlUUGhqqoKAg1a9fP137vXv3SlKmQ8QAAAAA5H2/jX4uR9dPnDhRV65cydY1UVFRWWp361QTDw+P27YrVKiQpNShmFmVdu+0azNz6zOzc+87MSXINWrUSMePH9e5c+d03333SUodF7pjxw7NmjVLjz32mKpWrSpJOnv2rMaPH2/dpgAAAABAwePt7X3HXq3bXVNQmRLkWrVqpV9//VVbtmxRmzZtJEnPPvusZs2apdDQUHXo0EE1a9ZUcnKyTp48aV0A5YUXXjCjHAAAAAB5XFaHSd6LWxchiYuLu20ATFvP43bTV2537/Dw8DsuYhIXF2f9dXbufSemLHby0EMPqW/fvukSta+vr77//nsVK1ZMycnJOnTokI4ePaqkpCQ5OTnpnXfeUcuWLc0oBwAAAEABdutCcHcavpl27tb2Wb13Vu4rKcN6IffKlB45Nzc3jRgxIsPxhg0batWqVVq1apUOHz6shIQElS9fXq1bt1aFChXMKAUAAABAAVe1alUZhiGLxaJjx45Zp3n92/HjxyVJ1apVy9a9jx8/br02M8eOHZOUusjj7Z6dXaYEuTvx9vZW165dbf1YAAAAAAWUp6enGjRooD179mjjxo3W6V+3iomJ0c6dOyVJDz/8cJbv/dBDD2nlypXauXOnYmNjM130ZOPGjZJSO7butChKdpgytBIAAAAA8pIOHTpIklasWKELFy5kOP/zzz8rJiZGnp6eevzxx7N83yeffFKFChVSdHS0fvrppwznL1y4oBUrVkiSOnbseI/VZ0SQA2xg3LhxOnr0qObOnXvXtg888ICOHj2qo0ePZnq+XLly1vPlypW75zYAAAAFSbdu3VSxYkXFxsZqwIABOnDggCQpISFBv/zyi7799ltJ0ksvvaSiRYumu7Z3796qWbOmevfuneG+xYoV04svvihJ+vbbb/XLL78oISFBknTgwAENGDBAcXFxqly5cq6OTMzx0ModO3bkRh1WTZs2zdX7AQAAAICbm5u+//579e3bVydOnFDXrl3l5eWlhIQEJSYmSpLatGmjgQMHZvvegwYN0okTJ7Rq1SqNGjVKY8aMkZubm3XPuBIlSuj777+Xq6trrr2fHAe53r17yzCM3KhFhmHo0KFDuXIvAAAAALhV1apVtWzZMk2bNk1r167V5cuXVahQITVs2FDPPPOMOnXqdE/3dXZ21nfffafAwEAtWrRIR48eVXx8vCpXrqyAgAC9/PLLKlKkSK6+F8NisVhycoNatWrlVi0yDEOHDx/OtfsBMFfX93+xdwmQ5OLMKHl7S0pOsXcJBd5Lp/ga2Nv0KvxblBf8Nvo5e5cAG8lxj9zatWtzow4AAAAAQBblOMiVLVs2N+oAAAAAAGQRfeAAAAAA4GAIcgAAAADgYAhyAAAAAOBgcjxHLiAgIDfqkJS6auWaNWty7X4AAAAAkB/lOMhdvHgxN+qQpFzbjw4AAAAA8rMcB7nBgwfnRh0AAAAAgCwiyAEAAACAg2GxEwAAAABwMAQ5AAAAAHAwOR5aeTcJCQnavHmz9u/fr9DQUCUkJGjMmDHW84mJiYqOjpazs7MKFy5sdjkAAAAA4PBMDXJLlizRV199pRs3bkiSLBaLDMNIF+SuXLmi1q1byzAMrV+/Xn5+fmaWBAAAAAAOz7Shld9//71Gjhyp69evy8PDQ3Xq1Mm0Xbly5dS8eXMlJydr1apVZpUDAAAAAPmGKUFu3759+vbbbyVJL730krZu3ao5c+bctv3jjz8ui8WirVu3mlEOAAAAAOQrpgS5uXPnSpI6dOigd955Rx4eHnfc7Ltu3bqSpOPHj5tRDgAAAADkK6YEuZ07d8owDPXu3TtL7UuVKiVJunr1qhnlAAAAAEC+YkqQu379uiSpQoUKWWrv4pK65kpiYqIZ5QAAAABAvmJKkCtUqJAkKTY2Nkvtr127Jkny9fU1oxwAAAAAyFdMCXLlypWTJB04cCBL7dMWOalevboZ5QAAAABAvmJKkGvRooUsFotmz55917ZRUVGaOXOmDMNQy5YtzSgHAAAAAPIVU4Jc7969VahQIe3cuVPvvvuuoqOjM2138uRJvfjii7p06ZJ8fX3VrVs3M8oBAAAAgHzFxYyb+vn5acyYMXrrrbe0dOlS/fXXX2rUqJH1/JAhQ3T+/HkdPXpUKSkpcnZ21hdffCFvb28zygEAAACAfMWUICdJbdq0kaenp0aOHKkbN25oy5Yt1nOrV6+WxWKRlBr6xo4dqxYtWphVCgAAAADkK6YFOUlq2bKl/v77by1fvlxbtmzRqVOnFBUVJU9PT5UvX16PPPKIOnToIA8PDzPLAAAAAIB8xdQgJ0lubm7q3LmzOnfubPajAAAAAKBAMGWxEwAAAACAeUwJcjt37lTt2rUVEBCglJSUO7ZNTk5WQECA6tSpo+DgYDPKAQAAAIB8xZQg9+eff8pisahz585ycrrzI5ydndW1a1elpKRoxYoVZpQDAAAAAPmKKUFu165dMgxDzZs3z1L7tHa7du0yoxwAAAAAyFdMCXIhISGSpIoVK2apffny5SVJV65cMaMcAAAAAMhXTAlyMTExkiTDMLLUPq1dRESEGeUAAAAAQL5iSpArWrSoJOns2bNZap/WztfX14xyAAAAACBfMSXI1atXT5L0+++/Z6l9Wrv77rvPjHIAAAAAIF8xJcg99dRTslgsWrBggVatWnXHtqtXr9aCBQtkGIbatGljRjkAAAAAkK+YEuSefvpp1alTR8nJyXrzzTc1fPhwbd26VWFhYUpISFBYWJi2bt2q4cOH64033lBycrJq166tjh07mlEOAAAAAOQrLmbc1DAMTZkyRb1799b58+e1bNkyLVu2LNO2FotFFSpU0JQpU7K8OAoAAAAAFGSmBDlJKlWqlBYvXqyvvvpKixcvVkJCQoY27u7ueuaZZzR06FB5e3ubVQoA5GtJySn2LgGwu+lVTBlkhGx48WiSvUsAChTDYrFYzH5IVFSUdu3apfPnzysqKkre3t6qUKGC7r//fnl5eZn9eAAm6fr+L/YuAQCQRxDk8oanF/WxdwmwEdN65G7l7e2tli1b2uJRAAAAAJDvMQ4BAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDsglFy5cUM2aNVWzZk1duHDB3uUAAAAgH3OxdwGAI1i8eLEuXryoZs2a6YEHHrB3OQAAACjg6JEDsmDJkiWaNGmSgoKC7F0KAAAAQJADAAAAAEdDkAMAAAAAB8McORRIGzZs0Pz587V3716Fh4fLx8dH9erVU7du3fT4449b2y1evFgjRoyw/n7SpEmaNGlSunsdPXo002dcuXJFkydP1oYNG3T9+nUVL15cjz76qIYMGaLixYvftraIiAjNmTNH69at09mzZ5WQkCB/f389/PDD6t+/vypWrJjhmokTJ2rSpElq1qyZ5s6dq6VLl2rBggU6fvy4bt68qcmTJ6d7XwAAAHBsBDkUKBaLRZ988onmz58vSTIMQz4+PgoLC9P69eu1fv16de7cWaNHj5azs7M8PDzk5+en8PBwJSYmytPTU56ennd9zrFjxzRy5EiFhYXJy8tLFotFISEhmj9/vrZs2aLffvtNPj4+Ga7bt2+fBg4cqOvXr0uSXF1d5eLiovPnz+vXX3/V0qVL9fXXX+uxxx677bM///xzzZ07V05OTipcuLCcnOh4BwAAyG/4Dg8FyuzZs60h7oUXXtCWLVsUFBSkoKAgDRo0SFLqwibff/+9JKlt27bavHmzGjVqJEl68cUXtXnz5nSvzLz33nuqWbOmli1bpt27dys4OFijR4+Wm5ubzp07p6lTp2a4JiQkRC+//LKuX7+uzp07a/ny5dq3b5/27Nmj1atXq127doqNjdVbb7112+0NDhw4oJ9++kmvv/66tm/frqCgIO3YscNaPwAAAPIHghwKjNjYWE2ZMkWS1L17d40YMULFihWTJBUuXFhDhgxR//79JUnTpk3TzZs37/lZJUuW1LRp01SjRg1Jkpubm5555hl1795dkvTnn39muOabb77RzZs39dxzz2ncuHGqVq2atTetQoUK+uqrr9SiRQvFxMRo9uzZmT43JiZGr7zyigYPHmzt8fP29r7jUE4AAAA4HoIcCozNmzcrIiJCTk5O1t63f3v11Vfl5uamuLg4rVmz5p6f9cILL8jNzS3D8bR5ahcuXFBMTIz1eFxcnJYvXy5J1jCZmXbt2kmSNm3alOl5Z2dnvfDCC/daNgAAABwEc+RQYBw4cECSVLlyZZUqVSrTNj4+Pqpbt652796tgwcP6plnnrmnZ9WrVy/T4yVLlrT+OjIy0jrf7sCBA0pISJAkPfvss7e9b2JioiTp8uXLmZ6vUKGCtZcRAAAA+RdBDgVGaGioJMnf3/+O7dJC3o0bN+75WV5eXpked3d3t/46LZRJ0rVr16y/Tlvo5E7i4uIyPU6IAwAAKBgIckAekJKSIklycXHRwYMH7/k+zs7OuVUSAAAA8jDmyKHASOutunLlyh3bhYSESJJNFwhJe1ZSUtJd6wMAAAAIcigw6tatK0k6ffr0bcNSRESEtUcsrb2Uut+clLoPnRnq1asnV1dXSdL69etNeQYAAADyD4IcCozmzZvL19dXKSkp1m0I/u1///uf4uPj5eHhoYCAAOtxb29vSalBzwxeXl5q3bq1JGnKlCnW+Xy3Ex4ebkodAAAAcAwEORQYhQoV0muvvSZJmj9/vr744gvrXnGRkZH67rvvNGPGDEnSyy+/rCJFilivrV69uiRp48aNunr1qin1vfPOOypWrJhCQkLUvXt3rVq1Kt2iJpcvX9Zvv/2mHj166OeffzalBgAAADgGFjtBgdK3b1+dPn1a8+fP18yZMzV79mwVLlxYkZGR1gVHOnXqpIEDB6a7rmPHjpo5c6bOnDmjli1bqnjx4tZ94tatW5crtZUuXVozZ87UoEGDdP78eQ0ZMkTOzs4qXLiw4uLi0oW6li1b5sozAQAA4JgIcihQDMPQqFGj1KpVK82bN0/79u1TRESEfH19Va9ePT377LPWTbtvVaVKFc2ePVtTp07Vvn37FBoaquTk5Fyvr3bt2lq+fLkWLFigNWvW6NixY4qKipK7u7tq1KihunXr6rHHHtOjjz6a688GAACA4zAsZq3eACDf6/r+L/YuAQCQR7x4NMneJUDS04v62LsE2Ahz5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRgWi8Vi7yIAAAAAAFlHjxwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHIAC78qVKzp37py9ywDsjs8CADgOF3sXAABmOnfunNauXSt/f3+1bds23bl9+/Zp2LBh1m9cK1WqpPHjx6tu3br2KDXfio6O1pkzZ+Th4aGqVaumOxcREaHx48dr+/btio+PV8uWLfXWW2+pSJEi9ik2H+OzkPfExcUpIiJCSUlJd2xXpkwZG1VUcKxdu1aS1KhRIxUrVszO1QD3xrBYLBZ7FwEAZvnmm2/0ww8/aNCgQRo8eLD1eHh4uJ588kmFh4ena1+kSBEtX75cxYsXt3Wp+dbs2bP1xRdf6Nlnn9Unn3xiPZ6UlKTOnTvrxIkTSvtPkWEYqlWrlhYsWCBXV1c7VZw/8VnIG6KiojR16lT9+eefunDhwl3bG4ahQ4cO2aCygqVWrVpycXHR9u3b5eXlZe9ygHvC0EoA+dq2bdskSU899VS64wsXLlR4eLjKlCmjWbNm6ZdfflHNmjUVHh6uOXPm2KPUfGvjxo2SpPbt26c7vmLFCh0/flzu7u569dVX9eabb6pw4cI6cuSIFixYYI9S8zU+C/YXGhqqrl27atq0aTp//rwsFstdXykpKfYuO1/y9fWVl5cXIQ4OjaGVAPK1kJAQSVKFChXSHV+3bp0Mw9A777yjhx56SJL06aef6tlnn9XGjRs1dOhQm9eaX509e1ZS6k/Ab7VixQoZhqEhQ4boxRdflJQ6pO/NN9/UypUr1atXL5vXmp/xWbC/7777TmfPnpWbm5u6d++ugIAA+fv7y93d3d6lFTjVq1dXcHCwoqKi5O3tbe9ygHtCkAOQr4WGhsrHx0dubm7WYwkJCdq3b5+cnZ312GOPWY83aNBALi4u1uCB3BEaGprhJ98Wi0U7d+6UJHXo0MF6PCAgQIZh6Pjx4zavM7/js2B/69evl2EY+uSTT9SlSxd7l1Ogde/eXTt37tTcuXM1cOBAe5cD3BOCHIB8zcnJSdHR0emO7d+/X0lJSWrQoIEKFSqU7py3t3eG9siZxMREubik/8/N8ePHFRUVpSpVqsjPz8963NXVVT4+PoqKirJ1mfkenwX7u3HjhpydnTMMM4btdejQQfv27dPEiRMVHx+vF154gUWW4HAIcgDytTJlyuj06dM6dOiQ6tSpI0las2aNDMNQ48aN07VNSUlRVFQUizvkMj8/P4WEhOjy5csqXbq0pP+bN3f//fdnaB8XFycfHx+b1lgQ8FmwPz8/P0VGRrKQTx7Qp08fSZKHh4d++OEHTZ8+XRUqVFCxYsXk5JT5EhKGYejHH3+0ZZnAHRHkAORrDz30kE6dOqVPP/1UI0eO1NWrV/Xrr79KSh3Gd6sTJ04oKSlJpUqVskep+VbDhg21cuVKTZo0SZ9//rnCwsL0yy+/yDAMNW/ePF3bS5cuKT4+XpUqVbJPsfkYnwX7a9GihRYuXKiTJ09m2IoDthUUFJTu90lJSTp16pROnTp122sMwzC7LCBbCHIA8rWXXnpJS5cu1d69e/Xss89KSp2f1bRpUzVp0iRd27T5Kw0bNrRDpflX7969tXLlSi1evFh//vmnEhMTlZiYqDJlymQIEJs3b5Yka48Rcg+fBfsbNGiQ/vrrL40ePVo//PADPXN2dOsWHICjIsgByNdKly6tOXPmaNy4cdq7d6+8vb316KOPavjw4enaWSwWLVq0SBaLRQ8++KCdqs2fGjdurM8//1xjxoyxzrmqVKmSJkyYkOEb2d9//12S+BqYgM+CbV26dCnT42PHjtV7772nrl27ql+/fqpbt+5dl8BnQ/DcR5BDfsCG4AAgKTk52bo8u7+/f4bFOZBzcXFxOnbsmAoXLqyKFStmmIeSmJio5cuXy2KxKCAggHlydsJnIXfUrl07V+7DhuAAbocgBwAAkMv+vW9iThw5ciTX7gUg/yDIAQAA5LKLFy/m2r3Kli2ba/dCepcuXdKsWbO0efNmXb58WfHx8el6QCMiIqyLM/Xv358eauQp/G0EkG/s2LEj1+7VtGnTXLsXYGt8FuzPMAw5OzvL39/f3qXgNtavX6+3335bMTExSuvX+PfKlD4+Plq/fr327t2rqlWr6vHHH7dHqUCmCHIA8o3evXvnyvLQzEm5d8wLyhv4LNhfq1atVKJECeueiZI0YsQI+fj4aMSIEXasDJJ07tw5DR06VLGxsWrRooXatWunMWPGKCIiIkPbbt26ac+ePfr7778JcshTMt/xEAAclMViyfErJSXF3m/DYeXGn3/aCznDZ8H+/v33eMmSJVq+fLmdqsGtZsyYodjYWLVv317Tpk1Tx44db7sdRNp+l/v377dlicBd0SMHIN9gQQD7mzNnjr1LgPgs5AXu7u6Kioqydxm4jS1btsgwDA0ZMuSubUuVKiUPD4/bbikB2AtBDgCQa5o1a2bvEoA8oUKFCjpx4oTmzJmjbt26qVChQvYuCbe4cuWKPDw8VL58+Sy19/DwIJgjzyHIAQAA5LJ27drp66+/1tixYzV27Fjr8Rs3bmRrLinzFM3h5uam+Pj4LLWNj49XZGQke1siz2GOHAAAQC7r37+/unfvLmdn53TzPpkvmjdUqFBBSUlJOnny5F3b/vPPP0pOTlaNGjVsUBmQdfTIAcg3Jk2alGv3Gjx4cK7dqyBh2fu8gc+C/bm4uOjTTz/V8OHDderUKcXFxalPnz7y9fXVxIkT7V1egdeqVSsdOnRIM2bM0JgxY27bLiwsTOPHj5dhGKxYiTyHDcEB5Bu1atXKlSXXJenw4cO5cp+CJre+Bgwnyxk+C3lTrVq15Ofnp02bNtm7lAIvMjJSTz31lEJDQ9WrVy+9+OKL6t69u27cuKHDhw/r2rVrWr9+vaZMmaLLly+rbNmyWrFihdzd3e1dOmBFjxyAfIMenLwhN34+yM8Yc4bPQt5w6dKldJuCjx07liCQRxQuXFjff/+9Xn75Zf3888/6+eefrefq1q2r5ORkSan/FhUrVkyTJ0/ma4c8hx45AAAAE9SqVSvDpuDIW65cuaKvv/5aK1asUEJCQrpzLi4ueuqpp/TOO++oVKlSdqoQuD2CHAAAgAkYSuk44uPjdeDAAV27dk0pKSkqXry46tWrJ09PT3uXBtwWQysBAABQoLm7u+v++++3dxlAthDkABQYa9as0aZNm3T58mXFxcXpxx9/tJ6LiYnRkSNHZBiGGjVqZMcq87fQ0FBt27ZNly9fVmxsLCsi2gmfBQBwfAQ5APne+fPn9frrr+vo0aOSUiev/3tFPzc3Nw0bNkyXLl3SL7/8wjewuSwhIUH//e9/9euvvyopKcl6/NYgFxERoSeeeEIxMTFasWKFypcvb49S8zU+C0Dm4uLiFBERke7fp8yUKVPGRhUBd8eG4ADytaioKPXr109HjhyRn5+funTpokKFCmVo5+LiomeffVYWi0V//fWXHSrNv1JSUvTaa6/p559/VlJSksqVKydnZ+cM7Xx8fNSxY0clJibqzz//tEOl+RufBSC9qKgoTZgwQU888YQaNWqkli1bKiAg4LYv9pFDXkOPHIB8bfbs2bpw4YLq1aunGTNmyMfHR//884/i4uIytA0ICNCECRMUHBxsh0rzr8DAQG3atEklSpTQpEmT1KBBAz3yyCO6ceNGhrZt2rTRnDlztG3bNr3yyit2qDb/4rNgH+Hh4erTp889X28YRrqhr8gdoaGh6tmzp86dO5fl7U5YHxB5DUEOQL62Zs0aGYah999/Xz4+PndsW6VKFbm4uOjMmTO2Ka6AWLJkiQzD0IgRI9SgQYM7tr3vvvvk5OSkEydO2Ki6goPPgn0kJSUpKCjonq/PrY3dkd53332ns2fPys3NTd27d1dAQID8/f3ZKw4OhSAHIF87d+6cXFxcVL9+/bu2NQxD3t7eioqKskFlBcexY8dkGIYCAgLu2tbNzU2FCxdWWFiYDSorWPgs2Ie7u7vatGlj7zLwL+vXr5dhGPrkk0/UpUsXe5cD3BOCHIB8LSUlRS4uLnJyuvuUYIvFopiYmEznDeHexcTEyMvLK8s/6U5MTJSLC/95ym18FuzD29tbY8eOtXcZ+JcbN27I2dlZ7du3t3cpwD1jsRMA+Zq/v7/i4uJ0/fr1u7bdu3evEhISWC0xlxUrVkxRUVGKiYm5a9tz584pJiZGJUuWtEFlBQufBeD/+Pn5ycPDQ66urvYuBbhnBDkA+dqDDz4oSVq4cOEd26WkpOibb76RYRhq0aKFLUorMBo2bCgpdY7W3cyaNUuGYahp06YmV1Xw8FkA/k+LFi0UHR2tkydP2rsU4J4R5ADkay+++KKcnZ01derU2y6lfvbsWQ0cOFDbtm2Th4eHevXqZeMq87cePXrIYrHom2++0fnz5zNtY7FYNHXqVM2bN0+S9Nxzz9myxAKBzwLwfwYNGiRfX1+NHj1aiYmJ9i4HuCeGhbVUAeRzCxcu1EcffSQpdTPXq1evKikpSQ899JAuXbqks2fPSkpd4OHLL79U27Zt7VluvvThhx9q4cKF8vHxUUBAgFatWqXY2Fi98cYbunTpkjZt2qTLly/LYrGoX79+evfdd+1dcr7EZ8G2atWqJT8/P23atMnepRRoly5dyvT40aNH9d5778nf31/9+vVT3bp15eXldcd7sSE48hKCHIAC4Z9//tFnn32mCxcuZHq+TJky+vjjj9WyZUsbV1YwJCcna8KECZo1a5ZSUlIkpV9W3WKxyMnJSS+99JKGDh3Kkusm4rNgOwS5vKF27dq5ch/DMHTo0KFcuReQGwhyAAqMlJQUBQUFKTg4WNeuXVNycrL8/PzUqFEjPfjgg6yUaAPnz5/X4sWLtWfPngxfg86dO6ty5cr2LrFA4LOAgqRWrVq5dq8jR47k2r2AnCLIAQAAIN+6ePFirt2rbNmyuXYvIKcIcgAAAADgYBg7ASBfu3LlihYuXCh/f39169btjm3nz5+v69evq3v37uxjlovi4uK0f/9+ubu7q379+ndsu2/fPsXHx6t+/fpZ3kAcWcNnAQDyF7YfAJCvBQYGavLkyQoPD79r2ytXrmjy5MlaunSpDSorOJYtW6Y+ffpo2bJld23766+/qk+fPlqxYoUNKitY+CwA/6dWrVrZ2iexVatWqlOnjokVAdlHkAOQr/3999+SpNatW9+1badOnWSxWLRu3TqzyypQ0vYs69ix413bduvWTRaLRatWrTK7rAKHzwKQXnZnFzEbCXkNQQ5AvnbhwgV5eHiofPnyd21bsWJFFSpUKFcnxkM6efKkXFxcsvTT7Hr16snFxUUnT560QWUFC58F4N4lJCTI2dnZ3mUA6RDkAORr4eHhcnNzy3J7Nzc3hYaGmlhRwXP9+nV5e3vLyenu/8lxdnaWt7e3rl27ZoPKChY+C8C9uXbtmkJDQ+Xr62vvUoB0WOwEQL7m6+ur0NBQRUVFydvb+45to6KiFBERoaJFi9qouoKhUKFCioyMVFJS0l33J0tMTFRUVJQKFSpko+oKDj4LKMh27Nih7du3pzsWExOjSZMm3fG6iIgIbdy4URaLRfXq1TOzRCDbCHIA8rU6depo48aNWrZsmXr27HnHtkuXLpXFYlHt2rVtVF3BULlyZe3du1ebN29Wy5Yt79h206ZNSkpKUsWKFW1UXcHBZwEF2fbt2zVp0iQZhmE9Fhsbq8mTJ9/1WovFIjc3Nw0YMMDMEoFsI8gByNfatm2rDRs26Msvv1TNmjXVuHHjTNvt2rVLX331lQzD0NNPP23jKvO3xx57THv27NHYsWPVoEEDFSlSJNN2YWFhGjdunAzDUKtWrWxbZAHAZwEFWdmyZdW0aVPr73fs2CEXFxc1bNjwttc4OTnJ29tb1atXV8eOHVW5cmUbVApkHRuCA8jXUlJS1LNnT+3du1cuLi5q06aNWrZsqTJlykiSLl26pL///lurVq1SUlKSGjRooHnz5mVpPheyJioqSk899ZRu3Lghf39/DRo0SC1btrTuT3b16lWtX79eU6ZMUUhIiPz8/LRy5cq7Dv9D9vBZAP5PrVq15Ofnp02bNtm7FOCeEeQA5Hs3btzQq6++qv3796cbVnMri8WiBg0aaMqUKSpevLiNK8z/9u7dq1deeUXh4eHWr0HaCnDJycmSUr8Gvr6+mjZt2l03Dse94bMApFqyZInc3d3Vtm1be5cC3DOCHIACITExUb/99psCAwN14MABJSUlSZJcXFxUr149denSRZ07d77rYhy4dxcvXtRXX32lv/76y/rnn8bFxUVPPfWU3nrrLWsPEczBZwFILyIiQmvWrNHBgwd148YNSVLx4sVVt25dBQQEyMfHx84VApkjyAEocJKSkhQeHi5JKlKkCHsD2VhsbKz279+v69evS5JKlCihunXrslKlHfBZQEFmsVg0ZcoUTZ8+XXFxcdZjkqw91h4eHnr55Zc1cODA2/ZiA/ZCkAMAAECBM2LECAUGBlpXpaxbt65KlSolSQoJCdHBgwcVHx8vwzDUqVMnjR071s4VA+kR5AAAAFCgrF27VoMGDZIk9e/fX6+++qoKFy6crk1kZKS+//57zZw5U4ZhaPLkyayoizyFpagAAABQoCxcuFCGYWjw4MEaNmxYhhAnSYULF9bw4cP12muvyWKxaMGCBXaoFLg9euQAAABQoDRv3lw3b97U9u3b77rVSVRUlJo1a6YiRYpoy5YtNqoQuDt65AAAAFCghIeHy9vbO0v7VXp7e6tw4cKKjIy0QWVA1hHkAAAAUKAUKVJEkZGRunnz5l3bhoeHKzIyUr6+vuYXBmQDQQ4AAAAFSv369WWxWPTDDz/cte0PP/yglJQU1a9f3waVAVlHkAMAAECB0qNHD1ksFs2ePVsff/yxrly5kqHN1atXNWrUKOuqlT179rRDpcDtsdgJACBXTZo0SV5eXurXr5+9SynQ+vTpoyJFiui7776zdylAnvTxxx/r119/lWEYcnJyUuXKleXv7y9JunLlik6fPq2UlBRZLBb17NlTH3/8sZ0rBtIjyAEAclWtWrXk5+enTZs22buUAo2vA3B3s2bN0vfff6+IiIhMz/v6+mrgwIF64YUXbFsYkAUu9i4AAMxy8uRJxcbGqnz58ukmqcfFxWnOnDlasWKFzp07J1dXV913333q27evWrZsaceKAQC21K9fP/Xs2VObNm3SwYMHFRoaKkkqVqyY6tatq+bNm8vDw8POVQKZo0cOQL6zb98+DRs2TOfOnZMkOTk5qWPHjvrss88UHx+v3r1769ChQ7r1nz/DMCRJQ4cO1SuvvGKXuvMLeoLyBr4OAJC/0SMHIF+5du2a+vfvr6ioKGtQS05O1pIlS1S6dGlFRETo4MGDKly4sFq0aKHSpUsrJCREW7duVWhoqL799ls98sgjqlOnjp3fCQAAwO0R5ADkK3PnzlVkZKSKFi2qESNGqHbt2jp8+LDGjRunJUuWKDo6WrVq1dIPP/xgndQuSTdv3tSgQYO0e/duzZ8/X59++qkd3wUAAMCdEeQA5CubNm2SYRj66KOP1KZNG0lS9erV5ebmpjfffFOGYei///1vuhAnpW4OO3LkSHXt2lU7duywR+n5SkpKii5fvqycjN4vU6ZMLlZUMMXHxyswMDBH9+jUqVOu1AIAyF3MkQOQrzRp0kTR0dHau3ev3NzcrMcTEhJUv359GYahHTt2yNvbO9PrGzZsKMMwFBwcbKuS851atWpZ5xzeK8MwdOjQoVyqqGDi6wAA+Rs9cgDylejoaPn6+qYLcZLk5uYmX19fRURE3DbESZK3t7du3LhhdpkFAj8nzBty8nXgawgAeRdBDkC+YrFY5OKS+T9trq6uNq6m4PLx8dHEiRPtXUaBV7x4cVatBIB8iiAHAMh1rq6uatasmb3LAAAg33KydwEAAAAAgOyhRw5AvhMeHq4+ffpkOH7z5k1JyvTcv9sAAADkZQQ5APlOYmKigoKCbnv+Tuck5XilPwAAALMR5ADkK507d7Z3CQAAAKYjyAHIV8aOHWvvEgq8Tp06qXDhwvYuo8AbO3as3N3d7V0GAMAkbAgOAAAAAA6GVSsBAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMGwITgAwG4sFouOHj0qSapVq5adq8nfbt68qfXr18vHx0etWrW6Y9s1a9YoKipKrVq1ko+Pj40qBABkBz1yAAC7iY2NVadOndSlSxd7l5LvLV26VCNGjND+/fvv2jYoKEgjRozQsmXLbFAZAOBeEOQAAHZnsVjsXUK+t2bNGknS008/fde2Xbp0kcVi0erVq80uCwBwjxhaCQDIVSNGjMhy2+Tk5EyvMwxDY8aMydW6Crpz587Jzc1N1apVu2vbmjVrys3NTefOnbNBZQCAe2FY+DEoACAX1apVS4ZhZLl92n+G0q6xWCwyDEOHDx82pb6Cql69evLy8tK2bduy1P7BBx9UTEyM9u3bZ3JlAIB7QY8cAMAUVatWVdGiRe/YJiUlRbt27ZJhGGrSpImNKiuYvL29FRERobi4OHl4eNyxbVxcnCIjI+Xt7W2j6gAA2UWQAwDkqv/85z/asGGDrl69queff149evS4bdvo6Gjdf//9kqS5c+faqsQCqXr16tqxY4fWrFmjdu3a3bHt6tWrlZycnKVhmAAA+2CxEwBArpo6daq+/PJLubq6atSoUerRo4eOHTuWadvsDMFEzjz55JOyWCwaN27cHee+nT17Vl988YUMw1Dr1q1tWCEAIDuYIwcAMEV4eLjGjh2rwMBAubi46IUXXtDgwYPTDeuLiYlR48aNmRNnAwkJCWrfvr3Onj0rLy8v9e7dWy1btlSZMmUkSZcuXdL69ev1008/KTo6WhUrVtSyZcvk5uZm58oBAJkhyAEATPX/2rvzuCrL/P/j75uDhAiKKKKRVmKCS2rims6YWKbinlubzpQ21WS2TLmbmubSpFZa7hU2lYWKG2M54J7iWuYumCaoJAKKgCJwfn/443xBWY8HjsDr+XjM48Gc+7ru+3OW6rzPdV/X9fPPP2vChAmKjo6Wt7e3JkyYoA4dOkgiyJW006dP68UXX1RMTEyeo6Fms1n33XefFi9erAceeKBkCwQAFBpBDgBQ7K5fv645c+YoKChImZmZeuKJJzRu3Di5uroS5EpYUlKSFi5cqJCQEF28eDHHsRo1aqhPnz4aOnSo3Nzc7FQhAKAwCHIAgBJz+PBhjR8/XkeOHJGbm5uGDRumWbNmEeTsJCYmRpcuXZIkVa9e3XKbJQDg7keQAwCUqMzMTC1dulTz5s3TtWvX2DcOAAArEOQAAHZx9uxZTZs2TefOnZMkhYSE2LcgAABKEYIcAABlTFY4dnR0VI0aNXI8VlTcbgkAdyeCHAAAZUyDBg0kSXXr1tX69etzPFYUhmHoyJEjNq0NAGAbjvYuAABQ9l2/fl0HDhzQ2bNndfnyZUlSlSpVVLt2bT3yyCO655577Fxh2ZL1G23232qt+d2W33oB4O7FiBwAoNhERUVp3rx52rhxo9LT03Nt4+joqM6dO+vVV1+Vj49PCVdYNsXExEi6+dp6eXnleKyovL29bVYXAMB2CHIAgGIRGhqq0aNHKy0trcCRHcMw5OTkpOnTp6tr164lVCEAAKUXQQ4AYHO//PKLnn32WWVkZMjFxUV9+/ZVhw4d5OvrK3d3d0lSYmKijh07pi1btmjlypVKTU2Vo6OjvvnmGzVp0sS+TwAAgLscQQ4AYHM9evTQyZMn1bBhQ82dO7fAlQ9jYmL0z3/+U8eOHVP9+vW1Zs2aEqq0/Ni/f7+aN29epD4LFy7USy+9VEwVAQDuhIO9CwAAlC179+7VyZMnVaVKFX3++eeFWr7e29tb8+fPV5UqVXTy5Ent27evBCotXwYPHqy5c+cqMzOzwLYXLlzQ888/r9mzZ5dAZQAAaxDkAAA2FR4eLkkaOHCgZaGNwqhZs6YGDBggs9lsOQdsJz09XfPmzdOzzz6r6OjoPNuFhoaqV69e2rNnj5ydnUuwQgBAURDkAAA2deTIERmGoccff7zIfZ944glJ0uHDh21dVrn3/vvvy9nZWQcOHFDv3r0VEhKS43hycrJGjhypt99+W5cvX1bDhg21YsUK+xQLACgQQQ4AYFN//PGHJOs2oPbz85NhGDpz5oytyyr3+vfvr1WrVqlx48a6evWqRo8erbfeektJSUk6cOCAevXqZZmb+MILL2j58uWqW7eunasGAOSFxU4AADbVsmVLZWRkaP/+/Vb19/f3l2EY2rt3r40rg3TzFstPPvlEixcvltlsVrVq1ZSYmKj09HR5eXlp+vTpatu2rb3LBAAUgBE5AIBNJScny8XFxer+FStWVEpKig0rQnaOjo5666239MEHH8hsNuvSpUtKT09X/fr1tXbtWkIcAJQSBDkAgE0VZlXEgnCzSPFas2aNpk6dKsMwLK/1yZMnNXPmTKWmptq5OgBAYRDkAAAoJ65evap//etfGjlypJKSkvTwww9r3bp1Gjx4sCRpxYoV6tOnjw4dOmTnSgEABWGOHADApvz8/GQymVSzZk2r+p8/f15ms1lHjx61cWXl2759+/Tuu+/q3LlzMgxDL730koYPHy6TySRJ2r59u0aNGqW4uDg5Ojpq+PDheumll2QYhp0rBwDkhiAHALApPz+/Oz6HYRgEORtr2LChMjMzde+992rmzJlq0aLFbW0SExM1duxYhYWFyTAMtWjRQsuWLbNDtQCAgjjauwAAQNny2muv2bsE5CIzM1OBgYGaNGmSXF1dc23j7u6uefPmafny5Zo2bRorhwLAXYwROQAAyoHVq1erV69ehW7/+++/61//+hebggPAXYogBwAAcpWeni5HR27eAYC7EUEOAIByJjMzU3v27NHhw4d16dIlSVK1atXUuHFjtWjRQg4OLGoNAHc7fmYDANjcsmXLtHHjRj3wwAOaPHlyge3NZrMmTJigM2fOqFu3bho0aFAJVFk+hYSEaM6cOYqNjc31eM2aNfXGG28U6TZMAEDJY0QOAGBT8fHx6tSpk9LS0rRixYpCr2J55MgR9evXTy4uLgoPD1flypWLudLyZ86cOVqwYIFlE3AvLy/LNhEXLlywhDvDMPTyyy9rxIgRdqsVAJA/7p0AANjUmjVrlJqaqu7duxdpK4KGDRsqMDBQycnJWrt2bTFWWD7t3btX8+fPl9lsVteuXRUaGqotW7Zo+fLlWr58ubZs2aLQ0FB16dJFZrNZ8+fPZ9VKALiLEeQAADa1Y8cOGYah3r17F7lv3759ZTabtWXLFtsXVs5l7Qc3cOBAzZ49W3Xr1r2tTd26dTVnzhwNGDBAZrNZX3/9dUmXCQAoJIIcAMCmjh8/Lkny9/cvct+sPlnngO3s379fDg4Ohbpd8o033pBhGNq3b18JVAYAsAZBDgBgU4mJiXJzc5OTk1OR+zo5Oaly5cpKSEgohsrKt4SEBLm5ucnDw6PAth4eHqpcubISExOLvzAAgFUIcgAAmzKZTLpx44bV/dPS0mQymWxYESTJ1dVVycnJSklJKbBtSkqKrl69qkqVKpVAZQAAaxDkAAA25eHhoWvXrikuLq7IfePi4nTt2rVCjRqhaBo1aqSMjAx98803Bbb99ttvlZGRoUaNGpVAZQAAaxDkAAA21bhxY0nS5s2bi9x306ZNkkSAKAZ9+vSR2WzW7NmztXDhQqWlpd3WJi0tTYsXL9asWbNkGIb69u1rh0oBAIXBPnIAAJtatWqVRo8erTp16mj16tWqWLFiofqlpKSoV69eio6O1tSpUwkRxeDVV19VeHi4DMOQq6urmjdvLi8vL0lSbGysDhw4oKSkJJnNZnXq1Enz5s2zc8UAgLwQ5AAANnXjxg117txZFy5c0KOPPqo5c+bIzc0t3z5JSUl64403tGPHDtWqVUs//fSTKlSoUEIVlx9paWmaOXOm5dZJ6ebm35Ism4SbTCY988wzeuedd6xasAYAUDIIcgAAm9u5c6eGDRumjIwMVa9eXYMHD1ZAQIB8fHxytIuKilJYWJi+/vprXbx4USaTSYsWLVLbtm3tVHn5cOHCBf344486fPiw4uPjJd2c29i4cWN17txZNWvWtHOFAICCEOQAAMUiNDRUY8eOVWpqqmXUx8nJyTI6l5SUZJmnZTab5ezsrKlTpyowMNBuNQMAUFoQ5AAAxSYqKkqzZ89WWFiY8vrPjWEY6tSpk9544w3Vq1evhCssP/bs2aMKFSqoWbNmhWp/8OBBXb9+XS1btizewgAAViHIAQCK3cWLFxUREaHIyEjLJtPu7u6qV6+eWrduLU9PT/sWWA74+fnJ09NT27ZtK1T7gIAAXbhwQUeOHCnmygAA1nC0dwEAgLLP09NT3bt3t3cZ5V5Rf7vlt14AuHuxjxwAALhNcnKyHB35vRcA7lYEOQAAkMPBgwd1+fJlbnkFgLsYP7UBAFAGrVq1SqtWrcrx2OXLlzV48OA8+5jNZiUlJSkyMlKGYahNmzbFXSYAwEoEOQAAyqCYmBjt3r07x2M3bty47bG83H///RoxYkRxlAYAsAFWrQQAoAzavXt3jtA2d+5cubi46IUXXsizj2EYcnV1Vf369dWqVSuZTKaSKBUAYAWCHAAA5YCfn5+qV6+u7du327sUAIANEOQAACgHYmJiZDKZVLNmTXuXAgCwAYIcAAAAAJQyLHYCAEA5s23bNq1fv16HDx/WpUuXJEnVqlVT48aNFRgYqPbt29u5QgBAQRiRAwCgnIiPj9dbb72liIgISTe3G8jOMAxJUps2bfTRRx/Jw8OjxGsEABQOQQ4AgHLgxo0bGjhwoI4ePSqz2aymTZuqbdu2ljlzFy5c0M6dO/Xrr7/KMAw1aNBAy5cvV4UKFexcOQAgNwQ5AADKgaCgIH3wwQdyc3PTv//9b3Xo0CHXdlu2bNHbb7+t5ORkjR07Vs8991wJVwoAKAwHexcAAACKX2hoqAzD0MSJE/MMcZLUoUMHTZw4UWazWevWrSvBCgEARUGQAwCgHIiKilKFChXUpUuXAtt26dJFFSpUUFRUVAlUBgCwBkEOAIBy4Pr163J2dpbJZCqwraOjo5ydnXX9+vUSqAwAYA2CHAAA5YCnp6eSkpJ05syZAtueOXNGSUlJ8vT0LIHKAADWIMgBAFAOtG7dWmazWZMnT9aNGzfybJeenq73339fhmGoTZs2JVghAKAoWLUSAIByICoqSr169VJGRoZ8fX310ksvqU2bNpa94uLj47Vr1y4tWrRIR48elaOjo1avXi0fHx87Vw4AyA1BDgCAciIkJETjxo1Tenq6ZfNvR0dHSTdH4qSbm4Q7OjpqypQp6t27t71KBQAUgCAHAEA5cvDgQc2ZM0c7d+7UrV8BDMPQo48+qhEjRqhJkyZ2qhAAUBgEOQAAyqErV67o8OHDSkhIkCRVrVpVjRo1UuXKle1cGQCgMAhyAAAAAFDKsGolAADlwOjRozVt2rRCt585c6bGjBlTjBUBAO4EI3IAAJQDfn5+ql69urZv316o9gEBATp//ryOHj1azJUBAKzBiBwAAAAAlDIEOQAAkENmZqYuXbqkihUr2rsUAEAeHO1dAAAAsL2rV6/qypUrOR7LzMzU+fPnb9t2IIvZbFZSUpJCQkJ0/fp1NWzYsCRKBQBYgSAHAEAZ9OWXX2revHk5HktISFBAQECh+huGoZ49exZHaQAAGyDIAQBQRmUfeTMMI8+RuFt5eXmpf//++tvf/lZMlQEA7hSrVgIAUAYlJSVZbq00m816/PHH5eHhoR9++CHPPg4ODnJ1dZWbm1tJlQkAsBIjcgAAlEFubm45AlnLli3l7u4ub29vO1YFALAVRuQAAAAAoJRh+wEAAMqB559/XmvXrlVaWpq9SwEA2AAjcgAAlAN+fn4yDEOVK1dWjx491K9fP/n5+dm7LACAlQhyAACUA1OmTNHatWt1+fJlGYYhSWrUqJH69++vwMBAubq62rlCAEBREOQAACgn0tLS9NNPPyk4OFgREREym80yDEPOzs7q0qWL+vXrJ39/f3uXCQAoBIIcAADlUHR0tIKDgxUSEqILFy5YRukefPBB9e/fX7169ZKHh4edqwQA5IUgBwBAOZaZmalt27YpODhYmzZtUnp6ugzDkKOjowICAtSvXz/95S9/sXeZAIBbEOQAAIAkKTY2Vm+99Zb27dsnSZZROm9vbw0ZMkSDBg1ShQoV7FkiAOD/I8gBAFDOnTp1SsHBwVq9erXi4+NlNpvl6OioZs2a6dChQ7p27ZoMw1C9evW0ZMkS1ahRw94lA0C5R5ADAKAcunbtmkJDQ/XDDz/ol19+kSSZzWZ5e3urf//+euqpp+Tp6amkpCStWLFCCxYsUGJiogIDA/Xvf//bvsUDAAhyAACUJwcPHlRwcLBCQ0OVnJxsGX3r2LGjBgwYoPbt21tuqcwuKipK3bt3V9WqVfXzzz/boXIAQHaO9i4AAAAUv6+++krBwcGKjIyUlPvoW358fHzk6empixcvlkS5AIACEOQAACgHpk2bJkmFGn3Li7e3txwd+eoAAHcDbq0EAKAcCAgI0IABAwo1+gYAuPsR5AAAAACglHGwdwEAAAAAgKIhyAEAUEYtW7ZMgwcP1oQJEwrV3mw2a/z48Ro8eLC+++67Yq4OAHAnuLUSAIAyKD4+Xp06dVJaWppWrFghPz+/QvU7cuSI+vXrJxcXF4WHh6ty5crFXCkAwBqMyAEAUAatWbNGqamp6t69e6FDnCQ1bNhQgYGBSk5O1tq1a4uxQgDAnSDIAQBQBu3YsUOGYah3795F7tu3b1+ZzWZt2bLF9oUBAGyCIAcAQBl0/PhxSZK/v3+R+2b1yToHAODuQ5ADAKAMSkxMlJubm5ycnIrc18nJSZUrV1ZCQkIxVAYAsAWCHAAAZZDJZNKNGzes7p+WliaTyWTDigAAtkSQAwCgDPLw8NC1a9cUFxdX5L5xcXG6du2aPDw8iqEyAIAtEOQAACiDGjduLEnavHlzkftu2rRJktSoUSNblgQAsCGCHAAAZdBjjz0ms9mshQsXKjU1tdD9UlJStHDhQhmGoccee6z4CgQA3BGCHAAAZVD37t1Vq1YtnT17Vq+99pqSkpIK7JOUlKThw4fr7Nmzqlmzpnr06FEClQIArGGYzWazvYsAAAC2t3PnTg0bNkwZGRmqXr26Bg8erICAAPn4+ORoFxUVpbCwMH399de6ePGiTCaTFi1apLZt29qpcgBAQQhyAACUYaGhoRo7dqxSU1NlGIakm9sLuLm5Sbo5CpeWliZJMpvNcnZ21tSpUxUYGGi3mgEABSPIAQBQxkVFRWn27NkKCwtTXv/ZNwxDnTp10htvvKF69eqVcIUAgKIiyAEAUE5cvHhRERERioyMVGJioiTJ3d1d9erVU+vWreXp6WnfAgEAhUaQAwAAAIBShlUrAQAAAKCUIcgBAAAAQClDkAMAAACAUoYgBwAAAAClDEEOAAAAAEoZghwAAAAAlDIEOQAAAAAoZQhyAAAAAFDKEOQAALk6deqUZs+erX79+qldu3Zq3LixHn30UT311FOaPXu2oqKibHq9Tz/9VL6+vgoICLDpebNERETI19dXvr6+io6OLpZr3KmAgAD5+vrq008/tXcpd43nn39evr6+GjVq1G3HivszUxhZn6mVK1farQYA5ZOjvQsAANxd0tLSNGPGDH333XdKT0/PcezSpUu6dOmSDh06pEWLFmnQoEEaNWqUnJyc7FQtYHuffvqp5s6dK29vb4WHh9u7HADIFUEOAGCRkpKil19+WREREZKkhx56SM8//7xatmwpDw8PJSQkaO/evQoKCtKJEyf0n//8R5GRkVqwYIEqVqxo5+oBACg/CHIAAIv333/fEuKeeuopTZo0SRUqVLAcd3d314MPPqjevXtr4sSJCg4OVkREhKZMmaKpU6fe0bWHDx+u4cOH39E58tO6dWsdP3682M6Pklfcn5nC4DMFwF6YIwcAkHRzDlnWPJ+2bdtq6tSpOUJcdhUqVNCUKVPUpk0bSVJwcLB2795dYrUCAFDeMSIHAJAkLV261PL3+PHjZRhGvu0Nw9CECRPUrVs3S/9WrVrlaDNq1CitWrVKrVq10rJly/Trr78qKChI+/btU1xcnGrUqGGZg1SYeUnXrl3T0qVL9d///ld//PGHnJ2dVb9+fQ0aNEiBgYH5niMiIkKDBw+WJIWFhem+++7LcdzX11eSNG3aNPXt21erVq3S999/r8jISKWlpen+++9Xjx49NGTIkDznBMbGxmrTpk3asmWLjh07pri4ODk4OKh69ery9/fXs88+q6ZNm+b7ulorOjpanTp1kiQFBQWpadOm+uKLLxQaGqro6GiZTCb5+vpq4MCB6tmzZ67nuPU1qly5spYuXaqwsDDFxMQoOTlZQUFBat26taVPUlKSvvnmG23atEm///67kpOT5e7urmbNmmnQoEFq3759vnXHxsbq888/19atW3Xx4kVVqVJFjzzyiP72t7/J398/376Fnct2/Phxffvtt9qzZ48uXLig9PR0eXl5ycfHR507d9YTTzwhV1fXHM9fkmJiYiyfiyy3XuvWz01uzp07py+//FI7duzQuXPnlJmZKS8vL7Vp00ZDhgyRj49Prv1Wrlyp0aNHW55DfHy8Fi1apLCwMJ0/f14uLi56+OGHNXToUMuPKrk5ceKEli1bZnn+GRkZqlq1qqpXr67mzZurU6dOatu2bZ79AdydCHIAAKWkpGj79u2SpBYtWuT5xfJWPj4+8vf31759+7Rt2zalpKTIxcUl17bfffedJk+erIyMDKtqjIuL05AhQxQZGWl57Nq1a9q9e7d2796tHTt2qFatWladO7uMjAy9/vrr+vHHH3M8fvz4cR0/fly7du3SokWL5OBw+00t3bt315UrV257PDo6WtHR0VqzZo3efPNN/eMf/7jjOvOTlJSkAQMG3Hbb3969e7V3715t3rxZH374oUwmU57nOHv2rMaMGaNz587l2WbPnj0aPny4EhIScjx+8eJFbdy4URs3btTAgQP13nvv5XqtX375RUOHDlVSUlKOvj/99JPCwsI0ceLEQj7j3GVmZuqjjz7SkiVLZDabcxw7c+aMzpw5o/DwcJnN5jxD2J3asGGD3n33XV2/fj3X6wcHB2vs2LF69tln8z1PZGSkXnjhBcXGxloeS0tL07Zt27R9+3ZNnz5dvXv3vq3f+vXr9e677962cFFsbKxiY2N1+PBh7dq1S+vWrbP+SQKwC4IcAEC//vqr5Ytey5Yti9S3ZcuW2rdvn9LT0/Xrr7/m+sv+qVOn9P7776tJkyZ69dVX1ahRI6Wlpeno0aOFuobZbNaIESMUGRkpwzD03HPPqX///vLy8lJ0dLS++uorrVixQnXq1ClS7blZsGCBzp07p2HDhqlnz57y8vLS+fPnNXfuXG3cuFHbt2/XDz/8oIEDB97W18fHR+3bt1ezZs3k5eWlatWqKSUlRadPn9b333+vH3/8UbNmzVKDBg3017/+9Y5rzcu0adMUGxurV155RT179lTVqlUVGRmpuXPnateuXVq/fr1q166tN998M89zjBo1SqmpqRozZowCAgJUqVIlRUVFydvbW5J09OhRvfjii7p+/brq16+vYcOGqXnz5nJzc9P58+e1cuVKBQUFafny5apevbpef/31HOePj4/Xyy+/rKSkJLm4uOi1115T586dValSJf3222+aPXu2Jk+eLA8PD6tfh5kzZ+qLL76QJDVq1EhDhw7VI488IhcXF8XFxenAgQNav369ZfS5RYsW2r9/vxYsWKAFCxbo3nvvvS3g5Bbg87J//3699dZbysjIUI0aNfTmm2+qXbt2MplM2rdvn2bNmqXTp09r8uTJ8vT0VOfOnfM818svvyxHR0fNmDFDbdq0kZOTk/bv368pU6bo/PnzmjRpkjp06KCqVata+ly5ckXjxo1Tenq67r//fg0fPlxNmzaVu7u7UlNTderUKe3atUuHDx8uyssK4C5BkAMA6OzZs5a/H3rooSL1zd4+r/3Z4uLi5O/vry+//DLHbYmFHUH78ccftXfvXknSiBEj9Morr1iOubu768MPP1TFihW1fPnyItWem7Nnz+rDDz/McfthlSpV9Mknn6hv3746evSoVqxYkWuQ++677257zMPDQ/fdd5/at2+vDz/8UIsXL9bChQuLNchFR0dr+vTp6tOnj+Wxli1basmSJXrhhRcUERGhJUuW6JlnnpGXl1eu57h06ZJ++OEHNWjQIMdzyTJ69Ghdv35drVu31uLFi3O8r1WqVNGYMWP0wAMPaNKkSVq4cKEGDRqkGjVqWNp89tlnSkhIkGEYmjdvnh599FHLsQ4dOsjf318DBw7MMQJbFAcPHrSEuE6dOunjjz/OMeezSpUq8vHxUb9+/Sw/YphMJlWqVMnSzjAMVapUyarrSzcXD8rIyFCVKlX07bff5rid98knn1SrVq3Ur18/RUdHa/LkyerYsWOe81LT0tK0atUqVatWzfLY448/rlq1aqlv375KSUnRhg0b9PTTT1uO7927VykpKZKkTz75RH5+fpZjlStXlpeXF7dUAqUYi50AAJSYmGj5u3LlykXqm7199vPcauTIkVbvN5e1CEuNGjU0bNiwXNu88847cnZ2tur82T3yyCO5ziFzcHCw3Lp25MiR225VK4ysYHXgwAGlpqbeUZ35efjhh3OEuCyOjo4aO3asJOnGjRtavXp1nud46qmncoS47CIiInT06FEZhqHJkyfn+b4+/fTTql27tm7cuKENGzZYHs/IyFBISIikm2Eke4jL4urqqrfffjvP+gry1VdfSZJcXFw0bdq0PAOSdPN1sbVDhw7pyJEjkqR//OMft83JlKSqVatanuPFixe1efPmPM/3z3/+M0eIy9KoUSPLPL3ffvstx7HstzFnD9EAygaCHADgjhS0KIp0c9TM2kU+zGazDhw4IEl67LHH8vzS7ebmVuTbQnPzl7/8Jc9jDz74oKSbISi3uXDSzS/TEyZMUI8ePeTv768GDRrI19dXvr6+CgwMlCSlp6frjz/+uONa85LfLXq+vr564IEHJN289S8vjz32WJ7Hfv75Z0lSnTp15OnpqeTk5Fz/l5KSYhkFyh4yTpw4YZkX98QTT+R5nb/+9a9Wh/OdO3dKkgICAlSlShWrznEnskaQJalr1655tnv88cctITN7n1vlN4Kb9bmMi4vL8bivr6/ln88xY8bozJkzBRcOoNTg1koAQI4vutkXniiM7IHG3d091za1a9e2qq6serKukfWFNS9169bVtm3brL6WlP/IRfZQkduI2uzZs7VgwYLbFtbITVFf56KoW7duvsd9fHx0+vRpxcTE5Nkmv/fs999/l3RzwY7mzZsXqqb4+HjL39mvm9/COo6OjnrggQd07NixQl0jy9WrV3Xp0iVJynNUsbhlLRLj4uKie++9N892Tk5Ouv/++xUZGZnv+5Hf57JixYqSbv9M1qlTR88++6y+/vprbdq0SZs2bVK9evXk7++vli1bql27dnc0BxGAfRHkAAA5bvsq6pyk7O1zu31M+r8vmtbImuMjKc8VMQt7vDDyW8kxu1vDWmhoqObPny/p5qIZgwYNUoMGDeTh4SEnJycZhqGYmBj16NFDkqxevbMwCprXlfU6JScn59kmv5Ewa0JoWlqa5e/s1y2O9zT7+e9kjtudyKqhMNfPapPf+1HYz+Wtxo0bJ19fXwUFBenkyZOKjIxUZGSkli9fLkdHR3Xu3FmjRo3Kc64kgLsXQQ4AoKZNm8pkMikjI6PIG3tntXd0dCyWPdKyf5EvaF5Z9tBX0v7zn/9IujnHbtmyZbmubmjNvDpr5BcIpP97nawNOVnvSaNGjSzzF4si+3ULes+seU+zn7+g16K4FCacZbnT9yM/hmFowIABGjBggM6fP68DBw5o37592rRpk2JiYhQaGqpffvlFq1evLvL8WAD2xRw5AIBcXV3Vrl07STfn6Zw6dapQ/U6dOqV9+/ZJktq3b2+TEbFbubm5Wb5gZt3Sl5eCjhenrK0UunbtmucS9SdOnCiRWgp6/6KioiTJspVAUWXddhkdHa3MzMwi989+3axacpOenm7VvC5XV1fLwiCF3eLC1rKeY0pKSr578aWlpen06dM5+hSXWrVqqVu3bho/frz+97//WRZaOXfunFWBHIB9EeQAAJKkF154QdLNWwanTJlS4DyvW9tl9bc1wzDUrFkzSdLmzZvzHNW6evVqkUcTbSnr1sH8gk1+q0Ta0saNG/M8dvz4cUtwKOz8tlu1b99eknT58mXLRvJFUb9+fbm5uUnKv9atW7davbpn1kqY4eHheS5Mk5esBXXu5PbXFi1aWP6+dXP57MLCwnTjxo3b+hQ3BwcHDRs2zPLjS2F/vAFw9yDIAQAkSW3btrUsr79jxw699957eYam9PR0vffee9qxY4ekm0vVt27duthqy1pKPzY2VkuXLs21zUcffaRr164VWw0FyRqlCg8PzzUEr1y50rLaY3E7ePCgZXn/7NLT0zV16lRJUoUKFdSrVy+rzt+uXTvLkveTJk1SbGxsvu3j4uJ0+fJly/83mUyWz9r//vc/ywqT2SUnJ+ujjz6yqj5JGjx4sKSbI2Jjx47N97bWW49lbaodHx9v9e2wjRo1UsOGDSVJ8+fPz3VULjExUbNmzZIkeXp65rtSqDXOnj2bY27irf78809LUM5roSIAdy+CHADAYsKECZYl/JcvX64+ffrohx9+0OnTp5WYmKjTp08rODhYffv2tWy+3bp1a40fP75Y6+rSpYseeeQRSdKsWbM0depUnTx5UpcvX9bhw4c1cuRIffPNN6pTp06x1pGfbt26Sbo5Z/Dtt9/WoUOHlJCQoGPHjmnatGkaN26c6tWrVyK13HfffRo3bpw+/vhj/f7770pISNCePXv04osvKiIiQpL04osvWr3AhWEYmjFjhipWrKjo6Gj16tVLCxYs0LFjx5SYmKj4+HidOHFCISEhGjFihDp27HjbdguvvvqqqlatKrPZrFdffVVLly5VdHS04uPjtXXrVj333HM6c+aM1TU2adLEMkr8008/adCgQdqwYYMuXLigK1eu6NSpUwoJCdGLL76otWvX5ujbuHFjSTdHWT///HNdunRJ6enpSk9PL9Io3fjx42UymZSYmKinn35aISEhio2NVVxcnKWmrNdlwoQJ+e51Z42QkBB17NhRU6ZM0ebNmxUdHa0rV67o7NmzCg0N1d///neZzWY5ODjku0UCgLsTi50AACwqVaqkpUuX6oMPPtD333+vEydOaNy4cbm2NZlMGjhwoEaPHm31Rt+F5eDgoE8++URDhgzRqVOnFBQUpKCgoBxt+vbtq1q1amnevHlWr/B3J4YOHaotW7bot99+0/r167V+/focxx966CF98MEH6t+/f7HXMnr0aH388cf67LPP9Nlnn912vFu3bnr99dfv6BoNGjRQUFCQRowYoXPnzmnWrFmW0aXc3BpSPDw8NH/+fA0dOlRJSUmaMWOGZsyYYTnu4OCgiRMnat26dQWO+OXlnXfekSR98cUX+u233zRixIhc22Xt75elcePGatWqlXbv3q25c+dq7ty5lmPe3t4KDw8v1PWbN2+ujz76SCNHjtSFCxc0cuTI29qYTCaNGTMm373/7kRcXJyWLVumZcuW5XrcZDJp7NixdtumAYD1CHIAgBycnJw0ceJEPf/881q9erV27Nihc+fOKSkpSa6urrr33nvVrl079e7dO989wGytRo0aWrlypZYsWaL//ve/Onv2rJydnfXQQw9pwIAB6tWrl6ZPny7p5mIXJa1ixYpatmyZFi9erNDQUEVHR+uee+5R7dq19eSTT2rIkCGWvc2Km5ubm77//nstWbJEGzZsUExMjBwcHOTr66uBAwdafUvlrZo0aaINGzZo1apVCgsL09GjR5WYmCgHBwdVq1ZN9erVU6tWrfTkk0/mOlrarFkzrV+/Xp9//rm2bt2qP//807J5/N///ne1aNFC69ats7o+BwcHjRw5Uj169NA333yj3bt3688//5RhGKpRo4Z8fHz05JNP6vHHH7+t7+eff65FixYpPDxc0dHRSk1NLdT+gLfq2rWrmjZtqi+//FLbt2/X+fPnlZmZKS8vL7Vp00ZDhgwptn+OhgwZooceekg7d+7UoUOH9OeffyohIUEVKlSQt7e3WrVqpWeeeabERooB2JZhtubfSgAA3IVeeeUVhYeHq2PHjpY93cqL6OhoderUSZIUFBRUrHMWAQD2xxw5AECZcPXqVe3atUvS/81xAgCgrCLIAQBKhStXruS7tP/MmTMtGyuzcAMAoKxjjhwAoFT4+eef9emnn2rAgAFq3bq1atasqRs3bujYsWMKCgrS1q1bJUk9e/Ys0bl7AADYA0EOAFBqREZG6oMPPsjzeNu2bfXee++VYEUAANgHQQ4AUCq0atVKo0eP1vbt2y17o6Wlpcnd3V2NGzdW9+7d1a1bNzk4MGsAAFD2sWolAAAAAJQy/GwJAAAAAKUMQQ4AAAAAShmCHAAAAACUMgQ5AAAAAChlCHIAAAAAUMoQ5AAAAACglCHIAQAAAEApQ5ADAAAAgFKGIAcAAAAApQxBDgAAAABKGYIcAAAAAJQyBDkAAAAAKGUIcgAAAABQyhDkAAAAAKCU+X9ePC/aCrG+XQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "image/png": { - "height": 387, - "width": 441 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "df = follicular_bdata.obs\n", - "confusion_matrix = pd.crosstab(\n", - " df[\"cellassign_predictions\"],\n", - " df[\"celltype\"],\n", - " rownames=[\"cellassign_predictions\"],\n", - " colnames=[\"Original predictions\"],\n", - ")\n", - "confusion_matrix /= confusion_matrix.sum(1).ravel().reshape(-1, 1)\n", - "fig, ax = plt.subplots(figsize=(5, 4))\n", - "sns.heatmap(\n", - " confusion_matrix,\n", - " cmap=sns.diverging_palette(245, 320, s=60, as_cmap=True),\n", - " ax=ax,\n", - " square=True,\n", - " cbar_kws={\"shrink\": 0.4, \"aspect\": 12},\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VMNNWSfJ3mLv" - }, - "source": [ - "## HGSC Data" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "L45KGyyi4ErD" - }, - "source": [ - "We can repeat the same process for HGSC data." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "5BoG-lDty1mR", - "outputId": "4ef93990-ed41-420e-87ba-5b2beaf8e015" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/anndata/_core/anndata.py:1818: UserWarning: Observation names are not unique. To make them unique, call `.obs_names_make_unique`.\n", - " utils.warn_names_duplicates(\"obs\")\n", - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/anndata/_core/anndata.py:1820: UserWarning: Variable names are not unique. To make them unique, call `.var_names_make_unique`.\n", - " utils.warn_names_duplicates(\"var\")\n" - ] - }, - { - "data": { - "text/plain": [ - "AnnData object with n_obs × n_vars = 4848 × 33694\n", - " obs: 'Sample', 'dataset', 'patient', 'timepoint', 'site', 'sample_barcode', 'is_cell_control', 'total_features_by_counts', 'log10_total_features_by_counts', 'total_counts', 'log10_total_counts', 'pct_counts_in_top_50_features', 'pct_counts_in_top_100_features', 'pct_counts_in_top_200_features', 'pct_counts_in_top_500_features', 'total_features_by_counts_endogenous', 'log10_total_features_by_counts_endogenous', 'total_counts_endogenous', 'log10_total_counts_endogenous', 'pct_counts_endogenous', 'pct_counts_in_top_50_features_endogenous', 'pct_counts_in_top_100_features_endogenous', 'pct_counts_in_top_200_features_endogenous', 'pct_counts_in_top_500_features_endogenous', 'total_features_by_counts_feature_control', 'log10_total_features_by_counts_feature_control', 'total_counts_feature_control', 'log10_total_counts_feature_control', 'pct_counts_feature_control', 'pct_counts_in_top_50_features_feature_control', 'pct_counts_in_top_100_features_feature_control', 'pct_counts_in_top_200_features_feature_control', 'pct_counts_in_top_500_features_feature_control', 'total_features_by_counts_mitochondrial', 'log10_total_features_by_counts_mitochondrial', 'total_counts_mitochondrial', 'log10_total_counts_mitochondrial', 'pct_counts_mitochondrial', 'pct_counts_in_top_50_features_mitochondrial', 'pct_counts_in_top_100_features_mitochondrial', 'pct_counts_in_top_200_features_mitochondrial', 'pct_counts_in_top_500_features_mitochondrial', 'total_features_by_counts_ribosomal', 'log10_total_features_by_counts_ribosomal', 'total_counts_ribosomal', 'log10_total_counts_ribosomal', 'pct_counts_ribosomal', 'pct_counts_in_top_50_features_ribosomal', 'pct_counts_in_top_100_features_ribosomal', 'pct_counts_in_top_200_features_ribosomal', 'pct_counts_in_top_500_features_ribosomal', 'size_factor', 'cellassign_cluster_broad', 'cellassign_cluster_specific', 'B.cells..broad.', 'T.cells..broad.', 'Monocyte.Macrophage..broad.', 'Epithelial.cells..broad.', 'Ovarian.stromal.cells..broad.', 'Ovarian.myofibroblast..broad.', 'Vascular.smooth.muscle.cells..broad.', 'Endothelial.cells..broad.', 'other..broad.', 'B.cells', 'CD4.T.cells', 'Cytotoxic.T.cells', 'Monocyte.Macrophage', 'Epithelial.cells', 'Ovarian.stromal.cells', 'Ovarian.myofibroblast', 'Vascular.smooth.muscle.cells', 'Endothelial.cells', 'other', 'celltype', 'G1', 'S', 'G2M', 'Cell_Cycle', 'epithelial_seurat_cluster', 'epithelial_seurat_0.2_cluster', 'epithelial_phenograph_cluster', 'epithelial_sc3_cluster', 'epithelial_SC3_cluster', 'epithelial_cluster', 'all_seurat_cluster', 'all_seurat_0.8_cluster', 'all_seurat_1.2_cluster', 'all_sc3_cluster', 'all_SC3_cluster', 'all_cluster', 'all_subset_seurat_cluster', 'all_subset_seurat_0.8_cluster', 'all_subset_seurat_1.2_cluster', 'all_subset_cluster'\n", - " var: 'ID', 'is_feature_control', 'is_feature_control_mitochondrial', 'is_feature_control_ribosomal', 'mean_counts', 'log10_mean_counts', 'n_cells_by_counts', 'pct_dropout_by_counts', 'total_counts', 'log10_total_counts'\n", - " uns: 'log.exprs.offset'\n", - " obsm: 'X_pca', 'X_tsne', 'X_umap'\n", - " layers: 'logcounts'" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "hgsc_adata = scvi.data.read_h5ad(sce_hgsc_path)\n", - "hgsc_celltype_markers = pd.read_csv(hgsc_celltype_path, index_col=0)\n", - "\n", - "hgsc_adata.var_names_make_unique()\n", - "hgsc_adata.obs_names_make_unique()\n", - "\n", - "hgsc_adata" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-sB9YD1l4v2M" - }, - "source": [ - "### Create and fit CellAssign model" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "id": "Ur_hisP3CR3f" - }, - "outputs": [], - "source": [ - "hgsc_bdata = hgsc_adata[:, hgsc_celltype_markers.index].copy()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "SIvlQxoqZZNl", - "outputId": "a4551fce-1c5a-4628-97bd-c287fd1762ea" - }, - "outputs": [], - "source": [ - "scvi.external.CellAssign.setup_anndata(hgsc_bdata, \"size_factor\")" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "pTqyMyiIZkTp", - "outputId": "7633dd58-792c-4516-f7bc-0250bf225e39" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: True (cuda), used: True\n", - "TPU available: False, using: 0 TPU cores\n", - "IPU available: False, using: 0 IPUs\n", - "HPU available: False, using: 0 HPUs\n", - "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=63` in the `DataLoader` to improve performance.\n", - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/lightning/pytorch/loops/fit_loop.py:293: The number of training batches (5) is smaller than the logging interval Trainer(log_every_n_steps=10). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n", - "/home/access/.conda/envs/scvi/lib/python3.11/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:441: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=63` in the `DataLoader` to improve performance.\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "429bd1991b10479799440abc64fa6011", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Training: 0%| | 0/400 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
B cellsCytotoxic T cellsCD4 T cellsTfhother
01.000000e+009.676685e-206.941236e-161.600126e-173.570404e-15
11.000000e+001.331208e-218.170073e-181.016939e-196.024762e-17
21.000000e+001.138781e-261.044258e-221.005804e-241.051596e-21
31.000000e+001.409212e-449.456494e-381.897248e-402.415008e-34
43.182719e-175.300728e-139.995208e-014.792132e-042.067002e-18
\n", + "" + ], + "text/plain": [ + " B cells Cytotoxic T cells CD4 T cells Tfh other\n", + "0 1.000000e+00 9.676685e-20 6.941236e-16 1.600126e-17 3.570404e-15\n", + "1 1.000000e+00 1.331208e-21 8.170073e-18 1.016939e-19 6.024762e-17\n", + "2 1.000000e+00 1.138781e-26 1.044258e-22 1.005804e-24 1.051596e-21\n", + "3 1.000000e+00 1.409212e-44 9.456494e-38 1.897248e-40 2.415008e-34\n", + "4 3.182719e-17 5.300728e-13 9.995208e-01 4.792132e-04 2.067002e-18" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predictions = follicular_model.predict()\n", + "predictions.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GFE_kr40qj6-" + }, + "source": [ + "We can visualize the probabilities of assignment with a heatmap that returns the probability matrix for each cell and cell type." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 782 }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 390/400: 98%|█████████▊| 390/400 [00:14<00:00, 27.49it/s, v_num=1, train_loss_step=40.2, train_loss_epoch=40.8]" - ] + "execution": { + "iopub.execute_input": "2024-09-30T15:43:22.406923Z", + "iopub.status.busy": "2024-09-30T15:43:22.406828Z", + "iopub.status.idle": "2024-09-30T15:43:24.212853Z", + "shell.execute_reply": "2024-09-30T15:43:24.212541Z" }, + "id": "8S79mmil3ZMn", + "outputId": "0d50b102-0cd8-45d2-8566-5b69378abf3d" + }, + "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\r\n", - "Epoch 390/400: 98%|█████████▊| 390/400 [00:14<00:00, 27.49it/s, v_num=1, train_loss_step=40.3, train_loss_epoch=40.8]" + "/usr/local/lib/python3.12/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.\n", + " warnings.warn(msg)\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\r\n", - "Epoch 391/400: 98%|█████████▊| 390/400 [00:14<00:00, 27.49it/s, v_num=1, train_loss_step=40.3, train_loss_epoch=40.8]" + "/usr/local/lib/python3.12/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.\n", + " warnings.warn(msg)\n" ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 391/400: 98%|█████████▊| 391/400 [00:14<00:00, 27.49it/s, v_num=1, train_loss_step=41.2, train_loss_epoch=40.8]" - ] + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 392/400: 98%|█████████▊| 391/400 [00:14<00:00, 27.49it/s, v_num=1, train_loss_step=41.2, train_loss_epoch=40.8]" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiYAAAYqCAYAAABUmtasAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOzdd3jX5b0//mcCBEgC4kC06lFAcK8W51FPqx5btVJUbD0VVJylauto7fbbYz11VawV90BLtfoV965KHa22LhzgAEE9DsQoyxBIAsnvD3/kK4VgQj58wng8rut9+fm83/d4vdNie+XJfd8ljY2NjQEAAAAAACiC0vYuAAAAAAAAWH0IJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABFI5gAAAAAAACKRjABAAAAAAAUjWACAAAAAAAoGsEEAAAAAABQNIIJAAAAAACgaDq2dwEUz9y5c/PMM89kwoQJefXVVzNhwoR88MEHSZIzzjgjxxxzTJvnuPPOOzNmzJhMnDgxtbW1WX/99bP33nvnuOOOS48ePdo8PgAAAAAAKzfBxGrk5ZdfzvHHH79cxl6wYEFOPfXUPPTQQ0mSjh07pqysLG+99Vauueaa3HXXXRk9enR69+69XOYHAAAAAGDlYCun1cwaa6yRXXfdNcccc0xGjBiRnj17FmTcSy+9NA899FA6deqUM888M+PGjcu4ceMyZsyY9OnTJ1VVVRk+fHjq6+sLMh8AAAAAACunksbGxsb2LoLiWLBgQTp06LDIvb322ivvv/9+m7Zymj59evbaa6/MnTs3p59++mKrMt59991885vfzLx58/LrX/86//Vf/7XM7wAAAAAAwMrNionVyL+GEoXy0EMPZe7cuSkvL8+QIUMWe77RRhtl//33T5Lcfffdy6UGAAAAAABWDoIJ2uwf//hHkmTHHXdMeXn5EtvsscceSZIXX3wxc+fOLVptAAAAAACsWAQTtNnkyZOTJP369Wu2Tf/+/ZMkDQ0NTe0BAAAAAFj9dGzvAvh/Ro0alVGjRrWqz7BhwzJs2LDlVFHLfPTRR0mSXr16Ndvm88+qqqqWe00AAAAAAKyYChpMNHzYv5DDrXaqq0/OtGnTWtmnejlV03I1NTVJkq5duzbbpkuXLk2f58yZs9xrAgAAAABgxVTYYCINhRxutVNZWbnUVQfN9QEAAAAAgJVFQYOJBY2CibZYEbZlWhbl5eWZNWvWUg+1njdvXtPnioqKYpQFAAAAAMAKqMArJhoLORwriXXXXTezZs1a6jZUn3/Ws2fPYpQFAAAAAMAKyFZOtFnfvn0zadKkTJo0qdk2EydOTJKUlpamb9++xSoNAAAAAIAVTIG3crJiYnW066675sEHH8xzzz2XuXPnLvEQ7CeffDJJsv322y/1kGwAAAAAAFZtpe1dACu/fffdN127ds2cOXPypz/9abHn7733Xu6///4kybe+9a1ilwcAAAAAwAqkoMFEQxpdbbiKYdasWZk+fXrT1dDw2fZbc+fOXeR+XV3dIv2GDh2azTbbLEOHDl1szLXWWitHH310kuTiiy/OTTfd1NR//PjxOeGEEzJv3rz07t07hxxyyHJ+QwAAAAAAVmQljY2F23/pkw82LNRQq6W1v/Tecp9jr732yvvvv/+F7c4555wcfPDBTd+HDh2aZ555JjvttFNGjx69WPsFCxbk1FNPzUMPPZQk6dSpU8rKyjJnzpwknx14PXr06PTu3btAbwIAAAAAwMqowIdfO2NiddWhQ4f84Q9/yJ133pkxY8bkjTfeSG1tbXr37p299947xx13XHr06NHeZQIAAAAA0M4KumLiw/e/VKihVkvrbfBBe5cAsEKpra1NfX19e5cBAG3WqVOndO7cub3LAACAFUKBV0wAQGHU1tZmr732Sm1tbXuXAgBt1rlz54wdO1Y4AQAAKXAwscBWTgAUSH19fWpra3PfffeloqKivcsBgGU2Z86cHHDAAamvrxdMAABACh1MyCUAKLCKiopUVla2dxkAAAAAFIitnAAAAAAAgKIpbe8CAAAAAACA1UeBz5goKeRwAAAAAADAKqawWzk5YwIAAAAAAFgKKyYAAAAAAICiEUwAAAAAAABFU+CtnAQTAAAAAABA86yYAAAAAAAAiqbAwURpIYcDAAAAAABWMbZyAgAAAAAAisYSBwAAAAAAoGicMQEAAAAAABRNYYOJRgswAAAAAACA5hX2jAk7QwEAAAAAAEthKycAAAAAAKBobOUEAAAAAAAUTYG3crJiAgAAAAAAaF6Bt3KyYgIAAAAAAGierZwAAAAAAICikSQAAAAAAABFU+AzJuQcAAAAAABA8wq8lZPDrwEAAAAAgOY5/BoAAAAAACiawm7l5PBrAAAAAABgKayYAAAAAAAAisYZEwAAAAAAQNEUdisnKyYAAAAAAIClKPCKCcEEAAAAAADQPEkCAAAAAABQNAXeyskZEwAAAAAAQPNs5QQAAAAAABRNYYMJO0MBAAAAAABLUditnBpt5QQAAAAAADTPigkAAAAAAKBoCrxiQjABAAAAAAA0r8ArJmzlBAAAAAAANM+KidXQjBkzcs011+TRRx/N1KlT07lz5/Tv3z+DBw/OoEGDlnncSZMmZfTo0fnnP/+ZDz/8MAsWLMjaa6+dbbbZJocccki+9rWvFe4lAAAAAABYKRU0mGDFN3ny5Bx55JGpqqpKkpSXl2fOnDl59tln8+yzz+axxx7LiBEjUlraupBpzJgx+fWvf536+vokSadOndKpU6d8+OGH+fDDD/Pwww9n4MCBOe+881o9NgAAAAAAq46C/oZ4QUpcbbiWt7q6ugwfPjxVVVXp06dPxowZk3HjxmXcuHE588wz06lTpzzwwAO5/PLLWzXulClTmkKJnXbaKXfeeWdeeeWVjBs3Lo899lgOPfTQJMndd9+dW2+9dXm8GgAAAAAAK4mCBhMNjaWuNlzL26233pp33nknXbp0yVVXXZVtttkmSVJWVpbDDz88J598cpLkmmuuyYwZM1o87v3335/6+vpUVFTk8ssvzxZbbJGSks+ClvXXXz9nn312BgwYkCR58MEHC/xWAAAAAACsTAq7YqKx1NWGa3m76667kiT7779/Ntpoo8WeDxkyJOXl5ampqckjjzzS4nE/+uijJMkmm2ySysrKJbZZGILU1NS0tmwAAAAAAFYhhV0xkRJXG67lac6cOXn55ZeTJHvuuecS21RUVDStbHjqqadaPPaGG26YJHn77bdTXV29xDavvPJKkmSrrbZq8bgAAAAAAKx6Cnr4dTH+1v+qbNSoURk1alSr+gwbNizDhg37wnZTpkxJY2NjkqR///7NtuvXr1+eeOKJvPnmmy2u4Vvf+lYuu+yyzJkzJ8OHD8/Pf/7zbL755ikpKcnUqVNz2WWX5bnnnss666yTE044ocXjAgAAAACw6iloMNHQuPwPcF6VVVdXZ9q0aa3u0xILt1tKkl69ejXbbuGzz7f/Ir169cpll12WU089Nc8880wGDRqUTp06pVOnTqmpqUnXrl0zaNCgnHrqqUudGwAAAACAVV9hV0wUdmeo1U5lZWWrf3Hf3JkO/+rzZzt06dKl2XZdu3ZN8tnWT62x22675Y9//GNOP/30TJo0KfX19amvr0+SzJ8/P3Pnzm31mAAAAAAArHqsmFiBtHRbphXR5Zdfnosvvjgbb7xxRo4cme233z5dunTJxIkTc+mll+ahhx7K008/nVGjRmXrrbdu73IBAAAAAGgnljisJsrLy5s+z5s3r9l2c+fOTfLZQdgtdd999+X3v/99evTokZtuuin/+Z//mZ49e6Zbt275yle+kmuvvTY77bRTZs+enbPPPnvZXwIAAAAAgJVeYVdMyDlWWOuuu27T52nTpjW7BdTCMy4+3/6LXH/99UmSQYMGZe21117seUlJSYYNG5Znnnkm48aNS1VVVXr27NmK6gEAAAAAWFUU9owJWzmtsPr27ZuSkpI0NjZm4sSJ6du37xLbTZo0KUmy6aabtnjsN998M0my0UYbNdtm4403bvr8/vvvCyYAAAAAAFZTBV3i0NBY4mrDtTyVl5dnu+22S5I8+eSTS2xTU1OT5557Lslnh1m3VGnpZ/81+uCDD5pt88knnzR9bumB3QAAAAAArHoKHEyUutpwLW8DBw5Mktx///157733Fnt+4403pqamJuXl5dlnn31aPO6WW26ZJLn33nvz6aefLrHNn//85yRJ9+7d07t379aWDgAAAADAKqKgvw1fkBJXG67l7dBDD83GG2+cuXPn5oQTTsj48eOTJHV1dbnpppty8cUXJ0mOPfbYrLnmmov0HTp0aDbbbLMMHTp0sXG/+93vJkk+/PDDHH300Rk3blzmz5+fxsbG/O///m9OP/303H///U3jdOjQYXm+JgAAAAAAK7DCHn7tjIkVWllZWS6//PIceeSRefPNN3PIIYekoqIidXV1qa+vT5Lst99+GT58eKvG3W+//TJ+/Phcc801efnll3PYYYelY8eO6dSpU+bOndvUbt999833v//9gr4TAAAAAAArlwIHE8t/OyLapm/fvrnnnnty9dVX59FHH83UqVPTtWvXbL/99hk8eHAGDRq0TOP++Mc/zte+9rXccsstGTduXD766KPMnz8/6667brbeeuscdNBB2XfffQv7MgAAAAAArHQKG0wUYTsi2m7NNdfMGWeckTPOOKPFfUaPHv2FbQYMGJABAwa0pTQAAAAAAFZxljgAAAAAAABFU9AVEwucMQEAAAAAACyFMyYAAAAAAICiKXAwYcUEAAAAAADQPIdfAwAAAAAARWPFBAAAAAAAUDTOmAAAAAAAAIrGigkAAAAAAKBonDEBAAAAAAAUjb2XAAAAAACAorGVEwAAAAAAUDSCCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIpbDARwQQAAAAAANA8KyYAAAAAAICiEUwAAAAAAABFI5gAAAAAAACKprS9CwAAAAAAAFYfVkwAAAAAAABFU9BgolEwAQAAAAAALEVhV0xEMAEAAAAAADTPVk4AAAAAAEDR2MoJAAAAAAAoGismAAAAAACAorFiAgAAAAAAKBorJgAAAAAAgKIpbe8CAAAAAACA1UeBt3Iq5GgAAAAAAMCqprBbOcVWTgAAAAAAQPMcfg0AAAAAABSNw68BAAAAAICiccYEAAAAAABQNLZyAgAAAAAAikYwAQAAAAAAFI0zJgAAAAAAgKIpbe8CAAAAAACA1YfDrwEAAAAAgKJxxsRqaMaMGbnmmmvy6KOPZurUqencuXP69++fwYMHZ9CgQW0au6GhIXfffXfuvffevP7665k5c2Z69OiRDTfcMDvvvHOOPPLIrLXWWoV5EQAAAAAAVjqCidXM5MmTc+SRR6aqqipJUl5enjlz5uTZZ5/Ns88+m8ceeywjRoxIaWnrd/maPn16hg8fnhdffDFJUlpamm7duuXjjz9OVVVVxo0blz322EMwAQAAAACwGitsMFHIwSi4urq6DB8+PFVVVenTp0/OP//8bLPNNqmrq8utt96ac845Jw888ED69euXE088sVVjz507N0ceeWQmTpyYPn365Ec/+lH22GOPlJWVpa6uLm+99VYefvjhrLnmmsvp7QAAAAAAWBlYMbEaufXWW/POO++kS5cuueqqq7LRRhslScrKynL44Yenuro6I0aMyDXXXJPvfve7rQoRLrrookycODG9e/fOzTffnDXWWKPpWVlZWTbbbLNsttlmBX8nAAAAAABWLq3fr2dpGl1tupazu+66K0my//77N4USnzdkyJCUl5enpqYmjzzySIvHnTFjRv785z8nSX72s58tEkoAAAAAAMDnFTSYaGwscbXhWp7mzJmTl19+OUmy5557LrFNRUVFBgwYkCR56qmnWjz2gw8+mLq6uvTo0SN77LFH24sFAAAAAGCVVeCtnAo5GoU0ZcqUNP7//wH179+/2Xb9+vXLE088kTfffLPFY48bNy5Jstlmm2X+/Pm59tprc8899+Tdd99N165ds8UWW+SQQw7JgQcemJIS230BAAAAAKzOChpM0DajRo3KqFGjWtVn2LBhGTZs2Be2++ijj5o+9+rVq9l2C599vv0Xeeedd5Ik5eXlGTJkSF566aWUlpamW7du+fTTT/OPf/wj//jHP/Loo49mxIgR6dChQ4vHBgAAAABg1eLw6xVIdXV1pk2b1uo+LVFTU9P0uUuXLs2269q1a5LPtn5qqVmzZiVJHn/88TQ0NOR73/tejj322HTr1i2zZ8/OFVdckWuvvTYPPvhgNt988wwfPrzFYwMAAAAAsGop7IoJwUSbVFZWLnU1Q3N92tvCLaIaGhryzW9+M6eeemrTs+7du+eMM87Iu+++m7/85S+57rrrcswxx6SsrKy9ygUAAAAAoB05Y2IF0tJtmZZFeXl50+d58+Y1G2jMnTs3yWcHYbfU59seeeSRS2wzbNiw/OUvf8ns2bMzYcKE7LDDDi0eHwAAAACAVUdpQUdrdLXpWo7WXXfdps9L2y5q4bPPt2/N2H369Flim8/fnzp1aovHBgAAAABg1VLQYKKxscTVhmt56tu3b0pKPptj4sSJzbabNGlSkmTTTTdt8dj9+vVrVS0L6wAAAAAAYPVjxcSKdC1H5eXl2W677ZIkTz755BLb1NTU5LnnnkuS7Lbbbi0e+/Ntp0yZssQ2n7+/wQYbtHhsAAAAAABWLVZMrEDX8jZw4MAkyf3335/33ntvsec33nhjampqUl5enn322afF4+60005NYcP111+/xDbXXXddkqRnz57ZaqutWlk5AAAAAACrCismVqRrOTv00EOz8cYbZ+7cuTnhhBMyfvz4JEldXV1uuummXHzxxUmSY489NmuuueYifYcOHZrNNtssQ4cOXWzcDh065Ec/+lGS5L777stFF12UTz/9NEkye/bsXHDBBXn44YeTJCeffHI6dOiw3N4RAAAAAIAVW8f2LoDiKSsry+WXX54jjzwyb775Zg455JBUVFSkrq4u9fX1SZL99tsvw4cPb/XY+++/fyZPnpyRI0fmiiuuyNVXX51u3bpl9uzZaWhoSJIMGzYs3/nOdwr6TgAAAAAArFwKHEw41HhF17dv39xzzz25+uqr8+ijj2bq1Knp2rVrtt9++wwePDiDBg1a5rFPPvnk7Ljjjhk9enReeumlzJw5M2uttVa22267DBkypFXnVgAAAAAAsGoqbDBRhO2IaLs111wzZ5xxRs4444wW9xk9enSL2u2yyy7ZZZddlrU0AAAAAABWcYIJAAAAAACgaAocTNjKCQAAAAAAaF5Bg4lGKyYAAAAAAIClsJUTAAAAAABQNLZyAgAAAAAAiqagwUSJFRMAAAAAAMBSlLZ3AQAAAAAAwOrDGRMAAAAAAEDROGMCAAAAAAAoGismAAAAAACAohFMAAAAAAAARSOYAAAAAAAAisYZEwAAAAAAQNEUNJgosWICAAAAAABYCls5AQAAAAAARVPa3gUAAAAAAACrD8EEAAAAAABQNM6YAAAAAAAAiqbAZ0yUFHQ4AAAAAABg1eLwawAAAAAAoGgEEwAAAAAAQNE4YwIAAAAAACgaKyYAAAAAAICiEUwAAAAAAABFU9reBQAAAAAAAKsPZ0wAAAAAAABFU+CtnEoKOhwAAAAAALBqccYEAAAAAABQNLZyAgAAAAAAisaKCQAAAAAAoGismAAAAAAAAIrGigkAAAAAAKBoBBMAAAAAAEDRlLZ3AQAAAAAAwOrDGRMAAAAAAEDRWDEBAAAAAAAUjTMmAAAAAACAorGVEwAAAAAAUDRWTAAAAAAAAEUjmFgNzZgxI9dcc00effTRTJ06NZ07d07//v0zePDgDBo0qGDz3H///Tn11FObvr/xxhsFGxsAAAAAgJWTrZxWM5MnT86RRx6ZqqqqJEl5eXnmzJmTZ599Ns8++2wee+yxjBgxIqWlbTsXfdasWfmf//mfQpQMAAAAAMAqpG2/ff5Xja42XctZXV1dhg8fnqqqqvTp0ydjxozJuHHjMm7cuJx55pnp1KlTHnjggVx++eVtnuu8887Lxx9/nO23377thQMAAAAAsMoobDDBCu3WW2/NO++8ky5duuSqq67KNttskyQpKyvL4YcfnpNPPjlJcs0112TGjBnLPM8//vGP3Hbbbdl+++1z6KGHFqR2AAAAAABWDQUNJkoaXW25lre77rorSbL//vtno402Wuz5kCFDUl5enpqamjzyyCPLNEdtbW3OPPPMdOzYMf/93//d5i2hAAAAAABYtdjKaUW6lqM5c+bk5ZdfTpLsueeeS2xTUVGRAQMGJEmeeuqpZZpn5MiReeedd3LEEUdk8803X7ZiAQAAAABYZQkmVqRrOZoyZUoaGz+bpH///s2269evX5LkzTffbPUcr7/+eq677rpssMEG+cEPfrBshQIAAAAAsErrWMjBirEd0aps1KhRGTVqVKv6DBs2LMOGDfvCdh999FHT5169ejXbbuGzz7dviQULFuQXv/hF5s+fn1/96lfp2rVrq/oDAAAAALB6KGgwsbz/1v+qrrq6OtOmTWt1n5aoqalp+tylS5dm2y0MFObMmdOqOkaPHp3x48dn3333zde+9rVW9QUAAAAAYPUhmFiBVFZWLnU1Q3N92tt7772Xiy++OBUVFfnlL3/Z3uUAAAAAALACs5XTCqSl2zIti/Ly8qbP8+bNazbQmDt3bpLPDsJuqV//+tepqanJz3/+81YHKwAAAAAArF6smFhNrLvuuk2fp02b1mwwsXArqc+3X5pHHnkkTz75ZPr375+DDz54sS2g6urqmj4vfNapU6eUlZW1qn4AAAAAAFYNhQ0mWGH17ds3JSUlaWxszMSJE9O3b98ltps0aVKSZNNNN23RuO+9916SZOLEiRkwYMBS2375y19OkhxxxBH5xS9+0dLSAQAAAABYhZQWcrCSRldbruWpvLw82223XZLkySefXGKbmpqaPPfcc0mS3XbbbfkWBAAAAADAaslWTquRgQMH5sUXX8z999+f73//+9lwww0XeX7jjTempqYm5eXl2WeffVo05lFHHZWjjjqq2ee33357fvaznyVJ3njjjWWuHQAAAACAVUNBV0yk0dWmazk79NBDs/HGG2fu3Lk54YQTMn78+CSfnQNx00035eKLL06SHHvssVlzzTUX6Tt06NBsttlmGTp06PIvFAAAAACAVVZBV0yUFHIwCq6srCyXX355jjzyyLz55ps55JBDUlFRkbq6utTX1ydJ9ttvvwwfPrydKwUAAAAAYFVlK6fVTN++fXPPPffk6quvzqOPPpqpU6ema9eu2X777TN48OAMGjSovUsEAAAAAGAVVtLY2FiwOGG7Uy4q1FCrpZd+f2p7lwCwwqiurs5Xv/rVPPbYY6msrGzvcgBgmfnfNAAAWJQVEwAAAAAAQNEIJgAAAAAAgKIpbe8CAAAAAACA1UdBV0yUWDEBAAAAAAAsha2cAAAAAACAorFiAgAAAAAAKBorJgAAAAAAgKKxYgIAAAAAACgaKyYAAAAAAICiEUwAAAAAAABFYysnAAAAAACgaErbuwAAAAAAAGD1YSsnAAAAAACgaAq8lZNkAgBgdVFbW5v6+vr2LgNWeHPmzFnkn8DSderUKZ07d27vMgCA5ciKCQAAWq22tjZ77bVXamtr27sUWGkccMAB7V0CrBQ6d+6csWPHCicAYBXm8GsAAFqtvr4+tbW1ue+++1JRUdHe5QCwipgzZ04OOOCA1NfXCyYAYBVmxQQAAMusoqIilZWV7V0GAAAAKxErJgAAAAAAgKKxYgIAAAAAACgaKyYAAAAAAICiKW3vAgAAAAAAgNWHrZwAAAAAAICisZUTAAAAAABQNAVeMSGZAAAAAAAAmmfFBAAAAAAAUDTOmAAAAAAAAIqmsCsmGgo5GgAAAAAAsKqxYgIAAGAVVFtbm/r6+vYuA1plzpw5i/wTViadOnVK586d27sMgJWCMyYAAABWMbW1tdlrr71SW1vb3qXAMjnggAPauwRotc6dO2fs2LHCCYAWKOyKCQAAANpdfX19amtrc99996WioqK9ywFY5c2ZMycHHHBA6uvrBRMALVDgrZwsmQAAAFhRVFRUpLKysr3LAACARdjKCQAAAAAAKBqHXwMAAAAAAEVjxQQAAAAAAFA0zpgAAAAAAACKxooJAAAAAACgaJwxAQAAAAAAFI0VEwAAAAAAQNEUdsUEK4UZM2bkmmuuyaOPPpqpU6emc+fO6d+/fwYPHpxBgwa1erza2to88cQTefLJJ/Pyyy/nf//3f1NXV5cePXpkiy22yKBBg7L//vunpKSk8C8DAAAAAMBKpbDBRIMlEyu6yZMn58gjj0xVVVWSpLy8PHPmzMmzzz6bZ599No899lhGjBiR0tLSFo/5ve99L0899VTT906dOqVz586pqqpKVVVVnnjiidx666259NJLU1FRUfB3AgAAAABg5dHy3z63RKOrTddyVldXl+HDh6eqqip9+vTJmDFjMm7cuIwbNy5nnnlmOnXqlAceeCCXX355q8adP39+Ntxww5xyyim566678sorr+T555/PU089leOPPz4dOnTI008/nTPPPHM5vRkAAAAAACuLggYTJY2utlzL26233pp33nknXbp0yVVXXZVtttkmSVJWVpbDDz88J598cpLkmmuuyYwZM1o87g9/+MM89NBDGT58eDbffPOmLZvWXnvtnH766TnllFOSJPfee28++OCDwr4UAAAAAAArlQKvmGh0teVazu66664kyf7775+NNtposedDhgxJeXl5ampq8sgjj7R43AEDBqRjx+Z3BRs8eHDT5wkTJrSiYgAAAAAAVjVWTKxA1/I0Z86cvPzyy0mSPffcc4ltKioqMmDAgCRZ5MyItiorK2v6vGDBgoKNCwAAAADAyscZEyvStRxNmTIljf//qoz+/fs3265fv35JkjfffLNgcz/zzDNNn5c2NwAAAAAAq77m999ZBiVF2I5oVTZq1KiMGjWqVX2GDRuWYcOGfWG7jz76qOlzr169mm238Nnn27fF/Pnzc/HFFydJvvzlL6dPnz4FGRcAAAAAgJVTQYOJNBR0tNVOdXV1pk2b1uo+LVFTU9P0uUuXLs2269q1a5LPtn4qhPPOOy+vv/56OnXqlF/+8pcFGRMAAAAAgJVXYYMJ2qSysnKpqxma67OiuvHGG/PHP/4xSfLTn/40W221VTtXBAAAAABAe7OV0wqkpdsyLYvy8vKmz/PmzWs20Jg7d26Szw7Cbovbb789v/nNb5Ik3//+9zNkyJA2jQcAAAAAwKqhsCsm5BIrrHXXXbfp87Rp05oNJhZuJfX59q1111135Re/+EUaGxtz9NFH54c//OEyjwUAAAAAwKqlwMGEZGJF1bdv35SUlKSxsTETJ05M3759l9hu0qRJSZJNN910mea555578rOf/SwNDQ0ZOnRofvKTnyxzzQAAAAAArHpKCzlYSaOrLdfyVF5enu222y5J8uSTTy6xTU1NTZ577rkkyW677dbqOe6777785Cc/yYIFC/Kd73zHYdcAAAAAACzGionVyMCBA/Piiy/m/vvvz/e///1suOGGizy/8cYbU1NTk/Ly8uyzzz6tGvuBBx7Ij3/84yxYsCCDBw/Of//3fxeydAAAAFjl1NbWpr6+vr3LoADmzJmzyD9ZNXTq1CmdO3du7zJglVTYw68bCjkahXbooYfmhhtuyDvvvJMTTjgh5513XrbeeuvU1dVlzJgxufjii5Mkxx57bNZcc81F+g4dOjTPPPNMdtppp4wePXqRZ4888kh+9KMfZcGCBTn44IPzm9/8JiUlJUV7LwAAAFjZ1NbWZq+99kptbW17l0IBHXDAAe1dAgXUuXPnjB07VjgBy4EVE6uRsrKyXH755TnyyCPz5ptv5pBDDklFRUXq6uqa/obGfvvtl+HDh7dq3HPOOSfz589Pkjz22GPZY489mm179NFH55hjjln2lwAAAIBVQH19fWpra3PfffeloqKivcsB/sWcOXNywAEHpL6+XjABy0GBg4mCjsZy0Ldv39xzzz25+uqr8+ijj2bq1Knp2rVrtt9++wwePDiDBg1q9ZiNnwukpk+fvtS2NTU1rR4fAAAAVlUVFRWprKxs7zIAoKgKG0ywUlhzzTVzxhln5Iwzzmhxn3/dvunzxo4dW4iyAAAAAABYDRT2jAlbOQEAAAAAAEvhjAkAAAAAAKBoChtMNBR0NAAAAAAAYBVjKycAAAAAAKBobOUEAAAAAAAUjWACAAAAAAAoGmdMAAAAAAAAReOMCQAAAAAAoGhK27sAAAAAAABg9eGMCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIpbDDRUNDRAAAAAACAVUxBg4kSKyYAAAAAAIClsJUTAAAAAABQNAXeykkwAQAAAAAANM+KCQAAAAAAoGhK27sAAAAAAABg9WHFBAAAAAAAUDSCCQAAAAAAoGgcfg0AAAAAABRNgVdMNBR0OAAAAAAAYNViKycAAAAAAKBobOUEAAAAAAAUjRUTAAAAAABA0QgmAAAAAACAoilt7wIAAAAAAIDVhxUTAAAAAABA0RT48OuGgg4HAAAAAACsWqyYAAAAAAAAikYwAQAAAAAAFE2Bt3ISTAAAAAAAAM0raDDR2OiMCQAAAAAAoHlWTAAAAAAAAEXjjAkAAAAAAKBoStu7AAAAAAAAYPVR4K2cnDEBAAAAAAA0z1ZOAAAAAABA0RQ0mGi0YgIAAAAAAFgKKyZWQzNmzMg111yTRx99NFOnTk3nzp3Tv3//DB48OIMGDWrT2HfeeWfGjBmTiRMnpra2Nuuvv3723nvvHHfccenRo0dB6gcAAAAAYOVV4DMmBBMrusmTJ+fII49MVVVVkqS8vDxz5szJs88+m2effTaPPfZYRowYkdLS1p2LvmDBgpx66ql56KGHkiQdO3ZMWVlZ3nrrrVxzzTW56667Mnr06PTu3bvg7wQAAAAAwMqjdb99/iKNDa62XMtZXV1dhg8fnqqqqvTp0ydjxozJuHHjMm7cuJx55pnp1KlTHnjggVx++eWtHvvSSy/NQw89lE6dOuXMM89sGnfMmDHp06dPqqqqMnz48NTX1y+HNwMAAAAAYGVR0GCisaHR1YZrebv11lvzzjvvpEuXLrnqqquyzTbbJEnKyspy+OGH5+STT06SXHPNNZkxY0aLx50+fXquu+66JMkPfvCDHH744SkrK0uSbLPNNrnqqqvSpUuXvPXWWxkzZkyB3woAAAAAgJWJFRMr0rWc3XXXXUmS/fffPxtttNFiz4cMGZLy8vLU1NTkkUceafG4Dz30UObOnZvy8vIMGTJksecbbbRR9t9//yTJ3XffvYzVAwAAAACwKihsMMEKa86cOXn55ZeTJHvuuecS21RUVGTAgAFJkqeeeqrFY//jH/9Ikuy4444pLy9fYps99tgjSfLiiy9m7ty5LR4bAAAAAIBVi62cVqBreZoyZUoaGz+bo3///s2269evX5LkzTffbPHYkydPXqTvkiycs6Ghoak9AAAAAACrn44FHa0I2xGtykaNGpVRo0a1qs+wYcMybNiwL2z30UcfNX3u1atXs+0WPvt8+5aO3ZJxk6SqqqrFYwMAAAAAsGopaDDxcMOthRxutXPJJZdk2rRprepTXV3donY1NTVNn7t06dJsu65duyb5bOunllo49sK+S/L5OVszNgAAAAAAq5bCrpigTSorK5e66qC5PgAAAAAAsLIQTKxAWrot07L4/KHU8+bNazbQWHgwdUVFRavGnjVr1lIPtZ43b17T59aMDQAAAADAqqWgh1+z4lp33XWbPi9tu6iFzz7fvqVjt2TcJOnZs2eLxwYAAAAAYNUimFhN9O3bNyUlJUmSiRMnNttu0qRJSZJNN920VWN/vu+SLJyztLS0qT0AAAAAAKsfwcRqory8PNttt12S5Mknn1xim5qamjz33HNJkt12263FY++6665Jkueee67Z7ZwWzrn99tsv9ZBsAAAAAABWbYKJ1cjAgQOTJPfff3/ee++9xZ7feOONqampSXl5efbZZ58Wj7vvvvuma9eumTNnTv70pz8t9vy9997L/fffnyT51re+tYzVA6ubysrKPPfcc82eiQO0L39GYcXmzyis+Pw5hRWbP6OwfAkmViOHHnpoNt5448ydOzcnnHBCxo8fnySpq6vLTTfdlIsvvjhJcuyxx2bNNddcpO/QoUOz2WabZejQoYuNu9Zaa+Xoo49Oklx88cW56aabUldXlyQZP358TjjhhMybNy+9e/fOIYccsjxfEQAAAACAFVxJY2NjY3sXQfFMnjw5Rx55ZKqqqpIkFRUVqaurS319fZJkv/32y4gRI1JaumhmNXTo0DzzzDPZaaedMnr06MXGXbBgQU499dQ89NBDSZJOnTqlrKwsc+bMSfLZgdejR49O7969l+frAQAAAAC0i9tvvz0/+9nPvrDd008/nbXWWmux+x999FFGjRqVJ554Iu+//35KS0vzb//2b9l3331z1FFHpby8fInjzZ8/P88++2wmTJiQCRMm5NVXX80777yTxsbGHH744TnzzDOXWk9VVVWeffbZvPrqq039Z86cmSQZM2ZMttlmmy9++VbqWPARWaH17ds399xzT66++uo8+uijmTp1arp27Zrtt98+gwcPzqBBg5Zp3A4dOuQPf/hD7rzzzowZMyZvvPFGamtr07t37+y999457rjj0qNHj4K+CwAAAADAiqa0tHSJwcPnn/+rZ599NieddFJTIFBRUZGGhoa89tpree2113LnnXfmj3/8Y9Zbb73F+n744Yc56qijlrnem2++OSNHjlzm/stCMLEaWnPNNXPGGWfkjDPOaHGfJa2SWJJBgwYtc7gBAAAAALCyW3/99TN27NgWt582bVpOPPHEzJo1K1tttVXOOuusbL311mlsbMxzzz2XX/ziF3nnnXfyve99L7fddls6dOiw2BgVFRXZfPPNs9VWW2WrrbbK9ddfn9dee61F85eUlGT99dfPlltuma222irrrrtufvnLX7a4/mUhmAAAAAAAgHYyatSozJo1K+Xl5bnyyivTs2fPJJ8FBjvuuGMuvfTSfOtb38prr72Wu+66KwcffPAi/b/0pS/l+eefT0lJSdO92267rcXzDx8+PCeddFLT9/fee6+Nb/TFHH4NAAAAAADt5PHHH0+SHHjggU2hxOf169cve+65Z5LkjjvuWOx5aWnpIqFEay1pBcbyJpgAAAAAAIB28sEHHyRJ+vTp02ybvn37Jkmee+65zJs3ryh1LU+2cgIAAAAAgAKZPn16DjrooLz11ltJkl69emWnnXbKkCFDstlmmzXbr6Gh4QufNTQ0ZMqUKdlyyy0LW3SRCSYAAAAAAFjljRo1KqNGjWpVn2HDhmXYsGGt6jN37ty89tpr6d69e2pqavL222/n7bffzm233ZbTTz89xxxzzCLtv/SlL2XKlCmZNGlSs2NOnDix6fNHH30kmIAVSW1tbfbaa6/U1ta2dym0g1/93/ntXQLwBUZu2q+9SwAAgOWiwxb927sE4Asc8L31Mm3atFb1qa6ubnHbddddNyeffHL23XffbLLJJikrK0t9fX2ef/75jBgxIi+99FLOP//8rLvuujnwwAOb+u2xxx6ZMmVK7rvvvpx44onZcMMNFxn3lVdeyd///vdlqmlFJZhglVJfX5/a2trcd999qaioaO9ylrs5c+bkgAMOyK233pry8vJ2qaGmpiaHHnpobrjhhqXWUFdXl/nzCxMc1NXVZfjw4YuNd0D5yv8vZVjVjWzvAoClK3EEHazQGpvf3gFofwtem/jFjYB2VVm5aXr16tXKPpUtbrv77rtn9913X+Rep06dsssuu+RPf/pThg4dmhdffDG/+93vcsABB6S09LP//33UUUfltttuS3V1dY455pj8/Oc/z0477ZQFCxbkb3/7W84+++x07Ngx9fX1SdLUb2UmmGCVVFFR0ap/aazsevbs2W7vuzCh3XjjjYtWQ3V1debPn5//+3//b7797W833S/Nyv8vZQBoV37pCQDAKmxZtmUqlLKyspxyyik56qij8uGHH+bVV1/N1ltvneSzrZxGjhyZk08+OW+//XaOP/74RfqWl5fnjDPOyP/8z/8kSbp37170+gtNMAGstFaHVTEAAAAArBq22267ps/vvvtuUzCRJLvuumvuv//+3HjjjXn66adTVVWVioqKDBgwIEcffXQ++OCDprabbLJJMcteLgQTAAAAAADQztZdd92ceuqpOfXUUxd79vDDDyf5bOeUfz2DYmVk3xMAAAAAAFjOXnrppabPrQkXGhsbc++99yZJvvWtbxW8rvYgmAAAAAAAgDZobGxc6vP6+vpcfPHFSZJevXplq622avHYo0ePzquvvprKysoMHTq0TXWuKGzlBAAAAAAAbfD+++/n1FNPzaGHHprddtutaUXE/Pnz88ILL2TEiBEZN25ckuRHP/pRSksXXTNw4YUXZsCAAdl+++2zxhprJEneeeedjB49On/6059SUlKSX/3qV1lvvfWWOP+nn36a+vr6pu8LP9fW1mb69OlN97t27ZquXbsu0rehoSEzZ85s+j579uymz9XV1Yv079Gjx2K1LwvBBAAAAAAAtNHLL7+cl19+OUnSuXPnlJeXp7q6uikk6NSpU370ox9l4MCBi/W97777ctVVVyVJysvL09jYmLlz5yZJunTpkl/+8pcZNGhQs3N///vfzzPPPLPY/TFjxmTMmDFN30866aScfPLJi7T54IMPsvfeey9x3KOOOmqR748++mhBzrgQTAAAAAAAQBuss846+eUvf5lx48bltddey/Tp0/Ppp5+mS5cu2XTTTbPzzjvnsMMOS+/evZfY//vf/34ee+yxvP766/n4449TUlKSfv36ZY899sjhhx++Shx4/XmCCQAAAAAAaIMuXbpk6NChy3wGxODBgzN48OBlnn/06NHL3HfDDTfMG2+8scz9l4XDrwEAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABFI5gAAAAAAACKRjABAAAAAAAUjWACAAAAAAAoGsEEAAAAAABQNB3buwAAAAAAAFjZTZ06NQ8//HD++c9/5rXXXktVVVU6dOiQXr16Zeedd86QIUPSv3//xfrdfvvt+dnPftbiecaOHZsNNthgkXvPPfdcJkyYkFdffTUTJkzIlClTsmDBgnz1q1/NlVdeudTx3nrrrTz88MN59tln88Ybb2T69Onp1KlTNtxww+y2224ZOnRoNtxwwxbX1xKCCQAAAAAAaIOpU6fma1/7WhobG5vulZeXZ/78+Xn77bfz9ttv57bbbstPf/rTDB06dJG+Xbp0yTrrrLPU8WfOnJn58+enZ8+e6dWr12LPDz/88GWq+/nnn893v/vdRe5VVlZm3rx5mThxYiZOnJj/+3//b84999x8/etfX6Y5lkQwAQAAAAAAbbBgwYI0NjZm9913z6BBg7LrrrtmnXXWyYIFC/Lqq6/m3HPPzXPPPZezzz47m2yySfbYY4+mvvvvv3/233//Zseurq7O7rvvnvnz52fgwIHp2HHxX+t36dIl/fv3z5Zbbpmtt946Dz74YP72t799Yd3z589Phw4dss8++2TgwIHZaaed0r1799TX1+f555/P//zP/2TixIk5/fTT06dPn/Tr12/ZfkD/QjABAAAAAABtsMYaa+SOO+7Illtuucj9Dh06ZJtttsmoUaMyePDgvPHGG7nmmmsWCSa+yAMPPJC5c+cmSQ455JAltnnhhRfSoUOHpu/PP/98i8beeOON88ADD2TjjTde5H6nTp2yyy675MYbb8z++++fqqqqjBo1Kr/97W9bXPfSOPwaAAAAAADaoFu3bouFEp9XVlaWgQMHJknGjx/fqrFvv/32JMn222+fvn37LrHN50OJ1lhvvfUWCyU+r3v37vnP//zPJK2ve2kEEwAAAAAAsJx17tw5SdLQ0NDiPm+//XZeeOGFJMnBBx+8XOr6IstS9xcRTAAAAAAAwHL2zDPPJEn69+/f4j633XZbks/OkDjggAOWS11fZFnq/iLOmAAAAAAAYJU3atSojBo1qlV9hg0blmHDhrV57pdeeimPPPJIkmTw4MEt6rNgwYLceeedSZJ99903lZWVba6jtR588MFMmDAhScvrbgnBBAAAAAAAq7zq6upMmzat1X3aaubMmTn99NPT0NCQ7bbbrsVbMv3tb3/LRx99lKT5Q6+Xp3fffTf/5//8nyTJ17/+9ey2224FG1swAQAAAADAKq+ysjK9evVqdZ+2mDdvXk466aS8++67WXPNNTNixIgWH1S98NDrDTfcMDvvvHOb6mitGTNm5IQTTsjMmTOz8cYb5+yzzy7o+IIJAAAAAABWeYXalqml6urqctJJJ+XZZ59Nt27dcu2112bDDTdsUd+ZM2dm7NixSZKDDjooJSUly7PURcyePTtHH310Jk+enPXXXz/XXXddunfvXtA5HH4NAAAAAAAFVFdXlx/84Ad58sknU15enquvvjpbbbVVi/vfe++9qaurS2lpaQ466KDlWOmiPv300xx99NF59dVX07Nnz1x//fUtDlNaQzABAAAAAAAFUl9fnx/+8If561//mq5du+aqq67KDjvs0KoxbrvttiTJLrvskg022GB5lLmY6urqHHPMMXnllVey9tpr54Ybbsgmm2yyXOYSTAAAAAAAQAHU19fnlFNOydixY9OlS5dcfvnl2XHHHVs1xuuvv55XX301SVp8UHZbVVdX59hjj81LL72UHj16ZNSoUenbt+9ym08wAQAAAAAAbTR//vycfvrpeeSRR1JWVpZLL700u+66a6vHWbhaonv37tl3330LXeZi5syZk2OPPTbjxo1Ljx49cv3112ezzTZbrnM6/BoAAAAAANpgwYIF+fGPf5yHHnooZWVlGTlyZHbfffdWj1NfX5977rknSbL//vunc+fOLeo3Z86c1NbWNn2vq6tL8llYMn369Kb7nTt3TkVFRdP3uXPn5oQTTsi4ceOyxhpr5LrrrssWW2zR6rpbSzABAAAAAABt8MILL+T+++9PkjQ2NubnP//5UtuPGTMm66+//mL3//rXv2bGjBlJkkMOOaTF8//mN7/JHXfcsdj9v/3tb4us2jjooINy7rnnNn1/6KGH8uyzzyZJamtrc/zxxy91nr///e8trmlpBBMAAAAAANAGDQ0NTZ/r6+vz8ccfL7X9ggULlnj/9ttvT5L069cv2267beEKbMbn6543b17mzZu33OdMBBMAAAAAANAmO++8c9544402j3PFFVcsU79zzz13kZUQLXXwwQcX7YDtz3P4NQAAAAAAUDSCCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABFI5gAAAAAAACKpmN7FwAAAAAAACu7uXPn5plnnsmECRPy6quvZsKECfnggw+SJGeccUaOOeaYJfa7/fbb87Of/azF84wdOzYbbLBB0/f33nsve++99xf2u/jii/ONb3xjsfs//elPc8cddyy1b79+/XLvvfe2uMYvIpgAAAAAAIA2evnll3P88ce3ul+XLl2yzjrrLLXNzJkzM3/+/PTs2TO9evVqtt2aa66ZDh06LPFZ586dlzpH586d061bt2bHLSTBBAAAAAAAFMAaa6yRLbfcMltuuWW22mqrnHPOOamqqlpqn/333z/7779/s8+rq6uz++67Z/78+Rk4cGA6dmz+1/pjxozJhhtuuEy177///jn33HOXqW9rCSaAlVZNTU17lwAAAAAASZIBAwbkmWeeWeTehRde2OZxH3jggcydOzdJcsghh7R5vBWBw6+BlU5dXV2S5NBDD23nSgAAAADgM81todRWt99+e5Jk++23T9++fZfLHMUmmABWOvX19UmS66+/vn0LAQAAAIDl6O23384LL7yQJDn44IPbuZrCsZUTsNKqqKho7xIAAAAAYLm57bbbknx2QPYBBxzwhe1POeWUvPPOO5k7d27WWmutbLfddjnkkEPy1a9+9Qv7Pv3009l3333zwQcfpHPnztl4442z5557ZsiQIV94OHdrCSYAAAAAAFjljRo1KqNGjWpVn2HDhmXYsGHLqaKlW7BgQe68884kyb777pvKysov7PPKK6+ksrIyHTp0yLRp0/KXv/wlf/nLX/KNb3wjF1xwQcrKyprt++GHH6Zjx46pqKjIp59+mgkTJmTChAn585//nN///vfZddddC/VqggkAAAAAAFZ91dXVmTZtWqv7tJe//e1v+eijj5Is/dDrzp0757vf/W4OOOCAbL755k0BxqRJk3L11VfnrrvuyoMPPpju3bvnN7/5zWL9t9xyy2y77bb56le/mvXWWy+lpaWprq7O2LFjc/7556eqqirf//73c/vtt6d3794FeTfBBAAAAAAAq7zKysr06tWr1X3ay8JDrzfccMPsvPPOzbbr2bNn/s//+T+L3e/Xr1/OP//8rLXWWhk1alRuvfXWDBs2LH369Fmk3RFHHLFY38rKygwcODBf+cpXctBBB2XWrFkZOXJkLrzwwja+1WcEEwAAAAAArPLac1um1po5c2bGjh2bJDnooINSUlKyzGP94Ac/yJ///OfMmzcvjz322GLBxNJssMEGOfzww3PZZZflscceS0NDQ0pLS5e5loXaPgIAAAAAAFAw9957b+rq6lJaWpqDDjqoTWOVl5dn0003TZK8++67re6/3XbbJflsW6uZM2e2qZaFBBMAAAAAALACue2225Iku+yySzbYYIN2rqbwBBMAAAAAALCCeP311/Pqq68mSQ4++OA2j1dTU5M333wzyWfnVbTWSy+9lCSpqKhIjx492lxPIpgAAAAAAIAVxsLVEt27d8++++77he0bGxuX+vySSy7JvHnzUlJSkq9+9aut6vvBBx/kpptuSpJ89atfLcj5EonDrwEAAAAAoCBmzZqVBQsWNH1vaGhIksydOzfTp09vul9ZWZmysrLF+tfX1+eee+5Jkuy///7p3LnzF845dOjQ7L777vnqV7+aTTfdNB07fvZr/zfffDPXXnttbr/99iTJ4MGD07dv30X63nXXXXn00UfzrW99K1/+8pez1lprJUnmzJmTv/71r7ngggsyc+bMlJeX56STTmrNj2KpBBMAAAAAAFAABx10UN5///3F7l9yySW55JJLmr6fc845S9ym6a9//WtmzJiRJDnkkENaNOcHH3yQiy66KBdddFE6duyYysrK1NbWZu7cuU1tvvnNb+bMM89crG9DQ0P+8pe/5C9/+UuSzw7KLisry+zZs5tClbXXXjsjRoxInz59WlRPSwgmAAAAAABgBbBwdUO/fv2y7bbbtqjPj3/84zz99NN55ZVXUlVVlZkzZ6Zjx47ZeOONs/322+fggw/OLrvsssS+O++8c0455ZS88MILeeuttzJjxoxUV1ene/fu2XTTTfMf//Ef+fa3v12wsyUWEkwAAAAAAEABjB07tk39r7jiilb32W+//bLffvst03wbbLBBhg8fvkx928Lh1wAAAAAAQNEIJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABFI5gAAAAAAACKRjABAAAAAAAUjWACAAAAAAAoGsEEAAAAAABQNB3buwAAAAAAAFjZzZ07N88880wmTJiQV199NRMmTMgHH3yQJDnjjDNyzDHHfOEYzz//fG644Ya88MILmTlzZtZee+3ssssuOfbYY9OvX78l9qmurs7YsWPz1FNPZfz48Xn//fdTX1+ftddeO9tuu20GDx6c//iP/1jqvPX19bntttty3333ZeLEiamurk6XLl2y8cYbZ4899siRRx6ZtdZaq/U/lGYIJgAAAAAAoI1efvnlHH/88cvc//rrr895552XhoaGlJSUpLKyMh9++GHuvPPO3H///fnd736Xr3/964v1O/jgg/POO+80fS8rK0unTp3y4Ycf5sMPP8xf/vKXHHjggTn33HPTsePikcDMmTNz7LHH5pVXXmm6161bt8yZMycTJkzIhAkTcvPNN+eqq67Kdtttt8zv93m2cgIAAAAAgAJYY401suuuu+aYY47JiBEj0rNnzxb1e/rpp3PuueemoaEh3/nOd/L000/nueeey+OPP5599tkndXV1+fGPf5y33nprsb7z589P//7987Of/SwPPvhgXnnllYwbNy5//etfc+ihhyZJ7rnnnvzhD39Y4ty//e1v88orr6RTp04588wz88ILL+S5557LSy+9lMsuuyy9evXKzJkz88Mf/jDz589f9h/O51gxAQAAAAAAbTRgwIA888wzi9y78MILW9T3d7/7XRobG7PHHnvkrLPOarq/3nrr5aKLLsohhxySiRMn5g9/+EMuuuiiRfqee+652XHHHVNSUrLI/S996Us5++yzU1pamltuuSWjR4/OiSeemM6dOze1qaurywMPPJAkOeGEE3L44Yc3PSsrK8vee++d8vLyHHXUUZk6dWpeeumlfOUrX2nZD2QprJgAAAAAAIA26tChwzL1mzJlSsaPH5/ks3DgX5WVleXoo49Okjz66KOZM2fOIs932mmnxUKJzxs8eHCSpKamJpMnT17k2axZs1JXV5ck2XrrrZfYf5tttmn6XFNT80Wv0yKCCQAAAAAAaCdPP/10kqSioiJf/vKXl9hmzz33TJLU1tbm+eefb9X4n18hsWDBgkWerbPOOunatWuSNIUj/2rh2RMdO3bMZptt1qq5m2MrJwAAAAAAVnmjRo3KqFGjWtVn2LBhGTZs2HKq6DMLVzH07du32VUXa6+9dtZaa61Mnz49b775ZlNQ0RILt5fq1KlTevfuvcizkpKSHHroofnjH/+YK6+8MmuttVYGDRqUioqK1NfX54knnsh///d/J0mOP/74rLvuusvyiotpt2CitrY29fX17TU9q6h/XcYEAAAAAJAk1dXVmTZtWqv7LG8fffRRkqRXr15LbderV69Mnz49VVVVLR67uro6V155ZZLkG9/4RiorKxdrc/rpp+eTTz7Jfffdl7POOitnnXVWunXrljlz5qShoSH9+/fPKaeckoMPPrgVb7V07RJM1NbWZq+99kptbW17TA8AAAAAwGqmsrLyC3/5v6Q+y9vCcxu6dOmy1HYLn7f0L2c3Njbmpz/9aaqqqrLGGmvk9NNPb3bcc889N3369Mmll16ahoaGfPrpp03P586dm9mzZ6exsXGpZ1m0RrsEE/X19amtrc19992XioqK9iiBVdScOXNywAEHtHcZAAAAAMAKphjbMq1ILrjggjz88MMpLS3NOeeck/XXX3+J7d55550MHz48b731Vv7rv/4rhx12WDbaaKN8/PHHGTt2bC655JKcc845mTBhQi644IKC1NauZ0xUVFQUJXECAAAAAIAVUXl5eZJk3rx5S2238HlL/rL/yJEjc+2116akpCRnnXVW9t577yW2W7BgQU488cRMnjw5J554Yn7wgx80Pdtoo41y5JFHpn///hk2bFjuvvvuDBw4MHvssUdLX61ZpW0eAQAAAAAAWCYLD5T+ovMvFj7v2bPnUttdccUVueSSS5Ikv/zlL3PooYc22/Zvf/tbJk2alCQ5+uijl9hm1113zZZbbpkkefjhh5c6d0sJJgAAAAAAoJ307ds3STJ58uQsWLBgiW0++eSTTJ8+PUmy6aabNjvWVVddlYsuuihJ8pOf/CRDhgxZ6tyTJ09Okqy11lpL3d1o4403TpK8//77Sx2vpQQTAAAAAADQTnbdddckn52fO27cuCW2efLJJ5MknTt3zle+8pUltrn22mtz4YUXJklOO+20ZldAfF5p6WcRwYwZMzJ37txm23388cdJCncYuGACAAAAAADaSZ8+fbL11lsn+WzFw7+qr6/PddddlyTZZ599lnjGxPXXX5/zzz8/SXLyySfnhBNOaNHcW2yxRZKksbExN9988xLbTJw4MS+88EKSZPvtt2/RuF9EMAEAAAAAAAUwa9asTJ8+velqaGhIksydO3eR+3V1dYv0+9GPfpSSkpI8/vjj+fWvf52ZM2cm+excidNOOy1vvPFGOnfunJNPPnmxOf/0pz/lnHPOSZKceOKJOemkk1pc74477pj+/fsnSUaMGJHLL788M2bMSJLU1NTkvvvuy9FHH5358+ene/fuOeigg1r9M1mSjgUZBQAAAAAAVnMHHXTQEs9huOSSS5oOpE6Sc845JwcffHDT91133TU/+clPct555+XPf/5zbr755nTr1i2zZ89OkpSVleWCCy5I7969Fxv77LPPbvp8yy235JZbbmm2vl/84hfZf//9m76XlpbmD3/4Q44++uh88MEH+f3vf5/f//73qaioSE1NTRobG5Mk3bp1yyWXXJIePXq0/IexFIIJAAAAAABoZ8OGDcs222yTG264IePGjcvMmTOz3nrrZeedd85xxx2Xfv36LbHfwvAg+X9nQTRn3rx5i93r3bt37rnnnvz5z3/O2LFjM3ny5FRXV6dr167ZeOONs/vuu2fo0KHp1atX217wcwQTAAAAAABQAGPHjm1T/wEDBmTAgAGt6vPGG2+0ac7ks0OtjzvuuBx33HFtHqslnDEBAAAAAAAUjWACAAAAAAAoGsEEAAAAAABQNIIJAAAAAACgaAQTAAAAAABA0QgmAAAAAACAohFMAAAAAAAARSOYAAAAAAAAikYwAQAAAAAAFI1gAgAAAAAAKBrBBAAAAAAAUDSCCWCl1bFjx5SVlbV3GQAAAABAKwgmgJVWWVlZbrnllvYuAwAAAABoBcEEsFKzYgIAAAAAVi4d27sAAAAAAABY2b3wwgt5/PHHM378+Lz77rv55JNPUltbmx49emTLLbfMgQcemG9+85spKSlpdoy//vWvufHGGzNhwoRUV1dn3XXXzZ577pnjjz8+66+//hL7/POf/8wRRxzxhfWNGTMm22yzTbPPn3/++dxwww154YUXMnPmzKy99trZZZddcuyxx6Zfv35f/ANoBcEEAAAAAAC00ejRo3P//fc3fS8vL0/Hjh1TVVWVxx9/PI8//nhuvfXWXHbZZamsrFys/29/+9vccMMNSZLS0tKUl5fnvffey0033ZR77rknV155Zb7yla8stYZ11lmn2WedOnVq9tn111+f8847Lw0NDSkpKUllZWU+/PDD3Hnnnbn//vvzu9/9Ll//+te/6EfQYoIJAAAAAABoo5133jm77rprtt1222y00UapqKhIklRVVWXMmDG55JJL8s9//jPnnXdefvOb3yzS97bbbmsKJU466aQcffTRqaioyJQpU/Lzn/8848aNy4knnpgHH3wwPXr0aLaGv//9762u++mnn865556bxsbGfOc738mpp56aNddcMx9++GF+85vf5JFHHsmPf/zj9O/fP7179271+EvijAkAAAAAAGijww47LN/+9rez+eabN4USSdKzZ88MHz48xx13XJLk7rvvTn19fdPz+vr6/P73v0+SfOc738nJJ5/c1L9Pnz658sor07Nnz8yYMSPXXHNNwev+3e9+l8bGxuyxxx4566yzsuaaayZJ1ltvvVx00UXp379/amtr84c//KFgcwomAAAAAABgOdt2222TJPPmzcusWbOa7j/99NP56KOPkiQnnHDCYv3WWGONHHbYYUmSe+65J42NjQWracqUKRk/fnyzc5eVleXoo49Okjz66KOZM2dOQeYVTAAAAAAAwHL2/PPPJ/ns7Im111676f4//vGPJMmmm26aDTbYYIl999xzzyTJhx9+mClTphSspqeffjpJUlFRkS9/+ctLnbu2trbpHdrKGRMAAAAAAKzyRo0alVGjRrWqz7BhwzJs2LBlnrOmpiZTp07NnXfemeuuuy5JcsQRR6SkpKSpzeTJk5Mk/fr1a3aczz97880307dv3yW2+853vpNJkyZl/vz5WWeddfLlL385hx12WAYMGLDE9gvn7tu3bzp06LDENmuvvXbWWmutTJ8+PW+++WZTUNEWggkAAAAAAFZ51dXVmTZtWqv7tFZVVVV23333xe536tQpQ4YMyQ9+8INF7i/cxqlXr17Njtm1a9d07949s2fPTlVVVbPtXnzxxXTv3j319fV5//338/777+eee+7JEUcckZ///OeLBCItnXvh8+nTpy917tYQTAAAAAAAsMqrrKz8wl/AL6lPa3Xo0CHrrLNOkmT27Nmpq6tLSUlJjjjiiBx99NGLrUyoqalJknTp0mWp43bp0iWzZ89e7JyH7t2755hjjsl+++2Xfv36pUuXLmloaMj48eNzySWX5Iknnsgf//jHrL322vne9763zHMnKdgZE4IJAAAAAABWeW3dlqml1lprrfz9739PkjQ0NOT999/PDTfckOuvvz633357Ro4c2ezWSstiiy22yBZbbLHIvdLS0my77ba56qqr8sMf/jAPPfRQrrzyynz3u99N9+7dCzb3snL4NQAAAAAALAelpaXZaKON8stf/jJnnHFGZsyYkdNOOy1z585talNeXp4kmTdv3lLHWvi8oqKixfOXlJTkRz/6UZLPVkcsPOy6GHMvjWACAAAAAACWs//6r/9KWVlZpk2blieeeKLp/rrrrpskSz3/Yu7cuZk9e3aSpGfPnq2a99/+7d+y5pprJknefffdRZ61ZO7PP2/t3M0RTAAAAAAAwHLWuXPn9OjRI0nyv//7v033+/btmySZNGlSs30//2zTTTctWE0L5548eXIWLFiwxDaffPJJpk+fXtC5BRMAAAAAALCczZkzJzNmzEjy/7ZQSpJdd901yWfhwAcffLDEvgtXWKy33nrp06dPq+Z99913m+bdcMMNF3m2cO45c+Zk3LhxS+z/5JNPJvksWPnKV77SqrmbI5gAAAAAAIA2mD9//he2uf7661NfX58k2XHHHZvu77LLLll33XXT2NiYq666arF+s2fPzs0335wkGThwYEpKShZ53tjYuNR5f/e73yVJunbt2hRELNSnT59svfXWSbLEuevr63PdddclSfbZZx9nTAAAAAAAwIpg0qRJ+c53vpM77rgjH374YdP9xsbGvPnmmznrrLNyySWXJEm+/vWvp3///k1tOnXqlFNOOSVJcvPNN2fkyJGpqalJkrz11lv53ve+l6qqqqy55po55phjFpv7gAMOyPXXX58pU6akoaGhad5XXnkl3/ve9/Lggw8mSU444YSsscYai/X/0Y9+lJKSkjz++OP59a9/nZkzZyb57FyJ0047LW+88UY6d+6ck08+ue0/qP9fx4KNBAAAAAAAq6kXX3wxL774YpLPtj0qLy9PTU1Namtrm9rstddeOe+88xbre8ghh+T111/PH//4x1xyySW57LLLUl5enk8//TRJUllZmUsvvbTpjIrPmzx5cs4555ycc8456dSpUyorKxeZt6SkJMOGDcvw4cOXWPeuu+6an/zkJznvvPPy5z//OTfffHO6devWdNh2WVlZLrjggvTu3bstP55FCCYAAAAAAKANevfunQsvvDD/+Mc/8sorr+Tjjz/OzJkzU1ZWlj59+mTbbbfNwIED8+///u/NjvGLX/wiu+22W2688caMHz8+c+bMyQYbbJA999wzxx9/fL70pS8tsd9vfvObvPDCC5kwYUI+/vjjzJ49O2VlZdl0003zla98Jd/+9rebtmtqzrBhw7LNNtvkhhtuyLhx4zJz5syst9562XnnnXPcccelX79+bfr5/CvBBAAAAAAAtEGXLl3yzW9+M9/85jfbNM7Xvva1fO1rX2tVn29/+9v59re/3aZ5k2TAgAEZMGBAm8dpCWdMAAAAAAAARSOYAAAAAAAAikYwAQAAAAAAFI1gAgAAAAAAKBrBBAAAAAAAUDSCCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoOrZ3AQAAAAAAsLKbOnVqHn744fzzn//Ma6+9lqqqqnTo0CG9evXKzjvvnCFDhqR///6L9WtsbMzzzz+fxx57LC+88EImT56c6urqVFRUpE+fPtlnn31y2GGHpbKycqnzjxs3LjfeeGNeeOGFVFVVpaSkJD179sz222+f//qv/8qAAQMW6/PPf/4zRxxxRIvfcfTo0dlpp51a3L45ggkAAAAAAGiDqVOn5mtf+1oaGxub7pWXl2f+/Pl5++238/bbb+e2227LT3/60wwdOnSRvldccUV+//vfN30vLS1NZWVlZs+enXHjxmXcuHG56aabcvXVV6dv375LnH/kyJEZOXJk0/xdunRJkrz33nt57733cu+99+aEE07Iaaedtki/Tp06ZZ111lnqu82ePTt1dXUpKytbYrCyLAQTAAAAAADQBgsWLEhjY2N23333DBo0KLvuumvWWWedLFiwIK+++mrOPffcPPfcczn77LOzySabZI899mjqO3/+/HTr1i0DBw7Mfvvtl+222y5lZWWpqanJAw88kPPPPz/vv/9+TjjhhNx3333p3LnzInM//fTTueSSS5IkX//613Paaadlk002SZJMmTIlv/vd7/Loo4/myiuvzI477rjI3F/+8pfz97//vdn3amxszN577533338/e+21V3r06FGQn5czJgAAAAAAoA3WWGON3HHHHbn22mtz4IEHNq1C6NChQ7bZZpuMGjUqm222WZLkmmuuWaTvPvvsk7Fjx+bMM8/MjjvumLKysiSfrbg45JBDcsUVVyRJ3n333TzwwAOLzX333XcnSTbeeOOMGDGiKZRIkj59+uTiiy/ORhttlCR56KGHWvVe//jHP/L+++8nSQ4++OBW9V0awQQAAAAAALRBt27dsuWWWzb7vKysLAMHDkySjB8/fpFnW2yxRbp3795s3x122CGbbrrpEvsmyUcffZQk2XzzzdOx4+KbJHXq1ClbbLFFkqSmpuYL3mRRt912W5KkV69e2X333VvVd2kEEwAAAAAAsJwt3IKpoaGhoH033HDDJMnrr7+e+fPnL/a8vr4+r732WpJkq622avGc1dXVefjhh5MkgwYNSocOHVpdd3MEEwAAAAAAsJw988wzSdLqA6SnT5+eiRMnNtv329/+dkpKSvLOO+/ktNNOyzvvvNP0bMqUKTnllFPy7rvvpk+fPvnud7/b4nnvvffezJs3L0lht3FKHH4NAAAAAMBqYNSoURk1alSr+gwbNizDhg1r89wvvfRSHnnkkSTJ4MGDW9V35MiRqa+vT2VlZb7xjW8s9nyrrbbK+eefnzPPPDMPPfRQHnrooXTp0iVJMm/evKyxxho5/PDDc8opp6Rr164tnvf2229PknzlK19Z5NyKQhBMAAAAAACwyquurs60adNa3aetZs6cmdNPPz0NDQ3ZbrvtWrX64OGHH85NN92UJDn11FPTo0ePJbYbOHBg1ltvvfz4xz/Ohx9+2LTSIUnq6uoyd+7czJ07d6lnWXze5MmT89JLLyVJDjnkkBbX21KCCQAAAAAAVnmVlZXp1atXq/u0xbx583LSSSfl3XffzZprrpkRI0a0+KyGl19+OWeccUYaGxvz9a9/PUOGDFliu/nz5+fss8/On//852y99db57W9/23TY9WuvvZYRI0bk9ttvz1NPPZWbbropG2ywwRfOvfDQ6/Ly8iWu0mgrwQQAAAAAAKu8Qm3L1FJ1dXU56aST8uyzz6Zbt2659tprmw6q/iKvvfZajj322NTU1GS33XbL7373u2bbXnfddfnzn/+c3r1756abbmo6KDtJ/v3f/z1f+cpX8q1vfStvv/12LrzwwowYMWKpcy9YsCB33313kuQb3/hGKioqWlRzazj8GgAAAAAACqiuri4/+MEP8uSTT6a8vDxXX311ttpqqxb1ff3113PUUUdl1qxZ2XHHHXPZZZelrKys2fbXX399kuTwww9fJJRYqEuXLk2rLR599NE0NjYudf4nnngiVVVVSZbPNk6JYAIAAAAAAAqmvr4+P/zhD/PXv/41Xbt2zVVXXZUddtihRX0nTpyYYcOGZebMmdlhhx1y5ZVXLvXA6hkzZuSTTz5Jkvzbv/1bs+023njjJJ9tLfXxxx8vtYaF2zhtsskmGTBgQIvqbi3BBAAAAAAAFEB9fX1OOeWUjB07Nl26dMnll1+eHXfcsUV9J02alKOOOirTp0/PNttsk2uuueYLt1EqLf1/v+J///33m223MLxIstQxp0+fnsceeyxJctBBB7Wo7mUhmAAAAAAAgDaaP39+Tj/99DzyyCMpKyvLpZdeml133bVFfSdPnpyjjjoqn3zySbbaaqtcd911LTp4e4011mg6zHrMmDGZP3/+Ym0WLFiQW265JUnSv3//lJeXNzve3Xffnfr6+pSWlgomAAAAAABgRbVgwYL8+Mc/zkMPPZSysrKMHDkyu+++e4v6vv322znyyCPz8ccfZ4sttsh1112X7t27t3ju7373u0mSCRMm5Hvf+17eeOONNDQ0pKGhIa+//nqOP/74jBs3Lkly1FFHLXWs22+/Pclnh2b36tWrxTW0VsflNjIAAAAAAKwGXnjhhdx///1JksbGxvz85z9favsxY8Zk/fXXT5JceeWVTYdNv/feeznggAOa7bfDDjtk5MiRi9wbNmxYXnvttdx777158skn8+STTzYdll1XV9fUbujQoUs9zHrChAl54403kiy/Q68XEkwAAAAAAEAbNDQ0NH2ur6//wgOmFyxY0PS5sbGx6fOnn36aTz/9tNl+s2bNWuxehw4dcuGFF+ab3/xm7rjjjrz88stNZ0p86Utfyvbbb59vf/vbX7it1MLVEj169Mjee++91LZtJZgAAAAAAIA22HnnnZtWG7TWueeem3PPPbfNNXzta1/L1772tWXu/6tf/Sq/+tWv2lxHSzhjAgAAAAAAKBrBBAAAAAAAUDSCCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABF07G9CwAAAAAAgFXR8ccfn8cffzxJctBBB+Xcc89d5HljY2Oef/75PPbYY3nhhRcyefLkVFdXp6KiIn369Mk+++yTww47LJWVlUscv7q6OmPHjs1TTz2V8ePH5/333099fX3WXnvtbLvtthk8eHD+4z/+o9n6LrnkkowcOXKp71BeXp5x48a18s2XTjABAAAAAAAFdu+99zaFEs254oor8vvf/77pe2lpaSorKzN79uyMGzcu48aNy0033ZSrr746ffv2Xaz/wQcfnHfeeafpe1lZWTp16pQPP/wwH374Yf7yl7/kwAMPzLnnnpuOHZuPAzp16pQ11lhjic+6du36BW/aeoIJAAAAAAAooJkzZ+a3v/1tunXrlnXXXTeTJ09eYrv58+enW7duGThwYPbbb79st912KSsrS01NTR544IGcf/75ef/993PCCSfkvvvuS+fOnRfr379//xxyyCH5j//4j/Tu3TtJ8sEHH+Syyy7LrbfemnvuuSdf+tKXctpppzVb7w477JDRo0cX7gfwBZwxAQAAAAAABXTuuefmk08+yWmnnZa111672Xb77LNPxo4dmzPPPDM77rhjysrKkny2fdIhhxySK664Ikny7rvv5oEHHljiPHfffXeOOuqoplAiSb70pS/l7LPPzne+850kyejRo1NbW1vIV2wTwQQAAAAAABTIU089lTvuuCPbbbddDjvssKW23WKLLdK9e/dmn++www7ZdNNNkyTjx49f7PlOO+2UkpKSZvsPHjw4SVJTU9Psqo32IJgAAAAAAIACmDdvXs4888x07NgxZ511VkpL2/4r+IXbNzU0NCxz3yRZsGBBm2spFGdMAAAAAABAAVx88cV59913c/TRR2fzzTdv83jTp0/PxIkTkyT9+/dvdf9nnnkmyWeHW39+q6d/NWnSpBxwwAF5991306FDh2ywwQbZbbfdMnTo0Gy00UbLVvxSCCYAAAAAAFjljRo1KqNGjWpVn2HDhmXYsGEtajthwoTccMMN+dKXvpSTTz55WUpczMiRI1NfX5/Kysp84xvfaFXf6urqXHnllUmSb3zjG6msrGy27YwZMzJr1qx069Yt1dXVmTRpUiZNmpRbbrklZ599dg488MA2vce/EkwAAAAAALDKq66uzrRp01rdpyUWLFiQX/3qV03/LC8vX5YSF/Hwww/npptuSpKceuqp6dGjR4v7NjY25qc//Wmqqqqyxhpr5PTTT19iu4033jhnnHFG9tlnn2ywwQbp2LFjamtr87e//S0XXHBB3nrrrfz0pz/Neuutlx133LHN77SQYIJV0pw5c9q7hKJYXd4TAAAAANqqsrIyvXr1anWflhg1alQmTJiQ//zP/8xee+21LOUt4uWXX84ZZ5yRxsbGfP3rX8+QIUNa1f+CCy7Iww8/nNLS0pxzzjlZf/31l9hu4MCBi93r3Llz9t577wwYMCCDBw/O//7v/+bCCy/MzTffvEzvsiSCCVYpnTp1SufOnXPAAQe0dykAAAAAwAqkNdsytca7776bkSNHpqKiIr/85S/bPN5rr72WY489NjU1Ndltt93yu9/9rlX9R44cmWuvvTYlJSU566yzsvfeey9THWussUZOOOGE/OIXv8iLL76Y6dOnZ6211lqmsf6VYIJVSufOnTN27NjU19e3dylFMWfOHCEMAAAAALSjc845J3Pnzs2pp56abt26LbbLyYIFC5Ik8+fPb3rWtWvXlJaWLjbW66+/nqOOOiqzZs3KjjvumMsuuyxlZWUtruWKK67IJZdckiT55S9/mUMPPXRZXytJst122yX5bGuo9957TzABzencuXM6d+7c3mUAAAAAAKuB999/P0ly0UUX5aKLLmq23T333JN77rknSXLnnXdmiy22WOT5xIkTM2zYsMycOTM77LBDrrzyynTt2rXFdVx11VVN8//kJz9p9fZPxbR4JAMAAAAAABTNpEmTctRRR2X69OnZZpttcs0116SioqLF/a+99tpceOGFSZLTTjstRx99dEHqeumll5IkJSUl2XDDDQsyZmLFBAAAAAAALLO77rprqc+HDh2aZ555JgcddFDOPffcxZ5Pnjw5Rx11VD755JNstdVWue6661p86HaSXH/99Tn//POTJCeffHJOOOGEFvVrbGxMSUlJs88//fTTXHXVVUk+29KpUNs4JVZMAAAAAABAu3j77bdz5JFH5uOPP84WW2yR6667Lt27d29x/z/96U8555xzkiQnnnhiTjrppBb3ffbZZzNs2LDcc889mTZtWtP9urq6PPbYYznssMPyzjvvpEOHDjn99NNb/lItYMUEAAAAAAC0gyuvvDJVVVVJkvfeey8HHHBAs2132GGHjBw5cpF7Z599dtPnW265Jbfcckuz/X/xi19k//33b/re2NiYp556Kk899VSSzw7k7ty5c6qrqzN//vwkSXl5ef7nf/4nO+20U+tfbikEEwAAAAAA0A4aGxubPn/66af59NNPm207a9aspfb/+OOPlzrXvHnzFvnev3//nHHGGXnhhRfy5ptvZsaMGamurk5FRUU23njj/Pu//3v+67/+K7169Wrp67SYYAIAAAAAAJaT0aNHN/vs3HPPXeK5Ey31xhtvLHPfNddcM8ccc0yOOeaYZR5jWTljAgAAAAAAKBrBBAAAAAAAUDSCCQAAAAAAoGgEEwAAAAAAQNEIJgAAAAAAgKIRTAAAAAAAAEUjmAAAAAAAAIpGMAEAAAAAABSNYAIAAAAAACgawQQAAAAAAFA0ggkAAAAAAKBoBBMAAAAAAEDRCCYAAAAAAICiEUwAAAAAAABF07G9CwAAAAAAgJXdCy+8kMcffzzjx4/Pu+++m08++SS1tbXp0aNHttxyyxx44IH55je/mZKSkkX61dTU5I477sj48ePz+uuvp6qqKjNnzkynTp2y0UYbZdddd82QIUOy0UYbLXHe22+/PT/72c++sL6nn346a6211hKfffTRRxk1alSeeOKJvP/++yktLc2//du/Zd99981RRx2V8vLy1v9AlkIwAQAAAAAAbTR69Ojcf//9Td/Ly8vTsWPHVFVV5fHHH8/jjz+eW2+9NZdddlkqKyub2k2dOjVnnXVW0/cOHTqksrIys2fPzhtvvJE33ngjN998c84999zst99+zc5fWlrabPCw8PmSPPvssznppJMyc+bMJElFRUUaGhry2muv5bXXXsudd96ZP/7xj1lvvfVa+qP4QoIJAAAAAABoo5133jm77rprtt1222y00UapqKhIklRVVWXMmDG55JJL8s9//jPnnXdefvOb3zT1q6yszPHHH58dd9wxm222WdZZZ5106NAh9fX1eeGFF3LBBRfklVdeyU9+8pNsvfXWza6cWH/99TN27NhW1Txt2rSceOKJmTVrVrbaaqucddZZ2XrrrdPY2Jjnnnsuv/jFL/LOO+/ke9/7Xm677bZ06NBh2X9An+OMCQAAAAAAaKPDDjss3/72t7P55ps3hRJJ0rNnzwwfPjzHHXdckuTuu+9OfX190/NevXrl9NNPz5577plevXo1/fK/U6dO2XnnnXPdddelvLw8tbW1ueeeewpa86hRozJr1qyUl5fnyiuvzNZbb50kKSkpyY477phLL700HTp0yGuvvZa77rqrYPMKJgAAAAAAYDnbdtttkyTz5s3LrFmzWtyve/fu2WSTTZJ8tsKhkB5//PEkyYEHHpiePXsu9rxfv37Zc889kyR33HFHweYVTAAAAAAAwHL2/PPPJ/ns7Im11167xf2mT5+et956K0ma3cZpWX3wwQdJkj59+jTbpm/fvkmS5557LvPmzSvIvM6YAAAAAACA5aCmpiZTp07NnXfemeuuuy5JcsQRR6SkpGSp/RoaGvLJJ5/kpZdeyh/+8IfMnTs33bt3z8EHH9xsn+nTp+eggw5qCjF69eqVnXbaKUOGDMlmm232hfN90bOGhoZMmTIlW2655VLHagnBBAAAAAAAq7xRo0Zl1KhRreozbNiwDBs2rFV9qqqqsvvuuy92v1OnThkyZEh+8IMfNNv3zDPPzC233LLY/U022SQXXXRR1lprrWb7zp07N6+99lq6d++empqavP3223n77bdz22235fTTT88xxxyzWJ8vfelLmTJlSiZNmtTsuBMnTmz6/NFHHwkmAAAAAACgJaqrq1t9RkN1dXWr5+nQoUPWWWedJMns2bNTV1eXkpKSHHHEETn66KObDrdekm7dumWdddbJ/PnzM3PmzCRJ796984tf/KLZQGDdddfNySefnH333TebbLJJysrKUl9fn+effz4jRozISy+9lPPPPz/rrrtuDjzwwEX67rHHHpkyZUruu+++nHjiidlwww0Xef7KK6/k73//e5t+HkvijAkA/j/27jSs6mp///jNPG3FCSkFy/E44JRTVGYOHXMoBS3NoUQ7ViaVnhxKs/KYkKVmkKX/EofS7KikaJaZhplTCmqi4lgKTggi87z/D7zYP4lpb8Bted6v6/Lqu79rfdZaez84D7jPWgsAAAAAAOCOZzAY5OnpadE/g8Fg8Ty1atXSL7/8ol9++UWHDh3S1q1bNWLECC1dulT9+/fX/v37S62dNGmSfvnlF+3du1dRUVFauHChbG1t9dxzz2ny5MnKy8srVvPQQw9p/PjxatasmRwdHSXd2J1x//3364svvlC7du0kSR988EGxI5tGjRolg8Gg7OxsjRkzRpGRkcrMzFRaWpq+++47vfjii7K3/7/9Dba2VRMpsGMCAAAAAAAAAHDHq8ixTJVla2srb29vTZ8+XV5eXgoKCtLEiRP1/fffy8XFpcxaNzc39ezZU507d9YTTzyh9evXq1WrVnr22WfNnt/R0VGvvvqqRo0apUuXLuno0aPy8fExtderV0+hoaEKDAzU77//rrFjxxapd3V11eTJk/Xuu+9KkqpXr27Bty8dOyYAAAAAAAAAALjFnn76aTk6Oury5cvasWOH2XXVqlUzXXq9Zs0ai+dt27at6fn8+fPF2n19ffXtt9/qhRdeUNu2bVWvXj01bdpUTz/9tNavX69mzZqZ+t57770Wz18SdkwAAAAAAAAAAHCLOTk5qUaNGrpy5YrOnTtnUa2np6ckWVxnrrp162rChAmaMGFCsbYffvhBkuTh4VHsDoqKYscEAAAAAAAAAAC3WHp6uq5duybpxhFJlijc6WBpnSQdOnTI9GxpsGA0GrVx40ZJ0oABAyyeuzQEEwAAAAAAAAAAVEJJl1L/2dKlS5WbmytJ6tSpk9m1SUlJWrduXbE66UZwUJbc3FwtWLBA0o1dF61atSp3nTdbsWKFjh49KoPBoJEjR1pUWxaCCQAAAAAAAAAAKuHkyZMaMmSIwsPDdenSJdN7o9GoU6dOaebMmQoJCZEk9e7du8i9Da+//rqCgoJ08OBBZWdnm96npaXp22+/1ZAhQ3T16lU5ODjoxRdfLDJvfHy8nnzySX399deKi4szvc/Ly9O+ffs0cuRIRUdHS5Jee+012doWjwTmzp2ryMhIXb9+3fTujz/+0KxZszR79mzZ2NjozTff1F133VXJX+n/cMcEAAAAAAAAAACVdPDgQR08eFDSjfskXF1dlZGRUSRs6NGjh957770idenp6dqwYYOWLl0qW1tbGQwGSVJqaqppR4S7u7uCg4PVokWLYvMePnxYhw8fLjJvWlqaaXeGg4ODXnvtNT3xxBMlrnvTpk1avHixpBtHRRmNRmVmZkqSnJ2dNX36dA0cOLCCv0rJCCYAAAAAAAAAAKiEhg0bau7cudqzZ49+++03Xb16VcnJyXJ0dFSjRo3Upk0bPfHEE3rwwQeL1b788stq06aN9u3bp3PnzikxMVG5ubmqVauWGjdurK5du2rw4MGqVatWsdo6depo+vTpio6O1rFjx5SUlKTU1FQ5OzurSZMm6tKli4YOHaqGDRuWuvZx48bpp59+0vHjx3X16lXZ2NioadOm6tq1q4YPH15lF17fjGACAAAAAAAAAIBKcHZ2Vv/+/dW/f3+La5s3b67mzZvrhRdeqNC8I0eOrNT9D4MHD9bgwYMrXF8R3DEBAAAAAAAAAACshmACwN+ag4PD7V4CAAAAAAAAAAsQTAD4W3N0dLzdSwAAAAAAAABgAYIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1RBMAAAAAAAAAAAAqyGYAAAAAAAAAAAAVkMwAQAAAAAAAAAArIZgAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNXY3+4FAAAAAAAAAADwd/aPf/zD7L6BgYEaP358kXcjR47Uvn37yqx75JFHtGjRIrPnefvtt7Vq1SpJUufOnbVixYoS+yUkJOjXX3/V0aNHFRMTo6NHjyo5OVmStGbNGrVu3drsOc1FMAEAAAAAAAAAQCXUqVOnzPbMzEylp6dLknx8fErt5+rqKldX1xLbqlevbvZ6Dhw4oK+++sqsvl999ZVCQ0PNHrsqEEwAAAAAAAAAAFAJv/zyS5ntkydP1vr16+Xh4aGuXbuW2m/06NEKDAys1FpycnL05ptvys7OTs2bN9eRI0fK7G9jY6O7775bLVu2VKtWrVS3bl1Nnz69UmsoD8EEgL+c7Oxs5ebmltqekZFhxdUAAAAAAAAAFZeWlqYtW7ZIkgYMGCA7O7tbOt+iRYt0+vRpPffcc0pMTCw3mHjxxReLHC0VFxd3S9cnEUwA+IvJzs5Wjx49lJ2dfbuXAgAAAAAAAFTa5s2blZmZKUny9/e/pXOdOnVKixYtUv369TV+/Hi988475dbc6qCkJAQTAP5ScnNzlZ2drU2bNsnNza3EPgkJCXryySetvDIAAAAAAADAcmvXrpUktW/fXo0bN75l8xiNRk2fPl25ubmaMWOGXFxcbtlclUUwAeAvyc3NTQaDocS2wouCAAAAAAAAgL+yM2fOKDo6WpI0aNCgcvtHRERo3bp1SkhIkKurqxo1aqSePXvq6aefLvVvZYVWrlyp6Oho9e7dW4888khVLP+WIZgAAAAAAAAAANzxwsLCFBYWZlFNQECAAgICKjznunXrJEkuLi7q06dPuf3/+OMPOTg4yMXFRSkpKYqOjlZ0dLRWrlypTz75RM2bNy+x7tKlS5o7d64MBoOmTZtW4fVaC8EEAAAAAAAAAOCOl5aWpsuXL1tcU1H5+flav369JKl3795l7njo3LmzBg0apAcffFB16tSRjY2NkpOTtWnTJs2bN08XLlzQc889p4iICNWsWbNY/TvvvKP09HRNnz5dnp6eFV6ztRBMAAAAAAAAAADueAaDweI/2pd3fFJZdu7cqStXrkgq/9LrwMDAYu9q1Kih4cOHq23btho6dKgSEhIUFhamiRMnFum3efNmbdu2TT4+Pho+fHiF12tNBBMAAAAAAAAAgDteZY9lslThpdfe3t7q3Llzhcfx8fFR3759tX79em3fvr1IMJGSkqJ3331XdnZ2mjlzpmxtbSu9bmv4e6wSAAAAAAAAAIC/iWvXrmnbtm2SJD8/P9nY2FRqvLZt20qSzp8/X+R9SEiIEhISNHjwYN17771KT08v8i8vL0/SjWOlCt/l5+dXai1VgR0TAAAAAAAAAABUoYiICOXm5srW1rbcY5wqIz4+XpK0evVqrV69utR+Bw4c0H333SdJ+vjjj9WrV69btiZzsGMCAAAAAAAAAIAqtG7dOkmSr6+v7r777kqPd+jQIUmSl5dXpcf6K2DHBAAAAAAAAAAAVeTYsWM6duyYJGnQoEHl9jcajWUe9XT06FF9++23kqTu3bsXaVu4cGGZY0+dOlXh4eHq3LmzVqxYUe5arIVgAgAAAAAAAACAKlJ46bW7u7tZRyYtXrxYv//+u/r27at27dqpWrVqkqTr16/r22+/1bx585SbmysPDw+NHj26ytdbUFCg5ORk0+eUlBTTc1pampKSkkyfa9SoUSUXbBNMAAAAAAAAAABQBXJychQRESFJ6tevn5ycnMyqWbdunen4J4PBIDs7O6WkpMhoNEqSvL29FRoaqpo1a1b5mi9cuKCePXuW2DZq1Kgin3/88ccqOU6KYAIAAAAAAAAAgCqwfft20+4Dcy+9fuyxx5Sfn6/o6GidP39e165dU3Z2tmrXrq1mzZqpV69e8vPzk6ur6y1cuXURTAAAAAAAAAAAUAV69+6t2NhYi2qaNm2qV1999ZasJzg4WMHBwWX28fLysnjNlVX5w6AAAAAAAAAAAADMRDABAAAAAAAAAACshmACAAAAAAAAAABYDcEEAAAAAAAAAACwGoIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1RBMAAAAAAAAAAAAqyGYAAAAAAAAAAAAVkMwAQAAAAAAAAAArIZgAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGrsb/cCAAAAAAAAAAC4E40dO1aRkZGSJD8/PwUHB5tVFxcXp8cff1wZGRmSpOXLl6tLly7F+qWlpWnbtm3atWuXjhw5ovj4eOXm5qp27dpq06aNBg8erG7dulXdF6oiBBMAAAAAAAAAAFSxjRs3mkIJS7311lumUKIs/v7++uOPP0yfHR0d5eDgoEuXLunSpUvasmWLHn/8cQUHB8ve/q8TB3CUEwAAAAAAAAAAVSg5OVmzZ89WtWrV1LhxY4tqv/nmG+3cuVPt2rUrt29eXp6aNWum119/Xd99951+++03RUdHa/v27XryySclSREREfroo48q8jVuGYIJAAAAAAAAAACqUHBwsBITEzVx4kTVrl3b7LqkpCQFBwerWrVqmjp1qlnzbNiwQaNGjVLDhg1N7+vVq6dZs2ZpyJAhkqQVK1YoOzvb8i9yixBMAAAAAAAAAABQRXbt2qXw8HC1bdtWQ4cOtah29uzZunbtmiZMmCAPD49y+3fu3Fk2Njaltg8ePFiSlJGRodOnT1u0lluJYAIAAAAAAAAAgCqQlZWlGTNmyN7eXjNnzpStrfl/gv/5558VERGhtm3b6umnn66S9Tg5OZme8/Pzq2TMqkAwAQAAAAAAAABAFViwYIHOnz+vZ555Rs2bNze7LiMjQ2+99VaFAo2y7Nu3T5Lk4OBQ5Kin2+2vcw03AAAAAAAAAAC3SFhYmMLCwiyqCQgIUEBAgFl9Y2JitGzZMtWrV0+BgYEWzbNgwQLFx8dr9OjRFgUaZUlLS9OiRYskSY899pgMBkOVjFsVCCYAAAAAAAAAAHe8tLQ0Xb582eIac+Tn5+vNN980/dfV1dXsOX777TetWLGiQoFGaYxGo6ZOnaqEhAS5u7vr3//+d5WMW1UIJgAAAAAAAAAAdzyDwSBPT0+La8wRFhammJgYPfroo+rRo4fZ4+fl5Wn69OnKz8/X9OnTLQo0yvL+++/rhx9+kK2trYKCgnT33XdXybhVhWACAAAAAAAAAHDHs+RYJkucP39eoaGhcnNz0/Tp0y2qXbJkiY4fP65evXqpZ8+eVbKe0NBQff7557KxsdHMmTOrbNyqRDABAAAAAAAAAEAFBQUFKTMzUxMmTFC1atWUnp5epD0/P1/Sjd0RhW0uLi66evWqQkND5ezsrIkTJxary8rKKvKcnp4uOzs7OTs7l7qWTz/9VCEhIZKk6dOn68knn6yS71jVCCYAAAAAAAAAAKig+Ph4SdL8+fM1f/78UvtFREQoIiJCkvTNN99IkrKzsyVJffv2LXOOsWPHSpKaN2+u9evXl9hn8eLFpvmnTJmiESNGmP8lrMz2di8AAAAAAAAAAABU3Oeff665c+dKkiZOnKjRo0ff5hWVjR0TAAAAAAAAAABUUGk7GAqNHDlS+/btk5+fn4KDg4u0xcbGlloXFxdnuh9i+fLl6tKlS4n9li5dqjlz5kiSAgMD9fzzz1uy/NuCHRMAAAAAAAAAAPwNffHFFwoKCpIkvfTSSxo/fvxtXpF52DEBAAAAAAAAAMDf0KxZs0zPq1ev1urVq0vtO23atHLvsrAWggkAAAAAAAAAAP6GjEaj6fnq1atl9s3KyrrVyzEbwQQAAAAAAAAAALfIihUrKlTn5eVV5h0UUtl3VPyVcccEAAAAAAAAAACwGoIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1RBMAAAAAAAAAAAAqyGYAAAAAAAAAAAAVkMwAQAAAAAAAAAArIZgAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZjf7sXAAAAAAAAAADAncBoNOrbb79VeHi4jh07puvXr8vBwUFeXl7y9fXVyJEj5e3tXayuR48eio+PL3Ps4cOHa8aMGVU67+1CMAEAAAAAAAAAQCVlZ2crMDBQkZGRpndubm7Kzs7WiRMndOLECa1evVrz5s1Tz549SxzDYDDI2dm51LZbNa+1EUwAAAAAAAAAAFBJn376qSkcCAwM1PDhw1WzZk3l5+frwIEDmjlzpk6ePKlJkyZp69atqlWrVrExpk2bJn9/f6vPa23cMQEAAAAAAAAAQCWtX79ekuTn56fx48erZs2akiQ7Ozt17txZCxculCSlp6dr586df/t5K4NgAgAAAAAAAACASkpISJAk+fj4lNjeoEED1ahRQ5KUkZHxt5+3MggmAAAAAAAAAACoJC8vL0nSkSNHSmw/d+6ckpOTJUmtWrX6289bGQQTAAAAAAAAAABU0pAhQyRJ4eHhCg0N1bVr1yRJ+fn52rdvn8aNGydJGjBggFq3bl3iGEuWLNFDDz0kHx8f3X///Xr22We1cuVKZWdn39J5rY3LrwEAAAAAAAAAd7ywsDCFhYVZVBMQEKCAgACz+o4cOVIXL17UsmXLFBISopCQEBkMBmVlZSkvL0/e3t6aMmWKRo0aVeoYJ0+elLOzs5ydnXXt2jXt2bNHe/bs0apVq7Ro0SLVq1fvlsxrbQQTAAAAAAAAAIA7Xlpami5fvmxxjbns7Ow0ZcoUNWzYULNnz1Z2dnaR+qysLKWkpCgvL0+Ojo5Fanv27KmOHTuqU6dOqlWrliTpypUrWrNmjRYuXKgTJ05o7NixWrduXbHaysx7uxBMAAAAAAAAAADueAaDQZ6enhbXmCsxMVHjx49XVFSU+vXrp9GjR6thw4ZKSUnRnj17NHfuXH3yySeKiorSkiVLZG//f3+enzZtWrHx6tatq3Hjxukf//iHxo0bp5MnTyo8PNx0dFNVzHu73P4VAAAAAAAAAABwi1lyLFNFTJ48WVFRURo4cKDee+8903s3Nzf5+fmpdevW8vPz0969e7VmzRoNHTrUrHELd1Ps379f27dvLxZM3Kp5byUuvwYAAAAAAAAAoBJOnz6tnTt3SpJGjx5dYp8mTZrokUcekST98MMPFo3fpk0bSdL58+etOu+tQjABAAAAAAAAAEAlnDp1yvTcoEGDUvvdc889kqT4+Pi/9byVRTABAAAAAAAAAEAl2Nr+35/aL1y4UGq/xMRESZbdXSFJhw8fliR5eXlZdd5bhWACAAAAAAAAAIBKaNGihel51apVJfZJSEgwHaXUrl0703uj0Vjm2D/99JP2798vSerevXuVzXs7EUwAAAAAAAAAAFAJXl5e6tatmyTpiy++UFBQkC5fvixJys7O1o4dOzRixAilpqbKwcFBw4YNM9XOmjVLs2bN0q+//qrMzEzT+4SEBC1atEgvv/yyJKlp06by9/evsnlvJ/vbvQAAAAAAAAAAAP7ugoKCFBAQoNjYWC1dulRLly6Vq6ursrKyVFBQIElydHRUUFCQGjVqZKpLT09XeHi4VqxYIRsbG1WrVk1Go1GpqammPi1bttTChQvl6OhYZfPeTgQTAAAAAAAAAABUUu3atbVmzRqtWbNG33//vWJjY5WamionJyfVq1dPvr6+GjFihBo2bFikbujQoapVq5YOHjyoCxcu6Nq1ayooKFDdunXVqlUrPfbYY+rXr58cHByqdN7biWACAAAAAAAAAIAq4OjoqGHDhll0ZFK7du0qffdDRea9nbhjAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrsb/dCwAAAAAAAAAA4E5gNBr17bffKjw8XMeOHdP169fl4OAgLy8v+fr6auTIkfL29i5SExISotDQULPniI2NLfJ57969euaZZ8qtW7NmjVq3bl1mn19//VVff/21Dhw4oISEBLm6usrT01MdOnTQU089pRYtWpi9zrIQTAAAAAAAAAAAUEnZ2dkKDAxUZGSk6Z2bm5uys7N14sQJnThxQqtXr9a8efPUs2dPUx9XV1fVqVOnzLETExNlNBrl4+NTZr+yxnFwcCi1LT8/X2+//ba+/vpr07vq1asrPT1dsbGxio2NlYeHB8EEAAAAAAAAAAB/FZ9++qkplAgMDNTw4cNVs2ZN5efn68CBA5o5c6ZOnjypSZMmaevWrapVq5YkacyYMRozZkyp4547d07//Oc/JUn+/v5lruGXX36p0NqnT5+udevWqXr16nr11VfVr18/1ahRQwUFBbp48aIiIyPl4eFRobFLQjABAAAAAAAAAEAlrV+/XpLk5+en8ePHm97b2dmpc+fOWrhwoR599FGlp6dr586deuKJJ8wad926dTIajXJyclL//v2rfN1bt27VunXr5OjoqGXLlqlly5amNltbW9WvX1/Dhg2r0jm5/BoAAAAAAAAAgEpKSEiQpFKPW2rQoIFq1KghScrIyDBrzIKCAn3zzTeSpF69esnd3b3S6/yzhQsXSpJGjhxZJJS4lQgmAAAAAAAAAACoJC8vL0nSkSNHSmw/d+6ckpOTJUmtWrUya8zdu3fr4sWLkso/xqkiTp8+rZiYGEnS448/XuXjl4ZgAgAAAAAAAACAShoyZIgkKTw8XKGhobp27ZqkGxdL79u3T+PGjZMkDRgwQK1btzZrzLVr10qS7r77bj3wwANmreG+++5TmzZt1KNHD7322mvav39/qf2jo6Ml3bgYu2nTptq4caOGDh2q9u3bq3379vLz89OiRYvM3uFhLu6YAAAAAAAAAADc8cLCwhQWFmZRTUBAgAICAszqO3LkSF28eFHLli1TSEiIQkJCZDAYlJWVpby8PHl7e2vKlCkaNWqUWeOlpKRo69atkqSBAwfK1rb8fQYHDx5U9erVlZubq/j4eMXHxysiIkLPPPOM3njjDdnY2BTp/8cff0iS3N3dFRwcrBUrVkiSqlevrszMTB09elRHjx5VRESElixZorp165q19vIQTAAAAAAAAAAA7nhpaWm6fPmyxTXmsrOz05QpU9SwYUPNnj1b2dnZReqzsrKUkpKivLw8OTo6ljvexo0blZ2dLRsbGw0aNKjUftWrV9eYMWPUp08fNW3aVM7OziooKNCRI0cUEhKiHTt2aPny5apdu7ZeeOGFIrXXr1+XJCUlJWnFihXq3r27pk2bJm9vb+Xk5GjTpk165513dPLkSU2ZMsXiYKc0BBMAAAAAAAAAgDuewWCQp6enxTXmSkxM1Pjx4xUVFaV+/fpp9OjRatiwoVJSUrRnzx7NnTtXn3zyiaKiorRkyRLZ25f95/l169ZJkjp16iRvb+9S+7Vo0UItWrQo8s7W1lZt2rTR4sWL9corr+j777/XokWLNGzYMFWvXt3Uz2g0SrpxyXb9+vX10UcfmUITR0dH+fn5KS0tTbNmzdKuXbt0+PBhtWnTxuzfpDQEEwAAAAAAAACAO54lxzJVxOTJkxUVFaWBAwfqvffeM713c3OTn5+fWrduLT8/P+3du1dr1qzR0KFDSx3r5MmT+u233ySpzN0S5bGxsdFrr72m77//XhkZGdq9e7d69+5dZG2Fhg0bVuJOjqFDh2ru3LnKzMzU7t27qySY4PJrAAAAAAAAAAAq4fTp09q5c6ckafTo0SX2adKkiR555BFJ0g8//FDmeIW7Jdzc3IoECRXRoEED1axZU5J0/vz5Im033xnRqFGjEusdHBxMOzYuXrxYqbUUIpgAAAAAAAAAAKASTp06ZXpu0KBBqf3uueceSVJ8fHypffLy8rRhwwZJUt++feXi4lJFqyyuadOmFvX/8+XZFUUwAQAAAAAAAABAJdja/t+f2i9cuFBqv8TEREll313x008/6erVq5Ikf3//Sq/t/PnzunbtmiTJy8urSFuHDh3k7OwsSTpz5kyJ9bm5uaadFvXr16/0eiSCCQAAAAAAAAAAKuXmy6dXrVpVYp+EhATTEU7t2rUrdazCY5waNmyo++67r9y5Cy+wLs0HH3wgSXJxcZGvr2+RNldXV/3zn/+UJK1cuVI5OTnF6letWqXMzExJUrdu3cpdjzkIJgAAAAAAAAAAqAQvLy/TH+2/+OILBQUF6fLly5Kk7Oxs7dixQyNGjFBqaqocHBw0bNiwEsdJTExUZGSkJPN3S/Tr109Lly7VmTNnVFBQIOlGWPHbb7/phRde0HfffSdJev755+Xu7l6s/uWXX5arq6vi4+P18ssvm3ZH5OTk6JtvvtG8efMkSf3797f46KfS2FfJKAAAAAAAAAAA/A8LCgpSQECAYmNjtXTpUi1dulSurq7KysoyBQaOjo4KCgoq9aLpDRs2KC8vT3Z2dho4cKBZ854+fVpBQUEKCgqSg4ODDAaDMjIylJ2dLenGvRABAQF68cUXS6z39vbWhx9+qFdeeUXbt2/X9u3b5e7uroyMDOXm5kqSOnfurHfeecfCX6R0BBMAAAAAAAAAAFRS7dq1tWbNGq1Zs0bff/+9YmNjlZqaKicnJ9WrV0++vr4aMWKEGjZsWOoYhcc4de3aVXXr1jVr3v/85z+KiopSTEyMrl69qpSUFDk6OqpJkybq0KGDnnrqKfn4+JQ5Rrdu3bRhwwZ99tln2rlzp65cuSIXFxe1bdtWAwYMkL+/v+ztqy5OIJgAAAAAAAAAAKAKODo6atiwYaUe1VSeiIgIi2ueeuopPfXUUxWa72YNGjTQzJkzKz2OObhjAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrsb/dCwAAAAAAAAAA4E6SmJio5cuXKzIyUnFxccrNzVWdOnXUokUL9ejRQ/7+/iXWbd++XV9++aViYmKUlpamunXr6uGHH9bYsWN19913l1iTlJSkrVu3avfu3Tp69KguXboko9EoDw8P3XfffXr66ad13333lbvmEydO6PPPP9eePXuUmJioGjVq6L777tOzzz6rDh06VOr3+DOCCQAAAAAAAAAAqsiPP/6oqVOnKiUlRZLk5OQke3t7xcXFKS4uTrGxsSUGE7Nnz9ayZcskSba2tnJ1dVVcXJxWrlypiIgILVq0qMSAoGvXrsrLyzN9dnFxkY2NjWm+iIgIjRkzRpMmTSp1zd9++60mT56s3NxcSVK1atV09epVff/99/rhhx/0+uuv65lnnqnU73IzjnICAAAAAAAAAKAK7Nq1S6+88opSUlI0YMAAbdy4UYcPH1ZUVJR+/fVXLV68WP379y9Wt3btWlMoMX78eO3fv18HDhzQ5s2b1b59e6Wmpuqll15ScnJysdq8vDy1b99e//nPf7R9+3YdPHhQ0dHR+vbbb9WzZ08ZjUZ99tlnWr16dYlrPn36tKZMmaLc3Fz16tVLkZGR2r9/v3bv3q0hQ4aooKBAQUFB2rdvX5X9TgQTAAAAAAAAAABUUnp6ut544w3l5ubqueee05w5c9S0aVNTe/Xq1dWtWze98sorRepyc3P14YcfSpKGDBmiwMBAubm5SZIaNWqkRYsWycPDQ9euXdNnn31WbN7ly5frq6++0lNPPaV69epJkmxsbNS4cWN9/PHH6tq1qyTp//2//1fiuhcsWKCcnBw1a9ZMH374oe666y5JUs2aNTVz5kw99NBDKigo0AcffFC5H+gmBBMAAAAAAAAAAFRSeHi4Ll68KE9Pz2LhQ1l2796tK1euSJKef/75Yu3u7u4aOnSoJCkiIkJGo7FIe5cuXUod28bGRoMGDZIknT9/XtevXy/SnpaWpm3btkmSxowZIwcHh2JjFK7p0KFD+uOPP8z9WmUimAAAAAAAAAAAoJI2bNggSerdu7ccHR3NrtuzZ48kqUmTJqpfv36JfR5++GFJ0qVLl3TmzBmL1uXk5GR6zs/PL9J24MAB070ShTsr/qxDhw6mHRy7du2yaO7SEEwAAAAAAAAAAFAJ2dnZOnr0qCSpVatWOnPmjF577TU9+OCD8vHxUffu3TV16lSdOnWqWO3p06clqcixT392c1tJY5Sl8G4IDw8P1axZs0hb4Vi1a9dW7dq1S6y3s7NTo0aNKjR3aeyrZBQAAAAAAAAAAP7CwsLCFBYWZlFNQECAAgICyu0XHx9v2nlw9uxZvf3228rMzJSTk5OcnJx04cIFhYeHa9OmTZozZ4769Oljqi08xsnT07PU8V1cXFS9enWlpKQoISHB7PXHx8frq6++kiQNGjRINjY2RdrNmbuw/bfffrNo7rIQTAAAAAAAAAAA7nhpaWm6fPmyxTXmSElJMT0vXrxYtWvX1oIFC9S1a1fZ2trq+PHjmjZtmo4cOaKpU6eqZcuWuueeeyRJGRkZkiRnZ+cy53B2dlZKSorS09PNWlNOTo4mTJigzMxMeXl56V//+lexPpbMLcnsuctDMAEAAAAAAAAAuOMZDIZydwaUVGOOgoKCIs/BwcF66KGHTO+aN2+uTz75RL1791ZGRoaWLl2qt956y6K1WKKgoEBTp07VoUOH5OzsrPnz55v9XayBYAIAAAAAAAAAcMcz91imiii8HFq6cYn1zaFEobp166p///76+uuvi1wi7erqKknKysoqc47C9pvnKonRaNT06dO1adMmOTg46KOPPlKbNm1K7FvVc5uLYAK4A1TVFqq/29wAAAAAAADAX0HdunVNz4UXRZeksO3SpUtFao8ePVrmMVOZmZmm46I8PDxK7Wc0GvXWW29p7dq1sre314cffqhu3bqVu+7yjrgqbC9rbksQTAB/Yw4ODnJyclK/fv1u91IAAAAAAACA/1k1a9aUh4eH2ZdD33wJdePGjfXTTz/p5MmTpfa/ua1Jkyal9nvnnXe0evVq2dnZ6f3331evXr3KXEfhWImJiUpKSlKtWrWK9cnPz9eZM2fKndsSBBPA35iTk5O2bdum3Nzc27aG9PR0ghEAAAAAAAD8z3vggQe0fv160x/xS1LYVr9+fdM7X19fff755zp9+rQuXLigevXqFavbsWOHJOmuu+4qdUfGzJkztWrVKtna2iooKEh9+/Ytd80dOnSQo6OjcnJytGPHDg0cOLBYn6ioKNOpKQ888EC5Y5rDtkpGAXDbODk5yWAw3LZ/VXWuHAAAAAAAAPB35ufnJ0k6deqUfv7552LtV65c0caNGyWpyPFK999/v+rWrSuj0ajFixcXq0tJSdFXX30lSXriiSeK7LYoNGvWLH355ZeysbHRu+++qwEDBpi1ZoPBoO7du0uSwsLCSvw/QBeuqV27drrnnnvMGrc8BBMAAAAAAAAAAFSSr6+vHn74YUnS66+/rsjISBUUFEiSjh8/rnHjxikjI0M1atTQqFGjTHUODg569dVXJUlfffWVQkNDlZGRIUk6e/asXnjhBSUkJKhmzZoaM2ZMsXnfe+89rVixQjY2NvrPf/4jf39/i9b9yiuvyNHRUcePH9fEiRNN90kkJyfr7bff1o4dO2RjY6N///vflv4kpeIoJwAAAAAAAAAAqsAHH3ygUaNG6ejRoxo7dqycnZ1lb2+vtLQ0SZK7u7tCQ0OLXJYtSYMGDdLx48e1fPlyhYSEaOHChXJ1dVVqaqqkGzsbPv74Y9WoUaNI3YULF7RkyRJJkq2trT788EN9+OGHpa4vJCRE9913X5F3jRs31nvvvafJkydry5Yt2rJli6pXr67U1FQZjUbZ2trq9ddfV+fOnSv56/wfggkAAAAAAAAAAKqAu7u7Vq9erS+//FIbN27U2bNnlZubq3vvvVfdunXTmDFj5OnpWWLttGnT9MADD+jLL7/UkSNHlJ6ervr16+vhhx/W2LFjS7x7onBHhnTjkuqrV6+Wub7S7qrt27evmjRpos8++0x79uxRUlKS6tSpo/bt22vUqFHq0KGDBb9C+QgmAAAAAAAAAACoIo6OjgoICFBAQIDFtd27dzfd+WAOLy8vxcbGWjxPSZo1a6Y5c+ZUyVjl4Y4JAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1RBMAAAAAAAAAAAAqyGYAAAAAAAAAAAAVkMwAQAAAAAAAAAArIZgAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKzG/nYvAAAAAAAAAACAO4HRaNS3336r8PBwHTt2TNevX5eDg4O8vLzk6+urkSNHytvbu0hNRkaGwsPDdeTIER0/flwJCQlKTk6Wg4ODvL295evrqxEjRhSrK5SZmal9+/YpJiZGR48eVUxMjC5cuCBJmjx5ssaMGVPmmuPi4nTgwAFT/dGjR5Weni5J2r17t2rVqlUFv0xRBBMAAAAAAAAAAFRSdna2AgMDFRkZaXrn5uam7OxsnThxQidOnNDq1as1b9489ezZ09Tn4sWLmjlzpumznZ2dDAaDUlJSFBsbq9jYWH311VcKDg5Wnz59is17+PBhjR07tsLrDg0NVXh4eIXrK4JgAgAAAAAAAACASvr0009NoURgYKCGDx+umjVrKj8/XwcOHNDMmTN18uRJTZo0SVu3bjXtRDAYDBo7dqw6deqkf/zjH6pTp47s7OyUm5urqKgovf/++/rtt980ZcoU+fj4lLhzwt3dXS1btlTLli3VqlUrBQUFKSEhwax129jYqEGDBmrVqpVatmwpSZo7d24V/SolI5gAAAAAAAAAAKCS1q9fL0ny8/PT+PHjTe/t7OzUuXNnLVy4UI8++qjS09O1c+dOPfHEE5IkT09P/fvf/y42noODg7p06aIlS5aoW7duysjIUEREhMaNG1ekX8eOHbVv374i7ywJFmbNmiU7OzvT571795pdW1Fcfg0AAAAAAAAAQCUV7lDw8fEpsb1BgwaqUaOGpBv3SpirevXquvfeeyVJly9fLtZ+c6hQEZWtrwiCCQAAAAAAAAAAKsnLy0uSdOTIkRLbz507p+TkZElSq1atzB43KSlJZ8+elaRSL8D+uyGYAAAAAAAAAACgkoYMGSJJCg8PV2hoqK5duyZJys/P1759+0xHMA0YMECtW7cuc6yCggIlJCRo69atGjVqlDIzM1W9enX5+/vf2i9hJdwxAQAAAAAAAAC444WFhSksLMyimoCAAAUEBJjVd+TIkbp48aKWLVumkJAQhYSEyGAwKCsrS3l5efL29taUKVM0atSoUseYMWOGVq9eXez9vffeq/nz55suzP67I5gAAAAAAAAAANzx0tLSSryjobwac9nZ2WnKlClq2LChZs+erezs7CL1WVlZSklJUV5enhwdHUsco1q1aqpTp47y8vJMxz41bNhQ06ZNU8uWLS1a+18ZwQQAAAAAAAAA4I5nMBjk6elpcY25EhMTNX78eEVFRalfv34aPXq0GjZsqJSUFO3Zs0dz587VJ598oqioKC1ZskT29sX/PD9p0iRNmjRJkpSenm6qe+655zRgwADNnj27xLq/m7//NwAAAAAAAAAAoByWHMtUEZMnT1ZUVJQGDhyo9957z/Tezc1Nfn5+at26tfz8/LR3716tWbNGQ4cOLXM8Nzc39ezZU507d9YTTzyh9evXq1WrVnr22Wdv2XewFi6/BgAAAAAAAACgEk6fPq2dO3dKkkaPHl1inyZNmuiRRx6RJP3www9mj12tWjXTpddr1qyp3EL/IggmAAAAAAAAAACohFOnTpmeGzRoUGq/e+65R5IUHx9v0fiFR1CdO3euAqv76yGYAAAAAAAAAACgEmxt/+9P7RcuXCi1X2JioiTL7q6QpPPnz0uSXF1dK7C6vx6CCQAAAAAAAAAAKqFFixam51WrVpXYJyEhwXSEU7t27Uzv8/Lyyhw7KSlJ69atkyR16tSpkiv9a+DyawAAAAAAAAAAKsHLy0vdunVTZGSkvvjiC9nZ2Wn06NHy9PRUdna29u7dq3fffVepqalycHDQsGHDTLWvv/66atWqpT59+qhFixZycnKSJKWlpWnHjh2aP3++rl69KgcHB7344oslzn/9+nXl5+ebPhcUFEiSMjMzlZSUZHpvMBjk6OhYpDY3N1epqammzzc/X79+vUjfWrVqWfrTlIhgAgAAAAAAAACASgoKClJAQIBiY2O1dOlSLV26VK6ursrKyjIFBY6OjgoKClKjRo1Mdenp6dqwYYOWLl0qW1tb0zFPqampMhqNkiR3d3cFBwcX2ZlxMz8/vxLvrQgJCVFISEiRNRZepF0oKipKzzzzTInjPvbYY0U+x8bGlvczmIVgAgAAAAAAAACASqpdu7bWrFmjNWvW6Pvvv1dsbKxSU1Pl5OSkevXqydfXVyNGjFDDhg2L1L388stq06aN9u3bp3PnzikxMVG5ubmqVauWGjdurK5du2rw4MFVtlvhr4BgAgAAAAAAAACAKuDo6Khhw4YVOaqpPM2bN1fz5s31wgsvVHjebdu2Vbi2S5cuVbYTwlxcfg0AAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWQzABAAAAAAAAAACshmACAAAAAAAAAABYDcEEAAAAAAAAAACwGoIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1djf7gUAAAAAAAAAAPB39o9//MPsvoGBgRo/fny5/eLi4vT4448rIyNDkrR8+XJ16dKlWL+0tDRt27ZNu3bt0pEjRxQfH6/c3FzVrl1bbdq00eDBg9WtW7dS59mxY4d2796tI0eO6MKFC0pKSlJeXp6pftCgQWXWVwTBBAAAAAAAAAAAlVCnTp0y2zMzM5Weni5J8vHxMWvMt956yxRKlMXf319//PGH6bOjo6McHBx06dIlXbp0SVu2bNHjjz+u4OBg2dsXjwRCQ0N16NAh02eDwSBJunjxoi5evKjvv/9e/fv313vvvVdifUUQTAAAAAAAAAAAUAm//PJLme2TJ0/W+vXr5eHhoa5du5Y73jfffKOdO3eqXbt2OnjwYJl98/Ly1KxZM9POhoYNG0qSLly4oIULF+q///2vIiIiVK9ePU2cOLFYfa9evTRs2DC1bt1a9evXl7Ozs6QbOzaWL1+uZcuWaePGjWratKleeOGFctduDu6YAAAAAAAAAADgFklLS9OWLVskSQMGDJCdnV2Z/ZOSkhQcHKxq1app6tSp5Y4fHBysDRs2aNSoUaZQQpLq1aunWbNmaciQIZKkFStWKDs7u1j92LFjNXDgQDVu3NgUSkiSl5eX3njjDfXv31+StHbt2vK/rJkIJgAAAAAAAAAAuEU2b96szMxMSTeOXSrP7Nmzde3aNU2YMEEeHh7l9u/cubNsbGxKbR88eLAkKSMjQ6dPnzZz1f+nbdu2kqTLly9bXFsaggkAAAAAAAAAAG6Rwp0G7du3V+PGjcvs+/PPPysiIkJt27bV008/XSXzOzk5mZ7z8/Mtrj9w4IAkydvbu0rWI3HHBAAAAAAAAAAAt8SZM2cUHR0tSRo0aFCZfTMyMvTWW2/J3t5eM2fOlK1t1ewr2LdvnyTJwcGhyFFPZUlLS9O5c+e0cuVKfffdd5KkZ599tkrWIxFMAAAAAAAAAAD+B4SFhSksLMyimoCAAAUEBFR4znXr1kmSXFxc1KdPnzL7LliwQPHx8Ro9erSaN29e4TlvlpaWpkWLFkmSHnvsMRkMhlL7Hjx40HQfxc1cXFw0fvx4PfXUU1WyJolgAgAAAAAAAADwPyAtLc3iexLS0tIqPF9+fr7Wr18vSerdu3eZocBvv/2mFStWqF69egoMDKzwnDczGo2aOnWqEhIS5O7urn//+99l9ndwcFCdOnUkScnJycrLy5ODg4PGjRtXYmBRGQQTAAAAAAAAAIA7nsFgkKenp8U1FbVz505duXJFUtmXXufl5Wn69OnKz8/X9OnT5erqWuE5b/b+++/rhx9+kK2trYKCgnT33XeX2b9Vq1b65ZdfJN0IVc6ePatFixZp7ty5Wr16tRYvXlzuHRnmIpgAAAAAAAAAANzxKnssk6UKL7329vZW586dS+23ZMkSHT9+XL169VLPnj2rZO7Q0FB9/vnnsrGx0cyZMy0e187OTk2aNNH7778vd3d3rVixQpMmTdLatWtlY2NT6fVVze0ZAAAAAAAAAABAknTt2jVt27ZNkuTn51fqH/OvXLmi0NBQOTs7a+LEiUpPTy/yLysry9Q3Kyur2LuSfPrppwoJCZEkTZ8+XU8++WSlvsuoUaMkSTExMYqJianUWIXYMQEAAAAAAAAAQBWKiIhQbm6ubG1tyzzGKTExUdnZ2ZKkvn37ljnm2LFjJUnNmzc33V3xZ4sXL9b8+fMlSVOmTNGIESMqsvwibj7+6ty5c/Lx8an0mOyYAAAAAAAAAACgCq1bt06S5OvrW+7dDlXl888/19y5cyVJEydO1OjRo6tk3PPnz5ue3dzcqmRMdkwAAAAAAAAAAFBFjh07pmPHjkmSBg0aVGbfFi1aKDY2ttT2uLg40/0Qy5cvV5cuXUrst3TpUs2ZM0eSFBgYqOeff96stebl5cnevuyY4LPPPpMkOTg4qF27dmaNWx52TAAAAAAAAAAAUEUKL712d3dXr169bvl8X3zxhYKCgiRJL730ksaPH2927U8//aQxY8bou+++U2Jioul9fn6+jhw5ogkTJpi+z8iRI+Xu7l4la2bHBAAAAAAAAAAAVSAnJ0cRERGSpH79+snJyemWzzlr1izT8+rVq7V69epS+06bNq3YXRY7d+7Uzp07JUmurq5ycnJSWlqacnNzTX2GDBmi1157rcrWTDABAAAAAAAAAEAV2L59u5KTkyWpzEuvq5LRaDQ9X716tcy+WVlZRT536tRJ7777rvbu3atjx47p6tWrSklJkbOzsxo1aqT27dvL399fbdu2rdI1E0wAAAAAAAAAAFAFevfuXeadEZby8vIqd7zKzOfu7q7Bgwdr8ODBFR6jIrhjAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYA/K05ODjI0dHxdi8DAAAAAAAAgJkIJgD8rTk5OSkiIuJ2LwMAAAAAAACAmQgmAPztOTk53e4lAAAAAAAAADCT/e1eAAAAAAAAAAAAf2f/+Mc/zO4bGBio8ePHmz4bjUYdOHBAP/30k6KionT69GmlpaXJzc1NjRo1Uq9evTR06FAZDIYyx83Ly9OqVau0fv16nT17VgUFBfL29lafPn0UEBAgZ2fnctd2/vx5ffHFF/r555918eJFSVLdunXl4+OjPn36qFevXmZ/z7IQTAAAAAAAAAAAUAl16tQpsz0zM1Pp6emSJB8fnyJtn376qT788EPTZ1tbWxkMBqWkpCg6OlrR0dFauXKl/t//+39q3LhxieNnZGRozJgxioqKkiQ5OjrKzs5OsbGxio2NVUREhL744gvVqlWr1DWuXr1a7777rrKzsyVJLi4ukqTff/9dv//+uxITEwkmAAAAAAAAAAD4K/jll1/KbJ88ebLWr18vDw8Pde3atUhbXl6eqlWrpieeeEJ9+vRR27Zt5ejoqIyMDG3evFlz5sxRfHy8nn/+eW3atKnEY83feecdRUVFyWAw6D//+Y8ee+wx2dra6pdfftGUKVN0+vRpTZgwQcuWLStxfeHh4ZoxY4ZsbGwUEBCg4cOHy9vbW5KUlJSkffv26cKFCxX8dYojmAAAAAAAAAAA4BZJS0vTli1bJEkDBgyQnZ1dkfZevXrp2WefVfXq1Yu8d3V11aBBg9SoUSMNHTpU58+f1+bNmzVw4MAi/WJjY7V+/XpJ0syZM9W3b19T24MPPqiQkBANHTpUe/bs0Y4dO/Twww8Xqb948aL+85//SJJmzJihYcOGFWmvVauWHnvssYr/ACXg8msAAAAAAAAAAG6RzZs3KzMzU5Lk7+9frL1FixbFQombtW/fXk2aNJEkHTlypFh7RESEjEajvL29i4QSN9d37txZkrRhw4Zi7cuXL1d6erpat25dLJS4VQgmAAAAAAAAAAC4RdauXSvpRkBQ2h0R5Sk8vqmgoKBY2549eyRJXbt2lY2NTYn1hbskdu/eXaytMKzo379/hdZWERzlBAAAAAAAAAC444WFhSksLMyimoCAAAUEBFR4zjNnzig6OlqSNGjQoAqNkZSUpBMnTkiSmjVrVqTNaDTq9OnTkqSmTZuWOkZh3dWrV3Xt2jXVrFlTknT+/HldvXpVktSqVSsdPnxYn376qQ4cOKCMjAzddddd6tq1q5577jnVq1evQusvCcEEAAAAAAAAAOCOl5aWpsuXL1tcUxnr1q2TJLm4uKhPnz4VGiM0NFS5ubkyGAzF7npIT09XRkaGJMnT07PUMW5uS0hIMAUTv//+u+n93r179cknnygvL0+urq6yt7fXuXPn9OWXX2rDhg369NNP1bFjxwp9hz8jmAAAAAAAAAAA3PEMBkOZf7wvraai8vPzTZdS9+7du0Jj/fDDD1q5cqUkacKECapRo0aR9vT0dNOzi4tLqeM4OzuXWJOSkmJ6/vjjj3XPPffo3XffVYcOHWQ0GnXgwAG9/vrrOnfunAIDA/Xdd9/J3d3d4u/xZwQTAAAAAAAAAIA7XmWPZbLUzp07deXKFUklX3pdnsOHD2vy5MkyGo3q3bu3RowYUdVLLHJnhY2NjT7++GPTPRg2Njbq2LGjQkJC5Ofnp6SkJP33v//Vc889V+l5ufwaAAAAAAAAAIAqVnjptbe3tzp37mxR7bFjx/Tcc88pIyNDDzzwgD744IMS+7m5uZmeMzMzSx0vKyurxJqbnx966KESL+du3ry5fH19JZV8eXZFEEwAAAAAAAAAAFCFrl27pm3btkmS/Pz8ZGNjY3bt8ePHNWrUKF2/fl2dOnXSwoUL5ejoWGJfNzc3ubq6SlKZ92fc3Obh4WF6rlu3rum5UaNGpdYXtl28eNG8L1EOggkAAAAAAAAAAKpQRESEcnNzZWtra9ExTidOnFBAQICSk5PVvn17LVq0qMy7I2xsbEy7HE6ePFnmuJJUp04d08XXktS4cWPZ2pofE1gSsJSFYAIAAAAAAAAAgCq0bt06SZKvr6/uvvtus2pOnjypUaNGKSkpSa1bt9Znn31W5Kil0hQes7Rz504ZjcYS+/z8889F+hZycXHRfffdJ0k6c+ZMqXMUttWvX7/8L2IGggkAAAAAAAAAAKrIsWPHdOzYMUnSoEGDzKo5ffq0Ro0apcTERLVq1UpLliyRwWAwq/bxxx+XjY2Nzp07p82bNxdrP3TokPbu3StJGjBgQLH2gQMHSroRbJw6darE71N4t0S3bt3MWlN5CCYAAAAAAAAAAKgihZdeu7u7q1evXuX2//333/Xss8/q6tWratGihZYsWaLq1aubPV+zZs1MgcOMGTO0efNmFRQUSLpxWfX48eMlSffff7+6du1arN7Pz0/NmjVTfn6+xo8fr6ioKFPb/v379fLLL6ugoEDe3t5mBy3lsa+SUQAAAAAAAAAA+B+Xk5OjiIgISVK/fv3k5ORUbs2iRYuUkJAgSYqLi1O/fv1K7du+fXuFhoYWe//WW2/p3LlzioqK0quvvionJyfZ2toqMzNT0o27JObPn1/imPb29vrkk0/0zDPP6OzZs3r66adNF2pnZGRIku6++259+umncnZ2Lvf7mINgAgAAAAAAAACAKrB9+3YlJydLktmXXt98L0RqaqpSU1NL7Xv9+vUS37u6umrFihVauXKlNmzYoDNnzshoNKpZs2bq06ePRo8eXWao4OXlpQ0bNigsLExbtmxRXFycqb5Xr14aNWqU3N3dzfo+5iCYAAAAAAAAAACgCvTu3VuxsbEW1QQHBys4OLjSc9vb2+uZZ57RM888U6F6g8GgwMBABQYGVnot5eGOCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWQzAB4G/HwcGhyH8BAAAAAAAA/H3Y3+4FAIClHB0di/wXAAAAAAAAuN0yMzO1b98+xcTE6OjRo4qJidGFCxckSZMnT9aYMWPMGufXX3/V119/rQMHDighIUGurq7y9PRUhw4d9NRTT6lFixZF+vfo0UPx8fFmje3v76+goCDT57179+qZZ54x8xtKK1asUOfOnc3uXxqCCQAAAAAAAAAAKunw4cMaO3Zshevz8/P19ttv6+uvvza9q169utLT0xUbG6vY2Fh5eHgUCyZq1qyp7OzsUsfNyclRSkqKJMnHx6dIm4ODg+rUqVPmulJSUpSTkyNHR0c1a9bM0q9VIoIJAAAAAAAAAACqgLu7u1q2bKmWLVuqVatWCgoKUkJCglm106dP17p161S9enW9+uqr6tevn2rUqKGCggJdvHhRkZGR8vDwKFa3du3aMsddsGCBFi5cKEdHR/Xv379I23333adffvml1Fqj0aiePXsqPj5ePXr0UI0aNcz6LuUhmAAAAAAAAAAAoJI6duyoffv2FXk3d+5cs2q3bt2qdevWydHRUcuWLVPLli1Nbba2tqpfv76GDRtm8ZoKCgr0zTffSJJ69uwpd3d3i+r37NljOibK39/f4vlLw+XXAAAAAAAAAABUkp2dXYVrFy5cKEkaOXJkkVCisvbs2WO652LQoEEW1xfuxvD09NRDDz1UZesimAAAAAAAAAAA4DY5ffq0YmJiJEmPP/54lY5dGCzcddddevDBBy2qTUtL0w8//CBJGjhwYKWClz/jKCcAAAAAAAAAwB0vLCxMYWFhFtUEBAQoICDgFq3ohujoaEk3LqJu2rSpNm7cqC+++EKxsbGSpHvvvVePPfaYRo4cKVdXV7PHTU1N1datWyXdCBZsbS3bp7Bx40ZlZWVJqtpjnCSCCQAAAAAAAADA/4C0tDRdvnzZ4ppb7Y8//pB04+Ls4OBgrVixQpJUvXp1ZWZm6ujRozp69KgiIiK0ZMkS1a1b16xxKxssrFu3TpLUoUMH3XvvvRbXl4VgAgAAAAAAAABwxzMYDPL09LS45la7fv26JCkpKUkrVqxQ9+7dNW3aNHl7eysnJ0ebNm3SO++8o5MnT2rKlClm7/ooDBY6deqke+65x6I1nT59WocOHZJUsbspykMwAQAAAAAAAAC441njWKaKMBqNkqSCggLVr19fH330kRwdHSVJjo6O8vPzU1pammbNmqVdu3bp8OHDatOmTZljnjp1SocPH5ZUsd0ShXdTuLq66rHHHrO4vjxcfg0AAAAAAAAAwG3i5uZmeh42bJgplLjZ0KFD5eLiIknavXt3uWNWJljIz8/Xhg0bJEmPPfZYkfVVFYIJAAAAAAAAAABuk5vvjGjUqFGJfRwcHOTt7S1JunjxYpnj5eXlmYKFPn36WHRhtiTt2LFDCQkJkm7NMU4SwQQAAAAAAAAAALdN06ZNLepvY2NTZntkZKSuXr0qqWLBQuFui3vvvVcdO3a0uN4cBBMAAAAAAAAAANwmHTp0kLOzsyTpzJkzJfbJzc3V+fPnJUn169cvc7zCS6/vvfdedejQwaK1JCUl6aeffpIk+fn5WVRrCYIJAAAAAAAAAABuE1dXV/3zn/+UJK1cuVI5OTnF+qxatUqZmZmSpG7dupU6VlJSkiIjIyVVbLfEhg0blJubK1tbW4IJAAAAAAAAAAD+6q5fv66kpCTTv4KCAklSZmZmkfd/Dh9efvllubq6Kj4+Xi+//LJpd0ROTo6++eYbzZs3T5LUv3//Mo9+KgwW7OzsNGDAAIvXX7jb4sEHH5Snp6fF9eayv2UjAwAAAAAAAADwP8TPz0/x8fHF3oeEhCgkJMT0OSgoSP7+/qbP3t7e+vDDD/XKK69o+/bt2r59u9zd3ZWRkaHc3FxJUufOnfXOO++UOX/h/RAPPfSQxcFCTEyMYmNjJd26S68LEUwAAAAAAAAAAHCbdevWTRs2bNBnn32mnTt36sqVK3JxcVHbtm01YMAA+fv7y96+9D/pHzlyRCdOnJCkIqGHuQp3S9SoUUM9e/as2JcwE8EEAAAAAAAAAABVYNu2bZWqb9CggWbOnFmhWh8fH9OOh4p488039eabb1a43hLcMQEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWQzABAAAAAAAAAACshmACAAAAAAAAAABYDcEEAAAAAAAAAACwGoIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1djf7gUAAAAAAAAAAPB3l5mZqX379ikmJkZHjx5VTEyMLly4IEmaPHmyxowZU+4YBw4c0LJlyxQVFaXk5GTVrl1b999/v5577jk1bdq0xJq0tDRt27ZNu3bt0pEjRxQfH6/c3FzVrl1bbdq00eDBg9WtW7dS59yxY4d2796tI0eO6MKFC0pKSlJeXp6pftCgQWXWVwTBBAAAAAAAAAAAlXT48GGNHTu2wvVLly7Ve++9p4KCAtnY2MhgMOjSpUv65ptv9O233+qDDz5Q7969i9X5+/vrjz/+MH12dHSUg4ODLl26pEuXLmnLli16/PHHFRwcLHv74pFAaGioDh06ZPpsMBgkSRcvXtTFixf1/fffq3///nrvvfdKrK8IjnICAAAAAAAAAKAKuLu7y9fXV2PGjNG8efPk4eFhVt3u3bsVHBysgoICDRkyRLt379b+/fsVGRmpXr16KScnR5MmTdLZs2eL1ebl5alZs2Z6/fXX9d133+m3335TdHS0tm/frieffFKSFBERoY8++qjEuXv16qX33ntP3377rQ4dOqQDBw7ot99+048//qhnn31WkrRx40Z99tlnFfxVimPHBAAAAAAAAAAAldSxY0ft27evyLu5c+eaVfvBBx/IaDSqa9eumjlzpun9XXfdpfnz52vQoEE6ceKEPvroI82fP79IbXBwsDp16iQbG5si7+vVq6dZs2bJ1tZWq1ev1ooVK/TSSy/JycmpSL/Sdnl4eXnpjTfeUGJiojZu3Ki1a9fqhRdeMOv7lIcdEwAAAAAAAAAAVJKdnV2F6s6cOaMjR45Ikp5//vli7Y6Ojho9erQk6ccff1R6enqR9s6dOxcLJW42ePBgSVJGRoZOnz5t8fratm0rSbp8+bLFtaUhmAAAAAAAAAAA4DbZvXu3JMnNzU333XdfiX0efvhhSVJ2drYOHDhg0fg375DIz8+3eH2F83l7e1tcWxqCCQAAAAAAAAAAbpPCXQyNGzcudddF7dq1VatWLUnSqVOnLBq/8HgpBwcHNWzY0KyatLQ0HT16VNOnT9d3330nSab7JqoCd0wAAAAAAAAAAO54YWFhCgsLs6gmICBAAQEBt2hFN1y5ckWS5OnpWWY/T09PJSUlKSEhweyx09LStGjRIknSY489JoPBUGrfgwcPasiQIcXeu7i4aPz48XrqqafMnrc8BBMAAAAAAAAAgDteWlqaxfckpKWl3aLV/J+MjAxJkrOzc5n9Ctv/fMdEaYxGo6ZOnaqEhAS5u7vr3//+d5n9HRwcVKdOHUlScnKy8vLy5ODgoHHjxpUYWFQGwQQAAAAAAAAA4I5nMBjK3ZVQUs3f1fvvv68ffvhBtra2CgoK0t13311m/1atWumXX36RdOMuirNnz2rRokWaO3euVq9ercWLF6tx48ZVsjaCCQAAAAAAAADAHc8axzJVhKurqyQpKyurzH6F7W5ubuWOGRoaqs8//1w2NjaaOXOmevbsadGa7Ozs1KRJE73//vtyd3fXihUrNGnSJK1du1Y2NjYWjVUSLr8GAAAAAAAAAOA2qVu3riSVe8xUYbuHh0eZ/T799FOFhIRIkqZPn64nn3yyUusbNWqUJCkmJkYxMTGVGqsQwQQAAAAAAAAAALdJ4fFIp0+fVn5+fol9EhMTlZSUJElq0qRJqWMtXrxY8+fPlyRNmTJFI0aMqPT6bj7+6ty5c5UeTyKYAAAAAAAAAADgtvH19ZV041Lr6OjoEvv8/PPPkiQnJyd16NChxD6ff/655s6dK0maOHGiRo8eXSXrO3/+vOnZnGOkzEEwAQAAAAAAAADAbdKoUSP5+PhIurHj4c9yc3O1ZMkSSVKvXr1KDAeWLl2qOXPmSJICAwP1/PPPmzV3Xl5euX0+++wzSZKDg4PatWtn1rjlIZgAAAAAAAAAAKAKXL9+XUlJSaZ/BQUFkqTMzMwi73NycorUvfbaa7KxsVFkZKTefvttJScnS7pxr8TEiRMVGxsrJycnBQYGFpvziy++UFBQkCTppZde0vjx481e708//aQxY8bou+++U2Jioul9fn6+jhw5ogkTJmjt2rWSpJEjR8rd3d2i36M09lUyCgAAAAAAAAAA/+P8/PwUHx9f7H1ISIjpQmpJCgoKkr+/v+mzr6+vpkyZovfee0+rVq3SV199pWrVqiklJUWS5OjoqPfff18NGzYsNvasWbNMz6tXr9bq1atLXd+0adPUt2/fIu927typnTt3SpJcXV3l5OSktLQ05ebmmvoMGTJEr732Wnlf32wEEwAAAAAAAAAA3GYBAQFq3bq1li1bpujoaCUnJ+uuu+5Sly5d9K9//UtNmzYtsc5oNJqer169WuYcWVlZRT536tRJ7777rvbu3atjx47p6tWrSklJkbOzsxo1aqT27dvL399fbdu2rfwXvAnBBAAAAAAAAAAAVWDbtm2Vqu/YsaM6duxoUU1sbGyF53N3d9fgwYM1ePDgCo9REdwxAQAAAAAAAAAArIZgAgAAAAAAAAAAWA3BBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDV2N/uBQAAAAAAAAAAcCdJTEzU8uXLFRkZqbi4OOXm5qpOnTpq0aKFevToIX9/f1PfvLw87d69Wzt27NDBgwf1+++/KyMjQ9WqVVOzZs3Ut29f+fv7y9HRscw5MzMzFRYWpu+++07nz5+Xra2tGjVqpCeeeELDhg2TnZ1dqbUZGRlauXKltm7dqtOnTys9PV1ubm5q3LixevTooeHDh8vNza3Kfh+CCQAAAAAAAAAAqsiPP/6oqVOnKiUlRZLk5OQke3t7xcXFKS4uTrGxsUWCibffflv//e9/TZ/t7Ozk6uqqa9euae/evdq7d69WrVqlzz77TB4eHiXOefXqVY0YMUJnz56VJLm4uCgnJ0eHDx/W4cOH9d133+nzzz+Xs7Nzsdq4uDgFBATo3LlzkiQbGxsZDAalpqYqOjpa0dHR+uqrrxQWFqZ77rmnSn4jjnICAAAAAAAAAKAK7Nq1S6+88opSUlI0YMAAbdy4UYcPH1ZUVJR+/fVXLV68WP379y9Sk5eXpzp16uhf//qX/vvf/+rw4cPav3+/fv31V02ePFkuLi46fvy4AgMDZTQaS5z31Vdf1dmzZ+Xh4aGwsDAdPHhQhw4d0vz58+Xm5qb9+/dr5syZJdZOmTJF586dk7u7uz744AMdOnRI+/fv16FDh/Tee+/JYDAoPj5eU6ZMqbLfiR0TAAAAAAAAAABUUnp6ut544w3l5ubqueee06RJk4q0V69eXd26dVO3bt2KvH/66af19ttvF9vNUL16dY0ZM0Z33XWXJk6cqOjoaB04cEAdO3Ys0u+nn37Sr7/+KkkKCQlR+/btJUm2trbq27evCgoK9O9//1vh4eEaPXq0mjRpYqqNj4/X/v37JUlTp07V448/bmpzcnLSwIEDlZubq+nTpys6OlqXL1+Wp6dnJX8pdkwAAAAAAAAAAFBp4eHhunjxojw9PfXKK6+YXde2bdsSj1gq1KdPH9P9DkeOHCnWvn79eklSly5dTKHEzfr16ycvLy8VFBQoIiKiSFtCQoLp2cfHp8T527RpY3pOT08v45uYj2ACAAAAAAAAAIBK2rBhgySpd+/e5V5UbQlbW1s5ODhIkvLz84u179mzR5L08MMPl1hvY2Ojrl27SpJ2795dpM3Ly8v0XFLoIUmHDx+WdGMHR4MGDSxcfckIJgAAAAAAAAAAqITs7GwdPXpUktSqVSudOXNGr732mh588EH5+Pioe/fumjp1qk6dOmXx2LGxsUpOTpYkNWvWrEhbUlKSkpKSJElNmzYtdYzCtj/PX6dOHfXs2VOSFBwcrIiICGVnZ5u+0zfffKPg4GDZ2Nho8uTJsrevmtshuGMCAAAAAAAAAHDHCwsLU1hYmEU1AQEBCggIKLdffHy8cnNzJUlnz57V22+/rczMTDk5OcnJyUkXLlxQeHi4Nm3apDlz5qhPnz5mr2HevHmSbuxuuP/++4u0XblyxfRc1t0PhW3p6elKT083HQ0lSe+++67S09O1Z88evfbaa7KxsVG1atWUmpoqo9Go9u3ba+zYserRo4fZay4PwQQAAAAAAAAA4I6Xlpamy5cvW1xjjpSUFNPz4sWLVbt2bS1YsEBdu3aVra2tjh8/rmnTpunIkSOaOnWqWrZsqXvuuafccZcuXaqffvpJkjR9+nTTkU6FMjIyTM8uLi6ljnNz25+DiZo1a+qTTz7RnDlztGrVKhmNxiLfJz09vcjnqkAwAQAAAAAAAAC44xkMhjJ3FZRWY46CgoIiz8HBwXrooYdM75o3b65PPvlEvXv3VkZGhpYuXaq33nqrzDF//PFHzZkzR5I0evRode/e3aK1m+vw4cN66aWXlJycrPHjx6tfv366++67dfHiRW3atEmLFy/WlClT9Pvvv+vVV1+tkjkJJgAAAAAAAAAAdzxzj2WqiJt3IDRp0qRIKFGobt266t+/v77++mvt2rWrzPF27typV199Vfn5+Ro4cKAmT55cYj9XV1fTc2ZmZqnj3dx281rT0tL0/PPPKykpSbNnz9agQYNMbY0aNVJgYKDuvvtuTZs2TYsXL1b//v3VpEmTMtduDi6/BgAAAAAAAACgEurWrWt6btSoUan9CtsuXbpUap/du3frpZdeUk5Ojvr27avZs2fLxsam3HnLOqaqsM3Nza1IMLFhwwYlJSWpRo0aRUKJmw0ePFg1atRQfn6+tm3bVuocliCYAAAAAAAAAACgEmrWrCkPDw+z+5cWNOzZs0cvvviisrKy9Oijj+r999+XnZ1dqePUqlVLtWrVkiSdPHmy1H6FbX/e7XD69GlJkre3d5nrLbwPIy4ursx+5iKYAAAAAAAAAACgkh544AFJ0pkzZ0rtU9hWv379Ym379u3TCy+8oMzMTHXv3l3z58+XvX35tzH4+vpKkn7++ecS241Go3bu3Fmkb6HCgOTChQtlznH16lVJ5t+5UR6CCQAAAAAAAAAAKsnPz0+SdOrUqRJDgitXrmjjxo2SpG7duhVp279/v55//nllZmaqa9eu+uijj+Tg4GDWvE888YQkae/evTp06FCx9s2bN+v8+fOytbXV448/XqStZcuWkqTExERt2bKlxPF37Nih+Ph4SVK7du3MWlN5CCYAAAAAAAAAAKgkX19fPfzww5Kk119/XZGRkSooKJAkHT9+XOPGjVNGRoZq1KihUaNGmeqio6M1duxYZWRk6KGHHtLHH38sR0dHs+d95JFH1KlTJxmNRgUGBmr37t2SpIKCAm3evFlvvvmmpBvByZ+Pcurdu7fq1KkjSXrjjTe0atUqpaamSpJSU1P15ZdfasKECZKkBg0aqHv37hX4ZYorfx8IAAAAAAAAAAAo1wcffKBRo0bp6NGjGjt2rJydnWVvb6+0tDRJkru7u0JDQ4tcWj1//nylp6dLko4cOaIePXqUOn6fPn00ffr0Yu8//PBDjRgxQmfPntWoUaPk4uKigoICZWdnS5I6duyoGTNmFKtzc3NTSEiIXnzxRSUnJ+vtt9/W22+/LYPBYFqzdOOS7Y8//tjsXRzlIZgAAAAAAAAAAKAKuLu7a/Xq1fryyy+1ceNGnT17Vrm5ubr33nvVrVs3jRkzRp6enkVqjEaj6Tk5ObnM8W8OC25Wp04dhYeHKywsTJs3b1ZcXJzs7e3VrFkzDRgwQMOGDSv1Eu377rtPmzZt0pdffqkdO3bojz/+UEZGhqpVq6ZGjRrpkUce0fDhw+Xu7m7Zj1EGggkAAAAAAAAAAKqIo6OjAgICFBAQYFb/FStWVMm8Li4uGjdunMaNG2dxbZ06dfTKK6/olVdeqZK1lIc7JgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWQzABAAAAAAAAAACshmACAAAAAAAAAABYjf3tXgCAO1d2drZyc3MtqklPT79FqwEAAAAAAADwV0AwAeCWyM7OVo8ePZSdnX27lwIAAAAAAABYVWJiopYvX67IyEjFxcUpNzdXderUUYsWLdSjRw/5+/sX6d+jRw/Fx8eXOebw4cM1Y8aMYu//8Y9/mL2uwMBAjR8/vtj7pKQkrVixQpGRkfr999+VnZ2tatWqqWnTpurTp48GDx4sR0dHs+cpD8EEgFsiNzdX2dnZ2rRpk9zc3MyuS09PV79+/W7hygAAAAAAAIBb58cff9TUqVOVkpIiSXJycpK9vb3i4uIUFxen2NjYYsFEIYPBIGdn51LbSlKnTp0y15OZmWk6pcTHx6dYe0xMjJ577jklJSVJkmxtbeXm5qZr165p37592rdvn77++mstWbJEtWrVKnMucxFMALil3NzcSv0fTQAAAAAAAOBOsmvXLr3yyivKzc3VgAED9K9//UtNmzaVJKWkpCg6OloHDx4stX7atGmlhhal+eWXX8psnzx5stavXy8PDw917dq1SFteXp5efvllJSUlqV69enrrrbf04IMPysHBQWlpaVq7dq3mzJmjY8eO6d1339XcuXMtWltpCCYAAAAAAAAAAKik9PR0vfHGG8rNzdVzzz2nSZMmFWmvXr26unXrpm7dulltTWlpadqyZYskacCAAbKzsyvSHhUVpbi4OElScHCwunTpYmozGAx69tlnde3aNX3yySfasmWLCgoKZGtrW+l1VX4EAAAAAAAAAAD+x4WHh+vixYvy9PTUK6+8cruXI0navHmzMjMzJanEnRgJCQmm55KOeZKkNm3aSLpxdHtubm6VrItgAgAAAAAAAACAStqwYYMkqXfv3lV6UXRlrF27VpLUvn17NW7cuFi7l5eX6fnIkSMljnH48GFJUpMmTeTk5FQl6yKYAAAAAAAAAACgErKzs3X06FFJUqtWrXTmzBm99tprevDBB+Xj46Pu3btr6tSpOnXqVJnjLFmyRA899JB8fHx0//3369lnn9XKlSuVnZ1t8ZrOnDmj6OhoSdKgQYNK7NO6dWu1bNlSkvT6668rMjLStCsiLS1Ny5Yt02effSYHBwdNmTLF4jWUhjsmAAAAAAAAAAB3vLCwMIWFhVlUExAQoICAgHL7xcfHm/6gf/bsWb399tvKzMyUk5OTnJycdOHCBYWHh2vTpk2aM2eO+vTpU+I4J0+elLOzs5ydnXXt2jXt2bNHe/bs0apVq7Ro0SLVq1fP7LWvW7dOkuTi4lLqfLa2tgoJCdFLL72k48ePa+zYsbK1tZWbm5tSU1Nla2srX19fvfTSS+rQoYPZc5eHYAIAAAAAAAAAcMdLS0vT5cuXLa4xR0pKiul58eLFql27thYsWKCuXbvK1tZWx48f17Rp03TkyBFNnTpVLVu21D333GOq6dmzpzp27KhOnTqpVq1akqQrV65ozZo1WrhwoU6cOKGxY8dq3bp1Zh0TlZ+fr/Xr10u6cbSUwWAota+Xl5fCwsL01ltvmS64Tk1NlSQVFBQoIyPD9LmqcJQTAAAAAAAAAOCOZzAY5OnpadG/sv6gf7OCgoIiz8HBwerWrZtsbW/8Cb558+b65JNP5OrqqqysLC1durRI/bRp09S7d29TKCFJdevW1bhx47RgwQJJN3ZThIeHm7WenTt36sqVK5JKvvT6ZpGRkXr00Ue1e/duvfHGG9q6dasOHjyoiIgIDR8+XIcOHdILL7yg//73v2bNbQ52TAAAAAAAAAAA7njmHstUEW5ubqbnJk2a6KGHHirWp27duurfv7++/vpr7dq1y+yxC3dT7N+/X9u3b9eQIUPKrSm89Nrb21udO3cutV9cXJzGjx+v3NxchYWFydfX19TWrFkzzZgxQ+7u7lq4cKGCgoLUs2fPIuFJRbFjAgAAAAAAAACASqhbt67puVGjRqX2K2y7dOmSReO3adNGknT+/Ply+167dk3btm2TJPn5+cnGxqbUvqtWrVJOTo5atmxZJJS42ZgxYyRJ6enp2r17t0XrLg3BBAAAAAAAAAAAlVCzZk15eHiY3b+ssKCyIiIilJubK1tb23KPcTp9+rSkGzsrSmMwGFSnTh1JNy75rgoEEwAAAAAAAAAAVNIDDzwgSTpz5kypfQrb6tevb9HYhw8flnTjouryrFu3TpLk6+uru+++u8y+hQHJhQsXSu2Tk5Njutz75iOrKoNgAgAAAAAAAACASvLz85MknTp1Sj///HOx9itXrmjjxo2SpG7dupneG43GMsf96aeftH//fklS9+7dy+x77NgxHTt2TJI0aNCgctfcsmVLSVJMTIwp/PiztWvXKicnR5LUrl27csc0B8EEAAAAAAAAAACV5Ovrq4cffliS9PrrrysyMlIFBQWSpOPHj2vcuHHKyMhQjRo1NGrUKFPdrFmzNGvWLP3666/KzMw0vU9ISNCiRYv08ssvS5KaNm1a7tFMhZdeu7u7q1evXuWuedCgQXJyclJ+fr5eeuklffvtt6Y1JCUl6eOPP9a7774rSerUqZNatWpl5q9RNvsqGQUAAAAAAAAAgP9xH3zwgUaNGqWjR49q7NixcnZ2lr29vdLS0iTdCAxCQ0OLXJadnp6u8PBwrVixQjY2NqpWrZqMRqNSU1NNfVq2bKmFCxfK0dGx1LlzcnIUEREhSerXr5+cnJzKXW+9evX0wQcfaNKkSbpy5YomTJggGxsbubq6Kj093dSvcePGmjt3rsW/R2kIJgAAAAAAAAAAqALu7u5avXq1vvzyS23cuFFnz55Vbm6u7r33XnXr1k1jxoyRp6dnkZqhQ4eqVq1aOnjwoC5cuKBr166poKBAdevWVatWrfTYY4+pX79+cnBwKHPu7du3Kzk5WZLK3Vlxs3/+859q0aKFvvjiC+3evVvnz59XVlaWatSooaZNm+rRRx/VkCFD5OzsbPHvURqCCQAAAAAAAAAAqoijo6MCAgIUEBBgVv927dpVyd0NvXv3VmxsbIVqvb299frrr1d6DebijgkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWQzABAAAAAAAAAACshmACAAAAAAAAAABYDcEEAAAAAAAAAACwGoIJAAAAAAAAAABgNQQTAAAAAAAAAADAaggmAAAAAAAAAACA1RBMAAAAAAAAAAAAqyGYAAAAAAAAAAAAVkMwAQAAAAAAAAAArMb+di8AAAAAAAAAAIA70dixYxUZGSlJ8vPzU3BwsFl1cXFxevzxx5WRkSFJWr58ubp06VJq/+joaH355ZeKiopSQkKCbGxs5OHhoXbt2unpp59Wx44dS6ybOnWqwsPDy1xL06ZNtXHjRrPWbS6CCQAAAAAAAAAAqtjGjRtNoYSl3nrrLVMoUZ7Q0FCFhobKaDRKkpydnSXdCDfi4uK0ceNGPf/885o4cWKpYzg5OalatWolttWsWdPC1ZePYAIAAAAAAAAAgCqUnJys2bNnq1q1aqpbt65Onz5tdu0333yjnTt3ql27djp48GCZfXfv3q2QkBBJUu/evTVx4kTde++9kqQzZ87ogw8+0I8//qhFixapU6dO6tq1a4nj9O3b1+zdHFWBOyYAAAAAAAAAAKhCwcHBSkxM1MSJE1W7dm2z65KSkhQcHKxq1app6tSp5fbfsGGDJOmee+7RvHnzTKGEJDVq1EgLFiyQt7e3JOn777+37EvcQgQTAAAAAAAAAABUkV27dik8PFxt27bV0KFDLaqdPXu2rl27pgkTJsjDw6Pc/leuXJEkNW/eXPb2xQ9IcnBwUIsWLSTJ7KOhrIFgAgAAAAAAAACAKpCVlaUZM2bI3t5eM2fOlK2t+X+C//nnnxUREaG2bdvq6aefNqvGy8tLknT8+HHl5eUVa8/NzdWxY8ckSa1atTJ7LbcawQQAAAAAAAAAAFVgwYIFOn/+vJ555hk1b97c7LqMjAy99dZbFgcaTz31lGxsbPTHH39o4sSJ+uOPP0xtZ86c0auvvqrz58+rUaNGGjZsWKnj7N69W//85z/l4+OjDh06yN/fXx9++KGuXr1q9newBJdfAwAAAAAAAADueGFhYQoLC7OoJiAgQAEBAWb1jYmJ0bJly1SvXj0FBgZaNM+CBQsUHx+v0aNHWxRotGrVSnPmzNGMGTP0/fff6/vvv5ezs7OkG7s33N3dNXz4cL366qtycXEpdZxLly7J3t5ebm5uSk1NVUxMjGJiYrRq1Sp9+OGH8vX1tej7lIdgAgAAAAAAAABwx0tLS9Ply5ctrjFHfn6+3nzzTdN/XV1dzZ7jt99+04oVKyoUaEjSE088obvuukuTJk3SpUuXlJWVZWrLyclRZmamMjMzVb169WK1LVu2VJs2bfTII4/orrvukq2trdLS0rRt2zbNmTNHCQkJGjdunNatW6eGDRtavLbSEEwAAAAAAAAAAO54BoNBnp6eFteYIywsTDExMXr00UfVo0cPs8fPy8vT9OnTlZ+fr+nTp1sUaBTWz5o1S6tWrZKPj49mz55tuuz62LFjmjdvntatW6ddu3Zp5cqVql+/fpH6Z555ptiYBoNBTzzxhDp06CA/Pz9dv35doaGhmjt3rkVrKwvBBAAAAAAAAADgjmfJsUyWOH/+vEJDQ+Xm5qbp06dbVLtkyRIdP35cvXr1Us+ePS2ee8mSJVq1apUaNmyolStXysnJydT24IMPqkOHDhowYIB+//13zZ07V/PmzTN77Pr162v48OFauHChfvrpJxUUFFh0mXdZuPwaAAAAAAAAAIAKCgoKUmZmpsaOHatq1aopPT29yL/8/HxJN3Y3FL4rKCjQlStXFBoaKmdnZ02cOLFY3c1HMmVlZRV7J0lLly6VJA0fPrxIKFHI2dlZI0aMkCT9+OOPMhqNFn23tm3bSrpxpFVycrJFtWVhxwQAAAAAAAAAABUUHx8vSZo/f77mz59far+IiAhFRERIkr755htJUnZ2tiSpb9++Zc4xduxYSVLz5s21fv16SdK1a9eUmJgoSWrQoEGptffcc4+kG+HG1atX5eHhUd5XuuXYMQEAAAAAAAAAwN/MzccqFYYjJSkMLyTJzc3NojkOHTpkqqtRo4ZlCywDOyYAAAAAAAAAAKigwh0MpRk5cqT27dsnPz8/BQcHF2mLjY0ttS4uLs5078Ty5cvVpUuXIu3u7u6qX7++4uPjtWbNGj311FOyty/6J//8/HytXr1aktSsWbMil2sbjUbZ2NiUOv+FCxe0cuVKSdIjjzxSZfdLSOyYAAAAAAAAAADgb2nYsGGSpJiYGL3wwguKjY1VQUGBCgoKdPz4cY0dO1bR0dGSpFGjRhWpXb9+vQIDA7V161YlJSWZ3qenp2vjxo16+umnlZycLFdXV40fP75K182OCQAAAAAAAAAA/oYCAgJ07Ngxbdy4UT///LN+/vlnOTo6SpJycnJM/UaOHKlBgwYVqS0oKNCWLVu0ZcsWSZKrq6scHR2VkpKigoICSVLt2rU1b948NWrUqErXTTABAAAAAAAAAMDfkJ2dnebOnav+/fsrPDxchw8fNt0pUa9ePbVr105PPfWUfH19i9V26dJFr776qqKionT27Fldu3ZNaWlpql69upo0aaJu3brpqaeeqtK7JQoRTAAAAAAAAAAAcIusWLGiQnVeXl5l3kFxs+7du6t79+4WjV+/fn29+OKLFVlapXHHBAAAAAAAAAAAsBqCCQAAAAAAAAAAYDUEEwAAAAAAAAAAwGoIJgAAAAAAAAAAgNUQTAAAAAAAAAAAAKshmAAAAAAAAAAAAFZDMAEAAAAAAAAAAKyGYAIAAAAAAAAAAFgNwQQAAAAAAAAAALAaggkAAAAAAAAAAGA1BBMAAAAAAAAAAMBqCCYAAAAAAAAAAIDVEEwAAAAAAAAAAACrIZgAAAAAAAAAAABWY3+7FwAAAAAAAAAAwJ1o7NixioyMlCT5+fkpODi4WJ+RI0dq3759ZY7zyCOPaNGiRcXe5+Xl6ddff1VMTIxiYmJ09OhR/fHHHzIajRo+fLhmzJhh8ZpTU1PVp08fJSQkSJKCgoLk7+9v8ThlIZgAAADA/2fvzuOirvf+/z9nWEZgQEXQQqlcU8S0TM02yyVzOXWh7WaKmS1qJz3HzHIpOymVRh6tTlZOZqnlSqh1WixatCg1TUg7bgWaiiIiA8wMy+8Pv8xPYnEGhhmlx/124wYz7+314XZdXl3z5P1+AwAAAAA8bN26dc5QwhXBwcEKDg6utC0sLKzS9w8fPqyRI0fWpLwqvfjii85Qoq4QTAAAAAAAAAAA4EE5OTmaNWuWQkND1bRpU+3du/esY0aNGqXx48e7vVZISIjat2+vjh07qmPHjnr77bf1yy+/1KRs/fDDD/rggw/UpUsX/fTTTzWawxUEEwAAAAAAAAAAeFBCQoKOHz+uGTNm6KOPPnIpmKiJqKgobdmyRQaDwfneqlWrajSX3W7XtGnT5Ofnp2eeeUa33nqrp8qsgMuvAQAAAAAAAADwkE2bNmnNmjXq3Lmz7rrrrjpdy2g0lgslauOVV17R/v37NWLECLVv394jc1aFYAIAAAAAAAAAAA8oLCzU9OnT5e/vr5kzZ8poPD8+gv/111/11ltvqXnz5jU6TspdHOUEAAAAAAAAAIAHzJs3TxkZGRo1apTbuw6Sk5O1evVqZWVlKTg4WK1atVKfPn109913y2w211HFUklJiaZOnSqHw6Hp06crKCioztYqQzABAAAAAAAAAKj3LBaLLBaLW2Pi4+MVHx/vUt+0tDQtXrxYUVFRNdp18NtvvykgIEBBQUHKzc3Vtm3btG3bNi1dulSvvfZanR2v9O6772r79u3q37+/brjhhjpZ488IJgAAAAAAAAAA9V5eXp6OHDni9hhXFBcXa9q0ac7vwcHBLq/RvXt3DR06VNdcc40iIiJkMBiUk5Oj9evX66WXXtKhQ4c0evRoJScnq3Hjxm7VfzZ//PGHEhMTFRISoqeeesqjc1eHYAIAAAAAAAAAUO+ZzWY1a9bM7TGusFgsSktLU79+/dS7d2+31qhsd0WjRo00bNgw5wXaWVlZslgsmjhxoltzn83TTz+t/Px8PfXUU27/bmqDYAIAAAAAAAAAUO+5cyyTOzIyMrRgwQKFhIRo6tSpHp07NjZWAwcOVFJSkr744guPBhPr16/Xl19+qY4dO2rYsGEem9cV58eV4AAAAAAAAAAAnINmz56tgoICjRkzRqGhobJareW+iouLJUlFRUXO90pKSlyev3PnzpJOByCeYrfb9dxzz8lgMOiJJ55QYWFhhbrP7Gu1WpWfn++x9dkxAQAAAAAAAABADR08eFCSlJiYqMTExCr7JScnKzk5WZK0du1adejQwSv1VaawsFDHjx+XJA0fPrzavjNmzNCMGTMUGhqqH3/80SPrs2MCAAAAAAAAAIBz1Pbt2yVJLVq08HElnsOOCQAAAAAAAAAAaigpKana9uHDhys1NVVxcXFKSEgo11ZaWiqDwVDl2PT0dG3YsEGSdOONN9a+2P8nLCxMu3fvrrbPpZdeKun0UVVDhgzx2NoSwQQAAAAAAAAAAD6xcOFCHThwQAMHDlSXLl0UGhoqSTp58qQ2bNigl156SQ6HQ5GRkRo1alSlc5w6dUoOh8P5uuxnm82m7Oxs5/tBQUEKCgqqw6dxHcEEAAAAAAAAAAA+YLfbtXr1aq1evVqSZDab5efnp9zcXJWWlkqSoqOjtWDBAjVu3LjSOR555BGlpqZWeH/lypVauXKl8/W4ceM0fvz4OngK9xFMAAAAAAAAAADgAzfffLOKi4u1bds2ZWRk6MSJE7LZbGrSpInatWunvn37Ki4uTsHBwb4u1aMIJgAAAAAAAAAAqCNLliypsq1t27Z67LHH6mz+2jjbHRS1YayzmQEAAAAAAAAAAP6EYAIAAAAAAAAAAHgNwQQAAAAAAAAAAPAaggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABeQzABAAAAAAAAAAC8hmACAAAAAAAAAAB4DcEEAAAAAAAAAADwGoIJAAAAAAAAAADgNQQTAAAAAAAAAADAawgmAAAAAAAAAACA1/j7ugAAAAAAAAAAAM5nl156qct9x48fr3HjxlXatmXLFi1evFhbt25VTk6OmjRpoquuukqjR49W27ZtKx2TmZmpPn36nHXdefPm6eabb67wflZWln744Qelp6crLS1N6enpysnJkSStXLlSnTp1cvnZXEUwAQAAAAAAAABALURERFTbXlBQIKvVKkmKjY2ttM/bb7+t559/XiUlJTIYDDKbzTp8+LDWrl2rDRs2aM6cOerfv3+16zRu3Fh+fn6VtplMpkrfX758uRYsWFDtvJ5GMAEAAAAAAAAAQC18++231bY//vjjSkpKUmRkpK677roK7Zs3b1ZCQoJKS0t15513asKECWrcuLEOHz6sZ599Vp999pkmTZqkdu3aqWXLllWus3LlSrVo0cKt2g0Ggy688ELFxMSoY8eOatq0qaZOnerWHO4imAAAAAAAAAAAoI7k5eXpk08+kSTdeuutle5omDNnjkpLS3Xddddp5syZzvcvuOACJSYmaujQofr111/173//W4mJiR6t7+GHHy53tFRmZqZH568Ml18DAAAAAAAAAFBHPvroIxUUFEiShgwZUqF937592rlzpyTpwQcfrNAeGBioUaNGSZI+//xz55FQnlLV0U91iWACAAAAAAAAAIA6smrVKknS5ZdfrtatW1do37x5syQpJCREV1xxRaVzXH/99ZIkm82mLVu21FGl3kMwAQAAAAAAAABAHdi3b5+2bdsmSRo6dGilffbu3StJat26dZW7F5o0aaLw8HBJ0p49e6pc77HHHlO3bt0UGxur66+/XuPHj9eXX35ZiyeoG9wxAQAAAAAAAACo9ywWiywWi1tj4uPjFR8fX+M1V69eLUkKCgrSgAEDKu1z9OhRSVKzZs2qnatZs2bKzs5WVlZWlX1+/vlnmc1m+fn56ciRI/rkk0/0ySef6Oabb9aLL76owMDAGj6JZxFMAAAAAAAAAADqvby8PB05csTtMTVVXFyspKQkSVL//v1lNpsr7Zefny9JatCgQbXzlbX/+Y4Jk8mke+65R4MGDVL79u2d6/zvf//TG2+8oaSkJH388ccKCwvTs88+W+Pn8SSCCQAAAAAAAABAvWc2m8+6K6GyMTX1zTffOHdDVHbptadERkZqxowZFd5v27atXnjhBYWHh8tisWjFihWKj49Xq1at6qwWVxFMAAAAAAAAAADqvdoey+Suskuvo6Oj1b179yr7BQcHS5IKCwurna+sPSQkxK06Hn30US1btkyFhYX68ssvz4lggsuvAQAAAAAAAADwoBMnTmjjxo2SpLi4OBkMhir7Nm3aVJLOesxUWXtkZKRbtQQHB6tNmzaSpIyMDLfG1hWCCQAAAAAAAAAAPCg5OVkOh0NGo/Gsxzi1bt1akrR3714VFxdX2uf48ePKzs6WJGfIcD4jmAAAAAAAAAAAwINWr14tSerZs6cuvPDCavv27NlT0ulLrbdt21Zpn6+//lrS6Yuuu3bt6lYt+fn52rNnjySpRYsWbo2tKwQTAAAAAAAAAAB4yC+//KJffvlFkjR06NCz9m/VqpViY2MlSQsXLqzQ7nA4tGjRIklS3759K9wxUVpaWu388+fPV2FhoQwGg2644QZXHqHOEUwAAAAAAAAAAOAhZZdeN2zYUH379nVpzD//+U8ZDAalpKTo6aefVk5OjqTT90pMnDhRu3fvlslk0vjx4yuMHT58uP7zn/9o165dKioqcr6/Z88eTZkyxRlq3Hbbbc5jo85UUlKi7Oxs51dubq6zLS8vr1xbSUmJy7+H6vh7ZBYAAAAAAAAAAP7i7Ha7kpOTJUmDBg2SyWRyaVzPnj01efJkPf/881q2bJmWL1+u0NBQZ0gQGBioF198US1btqww9tChQ0pMTFRiYqL8/f1lNptls9lUUFDg7DN48GBNnz690rUPHTqkPn36VNo2cuTIcq8///xzjxwHRTABAAAAAAAAAIAHfPHFF87dDme79PrP4uPj1alTJy1evFjbtm1TTk6OLrjgAvXo0UMPPPCA2rZtW+m4SZMmafPmzfr555+VlZWlnJwc+fv76+KLL1aXLl00ZMgQXXXVVbV9NI8imAAAAAAAAAAAwAP69++v3bt313j8lVdeqSuvvNKtMQMGDNCAAQNqvGaLFi1qVXNNcMcEAAAAAAAAAADwGoIJAAAAAAAAAADgNQQTAAAAAAAAAADAawgmAAAAAAAAAACA1xBMAAAAAAAAAAAAryGYAAAAAAAAAAAAXkMwAQAAAAAAAAAAvIZgAgAAAAAAAAAAeA3BBAAAAAAAAAAA8BqCCQAAAAAAAAAA4DUEEwAAAAAAAAAAwGsIJgAAAAAAAAAAgNcQTAAAAAAAAAAAAK8hmAAAAAAAAAAAAF7j7+sCAAAAAAAAAAA4n1166aUu9x0/frzGjRtX7r3MzExt2bJFaWlpSk9PV3p6uqxWqyRp8+bNCg8Pd2luu92uFStW6OOPP9aePXt06tQphYeH65JLLtFVV12lUaNGqUGDBpWO/fXXX/XWW2/pu+++0/Hjx9WoUSNdccUVGjFihLp27ery87mCYAIAAAAAAAAAgFqIiIiotr2goMAZNMTGxlZoX7BggdasWVOrGg4cOKCHHnpI+/fvlyT5+/srODhYR44c0ZEjR/T9999ryJAhuuCCCyqM3bBhgx5//HE5HA5JUmhoqI4dO6b//ve/+vTTTzVlyhTdd999tarvTAQTAAAAAAAAAADUwrfffltt++OPP66kpCRFRkbquuuuq9BuMBh00UUXqWPHjoqJiZEkzZ071+X1jx49quHDh+vo0aPq0qWLHnvsMXXv3l1+fn4qLCzUr7/+qv/+978KDAysMHbv3r2aPHmyHA6H+vbtq2nTpumCCy7QiRMnlJiYqPfff1+zZ89W+/bt1b17d5drqg7BBAAAAAAAAAAAdSQvL0+ffPKJJOnWW2+Vn59fhT7/+te/yr3//fffu7XGM888o6NHj+rKK6+UxWIpF0A0aNBAl112mS677LJKx86bN092u13t2rXTyy+/rICAAElS48aNNXPmTB08eFDffPON5syZow8++MCtuqrC5dcAAAAAAAAAANSRjz76SAUFBZKkIUOGVNqnsrDCVb/++qs+++wzSdLTTz9d6a6IquTl5Wnjxo2SpPvvv98ZSpzpwQcflCRt375dv/32W43rPBPBBAAAAAAAAAAAdWTVqlWSpMsvv1ytW7f2+PwffvihJKl9+/Zq27atW2O3bNnivFeisiOmJKlr164KCQmRJG3atKkWlf7/CCYAAAAAAAAAAKgD+/bt07Zt2yRJQ4cOrZM1yuaPiYnRqVOn9MILL6hv376KjY1Vz5499eCDDyolJaXSsXv27JEkNWnSRE2aNKm0j5+fn1q1alWuf21xxwQAAAAAAAAAoN6zWCyyWCxujYmPj1d8fHyN11y9erUkKSgoSAMGDKjxPNU583ilIUOG6Pfff5e/v79CQkJ04sQJffnll/ryyy8VHx+vJ554otzYo0ePSpKaNWtW7RrNmjXTzz//rKysLI/UTDABAAAAAAAAAKj38vLydOTIEbfH1FRxcbGSkpIkSf3795fZbK7xXNU5efKkJGnt2rUyGo168skndccddygoKEhZWVl68cUXlZSUJIvFopiYGN1yyy3Osfn5+ZJOX5BdnbJ2q9XqkZoJJgAAAAAAAAAA9Z7ZbD7rzoDKxtTUN99849yRUNWl155QWloqSSopKdEDDzygESNGONsiIyP1/PPPa8+ePUpLS9Prr79eLpjwFYIJAAAAAAAAAEC9V9tjmdxVdul1dHS0unfvXmfrhISEKCcnR5I0cuTICu0Gg0Hx8fH65z//qT179ujo0aNq2rSpJCk4OFiSVFhYWO0aZe1ll2DXFpdfAwAAAAAAAADgQSdOnNDGjRslSXFxcTIYDHW2VlnI0KhRI4WHh1fap+zyakk6fPhwhbFnO+KqrD0yMrJWtZYhmAAAAAAAAAAAwIOSk5PlcDhkNBrr9BgnSWrbtm2Nx7Zp00aSdPz4cWVnZ1fap7i4WPv27SvXv7YIJgAAAAAAAAAA8KDVq1dLknr27KkLL7ywTte6+uqrJUk5OTlVhgtlwYIkNW/e3Plz165dFRgYKEn66quvKh27detW56XXZWvVFsEEAAAAAAAAAAAe8ssvv+iXX36RJA0dOrTO1+vXr5/z7geLxVKhvbS01Pl+p06d1KRJE2eb2WzWjTfe6BzrcDgqjF+4cKEkqUuXLrr44os9UjPBBAAAAAAAAAAAHlJ26XXDhg3Vt29fl8Y4HA5lZ2c7v06dOuVsO3nyZLm2P2vYsKEefvhhSdKiRYv0zjvvOC+rzsrK0hNPPKG0tDQZDAY9+uijFcb//e9/V2BgoHbt2qWJEyc675PIycnR008/ra+++koGg0H/+Mc/3PtFVMPfYzMBAAAAAAAAAPAXZrfblZycLEkaNGiQTCaTS+O2bt2q++67r9K2m2++udzr3bt3V+gzevRo7du3T6tXr9Zzzz2n559/XmazWSdPnlRpaamMRqOeeOIJXX/99RXGtm7dWs8//7wef/xxffLJJ/rkk08UFhamU6dOOcdOmTJF3bt3d+lZXEEwAQAAAAAAAACAB3zxxRfKycmRpDq/9PpMBoNBs2fP1o033qj3339faWlpysvLU9OmTdWtWzeNHDlSnTp1qnL8wIED1aZNG7355pv67rvvlJ2drYiICF1++eUaOXKkunbt6tF6CSYAAAAAAAAAAPCA/v37V7qj4Wx69OhRo3F/dtNNN+mmm26q0dh27drphRdeqHUNruCOCQAAAAAAAAAA4DUEEwAAAAAAAAAAwGsIJgAAAAAAAAAAgNcQTAAAAAAAAAAAAK8hmAAAAAAAAAAAAF5DMAEAAAAAAAAAALyGYAIAAAAAAAAAAHgNwQQAAAAAAAAAAPAaggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABeQzABAAAAAAAAAAC8xt/XBQAAAAAAAAAAUB+NGTNGKSkpkqS4uDglJCSUay8pKdGqVav0888/Kz09XVlZWcrOzpafn58uvPBCdevWTcOGDdOll15a7ToFBQWyWCz6+OOPlZGRIaPRqFatWumWW27RPffcIz8/P5drPnXqlAYMGKCsrCxJ0uzZszVkyBA3n7x6BBMAAAAAAAAAAHjYunXrnKFEVRwOh6ZOnep8bTAYFBYWpry8PO3bt0/79u3TypUrNXnyZI0YMaLSOY4dO6Z7771X+/fvlyQFBQXJbrdrx44d2rFjhz7++GO99dZbatCggUt1v/jii85Qoq5wlBMAAAAAAAAAAB6Uk5OjWbNmKTQ0VK1bt66yn9Fo1H333adXXnlFX3zxhXbu3KnU1FT9/PPPWrlypa699loVFxdr9uzZ2rJlS6VzPPbYY9q/f78iIyNlsVj0008/afv27UpMTFRISIh+/PFHzZw506W6f/jhB33wwQfq0qVLTR7bZQQTAAAAAAAAAAB4UEJCgo4fP66JEyeqSZMmVfYLCAjQU089pb59+yoqKkr+/qcPOfLz81OnTp302muvqUWLFiotLdXq1asrjP/yyy/1ww8/SJLmz5+vq6++WtLpwGPgwIHOQGLNmjXas2dPtTXb7XZNmzZNfn5+euaZZ2r03K4imAAAAAAAAAAAwEM2bdqkNWvWqHPnzrrrrrtqNVdgYKA6dOggSTpy5EiF9qSkJElSjx49dPnll1doHzRokFq0aKGSkhIlJydXu9Yrr7yi/fv3a8SIEWrfvn2t6j4bggkAAAAAAAAAADygsLBQ06dPl7+/v2bOnCmjsXYfwRcWFio9PV2SFB0dXaH9u+++kyRdf/31lY43GAy67rrrJEmbN2+ucp1ff/1Vb731lpo3b67x48fXqmZXcPk1AAAAAAAAAAAeMG/ePGVkZGjUqFE13nVQWlqqEydOaPfu3Xr11Vd18OBB+fv7a9iwYeX6ZWdnKzs7W5LUtm3bKucra6vqKKeSkhJNnTpVDodD06dPV1BQUI3qdgfBBAAAAAAAAACg3rNYLLJYLG6NiY+PV3x8vEt909LStHjxYkVFRdVo18HChQs1d+7cCu83bdpUCQkJatOmTbn3jx496vy5WbNmVc5b1ma1WmW1WhUSElKu/d1339X27dvVv39/3XDDDW7XXRMEEwAAAAAAAACAei8vL6/SexrONsYVxcXFmjZtmvN7cHCw2/UFBwcrIiJCxcXFysnJUWlpqSIjIzVlyhRdddVVFfrn5+c7f65ul8OZbX8OJv744w8lJiYqJCRETz31lNs11xTBBAAAAAAAAACg3jObzdXuLKhqjCssFovS0tLUr18/9e7duybl6d5779W9994rSbLZbPrpp5/00ksvacKECbr22ms1b948l+tx1dNPP638/Hw99dRTbv9uaoNgAgAAAAAAAABQ77lzLJM7MjIytGDBAoWEhGjq1KkemdNkMqlHjx5asmSJ7rnnHn3zzTf697//rSeffNLZ58xdGQUFBVXOdWbbmbsl1q9fry+//FIdO3ascH9FXavdleAAAAAAAAAAAPyFzZ49WwUFBRozZoxCQ0OddzmUfRUXF0uSioqKnO+VlJS4NHdgYKDuueceSdLKlSvLtTVt2tT5c3VHVJW1hYSEOIMJu92u5557TgaDQU888YQKCwsr1F3GbrfLarWWOzqqttgxAQAAAAAAAABADR08eFCSlJiYqMTExCr7JScnKzk5WZK0du1adejQwaX5z7y8+vjx42rSpIkkKTw8XOHh4crOztb//vc/9erVq9Lx//vf/ySp3OXZhYWFOn78uCRp+PDh1a4/Y8YMzZgxQ6Ghofrxxx9dqvls2DEBAAAAAAAAAMA5KiMjw/nzny/V7tmzpyTp66+/rnRsaWmpvvnmm3J9zwXsmADgEWdu76rsNQAAAAAAAFAfJSUlVds+fPhwpaamKi4uTgkJCeXaioqK5O9f9cf0BQUFeu+99yRJsbGxCgoKKtd+yy23aP369fr++++1fft2de7cuVz7Rx99pIyMDBmNRv3tb39zvh8WFqbdu3dXW/ell14q6fRRVUOGDKm2r7sIJgDUSkBAgEwmkwYNGuTrUgAAAAAAAIDzyksvvaTc3FwNHjxYnTp1ct4BUVhYqO+//17z5s3Tr7/+KkkaN25chfE33HCDunXrph9++EHjx4/X888/r549e6qkpET//e9/NW3aNElSXFxcuaOcfI1gAkCtmEwmbdy4UQ6Ho9z7VquVsAIAAAAAAACohsPh0IoVK7RixQoZDAaZzWb5+fkpNzfXeUF2gwYN9NRTT+nGG2+sdI6XX35Z9957r/bv36+RI0cqKChIJSUlstlskqQrr7xS06dP99ozuYJgAkCtmUwmmUwmX5cBAAAAAAAAnFeGDx+uqKgoff/999q/f7+OHTumvLw8hYWFqWXLlurZs6duu+02NW/evMo5IiIitGbNGlksFn300UfKzMyUv7+/2rVrp1tvvVX33HOP/Pz8vPhUZ0cwAQAAAAAAAABAHVmyZEmVbRdddJHi4+MVHx9fqzWCgoL0yCOP6JFHHqnVPGc62x0UtWGss5kBAAAAAAAAAAD+hGACAAAAAAAAAAB4DcEEAAAAAAAAAADwGoIJAAAAAAAAAADgNQQTAAAAAAAAAADAawgmAAAAAAAAAACA1xBMAAAAAAAAAAAAryGYAAAAAAAAAAAAXkMwAQAAAAAAAAAAvIZgAgAAAAAAAAAAeA3BBAAAAAAAAAAA8BqCCQAAAAAAAAAA4DUEEwAAAAAAAAAAwGsIJgAAAAAAAAAAgNf4+7oAAAAAAAAAAADqozFjxiglJUWSFBcXp4SEhAp9MjMztWXLFqWlpSk9PV3p6emyWq2SpM2bNys8PLzaNX788Ufn2LS0NO3bt0/FxcW64YYb9Prrr7tdc1FRkYYMGaLdu3dLksaNG6fx48e7PU91CCYAAAAAAAAAAPCwdevWOUOJ6ixYsEBr1qyp8TrDhg2r8djKvPXWW85Qoq4QTAAAAAAAAAAA4EE5OTmaNWuWQkND1bRpU+3du7fKvgaDQRdddJE6duyomJgYSdLcuXNdXqtBgwZq166dYmJiFBsbq48//ljffPNNjeo+cOCAXnnlFTVv3lw2m03Hjh2r0TxnQzABAAAAAAAAAIAHJSQk6Pjx45oxY4Y++uijaoOJf/3rX/Lz83O+/v77791aa+vWreXGb9myxf2C/59p06bJZrNpxowZeuaZZ2o8z9lw+TUAAAAAAAAAAB6yadMmrVmzRp07d9Zdd9111v5nhgo1UdvxZVasWKHU1FTdfPPN6tWrl0fmrArBBAAAAAAAAAAAHlBYWKjp06fL399fM2fOlNF4fnwEn5WVpRdeeEFms1lPPfVUna93fvxWAAAAAAAAAAA4x82bN08ZGRm677771L59e1+X47Jnn31Wubm5mjhxopo2bVrn63HHBAAAAAAAAACg3rNYLLJYLG6NiY+PV3x8vEt909LStHjxYkVFRWn8+PE1KdEnPv/8c/33v/9Vp06ddPfdd3tlTYIJAAAAAAAAAEC9l5eXpyNHjrg9xhXFxcWaNm2a83twcHBNSvS6vLw8zZw5U35+fl49eopgAgAAAAAAAABQ75nNZjVr1sztMa6wWCxKS0tTv3791Lt375qU5xNz587V4cOHNXLkSMXExHhtXYIJAAAAAAAAAEC9586xTO7IyMjQggULFBISoqlTp3p8/rqydetWLVu2TBdeeKEeffRRr65NMAEAAAAAAAAAQA3Nnj1bBQUFmjBhgkJDQ2W1Wsu1FxcXS5KKioqcbUFBQV47NqkqzzzzjEpLSzVx4kRJqlB3aWmpJMnhcDjbQkJCPLI2wQQAAAAAAAAAADV08OBBSVJiYqISExOr7JecnKzk5GRJ0tq1a9WhQwev1FeVsronTZpUbb/XX39dr7/+uiTphx9+UFhYWK3X9m0kAwAAAAAAAAAA/lLYMQEAAAAAAAAAQA0lJSVV2z58+HClpqYqLi5OCQkJXqrq7H788cdq23v37q2DBw9q3LhxGj9+vEfXJpgAAAAAAAAAAMBHHA6HTp065Xx95s8nT54s1zc8PLzCeKvVKpvN5nxtt9slnb7TIjs72/m+yWTy2B0RtUUwAQAAAAAAAACAj2zdulX33XdfpW0333xzude7d++u0OfZZ5/VmjVrKrz/zTffqGfPns7X59KODe6YAAAAAAAAAAAAXsOOCQAAAAAAAAAA6siSJUuqbe/Ro0elOyFclZCQUCc7ITZu3OjxOcuwYwIAAAAAAAAAAHgNwQQAAAAAAAAAAPAaggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABeQzABAAAAAAAAAAC8hmACAAAAAAAAAAB4DcEEAAAAAAAAAADwGoIJAAAAAAAAAADgNQQTAAAAAAAAAADAawgmAAAAAAAAAACA1xBMAAAAAAAAAAAAr/H3dQEAAAAAAAAAAJzvtm7dqpSUFO3cuVMZGRk6fvy4bDabGjVqpJiYGP3tb3/T4MGDZTAYKozdu3evtm3bprS0NKWnp2vXrl0qLCxUcHCwtm3b5tL6KSkpWrlypbZv367s7Gz5+/urWbNm6t69u4YNG6b27dtXOTY7O1tLlixRSkqKDhw4IJvNptDQULVt21YDBgzQbbfdpsDAwBr/bv6MYAIAAAAAAAAAgFpasmSJNmzY4HwdHBwsf39/ZWVlKSUlRSkpKVqxYoVeffVVmc3mcmOffvpppaam1mjd0tJSTZs2TStWrCi3tsPh0IEDB3TgwAGtWrVKU6dO1T333FNhfFpamkaPHq3s7GxJktFoVEhIiE6cOKHU1FSlpqbqgw8+0KJFixQeHl6jGv+Mo5wAAAAAAAAAAKilHj166Nlnn1VSUpK2bt2qbdu26aefftI333yjxx57TH5+fvr+++/1/PPPVxjr5+enNm3a6JZbbtGUKVMUHx/v8rqrVq1yhhL33HOPvvrqK23btk07duzQqlWr1LVrVxUXF+tf//qX9uzZU25sUVGRHn30UWVnZysqKkqvv/66duzYoR9//FFbtmzRk08+KX9/f/3yyy967rnnavcLOgM7JgAAAAAAAAAAqKW77rqr0vcjIyP18MMPq7CwUP/5z3/04Ycfavr06QoICHD2eeutt+Tn5+d8vXr1apfXTUpKkiR1795dM2bMcL5vNBoVGxur119/Xddff73y8/P16aefqk2bNs4+W7duVWZmpiQpISFBPXr0cLaZzWaNGDFCJ06c0GuvvaZPPvlEJSUlMhprv9+BHRMAAAAAAAAAANSxyy67TJJUWFiokydPlms7M5RwV1ZWliQpNja20vbQ0FC1bNlSkpSfn1/p2OrGl9XtcDjkcDhqXOeZCCYAAAAAAAAAAKhjW7ZskXT6/ocmTZp4bN4WLVpIknbu3Flp+6lTp7R//35JUseOHSsdW934HTt2SJLatGkjk8lU63olggkAAAAAAAAAAOpEfn6+9u7dq7lz52rRokWSpPvuu08Gg8Fja5QdIZWamqpnnnlGR44ckXT6Uuy0tDQ9+OCDys/PV/fu3XXTTTeVG9upUyfFxMRIkqZMmaKUlBTnroi8vDwtXrxYb775pgICAjR58mSP1cwdEwAAAAAAAACAes9ischisbg1Jj4+3q2LqKXTxyNde+21Fd4PCAjQvffeq0cffdSt+c6mb9++mjRpkhITE7V06VItXbpUwcHBzqOXIiMj9dBDD2ns2LEV7ocwGo2aP3++xo4dq127dmnMmDEyGo0KCQnRqVOnZDQa1bNnT40dO1Zdu3b1WM0EEwAAAAAAAACAei8vL8+5m8CdMe7y8/NTRESEJCk3N1d2u10Gg0H33XefRo0aVav7JKoyevRoXXTRRZo6dapOnjxZ7i4Ju90uq9Uqm82mwMDACmNbtGghi8WiGTNmOC+4PnXqlCSppKRE+fn5zteeQjABAAAAAAAAAKj3zGazmjVr5vYYd4WHh+vbb7+VdPqD/YMHD2rx4sV6++23tXr1ai1YsEBXXnml2/NWJT8/X48//rg+/fRTXXPNNRo7dqzatWunwsJC/fTTT5ozZ46WLFmi77//XkuXLlVoaGi58SkpKZo4caIMBoOefPJJ9e7dWxEREcrIyNDy5cu1bNkyPfTQQ3r22Wd1++23e6RmggkAAAAAAAAAQL1Xk2OZastoNCo6OlpTp05VixYtNHv2bE2cOFH//e9/FRQU5JE1EhIS9Omnn6p79+566623nPdXhIaGql+/frriiis0aNAg/frrr1q4cKH+8Y9/OMdmZmZq3Lhxcjgcslgs6tmzp7OtXbt2mj59uho2bKhXX31Vs2fPVp8+fRQeHl7rmrn8GgAAAAAAAACAOnb33XcrMDBQR44c0VdffeWROfPy8rRy5UpJp4OXyi7VbtKkif7v//5PkvTpp5+Wa1u2bJnsdrtiYmLKhRJnuv/++yVJVqtVmzdv9kjdBBMAAAAAAAAAANQxk8mkRo0aSZJ+//13j8x54MABFRcXS5IuuuiiKvtdfPHFkqSDBw+We3/v3r2SpOjo6CrHms1m550Zfx5fUwQTAAAAAAAAAADUMavVqhMnTkiSgoODPTKn0fj/f8RfXWhw/PhxSRXvzCjbYXHo0KEqx9rtduXm5kqSQkJCalzrmQgmAAAAAAAAAACohaKiorP2efvtt+VwOCRJ3bp188i6rVq1kslkknT6WKbK5Ofna+3atZKkzp07l2uLiYmRJKWlpWnHjh2Vjl+1apXsdrskqUuXLh6ommACAAAAAAAAAIBa+d///qc777xTa9as0eHDh53vl5aWas+ePZo5c6bmz58vSerfv7/atWtXbrzdbld2drbzKz8/39l25vsnT54sN65BgwYaOnSoJOmLL77QpEmT9Pvvv6u0tFQOh0Nbt27V8OHDlZGRIUkaMWJEufFDhw6VyWRScXGxxo4dqw0bNqigoMC57iuvvKLnnntO0ukwpWPHjp74dcnfI7MAAAAAAAAAAPAX9tNPP+mnn36SdPo+ieDgYOXn58tmszn79O7dW88//3yFsevWrdOUKVMqvJ+fn1/uUurmzZtr48aN5fo8/vjj2rdvn7777jt9+OGH+vDDDxUUFCSHw+HcyWE0GvXPf/6zwgXXCrn/XAAAgLpJREFUUVFRmjNnjiZNmqSjR49qwoQJMhgMCg4OltVqdfZr3bq15s6d6/4vpQoEEwAAAAAAAAAA1ELLli01d+5cfffdd/r555917Ngx5eTkKDAwUK1atdJll12mW265Rddcc43H1w4KCpLFYtG6deu0bt06paenKycnR35+fmrevLm6du2qYcOGKTY2ttLxN910kzp06KB3331XmzdvVkZGhgoLC9WoUSO1bdtW/fr105133qkGDRp4rGaCCQAAAAAAAAAAaqFBgwYaPHiwBg8eXKPxQ4YM0ZAhQ2q8vtFo1C233KJbbrmlRuOjo6Mr3bFRV7hjAgAAAAAAAAAAeA3BBAAAAAAAAAAA8BqCCQAAAAAAAAAA4DUEEwAAAAAAAAAAwGsIJgAAAAAAAAAAgNcQTAAAAAAAAAAAAK8hmAAAAAAAAAAAAF5DMAEAAAAAAAAAALyGYAIAAAAAAAAAAHgNwQQAAAAAAAAAAPAaggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABe4+/rAgAAAAAAAAAAqI/GjBmjlJQUSVJcXJwSEhKq7LtlyxYtXrxYW7duVU5Ojpo0aaKrrrpKo0ePVtu2basc9+OPPyotLU3p6elKS0vTvn37VFxcrBtuuEGvv/56leMyMzPVp08fl58lISFBcXFxLvevDsEEAAAAAAAAAAAetm7dOmcocTZvv/22nn/+eZWUlMhgMMhsNuvw4cNau3atNmzYoDlz5qh///6Vjh02bFiN6vPz81NERES1faxWqwoKCiRJsbGxNVqnMgQTAAAAAAAAAAB4UE5OjmbNmqXQ0FA1bdpUe/furbLv5s2blZCQoNLSUt15552aMGGCGjdurMOHD+vZZ5/VZ599pkmTJqldu3Zq2bJlhfENGjRQu3btFBMTo9jYWH388cf65ptvzlrjhRdeqG+//bbaPsOGDdOPP/6oTp06Vbtrw13cMQEAAAAAAAAAgAclJCTo+PHjmjhxopo0aVJt3zlz5qi0tFTXXXedZs6cqcaNG0uSLrjgAiUmJqpdu3ay2Wz697//Xen4rVu3asWKFXrmmWd0++23KzIy0iPP8Ntvv+nHH3+UJA0ZMsQjc5YhmAAAAAAAAAAAwEM2bdqkNWvWqHPnzrrrrruq7btv3z7t3LlTkvTggw9WaA8MDNSoUaMkSZ9//rmsVmuFPn5+fh6ouqLVq1dLkkwmkwYPHuzRuQkmAAAAAAAAAADwgMLCQk2fPl3+/v6aOXOmjMbqP4LfvHmzJCkkJERXXHFFpX2uv/56SZLNZtOWLVs8W3AVSkpKlJSUJEnq16+fwsLCPDo/d0wAAAAAAAAAAOo9i8Uii8Xi1pj4+HjFx8e73H/evHnKyMjQqFGj1L59+7P2L7t7onXr1lXufGjSpInCw8OVnZ2tPXv2OIOKuvTtt9/qjz/+kCQNHTrU4/MTTAAAAAAAAAAA6r28vDwdOXLE7TGuSktL0+LFixUVFaXx48e7NObo0aOSpGbNmlXbr1mzZsrOzlZWVpbL9dRG2TFOUVFRuuqqqzw+P8EEAAAAAAAAAKDeM5vNZw0AKhvjiuLiYk2bNs35PTg42KVx+fn5kqQGDRpU26+svbI7Jjzt5MmT+uyzzyRJcXFxZz2OqiYIJgAAAAAAAAAA9Z67xzK5w2KxKC0tTf369VPv3r3rZA1vWbdunex2uwwGg+Li4upkDS6/BgAAAAAAAACghjIyMrRgwQKFhIRo6tSpbo0t21lRWFhYbb+y9pCQkJoV6YayY5y6d++u6OjoOlmDHRMAAAAAAAAAANTQ7NmzVVBQoAkTJig0NLTCcUvFxcWSpKKiImdbUFCQjEajmjZtKklnvfuirD0yMtLT5Zfz66+/aufOnZKkIUOG1Nk6BBMAAAAAAAAAANTQwYMHJUmJiYlKTEyssl9ycrKSk5MlSWvXrlWHDh3UunVrSdLevXtVXFwsPz+/CuOOHz+u7OxsSVKbNm08XX45q1atknT6bo3+/fvX2Toc5QQAAAAAAAAAgA/07NlT0ulLrbdt21Zpn6+//lqSZDKZ1LVr1zqrxeFw6MMPP5QkDRw4UEFBQXW2FjsmAAAAAAAAAACooaSkpGrbhw8frtTUVMXFxSkhIaFcW6tWrRQbG6udO3dq4cKFuvLKK8u1OxwOLVq0SJLUt2/fOr1jIiUlxbkzY+jQoXW2jsSOCQAAAAAAAAAAfOaf//ynDAaDUlJS9PTTTysnJ0fS6XslJk6cqN27d8tkMmn8+PGVjrdarcrOznZ+2e12SafvtDjz/T/fffFnZcc4tW7dWl26dPHY81WGHRMAAAAAAAAAAPhIz549NXnyZD3//PNatmyZli9frtDQUOXm5kqSAgMD9eKLL6ply5aVjn/22We1Zs2aCu9/8803zqOiJFW6Y6PMsWPH9NVXX0mq20uvyxBMAAAAAAAAAADgQ/Hx8erUqZMWL16sbdu2KScnRxdccIF69OihBx54QG3btq3T9T/88EMVFRXJz89Pt956a52uJRFMAAAAAAAAAABQZ5YsWeJSvyuvvLLCHROuSEhIqHInhKtGjRqlUaNG1WoOd3DHBAAAAAAAAAAA8BqCCQAAAAAAAAAA4DUEEwAAAAAAAAAAwGsIJgAAAAAAAAAAgNcQTAAAAAAAAAAAAK8hmAAAAAAAAAAAAF5DMAEAAAAAAAAAALyGYAIAAAAAAAAAAHgNwQQAAAAAAAAAAPAaggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABe4+/rAgAAAAAAAAAAqI/GjBmjlJQUSVJcXJwSEhIq9Bk+fLhSU1OrneeGG27Q66+/XmX7d999p6VLl2rr1q3KyclRWFiYYmNjddddd6l3795VjsvKytIPP/yg9PR0paWlKT09XTk5OZKklStXqlOnTi48pfsIJgAAAAAAAAAA8LB169Y5QwlXBAcHKzg4uNK2sLCwKsc9//zzWrRokSTJYDAoLCxMOTk5SklJUUpKiu666y4988wzlY5dvny5FixY4HKNnkIwAQAAAAAAAACAB+Xk5GjWrFkKDQ1V06ZNtXfv3rOOGTVqlMaPH+/WOkuXLnWGEvHx8XrwwQfVuHFj5efna/ny5Zo7d66WL1+uSy65RPHx8RXGGwwGXXjhhYqJiVHHjh3VtGlTTZ061a0aaoJgAgAAAAAAAAAAD0pISNDx48c1Y8YMffTRRy4FE+4qKipy7nbo37+/nnjiCWdbcHCwRo0apRMnTmjhwoV65ZVXdNtttyk0NLTcHA8//LDGjRvnfJ2ZmenxOivD5dcAAAAAAAAAAHjIpk2btGbNGnXu3Fl33XVXna2Tlpam48ePSzq926Iy999/vyTp1KlT+vTTTyu0+/n51Vl91SGYAAAAAAAAAADAAwoLCzV9+nT5+/tr5syZMhrr7iP4gwcPOn9u1apVpX0aNWqkJk2aSJK+/fbbOqvFXRzlBAAAAAAAAACo9ywWiywWi1tj4uPjK72boSrz5s1TRkaGRo0apfbt27u1VnJyslavXq2srCwFBwerVatW6tOnj+6++26ZzeZqxxYXF5+17X//+59b9dQlggkAAAAAAAAAQL2Xl5enI0eOuD3GVWlpaVq8eLGioqLcvsRakn777TcFBAQoKChIubm52rZtm7Zt26alS5fqtddeqxB0NG/e3Pnznj171K1btwpzZmVlKScnR5J09OhRt2uqKwQTAAAAAAAAAIB6z2w2q1mzZm6PcUVxcbGmTZvm/B4cHOzyGt27d9fQoUN1zTXXKCIiQgaDQTk5OVq/fr1eeuklHTp0SKNHj1ZycrIaN27sHNexY0eFh4crOztbr7/+eqXBxH/+8x/nz+6ELHWNYAIAAAAAAAAAUO+5eyyTOywWi9LS0tSvXz/17t3brbGV7a5o1KiRhg0b5rxAOysrSxaLRRMnTnT28ff310MPPaRZs2bp66+/1uOPP64HH3xQF110kbKysrR06VK99957CggIkMPhqNP7Ltx17lQCAAAAAAAAAMB5JiMjQwsWLFBISIimTp3q0bljY2M1cOBASdIXX3xRoX3EiBEaNmyYJCkpKUkDBw5UbGysbrzxRr3xxhuKjY3VkCFDJElhYWEera02CCYAAAAAAAAAAKih2bNnq6CgQGPGjFFoaKisVmu5r7LLp4uKipzvlZSUuDx/586dJZ0OQCozffp0vfPOO7rlllvUpk0bRUVF6YorrtCUKVO0dOlS2Ww2SVLLli1r+aSew1FOAAAAAAAAAADU0MGDByVJiYmJSkxMrLJfcnKykpOTJUlr165Vhw4dPFZDjx491KNHj0rb0tLSJEldunTx2Hq1xY4JAAAAAAAAAADOUdu3b5cktWjRwu2xu3bt0v/+9z9J0q233urRumqDHRMAAAAAAAAAANRQUlJSte3Dhw9Xamqq4uLilJCQUK6ttLRUBoOhyrHp6enasGGDJOnGG290q67CwkI9/fTTkqR+/fqpTZs2bo2vSwQTAAAAAAAAAAD4wMKFC3XgwAENHDhQXbp0UWhoqCTp5MmT2rBhg1566SU5HA5FRkZq1KhRFcbv3r1bn376qfr27atWrVopMDBQDodDqampeumll7Rz5041a9ZMM2bMqHT9kpIS5eTkOF/n5uY6f87Ly1N2drbzdaNGjWQ0euYQJoIJAAAAAAAAAAB8wG63a/Xq1Vq9erUkyWw2y8/PT7m5uSotLZUkRUdHa8GCBWrcuHGF8Tk5OZo/f77mz58vg8GgsLAwWa1WFRUVSZJat26t//znP4qMjKx0/UOHDqlPnz6Vto0cObLc688//7xGx0lVhmACAAAAAAAAAAAfuPnmm1VcXKxt27YpIyNDJ06ckM1mU5MmTdSuXTv17dtXcXFxCg4OrnR869at9dBDD+n7779XZmamcnJyFBYWprZt22rAgAG67bbbFBAQ4OWnOjuCCQAAAAAAAAAA6siSJUuqbGvbtq0ee+yxGs8dERGhCRMm1Hh8ixYttHv37hqPrynPHAgFAAAAAAAAAADgAoIJAAAAAAAAAADgNQQTAAAAAAAAAADAawgmAAAAAAAAAACA1xBMAAAAAAAAAAAAryGYAHDes9vtvi4BAAAAAAAAgIsIJgCc9xwOh69LAAAAAAAAAOAiggkAAAAAAAAAAOA1BBMAAAAAAAAAAMBrCCYAAAAAAAAAAIDXEEwAAAAAAAAAAACvIZgAAAAAAAAAAABeQzABAAAAAAAAAAC8hmACAAAAAAAAAAB4jb+vCwAAAAAAAAAA4HxXUFCg1NRUpaWlKT09XWlpaTp06JAk6fHHH9f9999f7fjs7GwtWbJEKSkpOnDggGw2m0JDQ9W2bVsNGDBAt912mwIDAyuM6927tw4ePOhSjUOGDNHs2bPLvZeenq6NGzfqhx9+0J49e5STk6MGDRro4osv1g033KB7771X4eHhLv4WXEMwAQAAAAAAAABALe3YsUNjxoyp0di0tDSNHj1a2dnZkiSj0aiQkBCdOHFCqampSk1N1QcffKBFixZVCAkaN24sm81W5dx2u125ubmSpNjY2HJtH374oSZNmuR8bTAYFBoaqry8PKWlpSktLU1Lly7VggULdOWVV9bo2SpDMAEAAAAAAAAAgAc0bNhQMTExiomJUceOHTV79mxlZWVVO6aoqEiPPvqosrOzFRUVpRkzZuiaa65RQECA8vLytGrVKr3wwgv65Zdf9Nxzz2nu3Lnlxq9atara+efNm6dXX31VgYGBGjx4cIW1TSaTBg0apIEDB6pr164KDg6WzWbT119/rVmzZungwYN6+OGH9fHHH6tJkyY1+8X8CcEEAAAAAAAAAAC1dOWVVyo1NbXce38OESqzdetWZWZmSpISEhLUo0cPZ5vZbNaIESN04sQJvfbaa/rkk09UUlIio9G166NLSkq0du1aSVKfPn3UsGHDcu1dunTRZ599pqZNm5Z732QyqW/fvrr00ks1ePBg5ebmavny5Ro7dqxL654Nl18DAAAAAAAAAFBLfn5+NRp35o6KPx+1VOayyy6TJDkcDjkcDpfn/u6775z3XAwdOrRCe6tWrSqEEmeKjo52BiU7d+50ed2zIZgAAAAAAAAAAMBHWrRo4fy5qg//d+zYIUlq06aNTCaTy3OXHfN0wQUX6JprrqlRfWXrlZSU1Gh8ZTjKCQAAAAAAAABQ71ksFlksFrfGxMfHKz4+vo4qOq1Tp06KiYlRenq6pkyZohkzZujqq68ud8fEm2++qYCAAE2ePNnleU+dOqXPPvtMkvR///d/Lh//dCaHw6GtW7dKktq1a+f2+KoQTAAAAAAAAAAA6r28vDwdOXLE7TF1zWg0av78+Ro7dqx27dqlMWPGyGg0KiQkRKdOnZLRaFTPnj01duxYde3a1eV5161bp8LCQknSkCFDalTbO++8o2PHjsnPz09xcXE1mqMyBBMAznt2u93XJQAAAAAAAOAcZzab1axZM7fHeEOLFi1ksVg0Y8YM5wXXp06dknT6CKX8/Hzna1etXr1aktStWzddfPHFbte0fft2vfzyy5KkESNGqFWrVm7PURWCCQDnvaKiIl+XAAAAAAAAgHOcN45lqqmUlBRNnDhRBoNBTz75pHr37q2IiAhlZGRo+fLlWrZsmR566CE9++yzuv3228863549e5z3UtRkt0RGRobGjh0ru92uyy+/XBMnTnR7juoQTAAAAAAAAAAA4COZmZkaN26cHA6HLBaLevbs6Wxr166dpk+froYNG+rVV1/V7Nmz1adPH4WHh1c7Z9ml18HBwbr55pvdqufQoUMaMWKEsrKydOmll+r1119XQECA+w9WDfdvuwAAAAAAAAAAAB6xbNky2e12xcTElAslznT//fdLkqxWqzZv3lztfEVFRfrwww8lSQMGDFBwcLDLtRw+fFj33XefDh48qDZt2ujtt99Ww4YNXR7vKoIJAAAAAAAAAAB8ZO/evZKk6OjoKvuYzWZFRERIkg4ePFjtfCkpKTp27JgkaejQoS7XceTIEd13333KyMjQJZdcIovFctadGTVFMAEAAAAAAAAAgI8YDAZJp49Qqordbldubq4kKSQkpNr5yi69vuSSS9S1a1eXaigLJX777TdFR0dr8eLFatq0qUtja4JgAgAAAAAAAAAAH4mJiZEkpaWlOS+s/rNVq1bJbrdLkrp06VLlXNnZ2UpJSZHk+m6JrKwsjRgxQgcOHFDz5s31zjvv6IILLnDjCdxHMAEAAAAAAAAAgAecPHlS2dnZzq+SkhJJUkFBQbn3y0IG6XSAYDKZVFxcrLFjx2rDhg0qKCiQdDpoeOWVV/Tcc89Jkrp166aOHTtWuf6HH34oh8MhPz8/3XrrrWetNzs7WyNHjtT+/fsVFRWld955R1FRUbX5FbjEv85XAAAAAAAAAADgLyAuLq7SOyDmz5+v+fPnO1/Pnj1bQ4YMkSRFRUVpzpw5mjRpko4ePaoJEybIYDAoODhYVqvVOaZ169aaO3duteuvWrVKknTttdeqWbNmZ6136dKl2rNnjyQpJydHd955Z5V9L7jgAuf8tUUwAQAAAAAAAACAD910003q0KGD3n33XW3evFkZGRkqLCxUo0aN1LZtW/Xr10933nmnGjRoUOUcO3fu1K+//ipJztDjbEpLS50/5+fnKz8/v8q+JpPJxac5O4IJAOe9gIAAX5cAAAAAAAAAaOPGjTUeGx0drSlTptR4fGxsrHbv3u3WmPHjx2v8+PE1XrOmuGMCwHmPYAIAAAAAAAA4fxBMAAAAAAAAAAAAryGYAAAAAAAAAAAAXkMwAQAAAAAAAAAAvIZgAgAAAAAAAAAAeA3BBAAAAAAAAAAA8BqCCQDnPbvd7usSAAAAAAAAALiIYALAec1ms+nEiRO+LgMAAAAAAACAi/x9XQAAVMdms8nhcJR7z2q1SpIOHjyoESNGqKio6HTfUkeF8QAAwHUGPz9flwCgGqXFxb4uAUB1DPz9LwC4imACgFdVFjScqSx0yMrK0okTJ3THHXdU2X/YsGHlXu8v4kgnAABqgw89AQCoOf+mEb4uAQDOGwQTQCXO9uH5+cxut8tqtTp3GdSVsoBh165datCggSTJ4XDo4Ycfdmnt22+/3e010+wXuD0GgHcZ/AN8XQKAavi1vtjXJQCoRtHuPb4uAUA1io4c9XUJAHDeIJgA/sRms6l3796y2Wy+LqVeeOihh7y21sK2rby2FoCaqp+hL1BfOJqG+roEANW4cWWBr0sAUI0vOwX5ugQAOG8QTAB/4nA4ZLPZtH79eoWEhPi6HI+yWq0aNGiQ3nvvPQUGBtb5ena73e2dJ3a7XY888kid7+gAAAAVGb7e5usSAFRjSpNffV0CgGp8qc6+LgEAzhsEE0AVQkJCZDabfV1GnWjevPk5+2x5eXkqKiqqNhgqC1hWrFih4OBgZWRkeHVnBgAAAAAAAICaI5gAcE5yJRiKjIyU2WxWfn6+l6oCAAAAAAAAXDdmzBilpKRIkuLi4pSQkFBpv+zsbC1ZskQpKSk6cOCAbDabQkND1bZtWw0YMEC33XZbpSegZGdn67PPPtPmzZuVnp6uw4cPq7S0VJGRkbriiit0991364orrqiyvieeeEJr1qyp9hnatm2rdevWufHUZ0cwAeC8ZrPZCCYAAAAAAABwzlm3bp0zlKhOWlqaRo8erezsbEmS0WhUSEiITpw4odTUVKWmpuqDDz7QokWLFB4eXm7sddddV+5I9KCgIBkMBmVmZiozM1PJycm6//77NWnSpGprMJlMCg2t/M65xo0bn/UZ3EUwAcArbDabS/dNWK1Wl+e02+3q378/F5UDAAAAAADgnJKTk6NZs2YpNDRUTZs21d69eyvtV1RUpEcffVTZ2dmKiorSjBkzdM011yggIEB5eXlatWqVXnjhBf3yyy967rnnNHfu3ArjL7/8cg0ZMkTXXnutoqKiVFpaqn379mnu3Ln6/PPP9eabb+qiiy7SnXfeWWW9AwcOrHI3R10gmABQ52w2m3r37u3xAKHsovL//Oc/3DEBAAAAAACAc0ZCQoKOHz+uGTNm6KOPPqoymNi6dasyMzOdY3r06OFsM5vNGjFihE6cOKHXXntNn3zyiUpKSmQ0Gp193nnnnXJjJMlgMKh169Z65ZVX9MADD+jrr7/WG2+8UW0w4W3nRDDh6l9SA97gzl/swzVlAUJ1F1qXKbvY2h1BQUG1KQ8AAAAAAADwmE2bNmnNmjXq3Lmz7rrrLn300UdV9s3KynL+HBsbW2mfyy67TNLpz9gcDodMJpOz7c+hxJkMBoOGDh2qr7/+WhkZGTp58qQaNmzo7uPUCZ8HE3X1l9QAzj2uXGgNAAAAAAAAnK8KCws1ffp0+fv7a+bMmeV2N1SmRYsWzp937txZadCwY8cOSVKbNm3KhRKuOLN/cXGxW2Prks+DCXf+khrwhpr8xT58KyAgwNclAAAAAAAAAJo3b54yMjI0atQotW/f/qz9O3XqpJiYGKWnp2vKlCmaMWOGrr766nJ3TLz55psKCAjQ5MmT3a4nNTVVkhQZGVntJdabN2/WTTfdpEOHDslkMuniiy/W9ddfr3vvvVcRERFur3s2Pg8myvCX1ADOVN2RWn9uI5gAAAAAAADA2VgsFlksFrfGxMfHKz4+3qW+aWlpWrx4saKiojR+/HiXxhiNRs2fP19jx47Vrl27NGbMGBmNRoWEhOjUqVMyGo3q2bOnxo4dq65du7pV+8GDB7V8+XJJ0tChQ2UwGKrse/jwYfn7+zvXTUtLU1pampYtW6aXX35ZPXv2dGvtszlnggkAkE6HDCaTiV0rAAAAAAAA8Ki8vDwdOXLE7TGuKC4u1rRp05zfg4ODXV6jRYsWslgsmjFjhvOC61OnTkmSSkpKlJ+f73ztKrvdrgkTJqigoEAtWrTQAw88UGm/mJgYXXbZZbrhhht0wQUXyGg0Ki8vTxs3btQLL7ygrKwsPfLII1q9erVatmzpVg3VIZgAcE4xmUzauHGjHA5HlX04bgsAAAAAAADuMpvNatasmdtjXGGxWJSWlqZ+/fqpd+/ebq2RkpKiiRMnymAw6Mknn1Tv3r0VERGhjIwMLV++XMuWLdNDDz2kZ599VrfffvtZ5yspKdETTzyh7du3q0GDBkpMTKzyOe67774K75nNZt1yyy3q2rWr4uLidPLkSS1YsEBz585167mqQzAB4JxjMpncvsgHAAAAAAAAqI47xzK5IyMjQwsWLFBISIimTp3q1tjMzEyNGzdODodDFoul3JFJ7dq10/Tp09WwYUO9+uqrmj17tvr06aPw8PAq5ystLdXUqVO1fv16BQQE6N///rcuu+yyGj1X8+bNNWzYML366qv68ssvVVJSctbLvF3lmVkAAAAAAAAAAPgLmj17tgoKCjRmzBiFhobKarWW+youLpYkFRUVOd8rKSmRJC1btkx2u10xMTFV3uNw//33Szp9isjmzZurrKO0tFQzZszQqlWr5O/vr5dfflm9evWq1bN17txZ0ukjrXJycmo115nYMQFUobrLl89X9fGZAAAAAAAAAF86ePCgJCkxMVGJiYlV9ktOTlZycrIkae3aterQoYP27t0rSYqOjq5ynNlsVkREhI4dO+ZcqzLPPPOM3n//ffn5+enFF19U3759a/I4XkEwAfwJly8DAAAAAAAA8AaDwSBJOnToUJV97Ha7cnNzJUkhISGV9pk5c6aWLVsmo9Go2bNna+DAgR6pb/v27c51GzVq5JE5JYIJoAJXLl8+X9XXS6P9/fmnDAAAAAAAAL6RlJRUbfvw4cOVmpqquLg4JSQklGuLiYnRxo0blZaWph07dlR6H8SqVatkt9slSV26dKnQ/q9//UvvvfeeDAaDnnvuOd16660u1V1aWuoMRipz6NAhLV26VJJ0ww03eOx+CYlgAqgUly+fXwIDA31dAgAAAAAAAOC2oUOH6o033pDNZtPYsWM1ZcoU3XjjjQoKClJ2draWLVum1157TZLUrVs3dezYsdz4559/XkuWLJHBYNCzzz6rIUOGuLx2UlKSPv/8c91666264oornJdqW61WffHFF3rxxReVk5Oj4OBgjRs3znMPLYIJAAAAAAAAAAB8IioqSnPmzNGkSZN09OhRTZgwQQaDQcHBweXui23durXmzp1bbuyhQ4e0aNEiSZLRaNTLL7+sl19+ucq15s+fryuuuML5uqSkRJ988ok++eQTSVJwcLACAwOVm5vrvJy7SZMmeumll9SqVStPPbIkggkAAAAAAAAAAHzmpptuUocOHfTuu+9q8+bNysjIUGFhoRo1aqS2bduqX79+uvPOO9WgQYNy48rCA0kqLi7WsWPHql3nz0fX9+jRQ4899pi2bt2q/fv368SJE8rLy1NYWJjatGmjXr166Y477vDo3RJlCCYAnLfOTI0BAAAAAACAc9GSJUvO2ic6OlpTpkxxa94WLVpo9+7dNS1LzZs318MPP1zj8bVBMAHAJTabrcYXgns6QAgICJDJZNIdd9zh0XkBAAAAAAAA1D2CCQBnZbPZ1Lt3b9lsNl+XIun05eQbN25UTk6OBg0a5OtyAAAAAAAAALiBYALAWTkcDtlsNq1fv14hISFuj7darR4PEEwmU41qAQAAAAAAAOBbBBMAXBYSEiKz2ezrMgAAAAAAAACcx4y+LgAAAAAAAAAAAPx1EEwAAAAAAAAAAACvIZgAAAAAAAAAAABeQzABAAAAAAAAAAC8hsuvgb8gq9Vap/0BAAAAAAAAoCoEE8BfSEBAgEwmkwYNGuTrUgAAAAAAAAD8RRFMAH8hJpNJGzdulMPhcGuc1WolzAAAAAAAAADgEQQTwF+MyWSSyWTydRkeFRAQIKORK3MAAAAAAACA8wGf5AE47wUGBuquu+7ydRkAAAAAAAAAXEAwAaBeuPDCC31dAgAAAAAAAAAXcJQTgHqhSZMmvi4BAAAAAAAAkCQdP35c77zzjlJSUpSZmSmHw6GIiAh16NBBvXv31pAhQ5x98/PztWbNGu3cuVO7du1SVlaWcnJyFBAQoOjoaPXs2VP33nuvoqOj3aphzJgxSklJkSTFxcUpISGh0n7Dhw9XampqtXPdcMMNev31191avzoEEwDOe3a7XSUlJb4uAwAAAAAAANDnn3+uJ554Qrm5uZJO3/nq7++vzMxMZWZmavfu3eWCiT/++EMzZ850vvbz85PZbFZubq52796t3bt3a/ny5UpISNCAAQNcqmHdunXOUMJVwcHBCg4OrrQtLCzMrbnOhmACgNdYrdYq22w2m4qKiiq8X1paKoPBUOF9u92ukydPSpIGDBig4uJiNVZLzxULAMBfkYGTXoFzWYn4YxwAAM51mzZt0t///nc5HA7deuuteuCBB9S2bVtJUm5urrZt26affvqp3Biz2awxY8aoW7duuvTSSxURESE/Pz85HA5t3bpVL774on7++WdNnjxZsbGxZ905kZOTo1mzZik0NFRNmzbV3r17Xap91KhRGj9+fI2e210EEwBcVl2wcKY/hwx2u12BgYEaNGhQndRVXFxcJ/MCAPBX439BU1+XAKAavzgKfV0CAACohtVq1ZNPPimHw6HRo0dr0qRJ5drDwsLUq1cv9erVq9z7zZo10z/+8Y8K8wUEBKhHjx5atGiRevXqpfz8fCUnJ+uRRx6pto6EhAQdP35cM2bM0EcffeRyMOFNBBMAzqqkpKROgwUAfx3+rdnZBJzLShsE+LoEANVYmNXr7J0A+JDd1wUA8LE1a9bojz/+ULNmzfT3v//dY/OGhYXpkksuUXp6uo4cOVJt302bNmnNmjXq3Lmz7rrrLn300Uceq8OTCCYAVMtms2nAgAGy2/kPLAC197d1P/i6BADVWNMhwtclAKjG7kc6+boEANX62dcFAPCxDz/8UJLUv39/BQYGemze7Oxs7d+/X5KqPcapsLBQ06dPl7+/v2bOnCmj8dw9qpVgAkC1HA6HbDab1q9fr5CQEJfG2O12ORyOcq/Ljnb6c9uZfYqLi2W32/WPf/yj0vsmAJz/ugXt93UJAKqR3CzG1yUAqEbJT7t9XQKAapT6ugAAPmWz2ZSeni5J6tixo/bt26dXX31Vmzdv1smTJxUZGakePXpo9OjRatOmzVnnKykp0fHjx7V9+3b9+9//VkFBgcLCwspdmv1n8+bNU0ZGhkaNGqX27du7/QzJyclavXq1srKyFBwcrFatWqlPnz66++67ZTab3Z6vOgQTAFwSEhLi0j9ANptN/fv3l81mq9V6ZUHImUGGzWZTTk6OxowZQ3ABnKeyij37HzIAPKxRmK8rAFCNkiNHfV0CAADnNYvFIovF4taY+Ph4xcfHn7XfwYMHnZ9h7d+/X08//bQKCgpkMplkMpl06NAhrVmzRuvXr9cLL7ygAQMGVDrP9OnT9f7771d4/5JLLlFiYqLCw8MrHZeWlqbFixcrKiqqxhdY//bbbwoICFBQUJDzou5t27Zp6dKleu2112oUdlSFYAKAR9Vkh8WZrFZrubssAgMDFRgYKLvdrri4OI6UAs5z1hKTr0sAUI3SAD9flwAAAADUmby8vLPe0VDZGFfk5uY6f164cKGaNGmiefPm6brrrpPRaNSuXbv01FNPaefOnXriiScUExOjiy++uMI8oaGhioiIUFFRkXJyciRJLVu21FNPPaWYmMp3OBcXF2vatGnO78HBwW49Y/fu3TV06FBdc801ioiIkMFgUE5OjtavX6+XXnpJhw4d0ujRo5WcnKzGjRu7NXdVCCYAL7LZbJUeY3Qus1qtNRrn6g4LqfzvJSAgoMqLtg0GQ41qAXDuKCk9d8+3BCCJ/1sLAACAesxsNqtZs2Zuj3FFSUlJuZ8TEhJ07bXXOt9r3769XnvtNfXv31/5+fl6++23NWPGjArzTJo0SZMmTZJ0+nO57777TnPnztXo0aN16623atasWfL3L/+xvsViUVpamvr166fevXu79XySKt1h0ahRIw0bNsx5iXZWVpYsFosmTpzo9vyVIZgAvMRms6l37961PuKovnHn91JayomdwPmui+mgr0sAUI2SX/b6ugQA1fBr1MjXJQCoRvH/+8tmAOcuV49lqokzTw5p06ZNuVCiTNOmTTV48GB98MEH2rRpk0tz9unTR927d9ctt9yipKQkdezYUSNGjHD2ycjI0IIFCxQSEqKpU6d65mHOEBsbq4EDByopKUlffPEFwQRwvqntEUe+8uejlTytst9L2ZorVqyodOuZzWZTQUGBjh07pr///e91VhsAz7vQj//0AM5lBj+OcgLOZXzoCQDAuatp06bOn1u1alVlv7K2w4cPuzx3aGiohgwZogULFmjlypXlgonZs2eroKBAEyZMUGhoaIXTT4qLiyVJRUVFzragoCAZja6faNC5c2clJSUpIyPD5TFnw6cDgJe5c8TRX0llv5fIyMhKf1d/3mUxZ84c/fOf//RKnQBqJ8DAh57Auaz0//0/LQAAAADc07hxY0VGRiorK8ul/u4eWV52BNXvv/9e7v2DB0+fTJCYmKjExMQqxycnJys5OVmStHbtWnXo0MGt9T2NYALAeadsl8WaNWt0xx136PHHH/d1SQBcVKKSs3cC4DMGI3dMAOcyDjYFAODcdvXVVyspKUn79u2rsk9ZW/Pmzd2au2y3grsXW3vC9u3bJUktWrTw2JwEEwDOW40bN9Z///tf9e/fv9wFQwDOXUZx+TVwList4WNPAAAAoKbi4uKUlJSkPXv26Ouvv9Z1111Xrv3o0aNat26dJKlXr17O94uKiipcaH2m7OxsrV69WpLUrVu3cm1JSUnV1jR8+HClpqYqLi5OCQkJFdpLS0ur3b2Rnp6uDRs2SJJuvPHGatdyB8EEAJf8+Xy62vbzlLCwMK1bt079+/f36roAasZkCPB1CQCqUVrk8HUJAAAAwHmrZ8+euv766/XVV19pypQpeu6553TdddfJaDRq165dmjp1qvLz89WoUSONHDnSOW7KlCkKDw/XgAED1KFDB5lMJklSXl6evvrqKyUmJurYsWMKCAjQww8/7NGaFy5cqAMHDmjgwIHq0qWLQkNDJUknT57Uhg0b9NJLL8nhcCgyMlKjRo3y2LoEEwCqFRAQIJPJVKcXYNdWkyZN9Mwzz+jlv73t61IAAAAAAADwFzZnzhyNHDlS6enpGjNmjBo0aCB/f3/l5eVJkho2bKgFCxaUuyzbarXqww8/1Ntvvy2j0ei8c/XUqVMqLS11jktISPD43RB2u12rV6927sgwm83y8/NTbm6uc+3o6GgtWLBAjRs39ti6BBMAqmUymbRx40Y5HK79BaXVavVJiBEQwF9hAwAAAAAAwLcaNmyo999/X++9957WrVun/fv3y+Fw6JJLLlGvXr10//33Oy+yLvPoo4/qsssuU2pqqn7//XcdP35cDodD4eHhat26ta677jrddtttCg8P93i9N998s4qLi7Vt2zZlZGToxIkTstlsatKkidq1a6e+ffsqLi7O43dbEEwAOCuTyeTcQnauKigo8HUJAAAAAAAAgAIDAxUfH6/4+HiX+rdv317t27fXQw895PFalixZUm1727Zt9dhjj3l83bPhBkoA9cKpU6d8XQIAAAAAAAAAFxBMAKgXvH3pNgAAAAAAAICaIZgAUC/s37/f1yUAAAAAAAAAcAHBBIB6gR0TAAAAAAAAwPmBy68B1AlXgwJPBQrn+uXcAAAAAAAAAE4jmADgUQEBATKZTBo0aJDX1wUAAAAAAABw7iOYAOBRJpNJGzdulMPhcKm/1Wr1SIhBMAEAAAAAAACcHwgmAHicyWTy+tFKDRo08Op6AAAAAAAAAGrGp8EEl9UC8BTumAAAAAAAAADODz4JJnx1Bj2A+iswMNDXJQAAAAAAAABwgU+CiTPPoPfU+fIA/trYMQEAAAAAAACcH3x2lJMvzqAHUH9x+TUAAAAAAABwfjD6ugAA8AQ/Pz9flwAAAAAAAADABQQTAOqF4uJiX5cAAAAAAAAAwAU+O8oJADzJbrf7ugQAAAAAAABAknT8+HG98847SklJUWZmphwOhyIiItShQwf17t1bQ4YMqXLs559/rrVr12rHjh06fvy4QkNDFRUVpe7du+uee+5RdHR0uf4FBQVKTU1VWlqa0tPTlZaWpkOHDkmSHn/8cd1///1nrTc7O1tLlixRSkqKDhw4IJvNptDQULVt21YDBgzQbbfdpsDAwNr9Us5AMAGgXvDkP4wAAAAAAABATX3++ed64oknlJubK+n0fcv+/v7KzMxUZmamdu/eXWkwUVBQoAkTJuiLL76QJBkMBoWGhurkyZPKzs7Wzp071b59+wrBxI4dOzRmzJga15uWlqbRo0crOztbkmQ0GhUSEqITJ04oNTVVqamp+uCDD7Ro0SKFh4fXeJ0zEUwAqBciIiJ8XQIAAAAAAAD+4jZt2qS///3vcjgcuvXWW/XAAw+obdu2kqTc3Fxt27ZNP/30U4VxJSUlevjhh7V582Y1a9ZM//jHP9S3b1+FhISoqKhIGRkZ+uKLLxQVFVXpug0bNlRMTIxiYmLUsWNHzZ49W1lZWWett6ioSI8++qiys7MVFRWlGTNm6JprrlFAQIDy8vK0atUqvfDCC/rll1/03HPPae7cubX6/ZQhmABQL5SWlvq6BAAAAAAAAPyFWa1WPfnkk3I4HBo9erQmTZpUrj0sLEy9evVSr169KoxdsmSJNm/erMaNG2v58uXlAgh/f3+1bNlSLVu2rHTdK6+8UqmpqeXeczVA2Lp1qzIzMyVJCQkJ6tGjh7PNbDZrxIgROnHihF577TV98sknKikpkdFY+6urufwaQL2Ql5fn6xIAAAAAAADwF7ZmzRr98ccfatasmf7+97+7PK6oqEhvvPGGJGn8+PFV7oqoip+fn1v9z3TmrorY2NhK+1x22WWSJIfDIYfDUeO1zkQwAeCcYLValZeXp7y8PFmtVl+XAwAAAAAAALjlww8/lCT179/frftQN23apKysLBkMBg0ePLiuyqtUixYtnD/v3Lmz0j47duyQJLVp00Ymk8kj63KUEwCfCggIkMlk0qBBg2o1j6f+UQQAAAAAAADcZbPZlJ6eLknq2LGj9u3bp1dffVWbN2/WyZMnFRkZqR49emj06NFq06ZNubHbtm2TJDVv3lyhoaF67733tHLlSu3fv1/+/v5q06aN/va3v+mOO+5QQECAR+vu1KmTYmJilJ6erilTpmjGjBm6+uqry90x8eabbyogIECTJ0/22LoEEwB8ymQyaePGjeW2gVmt1loHFQAAAAAAAMCZLBaLLBaLW2Pi4+MVHx9/1n4HDx50fr61f/9+Pf300yooKJDJZJLJZNKhQ4e0Zs0arV+/Xi+88IIGDBjgHPvbb79Jkho3bqzx48frs88+k8FgUFhYmKxWq7Zt26Zt27Zpw4YNeuONNxQcHOzWM1THaDRq/vz5Gjt2rHbt2qUxY8bIaDQqJCREp06dktFoVM+ePTV27Fh17drVc+t6bCYAqCGTySSz2ez8CgkJcXuOkpKSOqgMAAAAAAAA9UVeXp6OHDni1per95rm5uY6f164cKHMZrMWLlyon376SVu2bFFSUpJiY2Nlt9v1xBNPOMMISTp58qQkKS0tTZ999pmGDh2qb775Rqmpqfrxxx81efJk+fn56ccff9SsWbM8+0vR6eOcLBaLbrrpJkmnP2c7deqU8+f8/Hzna08hmAAAAAAAAAAA1Htms1nNmjVz68tsNrs095l/NFtSUqKEhAT16tVLRuPpj+Dbt2+v1157TcHBwSosLNTbb7/t7F9aWuocd/nll2vWrFmKiIiQJAUFBWnUqFG67777JJ2+YPvo0aOe+HU4paSkqF+/ftq8ebOefPJJffbZZ/rpp5+UnJysYcOGafv27XrooYe0YsUKj63JUU4A6gVPbmEDAAAAAABA/ePqsUw1ceYJIG3atNG1115boU/Tpk01ePBgffDBB9q0aVOlY0eMGFHp/PHx8bJYLCoqKlJqaqrHLsnOzMzUuHHj5HA4ZLFY1LNnT2dbu3btNH36dDVs2FCvvvqqZs+erT59+ig8PLzW67JjAgAAAAAAAACAWmjatKnz51atWlXZr6zt8OHDbo09c/fGH3/8Uataz7Rs2TLZ7XbFxMSUCyXOdP/990s6fS/s5s2bPbIuwQSAeiE7O9vXJQAAAAAAAOAvqnHjxoqMjHS5v8FgcP7ctm1bt9Y6c2xt7d27V5IUHR1dZR+z2ew8WurgwYMeWZdgAsA5zWazKS8vr9yX1Wqt0K+oqMgH1QEAAAAAAACnXX311ZKkffv2VdmnrK158+bO96655poK7X925kXcZ46trbKQ49ChQ1X2sdvtzsu9zzx2qjYIJgCcs+x2u3r37q0bbrih3NegQYMq9PXUP4oAAAAAAABATcTFxUmS9uzZo6+//rpC+9GjR7Vu3TpJUq9evZzvR0dHq2vXrpKkxYsXVzr3okWLJEkmk0lXXXWVx2qOiYmRJKWlpWnHjh2V9lm1apXsdrskqUuXLh5Zl2ACwDnL4XDIZrNp/fr1+vLLL51f69evr9CXHRMAAAAAAADwpZ49e+r666+XJE2ZMkUpKSkqKSmRJO3atUuPPPKI8vPz1ahRI40cObLc2H/+85/y8/PTtm3b9NRTT+nYsWOSpIKCAlksFi1ZskSSNHLkSDVu3LjC2idPnlR2drbzq2zdgoKCcu+XBQxlhg4dKpPJpOLiYo0dO1YbNmxQQUGBpNNHp7/yyit67rnnJEndunVTx44dPfK78vfILD5ms9nkcDh8XQZQrcqOH4JrQkJCnJf7VKXsH1sAAAAAAADAV+bMmaORI0cqPT1dY8aMUYMGDeTv7+88hqlhw4ZasGBBuQuvJemKK67QM888o6efflorV67UqlWr1LBhQ+Xl5Tn/IHfgwIF69NFHK103Li6u0vsf5s+fr/nz5ztfz549W0OGDHG+joqK0pw5czRp0iQdPXpUEyZMkMFgUHBwcLnPM1u3bq25c+fW/BfzJ+d9MGGz2dS7d2/ZbDZflwLAh4KCgnxdAgAAAAAAAP7iGjZsqPfff1/vvfee1q1bp/3798vhcOiSSy5Rr169dP/996tZs2aVjr399tvVsWNHLVq0SKmpqcrOzpbZbFZsbKxuu+02DRgwoE5qvummm9ShQwe9++672rx5szIyMlRYWKhGjRqpbdu26tevn+688041aNDAY2ue98HEmUe9cMY8zmVWq7XSuxHgGQEBAb4uAQAAAAAAAFBgYKDi4+MVHx/v9tiYmBjNmTPH7XEbN250e8yZoqOjNWXKlFrN4Y7zPpgo48pRLwDqLz8/P1+XAAAAAAAAAMAFXH4NoF4oLCz0dQkAAAAAAAAAXEAwAaBe4CgnAAAAAAAA4PxAMAGgXoiIiPB1CQAAAAAAAABcQDABoF7gKCcAAAAAAADg/EAwAaBeyMvL83UJAAAAAAAAAFxAMAGgXmjQoIGvSwAAAAAAAADgAoIJAPWC2Wz2dQkAAAAAAAAAXEAwAaBeKCoq8nUJAAAAAAAAAFxAMAGgXnA4HL4uAQAAAAAAAIALCCYA1AtBQUG+LgEAAAAAAACACwgmANQLHOUEAAAAAAAAnB8IJgDUCydOnPB1CQAAAAAAAABcQDABoF5o3Lixr0sAAAAAAAAA4AJ/XxcAAFWxWq0u9yWYAAAAAAAAwLlmzJgxSklJkSTFxcUpISGhXHtJSYlWrVqln3/+Wenp6crKylJ2drb8/Px04YUXqlu3bho2bJguvfTSSuffvXu3Pv30U+3cuVP79+/XiRMnZLVaFRYWpnbt2unmm2/W0KFDFRgYWGWN2dnZWrJkiVJSUnTgwAHZbDaFhoaqbdu2GjBggG677bZqx9cEwQSAc05AQIBMJpPuuOMOl/rbbDaNGTNGZrWo48oAAAAAAAAA16xbt84ZSlTF4XBo6tSpztcGg0FhYWHKy8vTvn37tG/fPq1cuVKTJ0/WiBEjKoxPTk7WG2+84XzdoEEDmUwmZWdn67vvvtN3332npUuX6q233lLTpk0rjE9LS9Po0aOVnZ0tSTIajQoJCdGJEyeUmpqq1NRUffDBB1q0aJHCw8Nr+quogKOcAJxzTCaTNm7cqPXr17vU3+FwyOFw1HFVAAAAAAAAgGtycnI0a9YshYaGqnXr1lX2MxqNuu+++/TKK6/oiy++0M6dO5Wamqqff/5ZK1eu1LXXXqvi4mLNnj1bW7ZsqTA+JiZGU6dO1cqVK/Xjjz9q+/bt2rp1q3744QdNnz5dQUFB+vXXX/XEE09UGFtUVKRHH31U2dnZioqK0uuvv64dO3boxx9/1JYtW/Tkk0/K399fv/zyi5577jmP/n4IJgCck0wmk0JCQnxdBgAAAAAAAOC2hIQEHT9+XBMnTlSTJk2q7BcQEKCnnnpKffv2VVRUlPz9Tx9y5Ofnp06dOum1115TixYtVFpaqtWrV1cYP3DgQA0fPlydOnVSaGio8/2wsDANGzZMTz75pCTp22+/1eHDh8uN3bp1qzIzM5313nDDDQoICJAkmc1mjRgxQg888IAk6ZNPPlFJSUktfiPlEUwAOO/Z7XZflwAAAAAAAABIkjZt2qQ1a9aoc+fOuuuuu2o1V2BgoDp06CBJOnLkiNvjL7vsMufPfx6flZXl/Dk2Nrba8Z4+sYRgAsB5j2OcAAAAAAAAcC4oLCzU9OnT5e/vr5kzZ8porN1H8IWFhUpPT5ckRUdHuz3+zOOfWrQofz/rma937txZ6fgdO3ZIktq0aSOTyeT2+lUhmAAAAAAAAAAAwAPmzZunjIwM3XfffWrfvn2N5igtLVV2drY2b96sBx54QAcPHpS/v7+GDRvm0ni73a7ff/9dCxcu1PPPPy9JGjx4cIUjpTp16qSYmBhJ0pQpU5SSkuL8A+C8vDwtXrxYb775pgICAjR58uQaPUtV/D06GwD4AEc5AQAAAAAA4GwsFossFotbY+Lj4xUfH+9S37S0NC1evFhRUVEaP3682/UtXLhQc+fOrfB+06ZNlZCQoDZt2lQ7vlOnThU+JzMajbrllls0c+bMCv2NRqPmz5+vsWPHateuXRozZoyMRqNCQkJ06tQpGY1G9ezZU2PHjlXXrl3dfp7qEEwAOK/ZbDbdeeedvi4DAAAAAAAA57i8vDy372nIy8tzqV9xcbGmTZvm/B4cHOx2fcHBwYqIiFBxcbFycnJUWlqqyMhITZkyRVddddVZx0dGRspms8lqtaqgoECS9H//93965JFHFBQUVOmYFi1ayGKxaMaMGc4Lrk+dOiVJKikpUX5+vvO1JxFMADivORwOdkwAAAAAAADgrMxms5o1a+b2GFdYLBalpaWpX79+6t27d03K07333qt7771X0uk/xv3pp5/00ksvacKECbr22ms1b968auvZuHGj8+cjR47ogw8+0JtvvqmPPvpIL7zwgm666aYKY1JSUjRx4kQZDAY9+eST6t27tyIiIpSRkaHly5dr2bJleuihh/Tss8/q9ttvr9FzVYZgAgAAAAAAAABQ77lzLJM7MjIytGDBAoWEhGjq1KkemdNkMqlHjx5asmSJ7rnnHn3zzTf697//rSeffNKl8c2aNdP48ePVvn17jRs3TpMnT1bnzp3LBTOZmZkaN26cHA6HLBaLevbs6Wxr166dpk+froYNG+rVV1/V7Nmz1adPH4WHh3vk+bj8GgAAAAAAAACAGpo9e7YKCgo0ZswYhYaGymq1lvsqLi6WJBUVFTnfKykpcWnuwMBA3XPPPZKklStXul1bv3791Lx5c+Xn52v9+vXl2pYtWya73a6YmJhyocSZ7r//fkmS1WrV5s2b3V6/KuyYAHDeslqtvi4BAAAAAAAAf3EHDx6UJCUmJioxMbHKfsnJyUpOTpYkrV27Vh06dHBp/rJdDlarVcePH1eTJk3cqq9p06Y6ePCgfv/993Lv7927V5IUHR1d5Viz2ayIiAgdO3bM+ZyeQDAB4LxTdqfEoEGDfFwJAAAAAAAAULcyMjKcP9fkUu3MzMxKxxoMBknSoUOHqhxrt9uVm5srSQoJCXF77aoQTAA47zgcDknSihUrFBwcrEGDBsnfn3/OAAAAAAAA4H1JSUnVtg8fPlypqamKi4tTQkJCubaioqJqP9cqKCjQe++9J0mKjY1VUFCQs620tFSlpaUyGqu+sWHt2rXKysqSJHXv3r1cW0xMjDZu3Ki0tDTt2LFDl112WYXxq1atcv6RcJcuXap9TnfwSR6A81ZwcLBHk1oAda9Erp2hCcBHDFxBB5zTSvm/owAA1DcvvfSScnNzNXjwYHXq1Mn5WVdhYaG+//57zZs3T7/++qskady4ceXGnjp1SnfffbfuueceXX/99WrRooVzF0RGRoZWrVqlN998U5J02WWX6frrry83fujQoXrjjTdks9k0duxYTZkyRTfeeKOCgoKUnZ2tZcuW6bXXXpMkdevWTR07dvTYcxNMADjvBAQElPsunU6XAZz7jOJDT+CcxoeeAAAAgFc5HA6tWLFCK1askMFgkNlslp+fn3Jzc50XZDdo0EBPPfWUbrzxxgrj9+zZo5kzZ0o6/VmZ2WxWYWGhCgoKnH0uv/xyvfrqqxV2VkRFRWnOnDmaNGmSjh49qgkTJshgMCg4OLjc3a6tW7fW3LlzPfrc50wwUdNLbLn8FvjrCQwMdH4v20oG4PzAjgngHMeOCeDcRngIAEC9M3z4cEVFRen777/X/v37dezYMeXl5SksLEwtW7ZUz549ddttt6l58+YVxprNZi1YsEDfffedtm3bpqNHjyonJ0f+/v6Kjo5WbGysBgwYoJtuusm5k+LPbrrpJnXo0EHvvvuuNm/erIyMDBUWFqpRo0Zq27at+vXrpzvvvFMNGjTw6HP7PJgICAiQyWTiElsAAAAAAAAAQL2zZMmSKtsuuugixcfHKz4+3u15jUaj+vXrp379+tWmPEVHR2vKlCm1msNdPg8mTCaTNm7c6LzM1l1Wq5VQA/iLslqtzi1tkmTwD6imN4BzgaO02NclAKgOf40NAAAAwAt8HkxIp8MJk8nk6zIAnKP+fGRbYWGhAgMDK4SSpUU1CzgBeM/JEpuvSwBQDb/QUF+XAKAaxadO+boEAAAAjzgnggkAqExVR735+fmpuPj//6trg8Gg0tJSb5cHoAYCOL8eOKeVFrOrCQAAAEDdI5gAznM2m63GR6FVp7S0tMpLcbwpOTm53PPZ7XbdcccdKi4udgYShBLA+SOfo5yAc5ohMNDXJQCoTn6+rysAAADwCIIJwMv+fCxRbdjtdg0ePFh2u91jc5YxGo3l7m84F1UIJHp29k0hAFx23boevi4BQDWaDWJXE3AuC3tvs69LAFANg5+fr0sAgPMGwQTgJVUdS+QJK1asUHBwcK3nsdvtuvPOO2W328/5UKJSm7f7ugIAZ9H5+Wa+LgFANY581dLXJQAAcN7iSEQAcB3BBOAlJpNJGzdu9OixS2U7Jm6//XaPzSmdDjr8/f0r1Gq32xUfH+/RZzgfdmYA8Jyrwvf5ugQA1fg8M8rXJQAAAAD4CyCYALzIZDLJZDJ5dM4vvvjCY0GBq0FHbXdolN1fUXZfRHXBBBdbA/XL69/f4OsSAFTD1DfA1yUAqMZFX/u6AgAAAM8gmADOc54OO6oLOjy1Q8PPz0/FLm5xLS0tZVcFUI9cdFGWr0sAUI38by/0dQkAAAAA/gLqZTBhs9k8etQM4A02m01FRUUem69sV4Knvf/++7Wq0263a8SIEW6NIZQA6o8CO3+NDZzLigM9/98OAAAAAPBn9S6YsNls6t27t2w2m69LAeBl/he18HUJAM6i0aD/+boEANXif0cBAKipf+3/0dclAMB5o94FEw6HQzabTevXr1dISIivywFc5skdE3a7XXfeeafsdrtH5jtfFP2e6esSAJzF3sSevi4BQHUM3OsEnMtaP/adr0sAUI2pLa/0dQkAzuJTDuU4Z9S7YKJMSEiIzGazr8sAXObp/3l151Jsm82mv/3tbz4PMrhLAqj/AnI5JgY4l9miOQ4VAAAAQN2rt8EE4E3n+70mRUVFstvtHtlpZLfbXf5d2O123XHHHc7+hBJA/XfBd+fvv5XAX8Flg3b4ugQA1djl6wIAAAA8hGACqCXuNfn/2e12DR482K2dF0aj8ax9DAaDSks5WgKoD4qC/XxdAoBqHLNzFCpwbvtrHdUKAEB9MGbMGKWkpEiS4uLilJCQUK599erVmjJlisvzbdy4Uc2bN6/wflFRkZYtW6akpCTt379fJSUlio6O1oABAxQfH68GDRpUOt/8+fO1YMGCatcMDg7Wtm3bXK7RFQQTQC3Vh3tNygKFQYMGeWS+FStWKDg4uMIald174couCUIJoP7IaXX2MBKA7xzNuMjXJQCoxiU64esSAACAG9atW+cMJarSoEEDRUREVNsnJydHRUVFioyMVLNmzSq05+fn6/7779fWrVslSYGBgfLz89Pu3bu1e/duJScn691331V4eHiVawQEBKhhw4aVtgUFBVVbX00QTAAecr7fa+LOnRRVKQs4br/99ir7nBla/FUv6Qb+yozFvq4AQHWMfhyrCAAAAHhCTk6OZs2apdDQUDVt2lR79+6ttN/AgQM1cODAKufJy8vTtddeq6KiIt1yyy3y96/4kf4zzzyjrVu3ymw269lnn9XNN98so9Gob7/9VpMnT9bevXs1YcIELV68uMp1Lr/8ci1ZssT9B60hggmgHjhX7rgIDAzUunXrKq2l7D6JP4cWlR3lxCXYwP/X3n2HR1WtfR//pU5IowrSBSQIAqJSRECUIkpAAQXpHOQoUvSIR5AmCojAw6EoyFFAikFBuqE/QqgiRKQpEQxICT1IQvrMJJn3j7wzT0ImIXUmhO/nuriczN5rr3vG2bP37HuvdRdf7gnOjgBAdrxKJDk7BAAAAKBYmDZtmv7++2999NFH2rp1a5aJibvZunWrEhMTJUmvvPJKpuWnT5/WDz/8IEmaNGlShiRHixYtNHfuXPXs2VMHDx7U3r179cwzz+QpjoJGYgK4x93rNS7sJSDympRwf6h6fsMBUMge3B3p7BAAZOPRwXn7sQTAMY47OwAAAJAjBw4c0Pr16/XYY4+pZ8+e2rp1a563tW7dOklSo0aNVKtWrUzLN27cKIvFoqpVq9odefH444+radOmCg0NVXBwMIkJAAXDWTUuclPo2lEjIJLPXyj0PgDkT0rbJ50dAoBsGFycPwITQHbcnB0AAAC4i6SkJE2YMEHu7u6aNGmS3dlCcur8+fO2uhHdunWzu87BgwclSa1atZKLi4vddZ555hmFhobq559/znMsBY3EBFBMOLrGRVxcnEwm010TIndLYHz77beSpOTk5Gz7M5lMGjJkyF3XA1C0uSRTzB4oygyuHGeBoo3EBAAARd1nn32miIgIvf7663rkkUfyta21a9dKSiuQHRgYmGm5xWKxTRFVu3btLLcTEBAgSbp586aioqJUunTpTOuEh4crMDBQERERcnNzU+XKlfX000+rX79+qlq1ar5ehz0kJgDkS04SIvYKa8fHxyswMFADBw6k+DVwH/GMuOXsEABko7XvKWeHACAb+/SYs0MAAOCetmTJEi1ZsiRXbQYOHKiBAwfmaN2TJ09q2bJlqlSpkt5+++28hGiTkpKiDRs2SJKef/55u9ff4uPjlZCQVsyxQoUKWW4r/bLIyEi7iYmoqCjdvn1bfn5+iouLU3h4uMLDw/X999/rk08+UefOnfP1eu5EYgL3hcIsDh0fH18o2y1ODAaDDAZDhuc8PDzk6emplJSUu7Z3c3PLtJ6Li4ssFu68Bu45qey3QFHmqsKfehEAAABwlri4OF2/fj3XbXIiJSVFH374oe2/3t7eeQnRZv/+/bpx44Yk+0WvpYzXJUuUKJHltry8vOy2kaTq1atr1KhRateunSpXrix3d3cZjUbt379fM2bM0Llz5zR69Gg9+OCDatKkSX5eUgYkJlDs3evFoYsrg8GgXbt2yWQyZTn/nfR/U0HdmZggKQHcmyx+WZ8oAXC+K8mZ75wCAAAAigtfX99sRxZk1SYnlixZopMnT6p9+/Zq06ZNXsLLwFr0ukqVKmrWrFm+t5eVl156KdNzBoNBbdu2VePGjfXqq6/q4sWLmjlzplauXFlg/ZKYQLFX2MWhrVMSIffsjaSw586poEwmkwIDAwttFAyAwmM5Q5F6oCjr4H3N2SEAyMYiPeTsEAAAuKflZlqm3IiIiNC8efPk4+Oj8ePH53t70dHRCgkJkSR17do1y5t601/rTExMzHJ7SUlJdtvcTcmSJTV48GCNGzdOx44d061bt1SmTJkct88OiQncNxxdHBoFx14CY/fu3YqLi1N0dLT69OlDUWzgXsFUTkCR5qqsRzECAAAAsG/q1KlKTEzUiBEj5Ofnl2m6JOtMIMnJybZlJUqUkKurq93tbdq0SSaTSa6ururatWuW/fr4+Mjb21sJCQnZTlGVftkDDzyQ49clSY89llbjymKx6NKlSyQmAOCll15iii7gXuNm/6QLQNFgpsYEAAAAkGuXL1+WJM2ePVuzZ8/Ocr2NGzdq48aNkqQNGzaobt26dtdbu3atJOmpp55S5cqVs9yei4uLatWqpd9++03h4eFZrvfnn39KksqVK2e38LUzkJgAcM8xGo2Kjo6W0WjU8uXL1bdvX2eHBCCHLCamYAOKMm8XD2eHAAAAANzXTp06pbCwMElSt27d7rp+8+bN9dtvv2n//v2yWCx2p33at2+fbd3cOn78uKS0JEiVKlVy3T4rJCYA3FPuLGY+cOBAubq6KjWVOzwBAAAAAADgeD/88EO2y/v166fQ0FB17dpV06ZNy3Zd62gJf39/Pf/883ftu3Pnzlq4cKEuXryorVu3qmPHjhmWHz9+XIcOHZIkvfzyyxmWZZXIsIqNjdWCBQskpU3pVFDTOEkS8ykAuKdYi5mvWrXK9rebm5uTowIAAAAAAADyx2w226Z66tixY6aaq/YEBATYEg4TJkzQ1q1bbTfw/vzzzxo+fLiktGmhWrVqlaHtL7/8ooEDB2rjxo0Z6lCYTCbt3r1bPXv21IULF+Tm5qZ///vfBfIarRgxAeCeVKpUKXl6espkMmn27Nm2L1kARZuLK4V1gaIslRoTAAAAgNPs2rVLUVFRkqRXXnklx+0++ugjXbx4UUeOHNG7774rg8EgV1dXJSYmSpJq1aplt/aFxWLRgQMHdODAAUlpBbkNBoPi4uKUnJwsSfL29taUKVPUtGnT/L68DIpNYsJazfzOiueAozjrs3e/fuY9PT21bds2vfDCCyQlgHtIqjnZ2SEAyIaBGhMAAACA06xbt06SVLt2bTVs2DDH7by9vRUUFKTvvvtOwcHB+uuvv2SxWBQQEKAXX3xRr7/+ury8vDK1CwgI0KhRo3TkyBGdOXNGUVFRiouLk4+Pj6pXr64WLVqoV69eqlChQoG9Rqt7PjHh4eEhg8GgwMBAZ4eC+xSfQefx9/fXrl27FBERod69ezs7HAAAAAAAACCToKCgHK335Zdf5rkPd3d39e/fX/37989xm9KlS2vQoEEaNGhQnvvNq3s+MWEwGBQSEiKz2Swp7e5xLhDDke78DDra/f6ZNxgM8vT0pPg1AAAAAAAAcI+45xMTUtqFyZwUAgEKC59B5zEajXrttdecHQYAAMVCioVEPwAAAIDCVywSEwDuX2az2WmjVQDkHsWvAQAAAAAAiQkAAOAwlpQUZ4cAIBseLvw8AAAAAFD4XJ0dAAAAAAAAAAAAuH+QmAAAAAAAAAAAAA5DYgIAAAAAAAAAADgMiQkAAAAAAAAAAOAwJCYAAAAAAAAAAIDDkJgAAAAAAAAAAAAOQ2ICAAAAAAAAAAA4DIkJAAAAAAAAAADgMO7ODgBAwYiPjy8W/RmNRpnNZof3CwAAAAAAAMAxSEwA9zgPDw8ZDAYFBgY6O5R8MxqNatOmjYxGo7NDAQAAAAAAAFBISEwA9ziDwaCQkJBsRxkUhvj4+AJPhpjNZhmNRm3evFk+Pj4O6xcAAAAAAADIryNHjmjPnj36/fffFRERob///ltGo1GlSpVSvXr11LlzZ3Xq1EkuLi6Z2rZp00aXL1/Odvt9+vTRhAkTslweFRWlRYsWaefOnbp69aoMBoMCAgL06quvqkuXLnbbpKamau3atfrtt98UFhamyMhI3bp1S25ubqpYsaKaNGmiPn36qE6dOrl6L+6GxARQDBgMBhkMBmeHUWB8fHzk6+t71/WMRiNTOwEAAAAAAKBICAoK0pYtW2x/e3t7y93dXZGRkdqzZ4/27Nmj1atXa/78+Vle+/L19ZWXl1eWy7Jy9uxZDRgwQJGRkba+4+Pj9csvv+iXX37R7t27NWvWLLm6Ziw7bTabNX78eNvfLi4u8vf3V1xcnP766y/99ddfWrNmjT744AMNGDAgx+/F3ZCYAHBPMplM6tChA9M+AQAAAAAAoEho1qyZmjdvroYNG6pq1aq2GUEiIyO1Zs0azZ07V4cOHdL06dM1efJku9sYN26cunXrlqt+TSaThgwZosjISNWsWVP/8z//owYNGshkMmn16tWaOnWqtm7dqtq1a2vYsGEZ2rq6uqp///5q1qyZ6tWrp/Lly8vd3V0pKSkKCwvTnDlztH//fk2dOlX169fXk08+mbc35w6ud18FAIoe67RPq1atcnYoAAAAAAAAgHr27KkePXrokUceyTBN+QMPPKAhQ4bojTfekCQFBwcX6LTsq1ev1oULF+Tl5aUFCxaoQYMGkiRPT0/16dNHb7/9tiRp0aJFioqKytDWw8ND48aNU7t27VSpUiW5u6eNZXBzc1ODBg303//+V1WqVJHFYtG6desKLGYSEwDuaVnVogAAAAAAAACKkoYNG0qSkpKSdPv27QLb7g8//CBJ6tixo6pWrZpped++feXt7a2EhATt2LEjV9v29PRU3bp1JUnXr1/Pf7D/X7Gdyol552HFZ6F4M5lMzg4BAAAAAAAAuKtff/1VUlr9h7JlyxbINuPj43XixAlJ0jPPPGN3HR8fHzVu3Fh79+7VgQMH1L179xxvPykpSWFhYZJkN+mRV8UuMeHh4SGDwaDAwEBnhwLAAZKTk50dAgAAAAAAAGBXQkKCrl69qg0bNmjx4sWSpP79+8vFxcXu+osXL9asWbMUHR0tX19f1alTRx06dNArr7wig8GQaf2//vpLFotFkhQQEJBlHLVr19bevXt15syZu8ZssVgUFRWl06dPa/78+bp8+bLc3d3Vp0+fnLzkHCl2iQmDwaCQkJACnaML97b4+HgSVQAAAAAAAMB9bsmSJVqyZEmu2gwcOFADBw7MVZvIyEi1bNky0/MeHh7q27ev3nnnnSzbhoeHy8vLS15eXoqKitLBgwd18OBBrVixQl999ZUqVaqUYf0bN27YHleoUCHL7VqXpV//TgsWLNDMmTMzPV++fHlNmzZNDz/8cJZtc6vYJSaktOSEvewRAAAAAAAAAOD+FBcXl+s6CXFxcbnux83NTeXKlZMkxcTEyGQyycXFRf3799frr78uNze3TG3atm2rxo0bq0mTJipTpoyktCTCmjVrNH/+fP3555968803tW7dOnl6etraJSQk2B57eXllGVOJEiUkZT/tvbe3t8qVK6eUlBRFR0fLYrHogQce0JgxY/TUU0/l7k24i2KZmAAAAAAAAAAAID1fX99sRxVk1Sa3ypQpo59++kmSlJqaqsuXL2vZsmVaunSp1q1bp3nz5qlx48YZ2owbNy7TdsqXL6+hQ4eqTp06Gjp0qMLDw7V+/Xq99tpruY4pJ/r27au+fftKkoxGo44dO6ZZs2ZpxIgRatmypT777LM8vR/2kJgAAAAAAAAAABR7eZmWKb9cXV1VtWpVjR8/XlWqVNHUqVP13nvvafv27bZRDHdjHU1x+PBh7dq1K0Niwtvb2/Y4KSkpy8RBYmKipLRC2DlhMBjUrFkzBQUFqXfv3tq/f78+//xzjR07Nkft78a1QLYCAAAAAAAAAACy1KtXL3l6eur69evau3dvrto2bNhQkhQREZHh+fLly9seZzdNlXVZ+vVzwtPTU71795YkrVmzJldts0NiAgAAAAAAAACAQmYwGFSqVClJ0sWLFwtkm7Vq1ZKLi4sk6c8//8xyvfDwcEnKUwFr6/RX8fHx+vvvv/MQZWYkJgAAAAAAAAAAKGTx8fGKioqSlHEKppw4ceKEJKlKlSoZnvf29tZjjz0mSdq3b5/dtgkJCTp8+LAk6emnn85Vv1LGURq5jTsrJCYAFCij0ai4uLg8/YuPj3d2+AAAAAAAAECuJScn33WdpUuXymw2S5KaNGlie95isWTbbvfu3bbEwnPPPZdp+UsvvSRJ2rJliy5dupRp+bfffquEhAR5e3urXbt2uYo7MTFR3377rSSpfv36Oa6LcTcUvwZQYIxGo9q0aSOj0VjofZHEAAAAAAAAQFERHh6ujz/+WD179lTz5s314IMPSkpLOpw9e1bfffedvvvuO0lShw4dFBAQYGv7ySefyMXFRR06dMhw8T8yMlLr1q3TF198IUmqXbu2unXrlqnv7t27a9myZbpw4YIGDx6s6dOnq379+jKZTFqzZo0+++wzSdI///lPlS5dOkPbWbNmKSYmRp06dVKDBg1sxbGTkpJ06NAhffbZZ7YpooYPH15g7xeJCQAFxmw2y2g0avPmzbYvsdyIj49XYGBgtut4eHjIYDCoR48eeQ0TAAAAAAAAKHDHjh3TsWPHJKXVk/D29lZCQkKGm3jbtGmj6dOnZ2gXHx+v9evXKygoSC4uLvLz85PFYlFsbKxtnXr16mn+/Pny9PTM1K+np6f++9//asCAATpz5oxeeeUV+fj4yGQy2UZovPjiixoyZEimtmazWatXr9bq1avl4uIiX19fubm5KSYmRqmpqZIkLy8vjRs3zu5ojbwiMQGgwPn4+MjX17dQtm0wGBQSEqLo6Oi7JjEAAAAAAAAAR6hRo4ZmzpypgwcP6rffftPNmzcVHR0tT09P1axZUw0bNtRLL72kFi1aZGrbs2dPlSlTRseOHdOVK1cUFRWl1NRUlS9fXo8++qheeOEFBQYGysPDI8v+a9WqpY0bN2rhwoXauXOnrl69qhIlSqhRo0Z69dVX1aVLF7vt+vXrp0qVKunQoUM6d+6cbt68qbi4OPn7+6tGjRpq3ry5Xn31VVWuXLmg3ipJJCYA3IMMBoNtRIa7O19jAAAAAAAAcC4vLy916tRJnTp1ynXbRo0aqVGjRvmOoXTp0ho1apRGjRqV4zbVqlXTwIEDNXDgwHz3nxsUvwZwT7M3fA0AAAAAAABA0UViAgAAAAAAAAAAOAyJCQAAAAAAAAAA4DAkJgAAAAAAAAAAgMOQmAAAAAAAAAAAAA5DYgIAAAAAAAAAADiMu7MDAHBvi4+Pt/sYAAAAAAAAAOwhMQEgTzw8PGQwGBQYGOjsUAAAAAAAAADcQ0hMAMgTg8GgkJAQmc1m23Px8fFOS1S4uLg4pV8AAAAAAAAAuUNiAkCeGQwGGQwGZ4chSXJzc3N2CAAAAAAAAABygOLXAIqFyZMnOzsEAAAAAAAAADnAiAkARU52RbRNJpPMZrMSEhIkSceOHZObm5vGjBmj0qrhqBABACiWUpXq7BAAZMeFewuBIs3CcRQAcorEBIAiw2QySVKu6lSMGzeusMIBUAjcSpZ0dggAsnEjJcHZIQDIDhc9AQBAMUFiAkCRs2HDBpUqVcr2t8lkUqdOnWyJCw8PjwxFtwHcQyhUDxRpJovF2SEAAAAAuA+QmABQZHh6ekpKSzykZzabZTKZtH79evXo0UOpqWl3irm5uSklJcXhcQLIOxeDp7NDAJCNBAvTxAAAAAAofCQmADiU0WjMcrSDyWSSp6dnllM5RUREaObMmUpOTpbZbNaYMWMKM1QAhSGVKSiAoszDhRETAAAAAAofiQkABS6r4tV3TsmUW++8805+wgJQBFgSk5wdAoBsnDdTBwYoytwrPujsEABkI/nqNWeHAAD3DBITuG/cebHcaDQqOTnZSdFkZLFY5JKLeddNJlO+Y8/NNkwmU46mTIqPj5ebm1uuilcXpLOzmjulXwA5V3vZbWeHACAb73/W0NkhAMhG+asHnB0CgOy4MCUiAOSUi8VChTsUb0ajUW3atJHRaHR2KChkpY/UcHYIAO4i4ZWnnB0CgGzceoQLKkBRVuKGsyMAkJ2yC0keAkXdj6mrnR0C/j8SEwAAAAAAAAAAwGG4JQoAAAAAAAAAADgMiQkAAAAAAAAAAOAwJCYAAAAAAAAAAIDDkJgAAAAAAAAAAAAOQ2ICAAAAAAAAAAA4DIkJAAAAAAAAAADgMCQmAAAAAAAAAACAw5CYAAAAAAAAAAAADkNiAgAAAAAAAAAAOAyJCQAAAAAAAAAA4DAkJgAAAAAAAAAAgMOQmAAAAAAAAAAAAA5DYgIAAAAAAAAAADgMiQkAAAAAAAAAAOAwJCYAAAAAAAAAAIDDkJgAAAAAAAAAAAAOQ2ICAAAAAAAAAAA4DIkJAAAAAAAAAADgMCQmAAAAAAAAAACAw5CYAAAAAAAAAAAADkNiAgAAAAAAAAAAOAyJCQBAsdSvXz/VqVNHc+fOzbSsTp06qlOnjg4dOuSEyIDiwWw266uvvlKnTp3UsGFD23516dIlXbp0KcPfAJBTWR2jDx06ZFsG3Ms4RuYP5/goDOyXgHO4OzsAAIDzjR49WuvXr8/0vIuLi3x8fFStWjW1bNlS/fr1U/ny5Z0QIYCCkp+Lejt37lSVKlUkSZMnT9b3338vSTIYDCpXrpwkyc3NTSkpKfkPFCggJpNJmzZt0u7du/X7778rKipKycnJKlWqlOrUqaOWLVuqc+fOKlu2bIZ2c+fO1bx58zI85+rqKh8fH/n5+alatWqqV6+e2rZtq8aNG+cptjfffFN79uyRJHXt2lXTpk3Lcdusjt05MXz4cL399tt5aoviKa/7SV7FxMRo2bJlkqQBAwbI39+/QLab3qFDhxQaGqrKlSurW7duBb79om7dunUaM2ZMnto2bdpUQUFBBRwR4Bzr1q3T5cuX1bRpUzVr1szZ4QBIh8QEAMDGw8NDJUuWtP2dnJys6OhohYWFKSwsTCtWrNCiRYvUqFEj5wUJIF+sCYQ7xcbGymg0ZvoeSM/NzU2SFBcXp7Vr10qSxowZowEDBsjFxcW2Hneaoaj4+eefNXbsWF25csX2nJeXlwwGg27cuKEbN25o3759mjNnjkaMGKEBAwZk2oarq6vKlClj+zshIUFXrlzRlStXdPDgQS1evFi1a9fW5MmT9fjjj+c4tk2bNtmSEnnh6+trd382m826ffu2JKl06dK2/TY9b2/vPPeL4qcg9pPciomJsSX+unbtWiiJidDQUM2bN09NmzYtUokJDw8P1ahRw/a4sHh5eWV5zL9586aktO8RLy+vTMuzOg8A7kXr169XaGiohg8fTmICKGJITAAAbB5//PFMd0cZjUbt3LlTEydOVHR0tEaNGqXt27dnuAgJ4N7x008/2X3eeve1ve+BO/31119KTk6WJHXv3p3vAxRJW7Zs0ciRI5WcnKwqVapo8ODBevbZZ20j/4xGow4fPqwNGzZo06ZN2rFjh90LrhUrVlRISEiG50wmk8LCwrRjxw59//33Cg8PV58+fTRjxgwFBgbeNbbo6Gh9+umn8vPzU/ny5XX27Nlcv77x48dr/PjxmZ4/dOiQ+vfvL0las2aNbZQTYE9B7SfIuQoVKmjbtm2F3k/Hjh3VsWNHu8usoyfHjRtXpJI2AID7CzUmAADZMhgM6tixo8aOHStJunDhQp4uoAAoPpKSkmyPfXx8nBgJYN/Zs2c1duxYJScn6+mnn1ZwcLB69OiRYTpCg8GgFi1aaMaMGVq7dq2qV6+e4+17enqqUaNGev/997Vx40bVrVtXKSkpGj16tMLDw+/aftq0afr777/13nvvFdjUOEBuFfZ+AgAAkB1GTAAAcqRu3bq2xwkJCXnaRkpKijZu3KjNmzcrLCxMt2/fVqlSpVSlShU9++yz6tKlix588MFM7c6fP68lS5bo4MGDunbtmlxdXVWtWjW1b99eAwYMkJ+fX55f152uXLmir7/+WgcOHNCVK1eUmpqqMmXK6MEHH9RTTz2lbt268aMc9y1781Wnr1mR1Rz5169f1xdffKG9e/fq5s2bKlu2rJ599lm98847XJRFoZg9e7YSExP1wAMPaM6cOXdNoNWrV0+TJk3KU18PPvigvvjiC3Xq1EkJCQn64osvNGfOnCzXP3DggNavX6/HHntMPXv21NatW/PUryPFxsbqu+++U0hIiM6dO2d7b2vWrKkOHTooMDDQ7vRQP//8s1auXKmjR4/q1q1b8vb2Vp06ddSlSxd16dLF7jRTeXXkyBEFBQXp6NGjunnzpjw8PFSmTBlVr15drVq1Uvfu3eXr61tg/RUH+dlPLBaL2rZtq8uXL2vMmDH6xz/+kWW7Tz75REFBQWrSpImWL1+ufv36KTQ01La8bdu2Gda3dyw5e/asvv76ax08eFCRkZEyGAx6+OGH9eKLL6pXr17y9PS0rXvp0qUM2wwNDc1UX+mbb77JMKWLxWLR5s2btW7dOp08eVLx8fEqVaqUnnjiCfXr109NmjTJ0H7Dhg364IMP5OrqqqCgILt1ZlavXq3x48fLzc1N33zzjW2d9PGlr92UntFo1OrVq7V9+3aFh4crLi5OZcuWVbVq1dSuXTu99NJLKl26tP033Ak4x4cj7d27VytXrtTx48d1+/Zt+fv7q0GDBurevbvatWtnW+/O89Z58+Zlqh11+vRpu33k9dw1JiZG33zzjUJCQnThwgWZTCZVqFBBTz/9tAYNGmT3M2ataWWt7RIcHKxVq1YpPDxc0dHR+uKLLzK8LqA4ITEBAMiRU6dOSUqba7tq1aq5bn/z5k0NGzZMx44dk5RWWNvf31+xsbE6evSojh49KrPZnKkY5+rVqzVx4kSZzWZJUokSJWQ2m3Xq1CmdOnVK69ev15IlS1StWrX8vUBJf/zxh/r166fY2FhJkru7u7y9vXXt2jVdu3ZNx44dk7+/vwYNGpTvvoB7kXW+6vRz2Kefv9reRb8///xTY8eOVVRUlHx8fGSxWHTt2jWtXLlSBw4c0Nq1awtlbnHcv27cuKEdO3ZIkvr165fjudJdXfM+mNxaXHf58uXasWOHEhMTVaJEiUzrJSUlacKECXJ3d9ekSZPy1aejHD9+XMOGDVNkZKSktGOjr6+vbty4ocuXL2vfvn2qVq1ahou8ycnJmjhxolatWmV7ztfXVzExMQoNDVVoaKi2bNmi+fPny2Aw5DvGtWvXaty4cbJYLJLSvqtcXFx06dIlXbp0ST/99JMaN26sBg0a5Luv4iK/+4mLi4u6d++uOXPmaM2aNVkmJkwmkzZu3ChJevXVVyWl1S8oXbq0oqKiJGWuhXLnsWTDhg0aN26cbQpBPz8/JSUl2c4fN2zYoEWLFtkuFrq5ualcuXJKSEhQQkKC3dpJ6Ws7GI1GjRgxQjt37rS19/X11c2bN7V9+3Zt375db731lkaMGGFr06VLF+3du1ebN2/WqFGj9MMPP2S4iH7+/Hl9+umnkqTBgwfbTVxk5fz58xo8eLDOnz8vKe099/f3161bt3Tt2jWFhobKz8+vyEzBxDk+HMVisejjjz/WypUrJf3fZy0qKkq7d+/W7t271bVrV02ZMkVubm6289bbt2/LbDbL29s7RzWW8nrueuLECQ0ZMsRWw8XDw0Pu7u6KiIjQ999/r+DgYM2ePVvPPfdcln1bE7murq7y8/O7J84TgPwgMQEAyJbJZFJISIimTp0qSXr55ZdzfYeWyWTSkCFDdOLECXl7e+v9999X586dbSd0Fy5c0Pbt2zP9aNyzZ48+/PBDGQwGvfXWW7bpBZKTk3XixAlNmTJFv//+u4YPH64NGzbk+8Rt2rRpio2NVcOGDTVhwgTVr19fLi4uMhqNunDhgrZt22b3bi/gfmGdrzr9HPZZ1aywGj16tOrWratx48YpICBAJpNJwcHBmjhxoi5evKgFCxbo/fffd0T4uE8cOnTIdoH6zjuxC1Pr1q21fPlymc1mHTt2TM2bN8+0zmeffaaIiAi9/vrreuSRRxwWW15dunRJb7zxhm7fvq3q1atr9OjRatmypTw9PZWcnKywsDAFBwdnKp47e/ZsrVq1ShUrVtS7776rdu3aydfXV4mJibZziv3792v69OmaMGFCvmJMTEzUlClTZLFY1K1bNw0fPlyVK1eWJMXFxenUqVMKDg62myi6nxXEfvLKK69o3rx5Cg8P17Fjx9SoUaNM6/zv//6voqOj5e/vrxdeeEFS2l3L6UcNZFcL5cSJE7akxNNPP60PP/xQNWvWlNls1rZt2/Txxx8rLCxMI0aM0LJly+Ti4qKKFSvqp59+st2FfLfaSTNmzNDOnTvl6uqqESNGqHfv3rbExOeff67vv/9eX375pR566CF17drV1m7ixIk6evSoLl++rI8//lgzZ86UlFaA/v3331dCQoIaNWqkYcOG5fg9jYmJ0aBBg3Tp0iWVK1dOo0aNUvv27eXt7a3U1FSdOXNGmzdvLjIJfc7x4UhLly61JSX+8Y9/aPDgwSpTpoxiY2O1ZMkSffHFF1q/fr2qVKmi4cOH285braO0Xn/99UwJMnvycu567do1vfHGG4qOjlbXrl31z3/+UzVr1pSrq6suXryozz77TJs2bdJ7772njRs32v3O+/333/XLL7/o7bffVv/+/eXv76+4uDgZjcaCeQOBIojEBADA5ujRo2rRooXt7+TkZEVHR0uSKlWqpKFDh2ro0KG53u66det04sQJubm5aeHChZnuGqtevbrefPPNDM+lpKRo8uTJslgsmjZtml588UXbMnd3dz3xxBP6+uuv1alTJ50+fVo7duzQ888/n+vY0rPe6TVu3LgMd1UaDAYFBAQoICAgX9sH7kfly5fXwoULbdNseHp66tVXX9Uff/yh5cuXa+vWrSQmUKDOnDkjKe2zVrNmTYf1m36qmIiIiEyJiZMnT2rZsmWqVKlSji6MFAWzZs3S7du3VaFCBa1cuVJlypSxLXN3d1fDhg3VsGHDDG0uXryoxYsXy8/PT0uXLtVDDz1kW1aiRAkFBgaqUqVK6tWrl1atWqWhQ4dmGHmVW+Hh4YqPj5e3t7c++eSTTHfeN27cOFd3q98vCmI/KV++vJ577jn9+OOPWrNmjd3ExJo1ayRJnTp1ypTAyok5c+YoOTlZAQEB+uqrr2zHEg8PD9sF8DfffFOHDh3S3r171bp161xt/+rVq/ruu+8kSf/6178ynI+WK1dOkyZNUkxMjLZu3arZs2erc+fOcndPu4zi5+enGTNmqF+/ftq0aZNatWqlLl26aO7cufrtt9/k4+OjGTNm2NbPiYULF+rSpUvy9vbW8uXLVaNGDdsyV1fXInc+yjk+HCUxMVHz58+XJPXo0SPDFE1+fn565513lJSUpK+//loLFy5U3759VapUqTz1lZdz1zlz5ig6Olq9e/fWRx99lGFZtWrVNHPmTN2+fVv79u3T0qVLNX78+Ez9JiQkaPDgwRo+fLjtOV9fX6YhRLHGmCAAgI3ZbNbNmzdt/6xJCSntrsPY2FiZTKZcb3f9+vWSpBdffDHHFwdCQ0MVERGhypUrZ/jBkl6pUqX0zDPPSJL279+f67juZB2Cf+PGjXxvC0Caf/zjHxnm/rayzpV76dKlPNetAeyxHrv8/f0dOgVC+gsg6Y+fUtqFuA8//ND235xMJeFsCQkJ2r59uyRp2LBhGZIS2Vm/fr1SU1PVrl27DEmJ9B5//HFVqVJFZrNZhw4dylec1gs2ZrPZNjUQ7q6g9pMePXpIkrZs2ZLpuzwiIkIHDx6UJHXv3j3X2759+7YOHDggSXrzzTftHktat26txx57TJK0efPmXPexfft2paSkyNfXVwMHDrS7jjWReP36df3yyy8ZljVu3Nh24X3y5Mlav369Fi5cKEkaP358rqchsp4z9+vXL0NSoqjiHB+O8tNPPykmJkaurq5ZjkJ666235OnpqaSkJNtUdXmR23PXpKQk2/dPdtOBderUSVLWn2k3N7ds6/UAxREjJgAANtaCW1YWi0WxsbE6cuSIZs2apaCgIB05ckTLly/P8UUVs9ms33//XZJydRfb0aNHJaX9gEg/iuNO1pPCq1ev5njbWWndurXWrFmjDz74QEePHlXbtm3VsGFDuyemAHImqzndy5cvb3scGxt7T1yoBfJqyZIlOnnypNq3b682bdo4O5wc+e2332xz+j/77LM5bmc9fm/fvl379u3Lcj1rnZorV67kPUil3ZH90EMP6fz58+rRo4d69+6tVq1aqXbt2szN7QAtW7ZU5cqVdfnyZW3ZssVWR0JKq/1hsVj06KOPql69ernedlhYmG26qaeffjrL9Zo3b67jx4/r5MmTue7D2uaJJ57Ist5JrVq1VKFCBV2/fl0nT57MNBrq7bff1oEDB3TixAmNHj1akvTCCy/kugbEpUuXbLVccjvywxk4x4cjWT9rNWrUyHLaLX9/f9WvX19HjhzRyZMnM3wf5UZuz11///132817r732WpbbtdZTyeozXa1atRzfBAAUFyQmAABZshYUe/bZZ1W3bl0FBgbq5MmTCgoK0uDBg3O0jdu3b9subFSqVCnHfVt/mFlHcdxNUlJSjredlVGjRunChQv65ZdftHjxYi1evFgeHh5q0KCB2rRpo+7du+d5SDBwv/Lx8bH7fPoLQNYfakBBsH5Px8TEyGKxyMXFxSH9ph8lkf5YERERoXnz5snHx8fu1A1F1d9//y0pbWqVChUq5Lid9fhtLTx8N/k9fru5uWnWrFkaPny4Ll++rBkzZmjGjBny9fVVkyZN9OKLL6pjx44Zih2j4PYTV1fXDEWwrRcCU1JSbHfT5/Xi4K1btySlTdtkLWxtj/UipfUzm5c+7vYZf/DBB3X9+nW7fbi7u+vTTz+13Q1dtmxZTZo0KdexpN+2tU5KUcY5PhwpN/uqlLfvA6vcnrtaP9OS8vWZJimB+xGJCQBAjlSoUEGtWrXSli1btHnz5hwnJvIqJSVFUtpdcEuXLi3UvqxKliyp5cuXKzQ0VCEhIfr1118VFhamI0eO6MiRI1q0aJG++uoru3MoAwCKhocfflhSWlHWs2fP2v4ubKdOnbI9rlq1qu3x1KlTlZiYqBEjRsjPz0/x8fEZ2lmPd8nJybZlJUqUuGfv9re+nn/96195qkuVF48++qi2b9+uHTt26KefftKvv/6qc+fOadeuXdq1a5cWLVqkoKAgLjymU5D7ibUI9tGjR3X27FnVqlVL+/fv17Vr11SiRAl17ty5oMIuslavXm17HB0drTNnzujJJ590YkRFF+f4KG5SU1MlpSUp8zJyyyp9jSTgfnFvnu0CAJyiYsWKktLu/sypUqVK2e5SzM10DdZCmAUxfDu3mjZtqtGjR2v16tUKDQ3VzJkzValSJUVHR2vkyJEOjwcAkHPNmjWz3f29c+dOh/W7Z88eSWl3d6e/uHX58mVJ0uzZs/XEE09k+vfrr79KkjZu3Gh77vTp0w6LOyvW43BycrKuX7+e63aOPn57enqqY8eOmjJlirZt26Z9+/Zp5MiRMhgM+vPPPzVjxgyHxlPUFeR+Yi2CLf1fsWvrfzt06GCb3z+3rHcPm83mbO9+vnbtmiRlO6ribn3c7TOeXR/79+/XN998I0kKCAhQSkqKRo4cqbi4uFzFkr4IvPV7oyjjHB+OVBD7amGx9pXb4yUAEhMAgFywnmi5u+d8wJ27u7vq168vSdq9e3eO2z3++OOSpPPnz+vcuXM5D7KA+fj4qFOnTpoyZYok6eLFi075IQUAyJny5curbdu2kqSgoCBbLYO7sd7xmBeXL1+2TVvTvn17lShRIs/bKirq169vu+i4a9euHLezHr/37dtnuzPaGcqXL69//vOftoLG+S2yXdwU9H5iLYK9YcMGXbt2zfaZyarodfoRQdY6EneqV6+eLXny888/ZxmTdZn1fNPK2jar7advc/ToURmNRrvrnD171nYOfGcfUVFRGj16tCwWi7p166agoCBVqFBBly9f1sSJE7Ps157KlSvb5rDPzTmzs3COD0eyftbOnTuX5cX/mJgY24iF9PtqTr4L8qNBgwa24+W9sO8CRQmJCQBAjkRFRenAgQOS0qZMyA1r8b9t27bp8OHDOWrz1FNP2ebX/fTTT7O9uGE2mzNNjZFbycnJ2V6USj+naFY/XAEARcO7774rLy8vRUZG6t13373rMSIsLEwTJkzIU1/Xrl3TsGHDlJCQIE9PTw0bNizD8h9++EGnT5/O8l/Tpk0lSV27drU9V7du3TzFUpC8vb3VoUMHSdL8+fNt83vfTdeuXeXq6qqrV69q0aJF2a6b04vh2bEWHM2Kl5eXJI7d9hTkfmItgn3r1i299957MpvNqlGjhho3bmx3fV9fX9vj2NhYu+uULFnSVhx54cKFdv9f79mzR8ePH5ckBQYG2u0jJiYmy9f0/PPPy83NTbGxsVq2bJnddebOnSspbe76O1/P+PHjFRkZqerVq2v8+PEqVaqUpk+fLhcXFwUHB2vz5s1Z9m2P9Zx5+fLlTr1on1Oc48NRWrRooZIlSyo1NVXz58+3u86XX34po9EoLy8vW+JVytl3QX74+Pjk6nhZEMc+oLggMQEAyJbFYtHJkyc1fPhw20lW//79c7WNrl276rHHHlNKSorefPNNffvttxl+hJ4/f15z5szRihUrbM95eHjoo48+kqurq/bu3avXX39dR48etf2wSE1N1ZkzZ7RgwQJ16NBBf/zxR75e57Vr19ShQwd99dVXOn36tO1HksVi0fHjx213vT300EOqXr16vvoCABSu2rVra8qUKXJzc9OBAwf08ssva/Xq1RkKVBqNRh04cEAjR47UK6+8ogsXLuR4+yaTSSdOnNDMmTP10ksv6Y8//pCbm5umTZvmsJoWjvDee++pZMmSun79unr16qWQkBDbxeHk5GQdO3ZMY8eOtV0YlqSaNWtq0KBBkqRZs2bp448/zvDeGo1GHTlyRJ9++qnat2+f7xg3b96sPn36aPXq1RmmvzGZTNq2bZsWL14sSXrmmWfy3VdxU5D7ibUItiTb9GTZFb329/e3FbHdsGFDlhen//Wvf8nd3V2nTp3SkCFDdP78eUlpF6w3bdqk9957T1La1FStWrXK0DYgIEBS2oiH9J/R9CpWrKjevXtLkubMmaNFixbZLoT//fffmjBhgrZu3SopLZGTftTw999/rx07dsjd3V3/+c9/bAVzmzdvbhup8/HHH+dqmqNBgwapSpUqSkhIUL9+/RQcHKzExERJaee+p06d0pQpU/Tjjz/meJuFiXN8OEqJEiVsdYtWrlyp6dOnKzo6WlJacvPzzz/X119/LUl64403MtQUql27tqS0kXw3btwolPjef/99lSlTRteuXVOPHj20ffv2DEWur169qrVr16pnz5769ttvCyUG4F5E8WsAgM3Ro0dtd6ZZxcXF2U6qXF1d9c4776hNmza52q6Hh4fmz5+vIUOG6MSJE5o0aZImT56skiVLymg02n5wDR8+PEO71q1ba8aMGRo3bpwOHjyonj17ytPTU97e3oqPj5fZbLatax2imx8XL17UrFmzNGvWLLm7u8vX1zdDPyVLltSMGTMKpC8AQOHq1KmTSpcurbFjxyoiIkLjx4+XlHYHvaenZ4Y7J318fPTCCy/Y3c7Vq1czHBsTExOVkJCQYUqI2rVra/LkybYpSoqLypUra8GCBRo6dKjOnz+vIUOG2D0+vvzyyxnaWe+YX7p0qVasWKEVK1bI29tbHh4eio2NzVAoNL8sFosOHz5su1vbYDCoRIkSun37tu3/UZ06dfTvf/87330VRwW1n0j/VwQ7OTlZHh4e6tq1a7Z99+jRQ3PnztWyZcu0cuVKlS1bVi4uLurQoYM++OADSVLDhg01ZcoUjRs3Tvv377fVrEhKSrJ9/urWravZs2dnOj9r2rSpHnroIZ0/f149evRQqVKlbMmDWbNm2WrBjBw5UpcvX1ZISIhmzJihWbNmydfXVzExMbbP0FtvvZXh9Zw7d05Tp06VJA0bNkwNGzbM0PeIESN08OBBhYWF6YMPPtCyZctyVNDe399fixYt0uDBg3XhwgWNHDlSbm5u8vPzU0JCgi0xWBRGVUmc48OxBgwYoHPnzmnlypVavHixli5dKj8/vwzHlS5dumjIkCEZ2r388stavHixzp8/r9atW6ts2bLy9PSUJIWEhBRIbBUrVtTixYs1bNgwRURE6J133rHtu0lJSRmSFK1bty6QPoHigMQEAMDGbDbr5s2bGZ4rUaKEHnroITVu3Fi9evXKNLduTpUrV04rVqzQhg0btHnzZv3xxx+Ki4tT6dKl9cgjj6hNmzaZLmxIaT+YmzRpouXLl2vfvn2KiIhQbGys/Pz8VL16dT3xxBNq3769nnzyyTzFZVWhQgXNnz9fBw8e1LFjx3Tt2jVFRUXJw8NDDz/8sFq2bKkBAwbogQceyFc/AADHadGihX788UcFBwdrz549OnnypG7duqXExESVL19ederUUevWrdW5c+cMd1eml5qaajs2uri4yNvbWxUqVFD16tX16KOPqm3btllOV1McNGrUSNu2bdM333yjkJAQXbhwQYmJiapQoYJq1aql559/PtNFWVdXV40ZM0adO3fWd999p8OHD+v69etKSEhQ2bJl9fDDD6tZs2bq2LFjvuNr06aNpk+frp9//llhYWGKjIxUTEyMSpYsqdq1a+v555+3XfSEfQWxn0hpdSsaNWqkw4cP67nnnrtr8dmhQ4fKx8dHwcHBOn/+vG1kQVRUVIb1unTpovr16+vrr7/WoUOHdOPGDRkMBj366KPq2LGjevXqZff/r7u7u5YuXarPP/9cBw8eVGRkpO0O6/RT9hgMBs2fP1+bNm3SunXrFBYWpvj4eJUrV05PPPGE+vbta5tyTUo7X/73v/+txMREPfnkkxo8eHCmvj09PfWf//xH3bp1U2hoqBYuXGh3PXtq1Kih4OBgrVy5Utu3b9fZs2dt8VSrVk3t27fP9U1ChYlzfDiKi4uLJk6cqDZt2mjFihU6ceKE7fu+QYMGeu2119SuXbtM7WrWrKmlS5dqwYIFOnHihG7dulUoNZDq1q2rzZs3a9WqVdqxY4f+/PNPxcXFyWAwKCAgQPXr19dzzz2nZ599tsD7Bu5VLpbCqv4CAAAAAADuCzExMWrVqpWSkpK0YMEC7goGAADZosYEAAAAAADIl3Xr1ikpKUmVK1fOVO8BAADgTiQmAAAAAABAnp09e1ZffvmlJKl///45qqcAAADub0zlBAAAAAAAcq1Xr166dOmSIiMjZbFY9PDDD2v9+vXU9AAAAHfFbQwAAAAAACDXrl+/rhs3bqhUqVIKDAzU4sWLSUoAAIAcYcQEAAAAAAAAAABwGEZMAAAAAAAAAAAAhyExAQAAAAAAAAAAHIbEBAAAAAAAAAAAcBgSEwAAAAAAAAAAwGFITAAAAAAAAAAAAIchMQEAAAAAAAAAAByGxAQAAAAAAAAAAHAYEhMAAAAAAAAAAMBhSEwAAAAAAAAAAACHITEBAAAAAAAAAAAchsQEAAAAAAAAAABwGBITAAAAAAAAAADAYUhMAAAAAAAAAAAAhyExAQAAAAAAAAAAHOb/AWkfUQnCBCdRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 789, + "width": 787 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.clustermap(predictions, cmap=\"viridis\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "k-VAntUjrFev" + }, + "source": [ + "We then create a UMAP plot labeled by maximum probability assignments from the CellAssign model. The left plot contains the true cell types and the right plot contains our model's predictions." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-30T15:43:24.213938Z", + "iopub.status.busy": "2024-09-30T15:43:24.213843Z", + "iopub.status.idle": "2024-09-30T15:43:24.216867Z", + "shell.execute_reply": "2024-09-30T15:43:24.216626Z" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 392/400: 98%|█████████▊| 392/400 [00:14<00:00, 27.49it/s, v_num=1, train_loss_step=42, train_loss_epoch=40.8] " - ] + "id": "oEWd5XnwC9tE" + }, + "outputs": [], + "source": [ + "follicular_bdata.obs[\"cellassign_predictions\"] = predictions.idxmax(axis=1).values" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 519 }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 393/400: 98%|█████████▊| 392/400 [00:14<00:00, 27.49it/s, v_num=1, train_loss_step=42, train_loss_epoch=40.8]" - ] + "execution": { + "iopub.execute_input": "2024-09-30T15:43:24.218193Z", + "iopub.status.busy": "2024-09-30T15:43:24.218107Z", + "iopub.status.idle": "2024-09-30T15:43:24.391750Z", + "shell.execute_reply": "2024-09-30T15:43:24.391436Z" }, + "id": "GMohUntlOMzl", + "outputId": "c405106a-0db8-474b-dde9-a073d2b286bd" + }, + "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 393/400: 98%|█████████▊| 393/400 [00:14<00:00, 27.52it/s, v_num=1, train_loss_step=42, train_loss_epoch=40.8]" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDQAAAZnCAYAAACcaycKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABibAAAYmwFJdYOUAAEAAElEQVR4nOzddXTd9f3H8ed1i3vSWNM0dXcv0AJFixQYQzbc+bGxjTHBxmBjwIaMDcZgyIDhLVIo0Ja6S9qmksbd7br9/rjpTW5yY21S4/04h3Nyv3Y/9yZb7/d1P5/3W+H1er0IIYQQQgghhBBCnEKUJ3oAQgghhBBCCCGEEH0lgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQohOnn/+eYYNG8aZZ57ZaV9JSQnDhg1j2LBhbNq06QSMTgghhBBCCAk0hBBC9LNrr72WYcOG8cADD5zooQghhBBCiNOYBBpCCCGEEEIIIYQ45UigIYQQQgghhBBCiFOOBBpCCCGEEEIIIYQ45ahP9ACEEEL0zOPx8Pnnn7N8+XKys7Opr6/HaDSSkJDApEmTWLRoEVOmTOl0XnV1NW+99RZr1qyhuLgYq9VKTEwMkydP5rrrrmPs2LH9Nsbnn3+eF154wf/4448/5uOPPw445pJLLuHJJ5/kuuuuY9OmTYwbN47//e9/3V73xRdf5LnnnkOr1bJmzRoiIiIAeOCBB/j444+ZOnUqb775Jtu2beP1119nx44dNDY2Ehsby9y5c7nttttISEjo9jnsdjvvv/8+K1as4ODBgzQ3NxMaGsqoUaO49NJLWbRoEQqF4ujeGCGEEEIIMSAk0BBCiJNceXk5d955J3v37g3Y7nA4aGhoYP/+/bz99tscOHAgYP+XX37Jgw8+iMVi6XS9ZcuWsWzZMu655x7uvPPOAX8NHS1ZsoRNmzaxa9cucnNzyczMDHqc1+v1hyILFizwhxkdvf/++zz00EO43W7/ttLSUt555x2WLVvGK6+8wsSJE4Oee+jQIW677TZKSkoCttfV1bFmzRrWrFnD0qVLefbZZzEYDEfxaoUQQgghxECQJSdCCHESa2pq4rrrrmPv3r0olUquvPJK3nnnHTZs2MD69ev573//y1133UVSUlLAeatXr+a+++7DYrEwadIkXnjhBVavXs2mTZt4//33ueiiiwB47rnn+PDDD/tlrLfeeivbt29n0qRJAFx44YVs37494L9HH30UgLPPPpvw8HCAbp9/8+bNFBcXA3D55ZcHPaawsJBHHnmEYcOG8corr7Bhwwa++eYbfvWrX2E0GmlpaeH222+ntra207kVFRVce+21lJSUMGjQIB599FG++uorNm/ezBdffMHdd9+NVqtl5cqVPPzww8fy9gghhBBCiH4mgYYQQpzEnnnmGYqKigB4+umnefTRR5k4cSJRUVFER0czadIk7r77blasWOE/x2638+CDD+L1ernwwgt5++23WbhwIQkJCURERDB27FieeuopbrrpJv917Xb7MY9Vq9ViMplQqVQAqNVqTCZTwH9arRYAnU7nD1WWLl2Ky+UKes2PPvoIgKSkJGbMmBH0mMrKSgYPHsxbb73F3LlziYqKIiUlhRtuuIEXX3wRhUJBQ0NDwHKYIx599FHq6+sZOnQoH3/8MVdeeSXp6emEh4czZMgQ7rrrLv95n3zyCXv27Dm2N0kIIYQQQvQbCTSEEOIk1dLS4p+9cMEFF3Deeed1eaxa3baC8PPPP6empgaDwcBDDz3UZe2Hu+66C6PRSG1tLWvXru3fwffCkiVLAKipqWHVqlWd9re0tPDVV18BcOmll6JUdv1P1v3334/JZOq0febMmSxcuBCATz/9NCA4KS4u5rvvvgPgwQcf9M8Y6WjevHlMnToVgGXLlvXilQkhhBBCiONBAg0hhDhJbdu2DYfDAfhu6Htr/fr1AIwfPx6lUonZbA76n8fjYfDgwQBkZ2f3/wvowbBhw/xFSYMtO/nyyy+xWq0oFIpuX7/RaGT27Nld7j/77LMBMJvNAXVGNm7ciNfrRafTMXbs2C7fJ7PZzIgRI4AT8z4JIYQQQojgpCioEEKcpI4sNQH8N9S9kZeXB8CGDRu6LITZUV1dXd8G10+WLFnC7t27+f7776mpqSEmJsa/70jIMX36dAYNGtTlNdLS0vzLXIJpX3C0tLSUUaNGAW3vk91u99f96MmJep+EEEIIIURnMkNDCCFOUi0tLf6fgy2n6M15vXVkJsjxdt5552E0GnG5XHz66af+7Xl5eezYsQPouhjoEUajsdf7zWaz/+fm5uY+j/dEvU9CCCGEEKIzmaEhhBAnqZCQEP/PZrMZnU7Xq/OO3MCfffbZPP/88wMytv4SEhLCokWL+PDDD/noo4+48cYbgbZioOHh4f4aGF3p2Ja2u/3tg6Ej71NERASbNm06qvELIYQQQogTR2ZoCCHESSo1NdX/c05OTq/PS0lJAQKXrJzMrrjiCgByc3PZuXMnbrfbP1vjggsu6DHIKSwsxO12d7k/NzfX/3P7pStH3qfGxkYaGhqOdvhCCCGEEOIEkUBDCCFOUpMmTfLfzH/88ce9Pu9IgcwDBw4E3MwfL0c6rnQXMrQ3fvx4srKyAN/MjDVr1lBVVQXAZZdd1uP5Foul2y4tX3/9NeCbnXHkeQBmzZoFgNfr5csvv+zVWIUQQgghxMlDAg0hhDhJhYSE+OtHfPbZZ/4WpsG0b0d60UUXERMTg9fr5YEHHuixVkRxcXG/1oaIjIwE8IcSvXEkuPj88895++23ARg+fLi/gGdP/vKXvwRderJ+/XpWrFgBwMUXX4xGo/Hvy8jI4IwzzgDgr3/9K4cOHer2OVpaWvr0moQQQgghxMCSQEMIIU5i9913H6mpqXi9Xu677z4efvhhduzYQV1dHXV1dezcuZO///3v/takAAaDgSeeeAKVSkV2djYXX3wxb775Jrm5uTQ2NlJbW8vevXt57733uOWWWzjnnHOOqpBoV0aPHg342s5+8803tLS04HK5cLlceDyeoOdcfPHFaLVaWlpa+P7774Gei4EeER8fT35+Ptdccw3ff/89dXV1lJaW8tprr3HnnXfi9XqJiIjgrrvu6nTuQw89RExMDA0NDVxxxRU888wz7N69m7q6Ourr6zl8+DBffPEFDzzwAHPnzmX79u1H+a4IIYQQQoj+pvB6vd4TPQghhBBdKysr44477uixjsaBAwcCHq9atYpf/epXPdaHUKlUbNiwgfDwcP+2559/nhdeeIFBgwbx3XffBRxfUlLCWWedBcAbb7zBtGnTAvbX1dVx/vnnB21xeskll/Dkk08GHcfPfvYzPv/8cwC0Wi1r1qwhIiKiy3E/8MADfPzxx0ydOpULL7yQhx56KGhgEhISwiuvvNJlC9uCggLuvvtuDh482OVzHfH3v//d/9qFEEIIIcSJJV1OhBDiJJeUlMSHH37I0qVL+eKLL9i3bx+NjY2EhoYSHx/P5MmTWbRoUafz5s+fzzfffMP//vc/Vq9ezaFDh2hqakKj0RAbG8vQoUOZMWMG55xzTkCYcayioqJ47733eOmll9i8eTNVVVW9WtKyZMkSf6CxYMGCbsOMjq644goyMjJ47bXX2LVrFw0NDcTFxTFnzhxuv/12EhISujw3PT2dTz75hC+++IKvvvqK7Oxs6urq8Hq9REZGkpGRweTJk1m4cCHDhw/v9ZiEEEIIIcTAkhkaQgghTgq7du3ydzx59dVX/cVNu9J+hsabb755PIYohBBCCCFOIlJDQwghxEnhww8/BHwzUmbOnHmCRyOEEEIIIU52EmgIIYQ44erq6li2bBngWz6iVMo/T0IIIYQQonvyiVEIIcQJVVJSwq9+9SssFgsmk4kf/ehHJ3pIQgghhBDiFCBFQYUQQpwQR2pgtPfzn/+8T8VAhRBCCCHED5cEGkIIIU4ovV5Peno6P/3pT1m8ePGJHo4QQgghhDhFSJcTIYQQQgghhBBCnHKkhoYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOORJoCCGEEEIIIYQQ4pQjgYYQQgghhBBCCCFOOeoTPQDRN/lljXyzuYj4KCPnz85ApVSc6CEJIYQQQgghhBDHnQQap4j9hXVs3VfJp2sOY7O7AWg0O7h20YgTPDIhhBBCCCGEEOL4k0DjOPhuazFfrMsnIdrEbZeNRamAsmozSbEmjHoNDqeb8lozcZFGDLrOv5L9BXU88OJa3B5vwPbc4gb/z3vzaimqaGLS8HjioowD/ZKEEEIIIYQQQogTSuH1er09Hyb6YmtOJf/6NJtGs4OJw+JYu7OUI1nE/EnJ7MurpareSlSYjuhwA4dag4nIUB1/vnsOCdEm/7WyD9fw2Zo81meXd3qeockRuDwehgyK4NutRXi9EGbS8tzP5xMdbjgeL1UIIYQQQgghhDghJNDoo+LKJu5/bg0WmwsArVrJvT+awNzxyQBk59bw4Evrujw/NT6UosrmLvfPHp9EQ7MdtUpJXKSBrzcVBT0uxKChxeoMuu+B66cwa2xSwDabw0VJZQsJ0UZCjNpuX6MQQgghhBBCCHGykyUnffTL59vCDACHy8NTb25jWGoU8VFGvt9Z0u35U0bGdxtorNtZRm8Spq7CDID4yMAlJ80WB798fg0lVS2EGrU8cecs0hLCevEsQgghhBBCCCHEyUnatvZScWUzhRVNtFhdQfev2VkKgKWL/Uc4XR4UCuiqOUl/TJeJDtcHPN60p5ySqhbAF26s6GLWhxBCCCGEEEIIcaqQGRq98Kc3trB2V1m3x7jdHq75/Zc0mh3dHrd0TR7QP8FFMKkJoRj1aqx2F26PlxCDhtiIwBkbMRFSX0MIIYQQQgghxKlNamh0Y/3uMt7/9iC5JY3dHhdi0JAcF8L+wvrjNLLeu+yMTH5ywSiWrcljQ3Y5Q1MiuO68EahUMjlHCCGEEEIIIcSpSwKNLpRVt3DHn7/r1Cq1PZ1GSViIjvuvnsRrn+9lf0FboKHXqvj9jdP4+4e7/cs9TpTXfne2zMoQQgghhBBCCHFaka/pu7Avv7bbMCNEr8bu9FBdb+X1z/dxx2Xj0GlU/v3nzkhneHo0d14+LqBeRlSYnsduncGimemEGDWdrhsdpu+07VgoFaDVqFi/u4z3VhyguJuCpEIIIYQQQgghxKlCZmh04b5nV5Nb0tCrY6PD9bz++3NwutxsyC5Hr1WzcU8532wpQqdVYbO7/ccqlfDpUxdjsTm55qHlOF0eABKjjdy8eAwtFifPvLO9316HUgFDUyI4UNTgf/zsffPJGBTeb88hhBBCCCGEEEIcbzJDowuePuQ8i+dlAqBRq5g7IRmTQcOKzUV4vQSEGQBqpZK7nvqOTXsq/GEGgEajYsrIBOZPSsak77lWa29LYHi8+MOMI4/f+Wp/704WQgghhBBCCCFOUhJodOGmi0b1KjQ4d3oai+cNCdimVgX2ZI2PMhIeosWgU+NweSisaOaFD3ZxSet5Wo2KJWcOZcWmQp78zxZc3Sx1OcLt6fGQLoWFaI/+ZCGEEEIIIYQQ4iQgbVu7MCYzljceXkRji536Zju/+8c6guUM00Yndto2LC2KJWcNZfmGQgbFmnjg+ilEhxu4/U/f+guEOpxuNBoVU0clMHl4HP/8JJsWi3OgXxYGnZrzZ2cM+PMIIYQQQgghhBADSWpo9NLP/rqaQ8UNgK+7id3pmyIxb0Iy918zqVfX2JBdxlNvbsPp9jAo1kRptXmghtutoSkRPPN/807IcwshhBBCCCGEEP1Blpz00m9+OpVzpqexcGoqanVbN5PVO0oCamF0Z8rIBGIifF1MTlSYAXCouIH/Sh0NIYQQQgghhBCnMFly0kvR4QbuWjIegLIaM3vzagEYFGtCo+5dLtTYYqe81tJpu0Gnxmp39dtYe2PpmsOcOyOdyloLh0rq2bSngiHJEVx/3ghUQYqHWO0uvlxfgFLpa0mr18qfjhBCCCGEEEKIE0eWnByFhmY77644gNPl4YoFWcRHGXt1ntvj5c4/fxswO2PisDg8Xg87D9YEPUerVuLo5QyQvlIAHX/5Vy0cxo/PHd7p2N+8tI7dub4xThwexyM3zxiQMQkhhBBCCCGEEL0hS06OQkSojtsuHcvdV4zvdZgBYHe4aGxxBGzLL2tEr9V0eU6w2RL9JViS9d3WIsAX2tidvpazXq+XPa0zUgB2HqjCbB34AqZCCCGEEEIIIURXJNA4jqobrLR0CALqm+3UN1u7POdol6KoVQpM+r4vC2lotvPcezu49uHlXPfwcvYcrkGhUDAsNcJ/jMcLb0sNDiGEEEIIIYQQJ5AEGsdRUkwIQ5LDA7aFGDRo1d0HD0pF35/L5fb2urZHew6XhxWbfbM0LDYX73x9AIAlZ2UFHNfYbO/7oIQQQgghhBBCiH4igcZxpFEreeKO2Vy1MAtta9gQG2kgzNj1khPwzYg4Gg0dlrccDZPBN7YJw+IYnxULQKhRwyXzM/3HeL1eDhbW8+IHu3ht2V5ZjiKEEEIIIYQQYsBJq4oBtGZnKV+szychysSNF43ii/UF5JY0oFa1FfrML2tCdTRTMI4DhQJuvngM63eX8dx7O/ACP71wBCa9llc+yaa+xc75swazdmcJ+wsb/OftK6jF4fSg06i4/bKxDE4K7/I5hBBCCCGEEEKIoyFdTgZIeY2Z2/70LZ7W6RUj0qPIKajrl2srFUc/a6MvFAp48s7ZPPrqJv+sC4UCevqLad89JT0xjOfvP2NAxymEEEIIIYQQ4odHlpwMkLommz/MAKhtDCz8mZEUdlQ1LuD4hBngCy7++Ppm7A5XwLYez2v3c5P52Je9CCGEEEIIIYQQHUmgMUCyUiOIDtcDvlkNs8YmBexXKhU4W5eddEehgAHs3NqjxhYHLnfvE5TxWbFcs2g4ACqlguvPHzFQQxNCCCGEEEII8QMmNTQGyI4D1dQ22gDfrIYDRfUB+4srW3p1Ha8X+pAn9AuVUkGoUUtDS+dOJl0tOUmJC2FwUji3XTaWUKOWc6alo1YpCDFqj8OIhRBCCCGEEEL80MgMjQHidAfOvqioNQc8HpYWcRxH0zduj5e0xNCgxUq7WnJSWt3CgqmphLYGGBGhOgkzhBBCCCGEEEIMGAk0BsiO/VX+n2Mi9ESFGQL2X35mFhGhuuM9rF7bdagGdx+KdXi8sHp7CeU1LVTWWXo83mZ34XS6eenDXdz9l5X85/N9nEr1aavqLJRUNZ/oYQghhBBCCCHED5Z0ORkANQ1WfvrY1/7Hg5PCuO68kTzx+mZ/u9bTnU6j5II5Q7j67GF8uDKX+iYb588aTFpiGM+9t4MVm4sw6tRY7G0FR3957WTmjB90AkfdO5+vy+efH+/G64XF84Zw40WjT/SQhBBCCCGEEOIHR2poDACDTo1Wo8LhdAMQHqJj8oh4rjtvJP9auucEjy6482ens/dwLQXlwWcd9LVVrN3p4cPvDrFlbwVFlb5rrttdxq+uncyKzUUAAWEGQFOQmh0no/e/PehfevPJ6sP8+Nzh6LVqsnNr+MfHu1EqFNx+2VhGDo4G4OtNBXy2Nh+LzYXL7WHIoAjuu3oiIQbNCXwVQgghhBBCCHFqkyUnA8Bk0PDr66eQlRrBpOFx3L1kPAAp8SEndmDdWL+rvMsww6hT8YfbZqE9ijazR8IM8LVwNducAfv1WhUAaQmhzJuY3OfrnwhHuteAr0jqL577nqo6C0++sZmiimYKypt46q1tFFc2cedT3/H8/3aRX9ZEZZ2F2kYbm/dV8N6KA/5rFJQ3UVXf8zIdIYQQQgghhBBtZMnJceRwulny68/xtHvLjToVFrv7BI6qd2LC9dS0dm05WpkpEfzsRxN5Z8V+dh+sITk+lHuvHA8oiI00oD6R/Wl74b9f7ef7HSUkxoRgtjnJya876msNGRTGL6+bwnsrDvLd1mKUSgX3XjmeMyenAr6/lUPFDcRGGIiLMvbXSxBCCCGEEEKI04YsOTmOtBoV8ycl893WYv+2C+cMYd3uUkqqzN2c2TsqpaJPhTz7oi9hxswxCazPrvA/njwijjMnpaJWwV1/WYmndYzjwvUkxoRwuKSBx17djVql5MaLR5EUc/LNZNl1sJp3vvbNqiitNnPGpORjCjQOlzZx79MrsTl8NVU8Hi8ffHeIsZmx1DVZ+edH2RwsbkCjVvLgT6YyeUR8v7wOIYQQQgghhDhdSKBxHC39/jDZuTUB2z787hCufgohBirM6AuNWsnNi8cyakgMX6zLJyHaxL1XTqSkqpnf/mO9P8wA+H5HKT86exi/f3kDTWYHADWNVv72s/knaPSBGlvsvLviAE6Xh8GJYQH79Fo1Bp0K6zHMrjkSZhxRXNkSUEwWwOnysHxDgQQaQgghhBBCCNGBBBrHyc6DVbzyaeeCoP0VZpwsPB4vG7LLuWjOEC6aM8S/7d/L9nYKXBQKWLrmsD/MAKhurSXhdLn50xtb2XGgitGZMfz6+inotf3/51pZZ+HDlYfQa9VccdZQQoxa/75f/30txZUtAESF6RgzJIbswzXEhOtZPH8I1ywazq1//JaWDnVB+ltCtGlAry+EEEIIIYQQpyIJNI6TmgbrUZ03kMtIRg6OZF9+/TFfR6mAqDBfjQ23x8vLn2TT0GLj2kUjAXjji30cKm4IPEepQK9R8eX6woDtw9MisTlcrNxazKa9vmUr2/dX8cW6fC49Y2in565ptPKvT7JpaLGzYEoaC6am9nrcXq+X3/5jHRW1vhClqKKJB66fwp/e2Mqew9UBMyjqmuw8dNN0HC4PZqsTnUZFmEnHG4+cw08f+5rGFkdXT3PMxmT6uqXk5Nex82AVIwZHMT4rbsCeTwghhBBCCCFOBRJoHCfTRyfy/rcHKatp62YRZtJisztxuLoOLAZyGUl/hBnga+fasXvJ/745RHykkVFDYtgXpNaEx+Pt1LYVYEtOFf/3zCoWTk0L2P765/twe7wsOSsLgNpGKys2F/H+twdxOH3Bw968Oj79/jDREXrsdjcut4frzh/JmCExQcdttbv8YQZAflkTyzcUsDWnstOxSgXc+8xq/2OFAqaOjKfJ7KTFMnBhBkB2bi1RYXp+/fe1uD1eFMDDN09n4nBZhiKEEEIIIYT44Tq520qcRkKMWh6/fTZKpcK/zeF0Y9D3LVM60uY0mHaXPu6C9cp5/v1d3PGnb4kK0/XpWqXVZrRaFROHt81C8HrhjS9yqG+ycbConhse+5q3l+/3hxlHFJQ3sS2nij15tewvrOd3/1iPxdY5OAEw6jVMHZngfzx/YjKewMuhVIBGpaBjruT1wqa9leQU1OHucE5/GzE4ipz8On+45QX++XF2QD0SIYQQQgghhPihkRkaA2Tzvgoamu3MHJuEVq3ku63FKBQK7loyjne/PkCT2YHN4cbm6FtRye6OP1H3txq1sstxebxwoKiBi+ZksHRNXpfXUKsUuNxtLyAhysjI9Ci276/yb1MqFSiVCp58Y0uvX6vb42X1jmIWzRgcsN3udLNuVxlnTUnh7Gmp6LQqxmfFYbE52byvgpz8WjJTIigsb8LuHODEopUCX1gBvhkgE7LiWDQznemjE8kva8SgcHBDyCrS1dXssaZwsHAcwwfHHpexCSGEEEIIIcTJRgKNAfDeNwd468v9ACxbk0dUmJ7tB3w35mkJoQxOCmdrTkV3lzilOF3d3/DXNFhx9hAKTBwWx5acSrxeCDVqGDE4mmff2RFwzK2LR1Na3UJDs71P4zN0KCbq9Xp56OUN7M2rBWDxvCHceNFowDdr44k7ZvHi+7v4enNh0JknA+WX105m6sh43vv2EIXlTVwwZzDjh/pmqSTHhTA+opEyewRp6hom6grYveor/v7RIOIijdx9xXjCQ/o2E0YIIYQQQgghTmUSaAyAjXvawoqC8iYKypv8jwsrmimsaD4RwzqhvtxYQESIllCTljGZscRF6nn9sxz//pKqFn940GxxsudwDaoOa2iKKpp56aPsXj2fQafG5fYwfXQic8YPCtjXZHb4wwyADdnl/kADYNv+Kr7aFFis1HfNtjatOo2y32duvLviADsOVPH15iIANu2tYPG8DC6ZP5R/fLSbDfWxQCzZjlTuDvua3QeryHeEkl/WxP6nVvK3n80jOtzQr2MSQgghhBBCiJOVBBoDYFhqJLkdunr0VUKUEYvdFdDS9GRg1Kmw2IMvL2m/ZCKYhhYHDS0Orj9vJOOGxrJiUxGl1WZMBg2ThsdRtjYf8HV2SYoxkZ4Uxs6D1f7z1+wq69UYs1IjePreeV3uDzFqSYwxUV5jBmBoSkTAfm8X0zJ+dM5wcosacHk8bAtSOPRYma1OduXWBGz7ZHUen6wOXKqT60pgpz2VbY62ZTSNLXb+/sFuRmdGUVjWTFZaJOdOTw+o2dKezeHitWV7Kas2c86MNGaPGxT0OCGEEEIIIYQ4WUmgMQAazX1bEhFMRZ2l54OOg/a1LUx6Ne6OVTPbSYkPoaiypcdr5pc3sXxTIaXVvkDB4/Zw4ZwhhIfqKCpvZt6kZFITwhiWFuEPNFRKBYNiTf6Ax2TQMDQlgqQYE9NGJfDQKxv91++pWKZKqeCPt89i2Zo8DHo1i+cNCdg/aXg8Z0xKZtX2Eox6NRlJ4Syel8nmfRV8v7O0x9d3tBwuDxMzoqns8Xfv5TXz/E5bN++rYPM+3+ygb7cW8+YX+8hKjeTWS8aSFBsScOzby/fzxfoCAHYfriE9MYzkuNB+eBVCCCGEEEIIcXxIoNHP3G4P63o5k6AjtVqBq5sWridC+0Kd5i66hSgUMDYzhhHpURStONjt9RQK3810e1aHm52HqrhywbCA7au3tYUHbo+XMyalMDgpHLvTzRVnZQXcpF99znDe+Xo/Rp2aGy4cTU9iIgz89MJRQfcplQpuv2wc2/dX0Wh2kH24lthII/lljT1etze6msnSZHaAQsGFswezaW8FVfXWoOcbdGpMeg01jbZun6fF6mL7gWqeemsrz943P2Bf+9DE4/FS22A7boFGcWUzTpeHjEHhnfblFjfQZHYwdmgMapU0YRJCCCGEEEJ0TQKNfqZSKUmMMVHWOvugt6LDdESE6skvazymbiUKRfAWqt2JidBT09D9zXFHF8/N4FBxA0qFgpsXjyEtMYzLH1jW5fERoVoamh1djq04yMwOiz0wQElLDGPRzMGdjgP40dnDuOyMTFQqZafaG8HsOlTNd1uLSY4L4dIzhnY6p6HZTmO75T6HiusxGTQ9Xrc3Jo+IZ0sXS1ZWbS9BrVLw+O2z+GxNHut2l3X6exiWFsWiGek8/fY2HD0UZAWoa2r73Xq9Xvbm1TIhK5Zt+6twON0MT4tkxOCobq/h9Xo5WFSPQuFbOpQYbSIlvu8ByIffHeL1z/cBcP6swdx26Vj25tXidLk5VNTAG1/66qrERRqICtNz9rQ05k5M5oX/7WRrTiVKpYKEKCMZIR6Gb/iIUGcLqTffREPKCKLC9MRFGfs8JiGEEEIIIcSpSeHtqmCAOGr78mv51Qtr+3TO0QQRQa9D93UsOtJplISatAGBRohRQ4vF2eU5Rp0ap9tDTISBB6+fytrdpTSbHazaVtIphDhCq1Z2e/N93szBuD0eUuNDuWB2Bkqlgn8v28vHq3IBX3eY5+8/A4Wi57CiJ2U1Ldz11Ep/d5Zrzh3OlQsDZ4e4PV5+89I6f/HQ9u/rpOFx7DpUHTB7pS9+fM4w3v7qQLfHhJm0QeunaNRKfnfDNBJjTNQ0WEmJD+Gjlbl8svpwl0HYbZeO5fxZviDo6be3sWp7CQCp8aHcvHg0ozJi0Ki7nw3R/jzwLdt58KdTmToyIeC4Q8X15JU2MiI9itSEMP92i81JflkTf3x9c8DrCjVqaO7mbw06t/Q9ItrRwE+KPue/gxZSbvB1g1EqfLNvfnvDNFKj9SjVahQqVbfXF0IIIYQQQpyaJNAYIC+8v5OvNnbulHGyWzw3g5yCeg4U1Xfap1DAlBHxbN7XNrtAr1Vic/iCgRCDhhZr282pVqPE6fSgVCpQKhVdtncdkR5Jbkmjf//iuRkcKGrA7nQzfXQCcZFGZo1LQq/tnwlFW3MqeeRfbTU3Zo9L4lfXTel0nMPpZtv+Kv7z+V5/vQ+AyFAdc8YPYs/havLK+taxJi7CwPzJKfzvm+6X5nQlNT6E82YO5uVP9+DxeJmQFUtOQR02R+dCrVq1ksdumcGqHaUcKKxn4vBYPvguN+CY+ZOS+fnVkzqd29hi53BJI2mJoahVSq55aHmnY7JSI7hryXgGJ/mWjuw4UMXvX97g3z9mSDSP3TaLZrOD+5/7nso6S78Fd35eDyg6hzGX1m8kq/YgqFRk3nUH8WfO78cnFUIIIYQQQpwMZMnJALl20Qg8Xi/fbCrq04yJE23d7jKqu1h+EhGqY+eh6oBtR8IMICDMAHC0tjV1e7y4W6cPaDVK1CoFFlvbDXhBeXNA2LFiSzHm1mtV1Jr576OLUPVjPYUR6VH+LidKpYJ5E5ODHqfVqNColQFhBkB9s52la/KCnhOMSgkRIXrCQ3Xcf80kdh6oOuqxF1W28I+P21rX7jhY3eWxDpeHNbvL+HJDAQB5QWqA1DR0rtNRVW/h53/7noZmOya9mj/cNotQo5ZmS+CMkYNFDdz37Gp+f9N0Jg6L492vA2ujZB+uZeu+Chpa7P6aHf0ZZig9bjzKILMvvF4G1x32/ex2k/v8i8TMmoFKp+u/JxdCCCGEEEKccBJoDJDHX9tMTkHdiR5Gn3W31ERBW0hxtBxOD44OT2Ftt0xFqVQE1LOw2l24PF76c9WAyaDhmXvnsju3hoRoEyu3FfPOVwcYOzSGn14wKqDV6YpNxz7LJjkuFIvNSV5pI3c/9R3uY3sLA3Sc8dBxydGewzUdTwlw0ZyMTts27imnodnXqcdsc/HN5kLio4y43B7io4yoVAoOl/jCEbfHy0crc4kM1QVdUqTVqAg1afv8uoKJCNGSlhjGrkO+1xQ0zGjlpd3SJI8HZ0MDqvj4fhmHEEIIIYQQ4uQgbQQGSG5JQ6dt4SFazpyczNDUCAy6gV/XHxna92+knbaui4PWNR1bO1plD8U6NWolqfGhnDdzsD/U+NHZw9Fp+u+92l9Qx7I1edQ325k5NonDJQ18svoweWWNfLL6MCu3FQccX1jRtyUlwVTWmf2zXvozzNCqFZ1mPHjx1ZE4oqC8mbDWQCEtIZSYcD3gCz7uuHwc00cn8sF3h3jiP5v9NTKSYwOLfe4+XEtuSQNWu4vS6hZuXjwmIHTadaia+55dzcRhgYHBlJHxtFgdvLZsb4+vRaNWcu2i4QFjP2d6Gu1LpgxNjWT3oe4DGoBQlxm1t20GkD4pEV1MTI/nCSGEEEIIIU4tMkNjgMwal8SqbSUB2xpbHKzcWsKz981jSHIEG7LLeHXpHirrgrfnPFZnTU7l221F1PchiHAp+6eTR0dKBUweEcfmvcG7ewA4XR4KyptoMjt465Fzcbo9RIbqj/o5PR5vQIiy/UAVj7yyAY8XDDoVz943P6CTCfhqR7QXH22ktLpzB5a+aL8spz85umjxq1ErsbebSWOxOZk2Kp6C8mZqGm3odSruvHwc8yem8Pm6fP7T2nVk/e5ysnNruPuK8dx9xXi25lQycnA0K7e2hTxOl4eEKCMP3TSdj1fl+pe8uD1eahqtPHrLDHYdqmb6mETW7izlz29u6/Y1pMSFEhtp4EfnDGN4WhTxUSa+2VxEcnwIP7lgFNsPVFHd2r62otbcq+VbzZoQts25mgsMlWhjYki+5GIpDCqEEEIIIcRpSAKNAXLfVROZOiKelz/ZQ0O7m2QvcN9fV7PkzKEUV7VQVX/0YYZSQbctXj9enYs2yOyGiBAtDS2dO2gMLAWb91aiUStwBrkRb790otniwGTQHFNHk09W5/Kfz3MwGdT8+vqpjMqIZtv+Sv/7ZbW72XO4hrOmpLBiUyFlNWYGxZo4c3JqwHXuXjKev7y9jfIaM/MnJlNQ3sT2Y6iBMZCUCoiLMrJwSipvLm+rZ+Fye9nULkiy2d2s2VHK/IkpncKarzcV4vF6ufrs4Zw9LQ2ApBgTf3pjCw6Xh4vmZGC2OimuauasKalkH67xdyAZnBTOhGFxmAwatuyr4NPvA+uMKBQwZFA4uSVttTxmjk3kmkUj/I/nTUz21zTxeLzUtqvxUVzZEvRvd3RGFNPHJFJa1UJji4Ok2BAuP3Nov7XZFUIIIYQQQpycpMvJAHK5PVzyy2X9ft2EaCOhRg2HijsXeexOfJSRi+cN4eV2RSUHil6rwuny4PZ4u2y7eWRMEaE6xmbG8OF3h/ACP71gFJfMzzzq524yO7jmoS/9AUnGoHD+9rP5rNtVxpNvbAF8rUCf+b95DE4Kx+lyU91gJTbCgEYdGACVVrdwz19W+utD3L1kHGt2lbLzYM9LH7rTm3alvaVRKfjJBaPYuKec4soWMpPD2bq/+9DFqFejVStRKhVBlxLFRBj4+y/PxKDzZZ4WmxObw43Z6uRnf12NzeFGqYDrzhtJWY2ZtMRQLpydwd68Wn7zj/V4ukja5oxLYsOeclxuL0oFPHbbTMZmxgYcs/1AFdm5NSTGmPjvV/upbQxcBnXezHSKK5txuj1cdkYm00cn9eXtEkIIIYQQQpwmZIbGADpQ2Ln1aX+oqLVQURt8X/sgoaNmi4M3WpcXDLSYCAN3LRmP1+ulqt7Cs+/sCHrc72+cRmpCGAAXzRmCF+8xLTMB30wAhULBkazuSL2HWeOSePAnUzlYVM+UkfH+dqMatYqkmBD25tXSZLYzaXi8f2bL4ZKGgGKXe/Nqyc7t4s3vg2MJM/QaJbbWJSWJMSYmDYvlf98epLF15kJPYQaAxebC0s3+mgYre/NrSYoxoVBAZa2VURlRbNpb4W8R6/FCQ4udhVNTsTtcPPbvTew8UNVlmAGwdncZT945m715tYxIj2L0kMDaFrsOVfPwKxu67YbyxfoCxmfF8sgtM9GopQyQEEIIIYQQP1QSaAyg/rrZ0qiVAW1Nu3PkZjMYi83V5b5OvF7ouOTD68XotqHES4va2O3pJVUt/PH1zUwcFtv5OvhamZ4zfbA/zABfW9j+EGrUcsdlY/nP5/sIMWq5/bKx/n0zxiQyY0xip3M+XpXLv1uLV2alRPDne+aiUioYkR5NiEFDi9WJQgHD06P4rkNtlGCOnDMQbE4PS84aSnW9FbPVwWfrCvp0vlGv7tXfwqOvbAyoWaHTKnnk5hkBM26Wrcnjk9WHu7zG1FHxVNdbyS9rAiA6TM/IwdGMHBwd9Pj9hXVBwwyFAvRatb8jzs6D1ew4UMXUUQk9vg4hhBBCCCHE6UmWnAywt77M4Yv1+Uf9jXxqfAh/uXcej7yygb35J7YN7PjGA5xdvRklXlZHjWdD1NhOx/Q2fLn1kjFcMNvXMrTJ7KC+yUZyXAgq1fH7xr220cpXGwsJM2n5eGUuVe3qNTxx5yxGZ/hmD5TXmNm+v5LIMD1JsSb+9u6OgDoQ4KtLMnZoDDa7m3NnpPPRylz25B37TI5gVMruu6UoleDpYr9Oo2Ts0Fi27Ou6OGt30hPDcLvdFFeZe33OqIwo8suaMOjUPHj9VGIjDRSUNzE4KYyIDrNxDhbV86sX1uJye1AqFHha/+/pigVZOJzugPDkT3fN7jIYEUIIIYQQQpz+ZIbGALtm0QgWzxvCtQ8v77KORHeaLU50GhVG/YkvcDi3difK1u/s59TtYmPkaLyKwACitzNJtuZUcsHsDPbl1/LwKxux2l2MGRLDI7fMOC7LCJwuDw+8uJaKWt/CC7028Dnf/+Ygo2/xBRqJMSZMBg1/fnMrbo+X+ROTuWjuEJ7573b/8Wabi+93lBEVpicpNgSro3ezYXoq7NqRRq1geFoU2Ye7Dku6CjMA7E4PW/ZVolErmTcxmW82F/X+yYGC8qYu97Uv7Nre3jxfEGexufhifT5rdpb6l/H89MJR4AWv18uimelkpUbyl3vmsC+/jlEZ0ahVCrxAWkIYFpuT6norhRVNnDk5RcIMIYQQQgghfuAk0BhANruvrsDu3KMvIHntohG8/Ek2W3KO7hv1YxVq1DJ3qIasoncYNM6OpRQsVWBV6TqFGX1x5GZ06fd5/mUE2Ydr2JdXy7is2O5O7Rf1TTZ/mAG0zgxpSwLsHVqtfrgy11+XZNX2Eq4/fyRnTk7hu9aWpkeCnLomGx+vyuXsqWm8VLK7x3H0JcwACDFouw0zesvp8mC29m+nm97M9fpuW3HAca9/ttf/eOv+Sp64YzZDkiMYkhzR6VyjXsMD10/pn8EKIYQQQgghTnlSUW8APfKvjccUZmhUCs6aksrGPeW9PketCqxXERNxbAU246MMpBV9QbqiAY0GwtKgOjSSjxLm+49JjjOhUfWuxerE4bHce+V4lpw1FACDPjBTCw05PjNRosP1pCe21e9YMDmV+ChfXRClUsFFczMCjo8Kb3sfDToVRr2a/7tqAk/fO5d7rxwfcGyoUUtBReeZDB1/Nx0pe3gLFQqob+7ckaQ7Oo2KqSPjufyMTLQdZr5U1llJjgsBIMyk6fXv8IiE6O7rqATTMfRo/3hfXi2yAk4IIYQQQgjRWzJDYwDlFB5bzYszp6Ty2L83dWpb2Z2Oy1ouO2Mo4SE6BsWGkDEonLv/srLbZQMd5ZY0cnaoA1pzBoUCPkucQ6Unwn9MSZXZ30mko6QYE9UNVv8Mhup6Kwumpvn3d7zJrqixkJEUwUBTqZQ8cedsVm8vIcykZfa4JKxON19vLESnUREeElig9J4rxvPPj7Nptji4auEw/xKgrNRIslIjqWm0sWpbCelJYSw5ayivd+gm88trJjFzbBI3/mEFtU3Bf58dZ2sYdGpiIvRMHZWA2+2lrLqFzX2sfWF3utm8r5L9hXUB3VoA8kp9dUBUSgUqlQJnL5ZEGXVqbE43Ho+XmgbbUbWfjQ7X02J1YtCpSYoxsa+1Nsz4YXEoghSQFUIIIYQQQohgJNDoJ9X1Vl77bC92h5urzxnGkOQIJmTFsfUol4oYdCqq6i3sOFB9TOPac7iWB66fgq11Wcd1543g0Vc39ekan1vGMyi0jhClndW24VR6wjsd4/Z4USkVAe1iI0N1PH77LG58fIV/m9kaWFvCoAv8E+yP+hkVtWb+/sEumq1Orj57GFNGBu+EEWLQcP6swQAUVzbz9cZCAKx2F28v388f75jlPzY63MCDP5na5XNetXAYVy0c5n985YIsDhbVU1jezFlTUpg9fhAKhYKXH1zAZQ981uNrUCjgzsvH8cx/t/FhZS6RYToumZdJTkGdP0DoqmZFME3mrkMHt8dLfVPvlp9Y7G2/P5fbw8RhiWzYU47D2bvaKQCP3jqD1Hjf7Biny8N3W4vweLycNSW119cQQgghhBBCCOly0k9++fwacgp83zRHhOr4z+/PweX2cM1Dy/01Ik6En5w/gp2Hath5sJrkuBDOnJzCut1lHO7QpaMnCjxocOOg6yUhP/vRRJ55Z3vAtvTEMM6YlMLrn+9FpVRy71UTmD8x2b+/xeLgz29u5XBpI3PGD+LWS8Yc87f0v/3HOnYd8i310WpUvPnwOT0WVa2qt3Dz4yv8sySmjUrgtzdMO6ZxdOXmx1dQUWfp9phL5g9h1baSHpeYxEToaTY7sTu7btcLfQs/lArf33BdU8/LW266eDQrNhdSWN7cq2vHRRp49bdn924gQgghhBBCCNENmaHRT6rq225QG5rtOJxudFoVWrUSa9/KHhwzvVaFw+kmxKjF7vSw86BvlkdJVQtvfJET9JzU+FBarI4ub2K9KHF0U3IlKzWSIcnhndq2FpQ3cc70NM6ZnoZKqUDfYUZGiFHLo7fO7OtL7FZjS9tsA4fTjdXu6jHQiIs0cueS8Xzw7SGiI/TcsnhMl8f+6oU17C+sJ8yk5el75hAXZer12Eqqmlk0K53lGwqoqLHQVcZw6fyhfLWhsMfr1TT4lq9kJkeQW9Lg365p7Q5yZAlSb8MMg07Fb2+Yxkcrc6lrqvJvz0gKIyxE5/9bOmLnwWqmj07oMdCIidATG2HgjsvH924gQgghhBBCCNEDKQraTxbPG+L/+Zzpaeh1ahpa7DSa+7eTRG/YHG48XmgyO1i5rbjH41VKuOfK8T1+Iz82M4abLhoddN/BonrufGplp7atw9IiMRk0mAyaTmHGQLnq7GGoVb4/7fNnDSY63BD0uNpGK3mljf5lMmdPS+PlBxfwxB2ziYtqK3i5blcZ/162lz2Ha/hkVS778uvweLw0NNt54o2tvR7X3rxa7nl6Fa8t24fV7mbBtOBLLCYOjyM8RMv8SclB9wdjsTmYMSYRvVYFgNPtxeX2MjojKuC4EemRnDUlJeg1MlPCeecP5zM2M5bsdsVsFQp45r75nDczvdM5VXVmcvLruy1oGm7S8q8HF/Lnu+cGFGIVQgghhBBCiGMhMzT6yeJ5mUwaHo/d6SazteVkmFHbqa7EQAoxqGixBi49MOjURIV1v3xAq1Hx67+v6/H6588azMyxSeSVNfrblfbkYGE9d/zpW6aOSuCC2RnUNdkYnBTeL7UyujJrbBJjH47BancRFxm8E8fmfRU8+Z8tOF0eJo+I57c3TAta2HTNzlL+/KYvtFj6/WHOmBwYMti6WE7kcLrJKagjJsLAoFhfJ5G1u0r9gU9Ds52DhfVBzx2dEcWPf/+lr2XuhEFU11uZPT4Jq83FB98dwubovLykrMaCTqvm0jMy+e9XB/zbh6dHk1/ejNnqq6Gxv7Aem8PNzRePpr7ZzgffHfIfm1vcyKtLs7ll8ViSYkP8xWNT4kMxW5389Z0dnZ63usFKUWVL0NdxRKPZQVmNmZT40G6PE0IIIYQQQoi+kECjH3W8YWs0249bmAF0CjMAiiqbcffQvcJq77r+gkGrYsaYRC6Yk8HQlEgAfnzOcFZvL+n2tR2p2eAFiqtaKK7K5eNVuXi8MDwtksdvn4VWo+rdCzsKoUYtoUZtl/s/XX3YHy5szamksLyJjEGdi53ub9epxu3xMmRQBJtNlTSZHSgVBF2a4nS5efCldRworEepVPDLaycza2xSwOwEpQLmTUzmreX78XR4H9/8cj9eLzRbnESG6fnz3XP8+xKiTPzlv9v8j3Ualb9+Rn5ZE5nJEcRFGqiqtxIXZeSC2YM5XNLAjtalIl6v77hXPt1DZGhgJxeA5RsKuWXxWH57wzT++u52ymvMZA6K4Pcvrw8oCHqEPUi40pECgj6XEEIIIYQQQhwLCTQGkK2boOB46SnMaO/I/IT2Z6QkhHHf1ZMCjiupauk2zLjl0jG8+fm+TkHJkVP2F9aTk1/HuKzYXo+tv8VEtC1DUauUhIcEDz+mjIjns7X5eDxeDDo1E4fHccHsDEqrWoiNNAQNZQ6XNnKgdfaFx+Pl642FzBqbxDnT03G5POSWNDJ9dAKJMSaWbygMqL8CgfUuahutlNe08IfXNlFWY2H80BiuPmcY320pJiHGxNSR8bz8yR7/8Ss2FwG+9qp1DRYee3UTJkPw/5kHKzh65PU4nG725dXi8cJ33Sxb6k1ed+6MdEK6CZeEEEIIIYQQ4mhIoDGA4qN7XyzyRFMpFYzKiGZ3u9oJoUYNv75+MgBer5fGFgehRg0xEXqUirab2TCTloVTU1k8LxOTQY1GrSIp2sQ/P8qmpsGK0925pWdUuP64vK6u3HyxrxZITYOVi+ZkdFlnY3xWHE/dPYfckgbGD40lKca3fGRQXEiX146NMKBVK3G0zgBJimn7Ozh/dob/59/+Y12nMKOjiloLD7ywlrrW8GFrThXb91fx04tGsXhuJm6Pl/yyJjbvqwgohnpkNsXh0t53s9FpVNx40SgcTjeffp/bbVihgC4LmrZ33fkjWHJmVq/HIIQQQgghhBC9JW1bB9CG7HL++PrmE/LcSgVEhOipb7b16sbz9svGUlrdwtLv8/zbfn/jNKaMTCC3pJ4n/7OVyjoL8VFG/nj7LA4U1vPhqkOYrU7GDIkmMlSPxwtzxg8KWLphc7jYcaCKP72x1T+rYyBbop4sdh6s4ov1BcRHGfnxucPRaztnh798/ntyCoLX0WivfXjU3tSRCVx9zjD+tXQP5TVmahttxzRmvVaFzeHGqFfj9XixBllOEhWmY+qoBNbuLKOltS5HV37+44nMnxi8AKkQQgghhBBCHCsJNAbQRysP8dpn+07Ic//ix5N4+ZPdNJq7v+k84pL5mVw6P5M/vLaJ/LIm5k0YxN1XjGfp93m8umxPwDKI2AgDj98xi7ueWonD2fmm98qFWVxz7oiAbVtzKvl6UyFJMSZ+fO5wNOqBq59xqsgpqOWXz6/1Pzbo1FiD1KnIGBRGXmlT0GuE6NW02IIXJu2JSglBJs8cE4XCt5znwtkZXDI/s38vLoQQQgghhBDtSKAxgCpqzdz37Ooev8keCEa9Eout93erZ09LZclZWf5v+X3LT6r5zUvrgx5/6RmZfLQyN+g+lUrBTReOYn9hA2Myozlnejrgqwfx+mf7sDvdXH3OcFLiQ4N2Fvkh2binnJc+3I1apeCeKyfw8ifZFFU0A23LOtQqJZfOH8LSNXkBHU56u+yjKzqNkisWZLEvv47s3Focrv6p+fLU3XMYnh7V84FCCCGEEEIIcQwk0Bhgtz7xDWU15hM9jG4FW9Jw4ZwMBsWY+MfH2UHPmTIini05lb26/gPXT2HW2CR+9cIa9uX7uobotSocLg9RYXp+f+M0Bid17jDyQ1Rc2cw/PtpNY4udwtZgAyArNQKz1UVpdVuL1JsuHs2KTYUBx/WVUqHg7GmpLN9YeEzjbu/pe+eSlRrZb9cTQgghhBBCiGCUJ3oAp7tgSzJONsHqMyzfUMC4rBjUquAzKHobZgBsy6nkd/9Yz6HitnoRNocbj8dLTYNv1obwSYkP5fHbZ/HHO2ajVbf9zzMqTI+rw/qQrTmVjB0aE/Q6oUZNr57P4/V2CjPuvWo8//z1WVy3aEQXZ3UtPsooYYYQQgghhBDiuJBAY4DdcNFoNGolCiCmtbOHUgFXLcxiyVlDj/t4lL1c4uF0efjdPzfgOoq2r+3ptUq+3VLEzkPVOF3Br6XqIjT5IQszablzyTiyUiOZOTaROy4bx62XjEGvbas9svNgNcvW5Ac9PzxEd9TPPX5oHEkxISxZkMXZ01OD/l7bmzkmkRCDhmFpkbzwizOO+nmFEEIIIYQQoi9kyclx4HC6WbW9hOf/tzNg+x9um8mnq3PZklN1YgYWhEGnwmo/ulkl505P4+tNhf4ZH+Myo5k6KpFXPt0TcP3Hbp1J9uFaPvjuEDHheh64fgrJcaH9MfxTVrPFwatL91DXaGPx/Eyyc2v44LtDqJQK7rlyPGdOTgVg895yHvt3151zUuJCSEsMY9Pe8i4DpO4MT4vkz3fPQaFQ8PGqXP69bG+3x88al8gD103t8/MIIYQQQgghxLHq3EtS9DutRkWYSdtp++//uT7oco8TydYhzFApFf52q8GEmbQ0mR0AbD9YzbP/N4+vNhUSFa7n0vmZfL0pcDlDZKieYWlRDEuL4vIzj/8MlYG0Zmcp//x4NxqVkp9dPYkxmTHUNlp5d8VBvF4vVyzIIi7SGPTcf36UzeodJQDsza/F4fQtL3F7vPx72V4GJ4UzOCm8x+CnuKqF6gbrUYUZapWCR2+dyWP/3siug9U4urmGRq1k3oRkbr9sbJ+fRwghhBBCCCH6gyw5OU6mj05k9rgk//R9pTJ47YoTreOQbrpoFHqdCkUX6w6OhBkAVXUWXG4PxZUtfL+jlE17K1CrAtuzjsuKDXjs8Xh54f2dXPvwch5/bRO2IG1Lu+PxeKmut2I/wbVK3G4Pf313B40tDmoabTz3vx0APP7aZpZvKOCrjYU89uqmLs+vqrf4f3Y4Peg0be9bY4uD/3t2NRuyy9Dr1CREBw9FjmjfCaWjI91yg/0+4yIM/PPj3WzZV9VtmAHg9cK9V01Aq5H2u0IIIYQQQogTQwKN4+hX103hjYfP5dn/m4un9x1V+41eq2LJWUO59ZIxvTo+PsrAa5/vw2Z305uFSSMHR/Hml/vJPlxDUUUzT7+9nZGDo4iL8t2Am/RqFs1IDzhn7a5SvtpYSEOznY17Kli2Nq/Xr8dX52M9N/zha256fAVFFU29PncgeNolVEdmtRRVtnUgKa5spqsVXhfNzfC3sJ08Ip5fXDMJk6GtsKfH42X19lJeW7aXilpL0GscERdp6HKfy+2bXaELEkSU1Vr4dktxt9fuzXMIIYQQQgghxPEggcZxFhGqIzMlkuFpx78ThFKpYPG8THJLGlAojtxYd51UVNZZ/UsfjujuRnbc0FharG0zNlxu30yD5342n0dunsHT987t1J61YxeYPYdrqW20ArByWzFP/mcLH6/KDRoEbN9fye7cGgAamu18svpwl2MbaCqVkjsvH4tWo8Jk0HDHZeMAWDgl1X/MmZNTUHQx1WX2uEG8/OsFPH3vXH57wzQ27a3AbHUGHJOeFIbF1nkGS/tCoQBevDx083RGpkcFfS6ny9PpnL4IMWp47LaZR32+EEIIIYQQQvQHqaFxgvzxjll8vjafshozi+cP4ZNVh/lyQwFqlZJZ4xJZvb202/OVSvo8y8Nic/Hj33/pOz+yHHV4HR67Hnd5Br4eJT13G4mNMFBVbw26b/3uMoalRZFb0ujf9v53B/l+R6n/RnzJWUOZPzGZuCgjeq2aOROSWbmtxB9MbD9Qxf1/+57bLx/HM//dDsC63WUUVzZzz5UTAp4vxBhYlyTU2LlOyfG0YGoaZ01JDQgtbr10LDPGJuL10GWL1SPiooz+2SwlVS0B+y6ck8H4rFisNidbcwKXK3VcYmK1u9mxv4p9BXX+bQoCo6uGFgdHK8yo7bIWiBBCCCGEEEIcL9Ll5CRS32zDoFPzl7e2sWlvRcC+nopz9pVC34Ju1AZsu+eAU9/j8SqlggVTUqhttLF1f/CuLLERBsxWJ5Ze1MGIizTw4E+mUtNgJT0pnBc/2MmOA9X+/SnxIRRXBt7UP3nnbEZlRAds++C7Q6zcVkx6Qhh3LhmHUa/hdPDN5iKe+98OvF4YlRHNwqmp/O3dHd3Mp+lex0DjWCycmtopXBJCCCGEEEKI400CjZPQo69uZMu+Sv/j5LgQWiyOY/pWPRiFoRmv3QCe4BN1xmXGMDw9ig++O+QPU1ITQiiqaAsaRg2JZu/h2qN6fr1Whc3hRq9VcebkFL5YX9Dt8fdcMZ6F09KO6rlORQXlTdQ12RiZHslNf/yGxn7+/ffVhKxYpo1K4JwZ6ahVslpNCCGEEEIIcWLJkpOTUHmNOeBxaVULXnxtNRUKBU7X0VcUVasU4PXi8oDX2nUL0Nnjkrj0jEze+CInYGZISVXg2Fy9GItGrcTp8qBUBF8qYXO40WlU3HPFeFZsLiKn3VKJIzNTYsL1TB4RH/T6lXUWnntvB/XNdq5amMXcCck9julUkJ4YRkp8KL9+ce1xCzPaz+TQqBQ43b5HJr2Ge6+aQHS4FAMVQgghhBBCnBwk0DgJhRjblk0oFQo8rZNoXG4v3S0cUCnB3UO+4HL3bkLOgcI6fv3iuk7tUOMiDDRZHFhsLlRKBZfMG8Jrn+2jsq7rzhtjM2PYtr/KH2aEGDS0dCh4aXW4KapsZuHUVPLLGrE53IQaNfzmp9OwO9wMTY3oskbG3z/c5a/B8ew72xmbGUtEqK5Xr/Nk969PsgMCnr4IN2lpNPctCGn/1zEmM5ZL5g+hqKKZqaMSJMwQQgghhBBCnFQk0DgJ1Tba/D97elgRZNKrMbeGC0dbY0OhgOTYEIrbFaKsbrB1Oi4zJZzaBgsWm4uYCD13LZnApOFxTB2VwMY9FTz99raAMSh8k0HIPlwTcJ3BSeEB28YMiWb5hgLAN4PkNz+dhsPpZlhaZK9uos2WtnDE5fZic7iAngMNi83JRytzsTvdLJ435KS8Yd93lGEG0Ocwoz2FAuZNHMT4rDjGZ8Ud9XWEEEIIIYQQYqBIoHESOVRczx/+vZm6ps5hQlfMrd1DjjbMmDw8DrfHy46D1T0em1fS6J9lUdNg44X3d/LqbxaiUauYM34QqfGhbNxTjt3ppqzGzLpdZQA4nB70OhU2u5us1AiuP38Ej766iSazg9FDohkUF0J2ax0Ol9tLY4uds9q1O+3J1ecO54nXN2NzuDl/1mASok09nvPuigP896v9HMmLtuZU8tKvzur1cx4v00cnklfa2POB/USpgMvPymLaqASyUo9/a2EhhBBCCCGE6C0JNE4iD7+ykaY+fKuu1ShxOPteTyM5LoTKOgtOl6fLjiXBdMxMahqsmG1O/1KQtMQw0hLDAPh6U6E/0FAo4Dc/nUp0mIHEGBNqlZJXf7OQhhY7sZFGdh6s4uuNhXi8YDJoGD2k6/amDc12Vm0vISJUx7wJg1AoFEwcFsebD5+L1eEiMrTnji2l1S28vXx/wLaSqhZsdhd63cn1P4mrFmZRWWfm2y3F/m1HapL0hyOFWUNNWhbPzWDyiAQyBoX3y7WFEEIIIYQQYiCdXHdvA6ysuoVla/MIM2q55IxM9NqT6+Vbg7Q7DQ/RcsGswahUSj79/nBAccijCTMAymtaeqy10RvxUQYe+ddGmlocXDQ3gwtmZ/j3nT0tDYfTzdacSqx2F99uLqa+2UZ9s52pIxO4/Myh/pkUk4bH89Q9c8krbWR8VizxUcagz+dwunngxTWUVvsKkxZVNHHdeSMB0OvUxxRGTBoed9KFGQCFFc2s2lbif6xSKbh4bgYffJd7zNceOTiKoSkRRIXpuWjuEOlcIoQQQgghhDilnHx3cAPE7nTz67+v8y/nqKizcN+PJp7gUQW6aE4GH64MvFFdMCWVKxcO49/L9tIcZPZGeIi2zx0wjibM0KoVOFyBUzQq66xU1lkBePmTbGIiDESE6hiWGolCoWD66ARe/2wvdqeHfflttSCKKppZs7OUl351Jhq1CoCs1MgelzhU1ln8YQbAjoPVXHde319LRIiO82am8/WmQkKMGi6Zl8mFc4b0/UID7P1vD/LW8v142k2NMerUXLNoJGariy9b6470lUmv5ufXTOb597b7fy/V9VZuvXRsfwxbCCGEEEIIIY6L0zrQyMmv4x8f7QbgioVZAbUpDpc0nKBRBefxeFk4LY3Bg8J54X87sTncGHRqzpiUwpqdpXyy+nDQ8yYNi+O7dt/gd6RUQqhRi93h9rdJ7asJWbEUVTYHFCvtyOuFx1/bDEBmcjil1eagM06OqKyz8M2WYsYPjWFLTiVFFc3MGTeIcVmxXZ4TF2UkPsro76gyppulKUfUN9t46OUNFFY0MzQlgpsuHs0jr2ykxepkRHoUf7htJlqNqsfrHG/5ZY288UVOp+23LB6LSqng8rOG8tXGgk7LgKCtGGswWakRPHbrTGoarNQ3twVhB4rq+2voQgghhBBCCHFcnNaBxp/e3OK/CX/67W1kpUZwsKgBgDnjB53AkQVyuT088q+N7DxYjUmv5v5rJuHxwJDkcOIijezNr+3y3Iiw7rt5TMiKo7CiuU+zOEwGNWarL4yYPS6Jn/94Eht2l/Hnt7b16vzckt4Vsfz7B7tQKtpqc3y7pYjnfn4GKfGhQY/XaVT86a7ZfLOliIgQPQundl041OF08+3WYr7fUUJ+WRMABwrr+cO/N/lbxuYU1LHjQBXTRif2arzHk8PZOXz68TnDmD8pGYC4SCN3LhnPB98eQqNRolIoUChg0czBvPVlTpcdTuIijRj1GhJjVKQnhlFQ7ntvZow5+d4DIYQQQgghhOjOaR1oNFvabuqcLg/piWEsnptJmEnb7UyA421ffi07W7uMmG0uVm4t4YHrp/j3z5uQzFcbCshrvTFvb8eBavQaJbYu6mnsy68LOlOifZDQXniIlnkTktmSU0litJF7r5yAWqVkcJBCkQqgt71V1EoIVsey/Rhcbi/Flc1dBhoA0eEGrlwwjOp6K2t3lZIxKJzkuM7HP/GfLWzNqey0vWOwExnWcxHRE2FYWhRnT0vj602FRIbquP+aSYzNDPybPXtaGmdPS+t0blSYnr++uwOny43d6fbP1tColf7jNWolT945m/W7y4gM0zN5RPyAvyYhhBBCCCGE6E+nbaCRfbimUycIq93NnAmdZ2Z4vV52HKjG7fEwaXg8SqXiuIzR5nBxsKgel8sTEA5EhgbOujAZNDxz33yKK5q499nVATUV8oOEHO2NSI+ktNrsX6YxfXQCew7X+mcpdNTY4mDpmjwAymvMvP3Vfi6dn8k/P87udGxfGsX2pilHTLieURnRAduyD9fw13e243R5uPXSscwam0RFrZmf/XU1zRYnGrWSP94xi+FpUQHn7TjQc/eWRTPST+rWpHdfMZ5bLhmDVq1Eoej93+TUUQn897FFANQ12aiqM/PtlhLUagXpSWH+40wGDQuDBCJCCCGEEEIIcSo4LQONJrODx17dGFBHQKtWctkZmUGP/8dHu/lifQEAcycM4hfXTB7wMdrsLn75whryy5pQKhUB4UBJVTOfr8vn/FmDOVhUz1tf5lBU2Ux0mD4gzOhJQrSR0qoWKuuthBg1XHfeSDKTw9m45/teX6O20ca/P9vrn0HS0dEUJe3o5sVjiAzRkZ4Yxiuf7KG2ycol8zMZMiic3/1zPW637zU//fY2po9KYPuBKpotvkDG6fKwMbs8INBwuz0kxpgoqWoJeJ7haRHsL2wAfH8Pi+effIVAO9IdY32PqDA9/166l9U7fHVWdh6s5sVfnHncQjshhBBCCCGEGCinZaDx+md7sdoDaxCcMyOdIckRQY9ftb2tqOaanaX87OpJqAb4hm9vfq1/dkXHkGLnoRp2HqphQ3YZBwrr/cU8axttqJQK3L0MNSpqLf6fWyxOGppsDIodREy4npoOBT5T4kIo7hAA6DQqLpg92F9YNZhjCTMUCvjR2cO4aE4Gbo+XJ17fzKa9FYCv3sWQ5HB/mAG+8CK3pJHBieEBhS/TkwKXwzz//s5OYQZAcVULV5+dRV2zg3kTBpEUE3LUYz+V5BS01WApqWqh2eIgPKT72itCCCGEEEIIcbJTnugBDISmDgURQwwalpw1tMvj0xPbpuGnxocOeJgBvuKMPT3PrkM1nTqTeHux0KOrq0aE6lCrlMweP4islAiiw9vqR1TVWzodn5YYSkp8KK7erBdpNX9i18VWf/PTKRh1bRma1wu5xY289WUOi3+x1B9mgC+82F/QufPGs+9u5+F/bSDMpCUzORy9VsUrn2Tzpzc2893WIqDr5SZmq4svNxZyy+IxjO5Fh5TTRUyEwf9zdLieMJP2BI5GCCGEEEIIIfqHwuvtqsHjqaexxc6WfZWs3FbE7ty2b6X/78pxnDU1vdvz/vftQdxuL5efOTTgBrC/lFW38NTb26hrtHLFWVmcPzuD73eU8Mx/t/d6xgV0v8Qj3KTl8Ttm8unqw6zYXOzfnhhjZNTgGBZMSeGVT/dwuNTXhUSjVnaqM9JRUqyJIYPCWbOzzL/NpFej1aqob7J3Ov6ac4fz1vL9Qa81c0wim/ZVBMy66G+J0UY8Xvw1Q4J5+dcLSIwxDdgYjpfaRiuVdRaGJEd0uzTlR7/9IqBmyqjBUcRHm7h58RhCDJrjMVQhhBBCCCGE6HenTaBhsTm55+lVQW9kF0xJ4d6rJp6AUbV55F8b/V03FAr4128WokDBDX/4utvzwk1ablo8mvzSRg4VN1BQ3uSvH9GRWglZaVHsy68LvEaIjsaWzuFDbyiVCm66aBQrtxWTW9KITqPiwZ9Mpcls5y9vbw84NiHaSLhJy4HW1rgnUldLcxJjTLz4izPQqI+tNsWJtjevlodf2YDN4SY9MYw/3TUboz4wnPh8XT7Zh2vYX1Dnb1/c3sKpqdxz5YTjNWQhhBBCCCGE6FenTQ2NwyWNXX4rfzK0pHQ425aOeL2QW9LAuMwY4qOMXY57zvgklEolxZUtfLL6cNA2q+25PHQKM4Auwwy1SsEZk1LYdaiaqnorAGdPS+X7HaX+pS4ej5eXP9mDWqXk2f+bR0K0iS83FARd1lFRawmo2wGg16pwujx9moXSHzo+3+QRcYxIj2bh1NSTKsywO90sW5OHzeHiglkZRIT2rrbF15sK/b+jgvImdufWMH10on//mp2lAbVPYiMMVDdYA64RLOQQQgghhBBCiFPFaRNodLfEIDbSeBxHEtx1543g0Vc3+et7PPH6FgYnhXU5brVKwdqdZX1qjRpMd8tKhqdF+b+hzy9rxOnykJUayY/OHsbrn+9j9fZS/7Eut4dvNhexL7+WvB5axR5pQatQ4L/pbt+W9njRa1XYHG4yBoXz8x9PPimXVzz73+2s2+1bzrMhu5wX7j+jVy1a46Pa/qaVCl9NlvY6FkWtbw4ML7RqJRfPPfm7vAghhBBCCCFEV06LoqBOl4cXP9gVdF94iBaX28OewzV9anna34alRfHmw+eiVrXdrBaUdx0MuNy9Kf/Zs3OnpwUtPjppWBz3Xd22DGdwUjhZqZEAxEQYuf/Hkwk1dlzCkNdjmKHVqPjTXbN56KZpAW1zj/W1xEUZAt47lcq3FKb9vX/7/QC3LB7DW4+cy1/vm3dShhkAOQVtM2qKKpqx2l29Om/JWVlcMj+TicPjuO/qSWQMCuz0MntcEqbW1xxm0ga8/jCThn/9ZiETh8f1wysQQgghhBBCiBPjtJih4fZ4cLmDz0IYkR7Fr15YC/iKWQ5JjuDOy8eRFHv8W3YqlQoSok3+b89jIwzUN9txujxoVAqc/VAs06BTMSg2hGazg+oGKyu3lXRafnHm5BTu+1HPNUUevnkGT7+9Db25DJvDTZk7KuhxE4fFkTEonDCTlvFZsQxOCu+x2GhfxEYaePqeeWzeW84L7+/CCxi0aqaOSsTt8fLGFznotCostsAw4N1vDnLmlNRezXg4UaaOSmD5hgIARmVEd6qD0RWNWskNF47qcn9KfCgv/uIM8suaqG2wsnJ7CShaCDdpuf2ycUSG6bs8VwghhBBCCCFOBadFoKHXqkmIMlIRZPnGxj1trUDNNhe7c2v467s7+PPdcwDwer3sPlQDChg3NHbAx/q7G6fx1pf7USjg2kUjUCmV1DVZeejlDTjdnb+dnzkmkfXZ5b2+vtXupqSqxb/Uo313C4Cf/WgC8yYmd3uNFouDD1fm0mJxEBOhp6DBiNLTdVHRtIRQNu0tx6jXMDYzhi/W5dNkcXTbkaUjtUpJWkIIeWVN/pkdCdEmbrt0DFmpkYQatUSE6v0zPVqsTj5ceYi7lozn4nmZfLO5kBfeD5ylU1VnwWJzEmo8eduU3n7pWMYMicZqdzOvm5a3RyM63MD3O0p5bdle//t2ybwhjMqI7tfnEUIIIYQQQogT4bQINAB+e8M0fvPSOhrNPd9A1zW11RN48YNdfLWxEIBFM9O547JxAzZGgKSYEH557eSAbXqdCrMt+FKDvfm1TB4Rx9aczkU4u3IkzAjmP1/k8Lf3dpKVGkFWaiTTRycSFa6nqs7KG1/so7LOgtnq7DCrQwNoUOBhmK6GcvUgGs1tQcnHqw/7f/7F82uOanaGAi+HS33LWZQKGJoSye2XjWVIcoT/GL0usJinQef781UpFUwdlUDsNweprm8rfDlpeNxJHWaAb9bO3AndB0xH67O1efx72d6AbZv2VnDpGUMH5PmEEEIIIYQQ4ng6bQKNtMQwX3vSXgQatnZ1Cr7eVOj/ecWmwgEPNIJxdRMANLY42JdfR1SYjrqm3rVeTU8MJT0xnA17ygk36aiqb5u5cqSzRU5BPTkF9Xz6fR7gK+DZUwNfL0qU8UNoLGru8pijXWrSfrmNxwuP3jqj0/KLsZmxXLEgi5XbiklPDOPKhcNwuT289OFudh2qRoFvtsi0UYlkpkQwZeSJ725zIu08WN1pW05BHY0tdsJDetdNRQghhBBCCCFOVqdNoAGg0fSuxmmj2YHb48XhdAfcxAcrnnk8RIbpuXJhFu+tOBh0v8Xm4q/3zeezdXkcLm7E4/GQU1gf9NiRGZE8dKMvDLDYnNzyxDe9GkNPYcYR1U1dF63sr04m505Pw+3xYrW72F9Qx/INBei0Ks6bNZhxQ2NISwhl6sgE9Do1y9bkBYRS4Ot485+HzkGtOi1q3h61yLDOoYXXC+4u6s0IIYQQP0QutwuHx4lRYzjRQxFCCNFHp02gUddko67R1vOBQKhRg0qpwOPxBtyER0d0/oesss7CPz7ajdnq5MfnDGdc1sDU2bjm3BFcdsZQfvLoV52KW04YFktCtJGbLx4DwKtL93QZaOTk17PjYDWzxiZR3WANqGHRH4HDrDEJfLImP+i+cVmxQWcF9EVYiJblGwtZvrGw077VO0r9nWoyUyJ46u45nWqEgG/JjdXu6nWBzdNV++U37Z3MRVKFEEKI48HVWI2rpYFcj5WnNr+G1WXjwmELuHb8ZSd6aEIIIfrgtPkKe0N2OfXNvVuS8dDN0wEwGTTccNEolEoFRr2a2y4Z2+nYv767na05leQU1PH465uwOXrXVvNoGHRq/nj7LEz6wJxJpVT4b0I/W5vHJ+1qVgABrUu9Xtiw21dENCnGxOCkMP++UNPR1ZPQaJRkDArjZz+awKZ9wWt56LUqYsKPrnOGRqVEr/XVx2jqpoho+7a7ucUNLN9QwLnT0+h4f75gSirR4fIti0rVObjQqJVH/XcghBBCnIpcLfUUvXQXeX+8nIK/3kjjti8p+vudlL3+AMY3HuHsUt9nm2UHvmH/J0/j7e20VSGEECfcaTNDIz7K2OtjG5rabpoXz8vkgtkZKBUKlEGWnDS0C0msdjd2hxu9duDetiHJEdxx+Tieemubf9u2/VU4nG60GhVvLd/f6Ryv11dI88j9fmZKOAAatYon75zNxj3lRIbqiQjV8fIn2RSWN9Fs6TyzoSt3XT6eMyen8OaX+yivNfu3x0bocTg9hIfouOWSMeTk1/V4LY1a2anOhtPtwXMUnx3++XE2Ow9WE27S0tAahMwam8S9V03o+8VOQw5H56Ulc8YP+sEvxRFCCPHDUrfqHVx1vi97POYGalf8BzxtBdRnNNsYZbbzelIE/7DlMPWln7J40X0YBx//umpCCCH65rS5s2ky9252BsBXmwoCHqtVyqBhBsCVC7L8tTXOnzX4uBRTnDshOeCm0+uFg0W+JSbhXXy77vFCbISB2y4dy8Rhcbz04S4ef20Tf3tvJxabiwnD4hicFM4Td8wmNiJ4+DNrbGLA48RoIy89cBZnTk4BoKC0MWC/Rq3irUcX8eIvz2Tc0Fgs9p5nrzhdHh6+eTqxkYEzKI62rMOmvRX+MCPUqJEwo52wkMC/FY1aweJ5Q07QaIQQQojjw+l2crAmjxpzHdWfvUjLrm8D9nvdnb/U2RZmoEyvoUyv4ZNoA9s/ear1WBdN27+mYdNSPLa2L3VczfW4Wjov/5XZHUIIcXydNjM0ymrMPR/UKjU+1P/z9v2V/PPjbMxWJ4tmDmZ8Viyfrc0jJsLAj88dzvxJKYwbGovN4SYxxtTv424yOyirbiE1ITSg5sOc8Ums3FYCgEoJMa31Pa5YkMVf390R9Fpe4KzJKdz8xDcBM0vW7y4jxKBh/iRfMDF/UjJ5ZY2dzs9KjWRd63IV3+MokmNDAHC5PQweFM7mdu1jtR2KsKbEhaDTqLA7u24bC74aDo/eMoN7nl7VZVeUrJQIzDYnpdW9/702W5zUNlpJjgvt+eAfgBsvGk2L1UlZtZlRGVEsOSuLQa2/TyGEEOJ05HA7efi7Z8itK0CjUHF/XgVhwLZQPXUaFeObbES1uFF3WCVrVikJd7qxqhRcWdlErNVB3h+XgEIJHt8XNnWr38OUORFNfBoNq94FIPrsGwifch5el5PKD5/CcngH+uRhJFzxa5T6/v/cKIQQItBpE2hkpUT0+thtOZVs2++7MS8ob/Jvf3fFAT5aeQhH60223eHmjsvHERl2dLUhelJc2cyvXlhLs8VBfJSRv9wzl4hQ3wyQOy4fR4hRS3mNmUUz0kmINtHYYsfRTVhw1uQU6ppsAWHGEUWVba1WL5mficfj5Y0v9vmXeqQlhHLezMFUN1j5cn0B8dFGEqKNLF1zmIpaM5+vzSciVE+oUeNfrpKWEMarS/cwbVQCa3aW8cV6X7FQvUaJV6HA7ug8VqNOzZghMWjUSiaPiGdDdnmnYwAOFjf06j1sL2NQOAnR8uHhiKgwPY/cPONED0MIIYToUtO2r7AV52AYMoHQMfOO+XoHag6TW1cAwLj6ZsLdXlZFGFke4wv0N4Yb+L/cWsI6lEm/oLaF82tbOKxXk2lz0aBW8nlMCHaFgrNrW0h2uMFpw5yzHm/Oeo7M661b9V/Cp5xH857VWHJ9y4VtxTk0bltO5CwpMCqEEAPttAk0iipben1sQUVzl/sc7WYMFFU2Y7Y6sTvdRLULNSw2J0+8voV9BXVMGRHP/ddM6lSXwO328M2WYmwOFwumpGIydO648e2WIpotvuUSlXUWNmSXsWjmYAD0WjW3LG7ravLnN7d2O/MhJT6EaxaNwO32MCw1kgNFbdMgDTo1c8YPCjj+sjOHMm10AgeL6okM1TEyIwadRsWtl4zllsVjePhfG3nvm8A2snVNNsZnxTJ73CBKqpr9xUk/W5uHy932wcDm9JAYbaSm0dZpBsaYzBg+X5dHfJSRxH4OH8YMiZH6EEIIIcRJwuv1Yjm0FVvJfgyDx6GNTUVlCkehUOCsr8CSt5Pa5a8A0LJ3DY2bPyN86oWEjJ6DQqHA63FT//172MvzMI2YQdj4s4I+h2+OqoLGTUsJLdrL/HoLsxrMhLR+NinVqUmyOanSqrGolNQY1ITanCg6fGRQAJmtnebejQ+jwOBbujnM4iDZYQ047giV0Vd8XdHhYtJRTAghjo/TJtDIGBR+zNeICNFisbtwOH034Y0tdq57eDkOl4cL52T4A4bP1uaz85CvPem63WVM3hbPgqmpAdd64f1dfLOlCIBV20t45t65nf5x61jINCpIl5DNeys6dTUJRqX0/UOqUin5w+0z2bK3EpVKgVqtJDbCiMXmpMnsIKxdDY7kuNCA5Rk1DVYq6yxkpkSw+1BN0OfRa1WcMz2Nlz7c5d/WPsw4orzWEvT8vXk1bNpbAcD8ickYdGqsvai90Ruffn+Y4WmRzO4Q3gghhBBi4NmKczAf2orSGE7Ljq9x1leCt/Uz1YZPANCnj0ETk0zV11/icYEhCpStn0YdFXlUL/0btsI9oFThqCrAXur7csWatwOv20n4pHP9z2c+tJWqT/8GLifG4dMx710DwDkEhg5XVDWh8UKlVsXb8WHE2nXYWpToQ+2dOqUd0aBW+X8OVhXDrVJjShpK9Nk3ABAyeg6W3G1YcrejTxlB2KRFfX7/hBBC9N1pE2hMHBbHL6+dzK5D1YwaHE2zxcG/Pt0T9B+hroQY27plAJTXmnG33qwvW5PHZWdkEh1uwOMNnHXQsQBU9uEavt1a5H+cW9yA2eokxBhYpPGc6ensOFDNhj2+ZRcfrcxl0vD4gFkGFlvP3UjUKiVXnT3M/1ivVTNngu+mvqrOwv3PfU99s52IEB1P3TMn6LKM3bnVPPzKRpwuD0oFxEebKG+tS5IUa6LZ7CQ2wsCFc4aw62A1YzNjWL6hoM/dSVqsbeHFqu0lQY9RKRW4j6btCfCnN7fi8XqZOyH5qM4XQgghRBuP3YKrsQalMQJnkxmVQY8mIiLgSxp7RR7mA5tpWPcReLuvo2UryKZ+WzYNrd/VWGsgZmTgMU27V6Lwdq6xVbv8FXQJGXjsViwHNtGybx1eu+8LFPPetf7jOmYUmtaPFPEON3cU10Mj1OcqiMjwBSoACp3Rfy2AeQ0WlsaE4FUoaAoy+9M06RySFt7Q9pwqDfGX/aLb1y6EEKL/nTaBBvhaUrZfWnH29DR+8uhXmK29mwEwaXgcJr3Gv1wjxKChsTXg0KqVHCqq56Y3V+Bye/3FL6eOTPAX2wRwe7w89upGOha5fuOLHG69ZAxKpcL/IUCpVNBibQss9uXXUVjexJDkCP+2mWOT+Ocn2bR002b1qrOzmDU2Kei+tbtKqW+tqdHQYuf7HaVcsSAr4BiLzcnS1Xn+5SEeL5TXmLlqYRZhJh1nT09Dp1GRnVvDw69swOHykBwXwqO3zuSD7w6x82B1d29rn8VFGrqc4RGMUa/CYmv7ALVlX6UEGkIIIUQvORsqMR/YhDZ6EMbMSf7tjqoiyt5+CGtFE/WHFHhbv+SJmDSRkb95AI/DTu4zj2ArycUYB6rgjdg6UaohZjQ4msHcOokjYMWGx9M5lWjVsOlzLAc2BLRd9fH6LhIkCGlPD7iNoFB6sTXqMUTZMAyZSOx5t1C19AXf7BBgRqOVEcpQrOZaEltrgnkBF6CPGkTigp/27sUKIYQYUKdVoNGRXqvm3T+cz2/+sc6/hGJQnIkLZw/h/FmDcbs9WOwuvttaTJhJy7wJydgcLr7ZUsyX6/MpqWrxzVaIMvHTC0fx/Ps7/csrjtSz2H6gipsf/5p7rprIxGFx7D5UjdXe+duJLzcU8NXGAkKMWn7702mMGOz7SiAp1kT2Yd/YdFpVp2UnWo2KF+4/g2f+u429ebVB25vuOljDlQt8MzQ8Hi+5JQ2EGrUkxpiIjwqcjdFxmcvu3Gr+8O9NQce8bX8V9/1oIjqNb9rlN1uK/DVGSqpasNpdnDczvV8DDYUCquqtPR/YjsXmRqVsa/26aW8FxZXNpMRLtxMhhBCnt5p1G2jK2U/kxPFETux763K3uZGSV39F0+Fm3A5IWnwZCRdcDUDT9q/wWJowl+MPMwAatm2nYdduiv/7Ks2HfLNMrbUQOxb/Eg6XDWwNoDGArsOq4COPNUYwRNO5lkU35ScsOWu73tkaZni94LaDSgMKVefDVFrfGCKnnsHgG65HofbVOUu65hGqv3yZ5u1fodAaGDr3KqqXvtA2LkADuOtKsRzYhGn49K7HIoQQ4rg4rQONIx6+aQYbs8vRaVVMGRnvnyGhUikJNWq5eO4Q/7FGvYbBSWGUVPmKjHq8kJ4URmykgSazo9O1XW4PtU12/vrOdt54+Fze/DKny3F4vL42ra8u28Nf7pkL+Fpr6rQqSiqbW7t/dP6XNzrcwOO3z8Zqd/HtliL++XF2wP5haZGAb+nLk29sYUN2OUoF3H3FBBZMTeXGi0ax42A1Y4fEMG9i4MyF91YcDBpmABwqbuDZd7bzzP/5qo4ntWtbq1QqSIg2kZ4YxhmTkv0tZrujVimC1ttoz+sF9zH2cLfaXXy9qZAbLxp9TNcRQgghTlbNh3LJ+cMfcTb42rCXf/4FY/74GGEjhnd5jttup2bNOtw2K+rQMMKGDcVjLsda3kxIoi8PKP7gQ2o2HcTZ2EjEKN/sT0WQT4tqkwlrWXW7a4PH6QsL3A6o2du2+iRiiC+4CEbZzSdRr7dzuFGrVhLdRcv3IxQKqN0HagNEjw0DZ1PAfi+gnDqFtOuv9YcZjtoyGjd/RvP2r3zHOKw0rP+0yxkfLXvXSqAhhBAngR9EoKFRK/01JXojMlSHUoG/PkR0mJ6CssZuz7Ha3dQ2Wmls6dwyNdh4jjDo1EwZEc8X6wrYfqCarzcX8cy9czvV2zhy7AWzM0iOC2HjngqaLQ6MOjUzRicCvpkNR9qgery+uh8LpqayeF4mi+dlBh1LiLFz95X26ppsvPxJNis2FxJq1LJgagpmq4v5E5NJT/RV9h6cFN5joJGVEsHvb5rO8g35vLX8QMC+tIRQGs12Gpo7B0a91XHmSkyE4aivdapz2F3k7q8iLMJAcmvYJYQQ4vSS94+X/WEGAB4PZcs+oGldMwqll6gzrsEweGzAOfsefZymPXv9jw8NCWH33GSMI8O5tLqZCJeHsGSo2e374sRSVEzs9BTChphRR+ix19SiUOtIPP8iQodlET5yKLVbfF/kaEygbP1I4WgJLKVhb2wLNNytH5NUutalJjo9ziYbTrMviGgffDjN0JjvCzbCUqEwScMbiRHcXFJPejcFxb0eCEkGUxwBYUaBXotFBbtD9OTF1PIMTsLQ0bBpKXXf/KfTdZzVhWgTMnBU5IGy9Qun1qUu2rg0vF6vdDMRQogT7AcRaPRVclwo9109ieUbCkiMNnHteSNosTgJNWpotjgDwo4jpo9O4Od/+57aRpt/m17rq7PRfsKBUgHDUiPZmlPJ8PQo3voyhy37KnC13pGX15jJPlzLjDGJXY5vfFYco4fE8MCLazlQWM/yjYXctWQcc8YPCugaEhfV8039LYvHYHO4qW2w0mR2+OttHGG2Olm2Jg8Am91KQVkTz943P+CYRTPT2XO4lp2HqvwdYjo68voWTk3rFGgUdtNGt6/SEsOYkBXLBbMG99s1TyUup5vXX1hPRZnvA9wFS8YycXpqD2cJIYQ41XQsSA5A/Q5aWru2O2r/TPrPXkOh8qUMLrM5IMww6xUsn2zAY68Dk45PvXB9RWPAZ5aQJC9qdzEAoYmhhEbbQekiYlgMAMN+8xjln7yHs6GekMx46te8w/deLSlKBwalB1o/EuiiDYBvOWn9YV9QodQAXogda0Nj8C1NMVeBtc5XqFMbn05doRmX1TcLpDJfwWuTIkChoFyn7jbQUChbw4wOVkYaOGDS+R7YWyhpLGNkXBaNG5d2eaHYC+4EjxuVKQJnfQUt2atRGsNo3ruG+rUfEDpuPiiUOCoLweNGG59O9Lk3o1TJR2whhDge5P9tuzB/YjLz2y3PMOo1/PVn89lzuIbocD2P/Xsz9tYiUSEGDbPGJXXq2hEWoqWqLrAehMcLH67M5cOVuUSG6ahvCgwQlArIL2tk4vA4f+2KYEqqWjhQWO9//O2WYs6Zns5DN03n/W8PEh6i44YLR/X4OqPDDTxy8wwAXvk0m6Xf5wXstzkCl6MEaz6i16r53Y3TuPyBz7od7zUPLWdE+sDOGFhy5tBOy2p+SKoqmv1hBkD29lIJNIQQ4jTitlrxOJ1k3HQD+598CmdTE0dSiJYKsNf5jjPGW/G6XHgcLnL+9Bcas/eg1GrxOHyzIR0aJR5V2+yCFrWSFqUGJi9AmbsSj82GIabdEztav3zwuKn4+EWqH/sHsXNnM+SO2/yzFHbYbAx58UNUrZ8V9qfpKBscjnHyWC4NH4r+0A7cOzeB14vH4atvoWz3UUcfDp6Q8USfMYnQsWdQtvZu/z6V24vC363k6Nq9D7U4/IFGuMbIIF0EdavfDRyEUoXKFIEqJJLwqeeji0/371KHRWNIG0XV0udw1pSiUEDzjm8CnsNenkvLvnWk3f1PlPrOXeWEEEL0Lwk0+iAu0siZk303h3+8fRZfrM/HqFPz40UjcLk8hBq1NFvalk2Mzohhm6Oqy2UoHcOMmHA9NY023vn6AHvzann89lldjiU6XI9Jr8Zs8/2jbrW7KKtuYXhaJPMnJuPxgsnQ/XKSji6Zl8myNXn+b2dCDL7rH3ls0Km4ZfGYLs93e7pe03qkmGhOQT1JsSbKqs19GltHwWbJAGSmRBzTdU91EZFGdHo19ta/i/gkKYwqhBCni9qNmzj49F/xOBwkX34pU9/4N4XvvEfJu/8D2sIMAEslFLz1HurwUBp37AR8EyY0kRHYG5qIbHYzPN/K/sEG8HoxGBMZ/cAjKBVKXOf8mJayUg789zfE0jk8cJmdeGxOKr/+hqhpU4maPImG9R/R9N3nxLf7t3nV5FDsOqBsN+XmGrwmiBtpZPZO32cAQxS+qRoeXyc3h1lB8pWXEj7K94XM4Bt+wsFnnwUPKNOVzG60sC1UT0rMYNR2O6aMCZhGzqR513c0b/8a8FKo07A7RMtQq4PhHTrEDapysKC8CbdRwXkXX0ndS/fgdfuOURrC0CUNIWLmpVgObsFja0GXkOF7vc31uBoqUJoiqVvxb6rXbqOpGHSpEBXf+ffkdVgpf/9Jkq55VJakCCHEAFN4g85ZFEejuLKZ5RsLqKy1MHpINOfPyqC0qpm7n17V47mDE8OobbLSZG77xzc2wkB6Uhg/u3oSIUHCiYNF9Tz7znZ/AdMQg4bh6VFszakEfMtgfvPTaX16DbsOVfPqp3vQaVXccfk4CiuaWberlCHJESw5KwuVMvg/zFtzKnnkXxt79Ry3XTqWNTtLKapoormbdrRdOWdaGl9tKuy0fVRGNH+8fRbK1jGWVrfQ1OIgKy2yy3GfjsqKG9i2oZCwCAOzzhyCOkihWSGEEKee7Xfei7WkbTbo1Ddfw+vxsurWmzDZgn+poImNwVldE7DNnpSGrqyQDWNMbB7TNovgvpk3MSPF17b1uQ3/Zmv+Js6qNxPl0ZAxaj6WdZ9hbPHQnN9WC6PoyhmcfcbFNP77AaoPg6vWt90DvHVhFFMcNuIcbgoNOjIsNpxKBevUerRuUEbpuDppOo2bv8Rh9ZAwfgFZl9ziH4/X7SLviavwerwoVeAE/jg4BpdGh8vj4soxF3LpyEW+Yz1u1hVu4bnNbbUwbi6tZ4jV9zljtUFP+jo7WpfvY2/4qFSMpqK2N0WhJOPB96n86C+YczYAoDJFEHfJz6n43x/xOnwzbt1OcFpAG+KbYdLdpwvjwp8QN+V8lB3buAghhOg3MkOjH6XEh3LzxYEzGFITfDUddvTQ2lSnVTFycDQb91T4t1U3WKlusPLeigNBO3ZkpUZi0rcFHWar0x9mAGzaU4HD6UbbzdKVjsYNjeW5+8/wPx6cFB6w9CYYq93FX97a2uO1DTo1WSkRfLEuj6JKXwijVCqYOCyWwopmqnvZrjVYmDE4KYzHbp3hDzO+2VzE8//bgccLk0fE87sbpvn3ne6SUiJI+oHPVBFCiNOROqRdtzGtFqVGQ84Tf+4yzAA6hRkAurJCvEBUQ+Dsi7pNn+PQx6ONTWZfWQ4L1jWRUuGgPMZFzaYVaG0e7GFtrVAPD9LymTKXPbve40ZA5cI/n0MJzKk0MxNf8jHKbPff/Ifr3byUHMW4ZhuaDUuJA9bHGnjTspW/Wa/CaPAVHa/5+lUUCq//+TTALwtreSUpgjK9hnezl7IgYzZh+lAUShXFzW2fgQAq9Tp/oLFDryfL1VbnzNlohXYrQnQJGXg9bhxVbSGH29xA45bPA8IMWy00FUNoMoQkgtMK1mpfkVNjXGBXlq83v8f+xn38fv696DX6Ln9HQgghjp5ExgNMqVTw+5um88gtM7j8zEwmj4hj1thEbrt0DHptW9AwKC6En/94Ej85fyRzO3RksXZT+Gra6ATA9w3BcJS0X2DgBb5YX9B/L6YLT7y+2b/0pSsKfK9jV24Nxa0zSgA8Hi9bc6qoaehdmNGV/LImzNa2MXy+Ls+/JGVrTiUVdce2xEUIIYQ40TLvvoPQEcMxpqaQdf99KDQaGnftDjjGjYLeTL1VABnlduKanSi8Xka22Mk6sIuil36Go76eGdlmhpQ40LogrcKJxmwlZpSvBWvMKNBFwPqxJow2D3mNZZTrdZgS8E9ZKI9VYzJ6A57viEinB41SzVl1Zv8H0ZmNVlwKBTtevpuW1hkStuL9ncZt8HiZ3uT7zKBSKFEpVdQsf4X8p37M4B1r0bUWQQ3Rmpg//yaU+hAUai3Dw8Ipi/F9j6cyQuysUeiHTEBpDMOQMQFD5mTy//QjXE21Ae+S5cBG7K1lSlQaMCVASBI0F4PLCjU5YK6ApkJoKW070wPsCtWTW1fA2qKev/QRQghxdGSGxnGgVimZOCyOicMCS26nJYTx6feHiQ43cN15I9Br1Vx25lDcbg8Wm4utOZXERRq47IyhXV57yVlZKBQK/vf5PkJQkImSSrzY8VKLb9bGQNtXUNfjMe0/XIWH6Gjo0E0l3KSjoRctb7tTXtvCoeJ6Qk1a4qNN5Jb42tkZ9WrCj1Q1F0IIIU5RxuRkxj75eMC2kKFDaTl0CIBybRSFhnimN+ZQrzaxNmo8aq+HM2u2oPN2/uJB44Jrvq0nLA30R74RUbnJe/FJxtaasbQ7VqUDVWtHeYUCnEkKfvRVPWoPFMep0XpduMNAqfaVxAi1udlkMDDG4kAJOBSgPfJFQ2wUapWaFpWSOKev+LhdocDk8hBtbqHqsxc4HBHOd3GhNKjDmVdvId3W9nlGYYog2hDOj8ZejKL0EE3blgMQV5LHg+PPoHHsTIZGD6blX7/EY/N9iXJeTQPb7v4x1r05ZBRtw5G/CoXOSPINf0Kh1lH0vG+pyy6jmsqYGOY0ONBbfUW2dWGB75taDyjA7YD2JUYcbd/XsCVMT3HrLFqT9ofbSl4IIQaaBBon0OghMYweEtNpu0ql5KGbptNicWDQa3qs/3D5mUPZvq4AV4MNNQoGoaAKD/pYI+fNTB+g0beZPDyedbvLArYpFNBVdRatWkmIQU1L64wKpULB72+ayn+/OkCT2cGUEfG8/dWB4Cd3YXBSGG99uZ/dub6ptT8+dzgmvYbGFjuXzM/sc4HUk9Fna/P4cGUusREG7v/xJOKijCd6SEIIIU6wUQ//lvIvllP033cJdVmY3piDGwVvJZ+HWe27kW5WG7mi/Nug57stUJ8DahMYo30zEDTeXDSxYCv31+vE4wGvx9cSFUBT5+VILfCUKhcOwNFudW1Is5cJtTb/DAytF/4XF0qxXkO1VglOGx8nRnJVvROXrZlatYqbyxrQesHmsvP498/7TjTpKAg18WTyGXhzd6CNS+OKs67nSrXv33XL4R0BrydGqWFEykQAmuxtsz+9DjuXjb+I2toGGgt8IYrXbsGavxvjsGmgUFKsVfJOfBhehYIhVRYyjpzrBRRKFHjwenytZcPTQRPiC3qO1BPRR7S+V8DKCCNqhZL5GbOYnjyx51+kEEKIoyKBxkksxKjt9bG/+/k8ln2YTUlRAxmZMcxckEl0hAGVauBXFd1/zSQmb4vD7YGNe8rZmlPZZZgBUFXfsZWtl9IqM1tzqgA4WNTQ5bkTh8XR2GzjcLvWpOBbctLel+sL+M9D5/TthZzEympaePmTbLxeqGmw8uqyPfz6+qkBx9Q2WtlxoIrk+FCGp0Xh9nh/UMVQhRDih0gdEkLKFZfTuGcvtC4/cSg1/jADoFYb1tXpfl6nL8yAttAiIhPqcnw/e+zQ1JSAylGBywz27kuD+camIGCKplWlpFrb9tGzSauF83/KS5teY7jZzjCLA4tSwYdxgR26rB4XqjFziZtxaafnMGSMJ2TsGbRkr0Ybm0zkrMv9+6IX/ISaL//Z+vP1AOiSMttOVijRJmSgDokk+uwb2LnlfbytRTD+NyiM2w7VE+LxYrZCeJTH/95EtZs4GzYYXBbQ6H3LcABsSgVWtRKX10OkPkw6nQghxACSQOM0YTBqueLaSSfkudUqJQumpgHwn8/3HtU1XvpwV6+Oyy2ux2LreRlNfbON4qpmkmNDTosPEnaHOyAkstndAfsbmu387K+rqWttBWzSq7E53Pz43OEsOSvreA5VCCHECZB1/31su/FWPA4HBo+D4c0F7A9NB2BC48Eez/d6ff+1/yez47+elkOV/oBCGxWJ19mE2+7G46ATe1w4zbNn0LJhBSEuN40qJWfVtpDiUrAqwoAHuGnSjxganY5WpWW/CR7LiCUlLJHipvKAa00eNI5YUzRv7PiAFYfXkBgaxy9n306MKQqFQkHchXcRe8Gdnf69D5uwgJBRs8ALSp0v4AkZMRMWu2nOXo1CrcPr9P27GT55EQtGz+bbFU9SbamjWafjyVGx6OweprZYMALhFjeZh+3oWvMWbSgoQyCkQ15k9Hi5r7CWv6dEoVdLMVAhhBhI0rZV9KtH/rUxoNNKMFNHxpOaGMqH3+V2O5OjP0wfncCvr596WnQ4+fsHu/hyQwFhJi0P3TSdrNRI/751O0t5782tuIEyApb08vrvzyY6XNbvCiHE6crVVEvN8lcpWroFZ7NvJoEXKNbHofW4SHD0XOsKwBALoYPA6wanDdQ6qNkT/FhjWipj/vBbLHk7adhXQvF7S/37wieMZ9RDv0WhULC3bC/b//dHZpnbOoxUapTEOj1EzbqMqPlXU1BfzJbSXaRHppAVPZg3d31Ei8PCnNSpxJgicbpdfH7wW7aVZfuvMT99BndMu67vbxZg3r+Ryg+f8j1QKDFNvp6SD79AY3IRtfBMclLjeGP/UuwuO3hB4/HgVClJsTm5o7ie3n5PsiclnalhKbhqSggZM5eIaRcd1XiFEEJ0TWZoiH71q2sns3RNHjaH75a6tKqF9dmB37TMmZDM/InJ6DVq3lreuYJ5T7qrz9HRxj0V5JU2knkatDG94/Jx/OSCkei0alRKBXanm5c/zia/sI6wKgv1QEOHc5QKToswRwghRNcqP36G+u37cbYrSqkAUm1VfbqOtdr33xH6GHz98Dy+lrFxC86i7JOlKLRaPC4XW2+7j4RzFpJ2zTWYCyqo27QZbVQUGTf+1D9bYlTSKPI7NDIzubwogZZ964iafzXpkSmkR6bgcrtocZi5c+r1/vMrWqr5+ZeP4vQEFjX1eIO3qnU2NdF84CDG1FT08YHF2G3FOdR++yau5rZOJl6Ph/qVrxMS40VjBMf29ynfpsc+NMz/Rjpbl+9GOt1dhhnlKhWxVjfqdquFRxYXYKEAgLrKfPSDstAnDw9+ASGEEEdFAg3Rr/Q6NVcsaFviYLY62ZVbHdBS1ajz/dl9v7O00/k9UauU3HH5OFosDvLLfF1MVm4r6fJ4BRBqCqxFUlTRhMmgOelnLazaUMDX3+WSGKLnqqvGERsfilHfVtz0f98c5OtNhQxFiZPOYQbANYtGEBkq012FEOJ0ZSkppfTrgwFhxhFKTVtRzx4pfTMy3HZf8U8AW03bblPmENKuuZqUK5eQ98qrVH+3CoDSjz4hJGso+sQEBl16EdGThqLW+ZZFWsvKsFdVE1MTjiXajtHrpdmlICdSS45JT4pGzbxVb5KcMYkKRzN/2vsxdbZGJkRm8Yuz7katUlPWVBEQZiiApLAElow+v/N7UZxP9q8fwtVsBqWSmFkzybzrdlR6PV6vh48//wslSjdjXHaOfFJRKEAbEvgtyWCVC6XHi6f1CwGNx4NTqeSgUUuVRkWc040NqNWqGeRwUa9W8mlcKKk2B+fVtfWG6VjFzG1u7OUvQwghRG9JoCEGlMmg4W/3zedPb26lpsHKvInJTB2VQElVM0UVzQHHhpk0NJud0MUMjCHJ4fz5rjloNSr/NofTTUF5U6eioEfodSri23UDeea/2/wBSGZKOJfNH8ra3WVEh+m57vyR6Npd+0TafqCKpz/w1RXZU2fG9u8t/OLXZ2KxOdmXX0d8lJGtW4rIQokJ3wc8FeDucJ2zp6Ud55ELIYQ4Xtx2O3se/C3OluCzFXobZijVED3S147U7YDafa0tSdtp3Lmb7F//jtGPPwKewH+kc597EbfNQsxIqC4BFEqMYy4i7/XP8LpchI/UYWz9h11p81JZrqJ5uJK5xSWoiksoXfcJryWE02jQcumqBlIq17L5owNMfvJJsmIyiDNFU2WuRaFQ8LMZNzMtZULn98LSRMGLrWEGgMdDzZq1eN3/z959R1dd338cf949sncgIWGHvQU3iiKK4qxWa9FaW7ettnXU1aq1tT/raLXWvetWKENBEUFkCgSQPbMI2Tu5+97fHxduCAmQMAVfj3M83vv9fta90ZPc9/183u8gfe75PV9umsukhPAXHMtibDyQV4Uz2Pb7ltbk59fFNayPspLp9rPDamR2UgxRgSAfpsZiIkSt2YTHEP5DuslkJGAwcG5VG1GlXe9xVDwYjIRCoeMit5eIyA+FAhpy2KUlRfHUHaNbXLNZzOye/DzGaeWNh87BYjYxa0kB//ygZRm2QT2TefTGk1sdn7BaTDxz5xlU1LrYWlTL5wvzWL6hbLd+KZHHZVVNLXZzbC6s5f/eWRoJnizfUEaf7AR8/iAj+6dz4oBOlFQ2EhdtIy7adtDvQ0es2O01hIDiOjcuj5+7n51Hfkk9RgN0CUESpp1tQvTCSCFBmggHOH4xod8RX7eIiBw5vppafLVtB/Q7wp4UDmYAmKzgSIaG4tbtGjZtYttrb+AuK8McHY2/IfwBPtDUhCUaLLu+PwgFqV30P0L+8C9Yu90TGSMqGkZ810SnuEDkj1AjEBcIYPUFmTMihpNXNtCjqJwdU6eTPfFq/jr2XlaXrqdTTBrdErq0+Rrc2zdipLHV9coFC8j/b2fycpqDMN3d/lbBjIA3/GWKrwEMFhPd3D66uX0EgPfSUxha5+LysnqMwNIYO4njrid2+qssc4Qrt2xzWOns2/t52GBjDaUfPU7MsHNIOe/GvbYTEZGOUUBDjoqUBAe3Xj6ED2dtID7Gxl0/H4HFHP5wPnpYZqT8a5+uiTz4y1FEOSx7HctoNJCa4CQ1wcmoAelMn7+NBauK6Z2VwJVjcyLtnA4LNosJj695H8PuO0GKyhooKgv/cTY3t+VxmJR4Ox5fkItH9+Dys3rj9vqpqHGRluiMrPtQGtQrhUlztwDh4MSZp3Qld10p+Tt3tQRDkA/YCBCHCS+wjSCd4x08esfpxOmYiYjIcc+alHhIxtmzSklg584Og8lEKNBy71/pjC8wO5uPpUT6eMLJRA07fyUazSESekNTGXgbwR4Xvu5rBEJQ4zcSNISDGSHg+2g7HpMRlx0+PzmOGz6tYGN9IcvWfs45PU/n5KwR+3wN1uRMbAlW4nt4cVeDe7c8qNs/mcSJ//4zX2+ZT4AgtkDLxYdCULk+HJBJ6AlGRxTBgBe8bj5LiiZoMJAb6yDeH2RcVSMj6t1YvluGz+Vm3M78IEFaHjHxEf4je8+9GA0rv8aS2JmYgWdgcsYgIiIHR1VO5Ecld0MZT7+/nOqd5U3NJiP+QNtbTvfmLzedzL8+yKWs2kWXtGgev/U0YnfL07Fo9Q5enbIam8XM3dcMJyutZT23/B112Kwmps/fxpK1JUTbLfzsvD5s216Hzx/kglO7EeO0snxDGSvWlTK4ZzKBGg/PTlrZZp6MLhhIwUDc0M787udHp3SviIgcHfMvuqzFc0cquDqWCxSA6AywxYK3HuqLwN6pE3GDB1E6YyYABrOZxJNOxL/9W5zJ4SBAXX44YAFgTU4m67KzaMz9kOb9lxDCgPPEX7BhxyJilm3CU+DHmtGFHdedzZo1M0mprWGL08pmh7XFp/8rlof4dBD4zQa6J2Tx+Dl/BCCvugiHxUZadPMOTAB/UxN1Kxfir9qENaULm16cgrcinATElpLMiFdeJL8qn9VfvEhG3iZiQwYINgdrytdAbJfwe/BVgpNFcU6ChGg0GSO1bI2hEH/ZUh4JXASDYNwzUcbuDMbWkZ+dLMmZZP7qSQwmfbcoInIwFNCQH6X8kjrsVjN1DR7+8d9llNU04fe373+Fc0/MZsai/MjzGy8ZyAWndgegocnLzx76PLLzIzbKyn8fOS/S9sl3lzFnWdE+K7XYLCaev3sMqYlOPluwlU++3kJVVRP+tptjAM7PSODG353ervWLiMjxoXbNGlbf91DLi7uf5wQwmSCwZ4al1py9etK0Obwz0BIdIqE71BZa8VQ1b9/oefuvaVz8cuS53w3lq8KPBz/5d6J79qR+5WzKP3uhRbCg08RHcGT1J+jz4a2qxpachCfo45pP74y0cZjt+II+/MEAl/Y7j1lb5lHnac5J8c5l/+SVZe8zJ28hBoOBXw//GWf3OBUAT3kFq+65D29lJdakJAb9/a8E3G7yXn+DUCBI119cQ1S3rrh8buYXfIfTZGOoKZaSD/5KyNNIYxnYEwyYLCE2Oq281jm+zffIHghyVlUjJ9W6WmxxDoXYo/qJAWNMIsnnXEftkul4SrdhsjoI+b0E3c3HYrrc+jyW+LT9/mxERGTvFBaWH6Xs9PCuibREJy/+8Wxq6j28PPl71udXEQyG8PoDNLr8BIIhLCYjTruZuiYv55/SjS5pLbeIxsc056nYXt7QIlDR4GrOyFZW3cScnTk89hVG9PgC3PH0HH7z0yH855Pv9/tanBYTV11/QntetoiIHEdC/jYCFXv+fmlHMAOgadPmyGNfPbhrIOTf7SyKwYAzuweNS3eWQgGCvnBNV0t8PI35BUT37EnM4DGYohMo/ejvhAI+bJk52DuHa4oYLZZIKVWL18VAWyKr3ZWEDAbiGgJcWhBP1kmn0X3gOJYUrYgENIwGI3PyFjInb2H4JYZCTNswKxLQKJ/7Dd7KcClWb2Ul5d/MI/OyS+j30AOR5XtqSvjzt/9hW2N4S8kFvc9i4u9eJ+T3Ub96HpWfvwBAvC/AWVWNfBPvxLczb5c1EMTkDeFymJieEsOARg8J/uadF3vm+Ey58HZiBo6mbOqzeArXhX8MXjfmxM6RgIYlsRPmmENzZEhE5MdMAQ0RwkGJuybu+3yuzx/EYjYSCIbYXtbAmm2VjOiTxqmDMyJtstNjiXZYIoGMob2bt8RG2S3YrSbc3vAfl3t+iba7+iYf/9uZQ2NPRiDeYcHmtBAbbePXFw0g9gdeglZERA49e0bnQzKONS0Vb2nLcyp1zRsRMUVH0/36XxDTqxeWiQ9TPe8DjLYo/Fuqie68Bk9dDZuf+w+xffvg6NwZZ4+hdLnlOfz1VdjSu2EwhfNgVS/Pxb2jhKiuSVR+/ixXe5oojovnPRNc+mUZlsB2dixdR1xiKuWNlZH5g6Egryx7H4vRgm9n6ZYkZ0LkvnuPtZujolo8d21bxcaP/8a2rPjItWU7vueaoT/BYDVhS2uuCJbqCzC2qpEUr59PU2MZW9VAX0Myz0W5Im3y7BYSGjy0xZreC2fOSAACTS2rufmrisFgJHb4ucSfcmnkfRERkQOngIZIO1nM4YOyJqOBX188sM02dpuZF+49i+nzt5EUZ2fciV0j96IcFh64bhQfzNpIbJSVK8f15s1pa9lR0Uif7AS+WtpcgSXKbmZAj2RWb23OarYrkPGHq4YxsH/6YXmNIiJy7Aj52lmXdS9iu9qIO/E8ij6ets92gcZGUkaHjzXaM3rR6coHcOV9T8OaPxOTCdFBqFwXxF/ffETEHJuMOTY58nzH5zPZ+sJLACT2s2CLDq+9c20No9w2LLttJFmROwdP9B6ZSoFgKED/1F7E2mKZOPhSql21xNqi8de3rPRiS22ZX6Mu90ucXi9JXj+V1vCfvjlJPSL37Rm9STzneqq+eDVyLcPjB4uNq37xd9ybltJn/VesoBqA72IcDG3wUG0y4AyGsO36dsIah8nhJP+JiVg7dcdXU976zQwFsaR0oWH1PAgFiR02DqNNX0qIiBwoBTREDrG4aBs/G9enzXuDe6cweLddG3/61UkArN5S0SKgMaxPGleOzWFHZSO5G8rp3SWeP/36pMO7cBEROaY4OnUi5YzTKZ/zzQH1z7rlIQr/+wEhf3OWJqO1ddWTJiuUV+wgNS0zcs1VsDZy1MJghPj+XYju1XOvc1UvWxZ57G/0YYsOPw4ZDGztHEXmGg+2nUEN+7QFZJ4ZS1GatcUYgVCQXw67khRnIo/M+Sebq/LoFJ3KjX36w8LF4fU7HPhdLhrzC4jKzgLAkpCOCbhxew2L4pykj7qQ8wdf2GJs86DTMa2eS6A4fPTm+2gbpmCQ0ncewldRxE+A7FgHfgOMrHMD4DaZcAYDRPZbemtxbVsZfrij7V2WAHVLpuGrDFdTa9ywmIxf/G2vbUVEZN+UFFTkByAUCvHshyuY9V0B6UlRPPzrk+iUHLX/jiIi8qMWcLlYdsvt+KqqO97ZaAyX6miHjV0d9COZUHkVzsxMsq48j6rP/wmECAXBOeSndJpwRZt9Q6EQ+f95EG/xOryN0FTpJGvCIAINlTj7nEqZ10r16tUEvpgf6bO5XyzTh7QsQZ4Vl8mpmcNYP38Wy+ObItcv7XcuZ5bF4NpeTP269dStXQcGAz1uuoH0c88h5PdRNfc9fBVFxAweQ1SfEyN9vQEfq0vX89SClwn6vJxnTiLPVckGp5Vbup9N+udvtv2agPfTYund5GV4fTjA4W0Ea3t+de+RGTzpvBuJG3ZOOzqKiMieFNAQ+QEJBIKYTPuqASciItKSp6KSba+8Ru3332NJSsaVn7//Th1U6zQS2xSMVFZNGD6Mxk0rsEQF8dYB1nhGvvFqm30b1y+i9JMnIs+d/ceQPOZKQiEzK+68C29lJUXpNjqXejDu/Kt08ug48jNsLcYxG834g61rfv188KVc2Gcs7tJSlt1wS+R6VLduDHnmH22uqbqphr988yyFtcWYDCYCoeYzL/8c/zDp0Sks2rKQhEnPYfW2zJfhNYA5ZGDxBVfTxRRP1D+eAwO4qyFhgB1HnAF7Rm8wmXDnryXk87BrF4fBFkXI09hiPHNcClm3vdDmOvcm4GrAX1eBNSkDg1m5OETkx0tHTkR+QBTMEBGRjrIlJ9Hn3rsAqFu/gQ3/eBpveRv5GzooYDZi2lnNoyzJTFxT81mUgMtFIGDHuyO8U8Ie52zRt6ShnE/XfI7VG+TEb7bg3QrRncDsgKY1sylYOwdLlzMj1Uk8phBL+zqx+IK4EkyUp7X+kL57MMPpCmDxh+gdn824bqeyY/pneKtrMDqdBJt2rqnz3vNNPTj7H5TtTDy6ezADwGI0s6hoOU8ve5vk9ChOqTGQ6vUTFwgR7wuw0W4hJgQ/HTABEwZWJkzHXbqNr8bGsibJRqegkd/1HEJ6j+GUfPwE/orC3UZvvSPGFN2+aiee0jz81aUYndGUfvR/BN0NWNO703niIxitysMhIj9OCmiIiIiIHAcqFy1m/eNP7Ls2+H6Y7ODM7k6niy+l+N1ncAVD1JiNJFXtlmfDbifr5z8j5POx7dXXMZjN9Ljlpsj9QFM9f/nqScrctUyYU0NtcTgQ4qmD1ME7y5yGgngKvosce+mx3UuP7V7cXYx0I8iE/EZe7xxHns1KyGjYc5l0L/Zzma87fSbexdaXXqVs1lcAWJOTqcpKpMLsoXZsX9rKaOUN+CLBjLYs37GaTZXbAKiwmvlfamz4PTUYsAcCuE0mDKEQCWUbGNKpP30fuIsv//sHVieHj8gUm0JMyv2EixZNIVAXPgq0K99IzKAx+CqLcG1bhcHqwJ7Rm+Rzf73fn0vD2vmUTX4GQkGMtiiCO3d5eEu2UvLR30m7+E5MUXH7HUdE5HijgIaIiIjIcaBy8XcHFcwACLjBaI/Gk7+cmE5+YoBUAtQFHHS9+x4scfE4OqdjtIR3UAx99hkA6jdtpnrZchydEih6/8+UZYR3bCTVNgdCgl4ImaMwBMIfxu3pKfS89edsfvb5SJvoyiB0AmsIzq5o4tXO1pYlzkOAAdb2cDD+1Asx2WzhnBk7eSsqeP/UJBqdJtg4DVtsHGf1OJUFBcsoa6zg5C7DSY1OZminAeTuWN3mezBj09cMSuvX8uLOiITbZAovw2BgzraFDOnUH/wuDIGWR2EMIQjW10QCGaEQ1BUY6HbfdRgMBkKhIAZD867MUDBA3dLP8dWWEzt4DNbU7Bbj7aqKAkSCGbu4876n5JN/YLKHE3gknHk1loQ0jOaWSVVFRI5HCmiIiIiIHAd2r1ZyMGpXriJQDjHNRU1IGBr+gB9wu9j+6WQwgD0zE1dBIdVLl9OwaRMAzi7JxKY3MLTOQG6sg3XdHZz4ffgDeMKI4WRO/AlVs98hYLbgOul87Ild8ERbsDWEy7hao5vndLkhvdxHcZqleYuDAezuAG47PLf4DV69+AkShg1hR3ExAPUpUTTZmwMF8wuW0eRz8/bKTwCYvnE2T537IHedciOLinL5cPVUShpaHs8pqivh6kGX8sWWb9rM2bFLojMhvObkDAbHZzGytpSVMTY6efycF9cNk7uQQGMNAKEANJWGCDQ20rRpEfWrvsaanEnSOb/EaLFRPfd9ahZ8CkDDqjl0uflZTM7YyFzWlC40bfpur2vxbN8AwfDRmabNyyAUIv7ki0k88+d77SMicjxQQENERETkOODI6HzIxmooBlcFxHQBk91M5fRlFE1dtt9+TYUVBJtgXH49I7JcpP70erpelYm3qpzo7DSsyV0w9xrD9y++RGDqKhoHWxjS00dTOTTaDMQmhfdjNOyApEIfl1PD5kwb008PH6eIqfdj94Zw2000+VzUuOvodv11RPfqRaCxgQ1d7YRWfxRZT7/UnqwuWx95Xuuuo7B2B/1Se3Fq9gkMTu/L/817kQ2VmyNtLEYLfVN68pez7uLVZe+xqSqv1euMsji5YsAFABhMFjr//BFu3raKUCBAfe5M/E0NGKLi8DfWEvKFqN4MMTk5BBrKqPjsBSCEp2g9Rkc0SWMm4ineFBk76G7AV13SIqCRcPpPaVg7H39N6f5/eDt3ctQsmIS7cD3pVz2I0WLbTycRkWOTAhoiIiIix4G0s8ZQ/L8pBJpcbd6P7Z2Et86FI7MnppgEKr6eu8/xAl6o2QLQsZ0f7p3pKaKqQvS+fgCGQC2VU1+k+H0PzlQjJnOQbl2gch30bPRgskFMBsTsdrikcbfP7T2LPJyzoBabL0T37V52JJmZNCaetKQM4u2xGIxGUs84HYBOgM9mZl7Bd/RN7smlfc9j+sbZ5O5YA4DT4iQjJi0ytslgotpdE3luMZr5/Sm/xml10D0xi8GVNZxQUstWp4VFuyU+DRHCbm4OEhgtNqzJmWx/8z6CTXWR6wbAYIH0c8+g82W/wrN9Lez2OgP1VQDYsvrjyvseAHN8GtaULOpXzsZduB5nz2FE9TmRuJHnU/nFay3ea1tmH2wZvalb+jnQMrkpgLtwHcX/fYSkMVfjyOrX6r6IyLFOJRVEREREjgO2lGSGPPsMlsS2q2b43U6MjlT8DR5qc1ce9vWE/AFW3HkX2157mZrNHoIeMJnDuwfMNohKBd9usZdak5G1iQkU2sw0RjX/iRo0gCvOiN9qoNFu5OsTYvCbjWREpWAwGAj6fAT9fiatncHf5z1PgiOeR8b8nqsGXYTRaGRCn7MZnB7+MN/ka+KZRa8S2plrZFPVNsoaKyJz9UrqxrDOAwFo3LCEEVs2MqjRw8XlDQxocEfajcoc2ur1ln/2Qotgxu5i+/QiFPRSNfc92Fn81mhzEjtifHiu1d9E2ppjEmnavIzyaf+mfuVXlH7yBOUzXibuhPNJueA2MJoibZ05J1K3eAoEfHv9OXi3r2fH2w9Ss+SzvbYRETlWaYeGiIiIyHHCaLbQuiZIWFNB4V7uHBhbWirm6Ggat2zda5ug203V8nxwgN3e8p7fB5/FRdEzxU7XqFT6jP0VwXf/TJnRQFbXIB4TWLsN483EbeQnhZOQdq70Up4Yfrx4xyq+mvoWUW98RlmCmQ/OjiVoNLC8aBXJUYmEDAYmDrmUkRlDWFXSnDh0TdlGatx1JDjiiNk9aQewo6Es8thXVdziXoo3vAOiR0I2N4+c2MZrbZms02B1EPK6sGXkED3gNLa/+gf8Nc3jJ559LbZO3alZNKXFXN7K7XhL81qMVb9sBkabk6Qzr8aa3o3GjUsIeV3UzPlvm+97W6q+fBXPjs0knHwJ1pQu7e4nIvJDpoCGiIiIyHGift06vFVVHepjjo/HX1PT5j2DaWdKhjaKpwR9PsyhraSPAL8LqjZCcC8bBarNJhKqA9RvB3sCeOsh32tidVcHzq4j+Mmpv2ZlyVr+ke4gYHCQmuznt+l2XKOGkL+xKDJOQ7SpxbhlM7+kayDAhkw7wZ3lXUNGA51Wbuf7ng6eW/QGz0/4K6HdXoABA9HW8PGR5KjwbhZjIIQ5ECIhobn0aVTOKGoWTiboqidgsXH22FsZn5xBRkw63+Z/h9loondyd5749gXya7ZzYnY3zq/cjsHvJWbwGJLPv4WQpwmjPQp30YYWwQwIB0CK37ofz/bm/BkBD4Siu4KjU6v3sHbxVFxbcvFVbicU8EdyZXRE4+q5NKyeS8jmwJSUSVRyJjGDzsSR3b/DY4mI/BAooCEiIiJynHBmZWGwWAj59n4EYU+WuLhWAQ2jBexJZrx1fvxNrfsYzGaMwWqcyTvHiIKUQVC5Nhzc2GVnlVUS6gMEjFC3HRq2h++lEqDPNjeNm79lwaQ1zDkhjsDO7SVlNjNrSh2MTu5O7NoAdeZwIGN4g4sNDVbK4yyc3Hko3crnEgLi61vmj+hR6KEu1kReuoFbpt5HSlQS5Y3h5B6X9DsXiym8yyPWFs2vnCdifX0qlkCIpqFxfNl9HkPd8ViNZqw/u5+mHZvJ7jkSa0wSAI/N/Rcrd+74cJjtuPzhoyjfVm2iW9wA+rjtxIy4DIPBgGFnKVVTVBwYjJEghCkqnqrZ77QISgS8ULnBTMC9ipI5q8n+6Tl4t3yx23tuwVu6bd8/zHYwAAaPi1DxJmqLN9Gw+hu63PwclvjUgx5bRORIU0BDRERE5DjhyOhM/4cfpGLeAhyZGZTP+5aG9Rv22ceVn48lIR5fdU3kWtAHnjorgaa2E4IaTCYItbxnNEF0BtQ0FwzBawLbzliDqY0NBenlXvrmewnRgNVRBQPDAQBjMIRpVT5bNz/LLf3jWGEqIcEfYHCDh/MT48m84imMFguVjiFsffk1hrss+EvtFHmr6LbdQ1apj8zMBp5Nt+EL+ilvrOTKgRdyevaoyK6MXTot2ERdILyDw5m7hbU1/8G5zQPAyt4O5oyI4cSmIu48+VcEgoFIMAOIBDN2qVm5mrJiLxVrNzLg2SeJsUVT72nAHB2P99xraVrzLRmxnTBabNTnftmir7ceAu6d72kwiKvcT9aN/6R6zrsYDEYCXhfurSsACIXCgSOjGUzWcJf67eGgSHy3Nn9kbTIBBAN4K4sV0BCRY5ICGiIiIiLHkbj+/Ynr359QIMC2199sV5/dgxm72NPTaNza9o6AoMeDxwOuSnAkNV8P7ZHAw2SiRfGNXTs2dolubI5yjFzdSFmyFYJBBm52kVjnx11XCmVwxojmPoH6KoyW8A6LpBNHkXTiKACGNDSw6s5f42vwEtUVnKYA9kAQtymcYDTWFh0JZri3b6R+xVdYEjthiY1pHtsAvQs8kecDNruYMzyaRUXLqXRVk+xMJM4WQ62nPtImLSqZSlcNOXkuuhV7AfCXVXDn9D9zUvYIZm6ei9FgJBgKghWu7DWasxpbRndCITA7dr45O0/HRHXvijWpM7b07niKNxH0NG99qdkC7qpw+/ju4X83bA8HN0LB8GaQjrCndyAKIiLyA6IqJyIiIiLHoU3/eg78HSu5GmE0YrTbcWRk7LNZzRaoKwC/B/xEM9/qaHHf7G1+HAJqd6teEgK+HhlD3c5rHpuB6mgDiaYoum/frWMQjNHJzUuzR+HZI2kmgDk6mswLTyFlADhTwZzeje7pORgNRoZ2GsDoricC4K+rZMd/H6Z+xSyqZr+Ns5MFc3wcPquReUOc1OyWp6MmxgQGA06Lg2hLOO/Gw2N+T5IjHgMGRmQM5pnxf+bdy5/lmuTTIsGatd3t1Pkambk5XBo3uNvRkqnrv8SakhV57q6GkqVQvhpye9vJzXFQNCSaTuPHU7d0BtVz36Np01K82zcQDIDfvTOYsfNNbNgRfo8cKRDf8wCCGdkDwkdiRESOQYbQrrpVIiIiInLcWH7bHbgKD21lk7bsytlhiYKQ1UBdE1h9Icy7bULwJ8exLdNOYo2P1NImAi4321PMfDw2EYsvSGJtgJpYEx6rkcwSL+MW1hHtCg+QNm4s3a77OTve+RPesjwAjM5Ysm59HuMeAZRQMED9ytkEvW5iB4/BaI8iFAphMDTvC3Hlr2bHO38CwmVjG4rBXbmzP82bJNxWA2u62yk9uSfXnjKRnOQe+30vlnwzjS+XfURDnImtTiuh3eY1BkJMWFhLdpmPqHgT0Rl+areCp3q39QP/vjyZPvkezt/uJCqmHFtsy90cQT+UrWhOv2GLh4ReYNhbeZvdxt5hNdHZ27xlxhSTRPZvXtrv6xIR+aHSkRMRERGR44Snsootz7+At6oKW1rqfgMaxqgojAYD/oaG/Y5ttFkJepp3ThjsdtLPOpOKhYuxmKuI6woQIrYOqtbv1tFgIMYRS68V4bXY0iCmL8SYAiR5/VRazZQnGHZGEkIUpVt5f1wCV39eReaIk+h5y02RcXYJNtURaKxtFdAwGE3EDh3b8toen/TdlR6aqmIwW+qxRDUHM2DncRgDGI2QEBXibJ+L+m/W0/vCvR/J8FRUsOPj/xCs30aazcxVTQ3QBGujrLyVHgcGA0nOBE5Z20jXgvD711Tix1MDgZYpODAAP9tYQ/J6P37qMSa2mg6jORzAaCgOJ2+Nzd5/MGPX2An+ICXJ6aQ2NeJMySL14jv331FE5AdMAQ0RERGR48TWl16heumy8JNtefvv4PfT8/e3UP6/ZyHkx+tNon5zZatm5phoOl0wnsL3Poxc6//Q/cT174e/yUWwdA4Q3jVgtoPRCkEv2Ab2IXXMmRT+8z+Rfp5qiMuGaEL8prCajVVWHIU+Zp8QzdYudgAanSbqhvWg2/XXRfrFDDqDyi/DOT3s2f0xx6Xgb2xk83P/oamggNQzzyDzJ5fu8+XWrl7D2kcfh2AQDJCY06L4CADJ/aGucOfxDQM48FGzcAoJJ1/carymoiJW/eFuAi4PRjOkDmk+8tGv0Ut0IEiD2cSErQVkFLjYPWwU9LYaDgzQx+CHPuFjPJaW8Ro8deE8GQYzxPdoTgi6TzYntpQueIo3E5eSRd9rHm0VCBIROVYpoCEiIiJynPDX1TU/acep4qDHQ82ct7BGhXNtWKiifo82BquV2H79SDrlZMrnzcddtB2MRvx19bhLS2nYtAnXdrAngq8+XGljF0/xeqav3cGg3cYLeGF75z68aamgyWhgZH0DQ3xBdqQ0fzo3YiBr4tXYkpq3KMSNvABbRm8CTXU4uw3GYDRR+OHHVC5YCED+2/8ltn8/Yvv22evrrVuzNhzMAAiBr9FAQq8QtXnh4EVUJ7A4wZ7QcteDv7a0zfEqvl1AwBVOIhr0h1+bORyTod5kwGUyYgqFSHZ7iEoJ7wbxu8Jlbs0OcFU0j2WNhaj05iBFaI+qMNEDRhMw9Wf7gmU4M5Poc1I2gaY6bJl9qFv6Gb7K7cQMPouoXsMw2KKoWTgJAgFiR5yLNWnfuVBERI5VCmiIiIiIHCcyL7+M9Y8/QdDjIeGEETRs3txmBZPd+WorsYarpWKgdRAk5PVStXgJVUuXQWBn/oVgkM1TJ1Nl9hJbtB1oeXRjl9hoOLu2lm1ZsUQVhIMtCeeexT/ittDgC29lWDg4mvQKPy57czbLICH+Mf9F7jv9Ngal941ct2f0bjH+nkdl/A0N7PhsBkWfTMKWnETv392BPa25HGncoIHw/ocQDGIwm0mdcA2F776OwRAiqX+49CyAMwWCgfBzg9lKzIDRbb53js6dWs7vBoPDyNYYJ8syMjghLoX+KxeT7A+CBZIHQCgABhOYY5OoL2jAV+PBmQaxg0fg2rQUCO/EaCqF+J4GDIYQsSecT/I5vyQV6HXBWa3W4czu1+pa8tm/aHPNIiLHEyUFFRERETmO+Bsa8Tc2Yk9LJejz4W9sYvnNtxJocrXZ3hYPCTurYxhiu1OzOUBTXv5+5/FYjQQJ4fC2/adkVCeI7RJ+XL4q/GE//dxzmNPbiPnT2di9IZYMiKIozcLEqZV8NDYRlyMc1Oi71YXDHSSqXx9u/+l9e11DU0Ehqx96GF91NfFDBtP9hl+x/NbfRHanJI4aSd/77mnRp37DRmrXrCVu4ABievWkOncF5XNnY2pYiMEQ3hZhjIojus+JOHoMw5qShSU+tdXcuxRPmUbt6tXYU6OI75dBVO+RNKz+Bk/JVqL7nYKnZCt1333Wqp8tI4f0y++haUsulqTO1MUnsWjh+0QFoFcgG5vFTuKoYRhCAcxxKXv/QYiI/Ihph4aIiIjIccQcHYU5OrzlwmixYI2Pw56WRuNecmp4aqBkOZjM0Ov3P6Hb7aNoKiyiePpnVMydR6CpqXnsuDj8tbUA2LzNZyJCgCU+DrMzCk9ZGQajn6jO4XtN5eFgBkDlwsWkrjORWBQ+l5L6TS1L+jlIaAhy+axqVvd0ENMYYNAmF8YQFOxYRXmnb0k5/dQ21+7M6sKIl/+Dr64ea2JCOAnqbt/VBdzNWTcLarYzL38JadEpnHXJRZFkoQlDhxDVJZmiF+dH2lriUkk+94bm1xcKUffddNzFm4jKGUV035Mj9zpfeAGdL7wg8rxm0f+omf8JAK4tuThzRoVPuQTDCT1DoZ3HWUJBTFFxFHXKZFXJWmZ9N59aT3gXyxndYrhl5DVtvmYREWmmgIaIiIjIcS7rZ1ey/v+eJOTztd0gGM7/ULVsOUknjsLZJZOeN91A159fTfG0aTTlFxI3cABBr5e8198EIGAA087YgYFwYKD3Hb8h9zd30pRfQHlu+GhF0A+W6HASTGtKMklVlZGDLVZ/iJNXhQMmCfUBTstteYQkq9SHp6KCvQkFApTO+gpvRSWpZ5+FMyuL9PHnUvLZDMwxMWRffRWhYJA1Tz1N1fwFWBPNvHV6PHWeei7td15kHEtiJ+xZ/XEXrAm/tqY6tv/3UWrXVeKphfTRfXFt+AKAxjXzMV+bhD0zp801+atb5tto2rCY2m07y7MawBoNMf0tfNspBd/S95i55ZtWY2ypzNvraxYRkWYKaIiIiIgc5xJHnsDIt16nfN63bH3+hb22K/tiFtVLl2MwGkg+5WQcmZnY09PpcvlPMJjCCSbcJSWUfD4zEsyAcKCi2y/DFUl8teFdBqFg+J+YTIjuHH7cWLqFUFVzvxDQnDmjNUtiIimnn7bX+/nvvMv2TycDUPrVbIY9/yw9bvw12RN/jtFswmi1UrlwMbXzFmACOlf4Gb6uiY3dtrYYx2A0kXrxnRT851bwefDXlOKvKcVmg7pSqJi3najIqZMQvsrtew1oRA8eQ/3qbwh5w0d8QiFI6BEO7FSuB089PJEdT6h2M9RubnOMEzKH7ONdERGRXRTQEBEREfkRMDsddBo3Fm9VFUXvf7jXdr6qcMSh+H9TI9eqv1tGzl2/o2blKkq/mNWqT+IJIzDawuU54gcPonxu866D+iJwpoaPW/jbTuMR8X0PO6VJFnqWh5hw0304s7pgdjrDa1ieS9EnkwBwl5ZiMBgw2uzN666uwV1SSnT3bhS89wE7pk7DHBNNaFci050MwIiM5rorAZeLDU8+Q92aNZjMnnAp150VTgxGMNnAVR4kurOVkN+LKToRR/che30N9s49STjnTvJfepyYzsHIWEYzRKWBuwYe21LOd7F2JqXGtug7uuuJnNhlGMM7D9z3GyUiIoACGiIiIiI/KrWrvu9wn6ol3wFQ/s28VgECgJLPZuAu3kH/hx+i529upfybeS1yWdQXQ2xmuCTq7jGNHUlmpp0ex88/q2Jbho3Zo8If8Nd2DzGCBoLP/Iugx0vCiGFse+X1VvMazM1/yto7d8KR0ZnNL75M6WczAPDXNRehDQHB9EROv/5GhvQYEbleNOl/VH8Xri4SAOq3h9cK4HcZ8DWE6HThhWRePA5veSH2jN6YouJarMNduA5vWQGOnkOxxKVSs2ItDUVBAj6Iz25uZ3ZCQlI4qDKqzs3axHiaktIpb6xkVOZQbh117V5/BiIi0poCGiIiIiI/EgGPh/q16zrcL6ZP+HiF0Wbba5va71eH25jNmKOj8dc3BxOaSiDghthsoKC5j9diYPz8OpyeEBUJzX+WhowGyp5/HWP+DgCqV6zE0MacIb8//G+gKtHG+n8+S838hW2uzwCYSqpI21QOvZqv+3YmOd3FXeug529vx2g2Y0npRjdMWOLCAQxLQnqrcRvWL6TskyeBEEZnLJm/epLimHAwx1UaLv0a1QlMVisxfXriKVwb6fubE39JSo/hba5XRET2b1/HFkVERETkOGKy2Yjq0WOfbaypLUuE2jt3xldbx5qH/0LJ9M/32i8mpzcF731A8dTpJJ8xGnNsTIv7nlow2yA2C4w2M+XxZnL7OMksCycq7VngwRQIBwJibdFYahojfdsKZuzOADhX51G9l2DG7ra+/FqL6ieZl13SYqdH4qgTie4zCmfP4VjiEiPBjL1p2rQUdqY5DTbV4S7awBfxFXwzJIrVPey4upgwmYCAF2/pVmydemKwOYk78UIFM0REDpJ2aIiIiIj8iAx45CF2fDYDf0M9/vpGatauw5aYQI9bbsQSHU3V4u/Y8p8XATA5nbiLiwFoys9vMY7BbMJkDWBPAHtmL+o2lVK3j90fBpOJgCeALR6Sx13Bhq/+R02MCbfFgN0XIqPcx81FnTFfOZ4uTVaK3H8jxH6CGQZDi6Mt+wt8AOH2u/Wxp6ZywuuvsGPGTGwJ8aSOObM9o+y+iJbDB/z4gn7W9guXzh2WVwH+nfe8bjpd/WeMNkcH5xARkbYooCEiIiLyI2KOjqbLFT/Z6/30c8/BlpaKu6SEhs1bKZv1VZvtQv4Afj+YUoHGTXir2mwGhIMfztQApp0nVuoWfUCvfOi1tXkXhrNrNoNuv4uA282y399C0Ovdf4AiFGoR9GgrAGKwWgl5vTufGOh+468xOVoGFCyxMWTt4z3Zlz3zaYQ8jQxM68Omym0AzE6M4tKyekxA3KgLFcwQETmEFNAQERERkRYShg7BXVaGOSaG6mXL8VVXY++UjntHSau2PjfYkkwYrKbmwMEe+j70AJX/ezjy3GwPhDNwAhgM9Lrzt6SODpdnbdiyleCe41jM4PO3ObZhL48BTFFRjHzzVZoKiwh6vcT2abvU6r40bvmesunvEzLGkHHlr7ElJ7W4H93nJOqWfk7I58HojMXRcxjnWm3ML/iO0oYK8tI7Yzr3KrpEp7SZg0NERA6ccmiIiIiISAtV3y1l+c23s/GJp7DExdLjtluIHz6szbb+JtixJrDXYAZA5bfzsXcZEHnu2T0PZyiEPS018jSqezcs8c27HgxmE33v/gPhRBRh1j2CCs2NDSSOPCH82GSi5y03YrRYiO7ejaDXS9HHn9Kwdes+XnlL3vICSt57mFD9eqj9jg1/vTdyr6mggB2fz8TvMZP566dIGvcrUi/8DcGoeJ5c8DKlDRVEW6O459Sb6d5loIIZIiKHgXZoiIiIiEgLOz6bEakg0pSXz5bnnie6V88223rqmr8hM5gg1LqqK57yCno89BBF//035XPm4qpsvmcwGbEmxEeem51Ohv7raYo+mUzA1UT6eecS3b0bw194jrKvvsaRmUnj1q1s/3Ry64lCITDAsBeew+RwYt0ZGKletpy1j/4VQiEKP/iIQf/4O1HZWft9H9xFGzAYmvNt4Ksi6PXi2l7Mqrv/GD4WYzbT9aejcW8KH83Z0m8YG7xFADR4G5mxeS43nfDz/c4lIiIdp4CGiIiIiLSw+46JXRo2bSaqdy8aN25qcd0AVMeY8MaGSCsOtjmeLTkZg9GEMTobV0XzdXNcLD1uvAFrYiIbn/ondWvXEj9kEN1v+BXdfnltyzWlppJ11U8BiOndi5LPZxBwudlT1eLvSB0zhrhBA3Fv30jI62bH5zMiiUCDXi91a9e1K6Bhz+xDOFwTJBQCW3ovjFYr1bkrIsdiYjP9kWAGgHnrKshMjDyPs8UgIiKHhwIaIiIiItJC12snAgYqFy7CV1MDgDkmhvihg1sFNAAS6gMEGtlVvRQAgxFCwXB1k86XXgRA2rixVC5cRP2GjcT07UP6qVk0LnuditkfUrm0AIDSL2fj2TaXLtfexo4vl+EqLCL1rDF0nnA+dWsXsPG7ycRYoun74D005RezefoUjEWlLdaz/m9/JzrDQExGeEGBmt1umkzE9u3TrvfBaHOSdsU91K1YhDEqldRxlwHhgAoGA0ZzCOcesZ9uBjsTB13Mt4XLyIrL4JJ+57ZrLhER6ThDKLRb3SoRERERkZ38DY1sffE5GtbnEtUJ7L1GU/TJVy3KnrbJAKmjh2N0ppBy+mmtAghBrxfX1lxKP/k/AOq3Q8P25vux2RDV2cGOha7Itb4P38u/lr/A2igr5mCIyzfXMeL8O3h7+n8YvbSuxfi2eIjuDtbdvrrL/x78QQOOsadz8q9uw2hoO5Vc0Oti8Zcv8W7tBkJ+HxeX1zNs2AQSz7y6Rbvq5blU5y6H8lkQCO/WMDpiSP/pfdgzeu/7/RERkUNCOzREREREpE3m6CgcUdsxdvFRuRb8K2cBYLBYMMfEUG5wEVXjwrJH3oz4QT2pWLiaoM+HPS2tVUDDaLUS9DUHK6JSweeOwVNZjyUKHMkQCrYMOOSXbWFtlBUAv9HAwk4OEqdPYUVvO1aPn56FHupjzIxK9FAbZaTWACm+8BGYWpORpT3t5PaNwm9ex2uT7+K5C/6C09K6hGrll2/wSs0a6s0mMJl5Lz2W7gsmkXD6FRhMlki7hGFDSRg2FFfeSKrnfYjRHk3yuOsxxyYf+BsuIiIdoionIiIiIrJPdQXgb44/EPL5CDQ0MPK6m1oFM2IH9MdVWk/Q44FgkLw33iLgbp3rIqrvydizw5VPbOmdGfz0P8i8+HQS+lowOuJIGHs9JqcTgLgBvUjt0QvTbhtDHHVB0hwJDDNnsKxfFFNPjyc7HrBBkj9Iii+Iy2hgRbSVVzvHk9c3Eb85XNi1wdvEh99PIxgKUlxfSoOnMTKur3oHHmNzAViP0QAGKHzht7jyV7d6HY6uA+k88VHWdruKv3+yhY9nb0IboEVEjgwdORERERGRvXLlr2H1gw/jrW2jfInJhMluJ9DYHBDo88e7KXjvA5ry8vEbwWq2MurdtzBaLK37AwF3I0abk5rluax//DFiu4DBAMaUYVQuXA6AJRqS+sDmnP58bfRhL63jgrrODLr5Vtb/3z+oXbMOI2C0QEwO7IyDAPBKWhwjat0sSI6iwN68OfmyfuPJqylkWfH32M027j3tFvql9qZhzTymzX6RySnRAFxS3sAJdeFojjkuhazbXqB+02aCbjex/fthMBr5YOEC3vm4PDL2leOzuPqsoQf6louISDvpyImIiIiI7JUjuz+OrL54v2+9O4FAgIDLRTC7E77aWmw9srGnp2Ea1Id3+9RRnmiha4kP24MP0e/OO1tVTwn6fJR9PY+Qz08oGCShB1h3FgWp+D430s7XAH439Nq0hjNvehZrUufIPX9dQ2TLcdAHgWpgZ0DDG4KTFjSQ7g9wYcBDpc1CRZwJU98YOi/8nE/iwt/ruf0e/rf+S/ql9ia6/2lcmtaNc2vLMKR1pfy5myNzhfw+Cj/8mIL/vgfAuvP6sqV7NBs2BIABkXZzN6xWQENE5AhQQENERERE9qpszjc05hfsvUEwSDB/ByYjsGwdK1bezeoeDsqHh6MKeekWlm8twPHaG/T9490tum58+l9Uzl8AQHTvXkRFG9hVKsXiCOFrCLczmMBkBYPFhsnRsgyqvVM6rsLCyPOG7eERfE4Dwe0hEpsCeAETkNrgI7XSh6Pejb+nEWNsEkFD+HhJnL15XGtyJtbkTB6d8wy2JAcXl9VjMJpIHXc96554g62drcw8ORavtRKqKzHF2/BbXYS8DjD6Sc10ISIih58CGiIiIiLSJteOEjb981kIBvfZzgywq4k/QGKtv8V9UzBEsI08GrWrVkUeN2zcRKgTxHYJP+984RjctfF4ykoJ1BdRt6OK6N79cBWX4ezqwGgO/xmbMGwo1Uu+azFuylmXsf3TT/A37ZzfBgFP831fA8TXB7lzbSXvZsaRntyNawaHS7LWeRrYXJlHWlQy35dugFgHy2PsxNiiebnvyRi6zOCz3kYC5uY8GwarB9uABQQbYzE6Ghjcfew+3y8RETk0FNAQERERkTb56+ogFCS+R7gUqq8BqjYCIShNMJFSHYgc9wgBuz7ip5S56brdRkmyhe5FHnoVekm/elyr8eMGDqRywcLI88Yd4KkBW0oS3e+/FYD6DRtZdc99EArh2rGY8rmLie3Xl/6P/AmjxUJMTm8wGiNBly5XXUnniy6mcf23lC8pBSDgazlvTBewOCGFIJcsq2bDoGQcFjtVrhr++OXjVLtqsZltpEenUtJQRtBgoFdKTwAqLzmZwIb/tXotBrMPU1wlAFWumgN4t0VEpKMU0BARERGRVkoayvlXwSTKfpLG6Io6ei10EXATrpEXgkUDozktt4HE+kCLYEbACPXRJs6fV4t5t40dDZu3kHTiqBZz9P7dbykdOICA203B+x8S8njwu8BuS4i0cZeWwh457OvWrqNmzRoShwwhuns3+v7xbirmLyCqezc6T7gAg9FIjz88QeiRa2mqCNFU0tzXEgX2+ObnZiN8lVzLli8fZ2TGEKpdtQB4/B4GpvXhlKwRWE0Wzut9Jt8VreDVNoIZuzMAJ2QMatd7LCIiB0cBDRERERFp5c3cj9hclQcWmJoezXVGD7EEI0dLcvLdJNaHK5/sCmY0OIx8dE4CdVEmEmr9XD6rGocnHIxwFe9oNYfRYqHT+HMBiOqaTf5b72ByOOhxy02RNgnDhmLv3Bl3cXHkWtAAK5sKOZMhACSOPIHEkSe0GNtkiyL9kl9R8fnL+BpokY8j4A3n5PA2wscD4wHIqymioqm6xRjdErpwStYIFhYuZ862hbyzctJ+37chUdkM6zxwv+1EROTgKaAhIiIiIq14/N7mJwYDAVM4bBEwQHHPBJJL61q0tyYlsnlANHVR4VwZ1XFm1ne1M3RDOEFmXP9++5wvYdhQEoa1rgxijo5myFP/xxdfvkfxrFlEu4Ks7uFgWHzbZWB3FzfiXGIGjibb52PTcy9StWgR3jooWxkOaOQOSac4qXkbSYO3keuGXs66ii30SuzGGV1P5MGv/sGW6vz9zrWLZekGAmM9mGy2dvcREZEDo4CGiIiIiLTSK6kbq8s2ADBkfRMJO3dj1MSa+fQECyZDCteahpA+fyNRXbvS/cZfUVv0HXOX/jcyRnr3PlgrC4kb0J+0c84+4LWYHA5OOucnPGTKo6ShnNSoJEZ3O7FdfY02B0abg5zf38HqB/9M/br1EIKQwc5V19+PZ+vnLChYCkD/1N6M63UG5/UeA0B5Y2WHghmEQsRWewj5/KCAhojIYaeAhoiIiIi0Uu0O55IgGKJHUXOJkFW97AAEQkFWpwU596knIvfGdDuZ4roS1pVvZnCnvlw24EIMNxk4FOLtsfzj3Acpb6wkxZmI1WztUH+jxcLAxx5h++QpuEtLSTtrDDFpnbkj7XrO6XE6Dd5Ghnbqj9FgjPSJt8eSEpVEeWNl+yYxGPhmRAxnuEvpHd29Q+sTEZGOM4RCe2RZEhEREZEfvS83z+PlZe8CYAqE6FLixRAbQ2FcEH8wXJb14r7j+Nmgi4/iKg+/isYq3l31P74tWNLuPreMvIYzup10GFclIiKgHRoiIiIi0oaF6+aRVuGlPMFCwGQgL8MGeDm9yyj8QT/pMan8pN/4o73Mw85pdfDd9pXtbh9jjWJw+r7zhYiIyKGhgIaIiIiIRIQCATY/9zxnfr2MeqeRNy5KbnG/X2pvxnQ/+Sit7sh7cv5LeAKe/TcEhnYawK2jriXWFn2YVyUiIqCAhoiIiIjsZssLL7NowwLMqRbqoowQDIIxnFciNSqZM4/ToxQLCpZR2VTNKdkjSHTER66vLdvU7jHO7HqSghkiIkeQAhoiIiIiAkDNqu9Zs+grutc1lzL1WI3kDk8iMTaZO0/+FQbDoUny+UPyyZrP+GjVFFKq/HyT+AWP/OQRHBY7H34/jUAo0O5xaj31h3GVIiKyJwU0RERERASAonlzse6RLj7dGMPrV/zz6CzoCPm+eC0Xf11Dl1IffmM129Jm02/MeHY0lHZonIzY9MO0QhERaYtx/01ERERE5HjXUF9BzY65xNY3784IGGDkxF8fxVUdGYP9iXQp9QFgDoJ/Triiydgep+23r9PiZETnQdw+6joGpOUc1nWKiEhL2qEhIiIi8iO1Lq+SZz9cgccb4NeOd0khSDmw61DJti42Tu837Ggu8Yg4b/gFLDXNwBAIHy9xpod3WvRL7U2PhGy2VOe3aG8z2bh++E8ZmTkEp8VxxNcrIiJhCmiIiIiI/MgEgiEmzdnEW5+tIxQCg7MWs6URiwPoaaS23EBjlJG6Ud2P9lKPCHtqKv3uvYsd0z/HlpZK119cE7n38Fm/55u8RRgNRk7PHoUv6MdqsmAymo7iikVEBMAQCoVC+28mIiIiIseLp99bzuylhZHn5s6bmWDL5dRaF2Zgm83ClM4p/PNnzx69RYqIiOyHdmiIiIiI/MgsXlPS4nmwMY4ZmTFsc1ixhEIYYzrz1OWPHKXViYiItI8CGiIiIiI/MjnZCSxfXwaA02Zi4pgxpHQdzpqyjQxK68OIjMFHeYUiIiL7pyMnIiIiIj8yTW4fU+ZtxR8IMuHU7sRF2472kkRERDpMAQ0REREREREROeYYj/YCREREREREREQ6SgENERERERERETnmKKAhIiIiIiIiIsccBTRERERERERE5JijgIaIiIiIiIiIHHMU0BARERERERGRY44CGiIiIiIiIiJyzFFAQ0RERERERESOOQpoiIiIiIiIiMgxRwENERERERERETnmKKAhIiIiIiIiIsccBTRERERERERE5JijgIaIiIiIiIiIHHMU0BARERERERGRY44CGiIiIiIiIiJyzFFAQ0RERERERESOOQpoiIiIiIiIiMgxRwENERERERERETnmKKAhIiIiIiIiIsccBTRERERERERE5JijgIaIiIiIiIiIHHMU0BARERERERGRY44CGiIiIiIiIiJyzFFAQ0RERERERESOOQpoiIiIiIiIiMgxRwENERERERERETnmKKAhIiIiIiIiIsccBTRERERERERE5JijgIaIiIiIiIiIHHMU0BARERERERGRY44CGiIiIiIiIiJyzFFAQ0RERERERESOOQpoiIiIiIiISMTEiRPJycnh2WefbXUvJyeHnJwcFi9efBRWJtKS+WgvQERERERE5Fh17733MmnSpFbXDQYDUVFRZGVlceqppzJx4kRSU1OPwgpFjl/aoSEiIiIiInKQLBYLycnJkX/i4uJoaGhg7dq1vPTSS4wfP54VK1Yc7WWKHFe0Q0NEREREROQgDR06lLfffrvFNY/Hw1dffcXDDz9MTU0Nd999NzNnzsRgMBylVYocX7RDQ0REREREfjRcHj8b8qtYsbGMDflVuDz+wzaXzWZj/Pjx3HfffQDk5+ezZcuWwzafyI+NdmiIiIiIiMhxL7+kjunztzFnWSEuTyBy3WEzccbwLpx/Sjey02MPy9x9+/aNPG5qajqgMQKBAFOnTmX69OmsXbuW2tpa4uPjyczM5IwzzuDiiy8mPT29Vb+8vDxef/11Fi1aRElJCUajkaysLMaOHcu1115LTEzMAb+uPRUXF/Pqq6+yYMECiouLCQaDJCYmkp6ezoknnsill15Kdnb2IZtPRAENERERERE5rk2eu4XXpq4mFGp9z+UJ8PmCPGYszOOXEwZw8egeh3z+9evXA2A0GunSpUuH+1dUVHDrrbdGcnAYDAZiY2Opr68nNzeX3NxcfD4ft99+e4t+H330EQ8//DA+nw8Ah8OBz+dj/fr1rF+/nkmTJvH666+TlZV1cC8QWLduHRMnTqS+vh4As9mM0+mkpKSEkpISVqxYQWxsLNdff/1BzyWyiwIaIiIiIiJy3Jo8dwuvTlm933ahEJF2hyqo4fV6mT17Nn/7298AuOiii0hISOjwGDfffDOrVq3C6XTyhz/8gQkTJhAbG95Nkp+fz8yZM4mLi2vRb+7cuTz44IPYbDZuuukmrrjiClJTU/H7/axatYrHHnuM1atXc9tttzF58mSMxoPLRvD4449TX1/PoEGDeOihhxgwYAAGgwGPx0N+fj4zZsxocweJyMFQQENERERERI5L+SV1vDZ1/8GM3b02dTVDc1I6fPwkNzeXU045JfLc7/dTU1MDQOfOnbnlllu45ZZbOjQmwKeffsqqVaswmUy8/PLLjBgxosX97OxsbrjhhhbXAoEAjz76KKFQiMcff5zzzjsvcs9sNjNs2DBeffVVLrjgAjZs2MCsWbM455xzOry23e3aPXL//fczcODAyHWbzUbv3r3p3bv3QY0v0hYlBRURERERkePS9Pnb2jxmsi+hEHw2f1uH5/L5fFRUVET+2RXMAGhoaKC+vh6v19vhcSdNmgTAeeed1yqYsTdLliyhsLCQjIyMFsGM3cXHx3P66acD8O2333Z4XXvalYujrKzsoMcSaS/t0BARERERkeOOy+NnzrLCA+r79bJCfnFBfxy29n9cGjlyZIuyraFQiPr6epYvX85TTz3F22+/zfLly3nnnXdwOp3tGtPn87F6dXiHyejRo9u9ltzcXCAcXNh918iediUo3bFjR7vH3pvRo0fz8ccfc88995Cbm8tZZ53FoEGDsFqtBz22yN4ooCEiIiIiIsedgpK6FtVMOsLlCVBYWk/vrI7lu9jdrsSdZ5xxBn379uX8889nzZo1vP3229x4443tGqO2tha/P1xWtnPnzu2eu7y8HGjeNbI/bre73WPvzd13301+fj7fffcdr732Gq+99hoWi4WBAwcyZswYLr/8cuLj4w96HpHdKaAhIiIiIiLHHZfHf3D93QfXf3dpaWmcdtppfPbZZ0yfPr3dAY0DFQiEAzknnXQSb7zxxmGda5e4uDjeeecdlixZwuzZs1m2bBlr165l+fLlLF++nFdeeYUXX3yRIUOGHJH1yI+DAhoiIiIiInLc6chxkTb72w/tR6VOnToBUFjY/mMw8fHxWCwWfD4fxcXF7e6XnJwMHJqjJB01cuRIRo4cCUBjYyNff/01Tz75JMXFxdx11118+eWXR3xNcvxSUlARERERETnuZKXH4rCZDqivw2aiS1rMIV1PaWkpEK4y0l5ms5kBAwYAMGfOnHb3Gzp0KAB5eXls29bxBKeHSlRUFBdccAGPPfYYAAUFBUclyCLHLwU0RERERETkuOOwmTljeJcD6nvm8C4HvcNjd9XV1SxYsACA/v37d6jvpZdeCsCMGTNYunRpu/qceOKJZGRkAPDXv/41cgSlLT6fj8bGxg6taU9+v59gMLjX+zabLfLY4/Ec1Fwiu1NAQ0REREREjkvnn9INg6FjfQwGGH9Kt0MyfygUYs2aNdx2221UVVUBcM0113RojEsuuYTBgwcTCAS44YYb+O9//0t9fX3kfl5eHs888wzvvfde5JrFYuFPf/oTRqORb775hl/+8pfk5uZGgg7BYJDNmzfz0ksvMW7cONatW3dQr7OkpIRx48bx4osvsmHDhkgAJRQKsXLlSh5++GEAunbtSnZ29kHNJbI75dAQEREREZHjUnZ6LL+cMIBXp6xud59fThhAdnpsh+fKzc1tVSK1oaEhUkHEaDTym9/8hjFjxnRoXIvFwvPPP8/NN9/MqlWreOSRR3j00UeJi4vD4/HgcrkAuO2221r0Gz16NE888QT3338/ixYt4sorr8RqteJ0OmlsbMTn80XaGjoa9WlDQUEBTz31FE899RRms5no6OgW88TFxfHEE08ckrlEdlFAQ0REREREjlsXj+4BwGtTVxMK7b2dwRAOZuxq31FtlUh1OBx07dqVESNGcNVVV0XyYXRUcnIy7733HpMnT2b69OmsW7eOhoYGEhIS6NOnD2PGjOGiiy5q1e+CCy7ghBNO4J133mHevHkUFhZSX19PTEwM2dnZDBs2jLFjxzJ8+PADWtcuaWlpPP/88yxatIgVK1ZQUlJCdXU1FouFnj17cuqpp3LttdeSkpJyUPOI7MkQCu3rf2sREREREZFjX35JHZ/N38bXywpxeZpzSjhsJs4c3oXxp3Q7oJ0ZInL0KKAhIiIiIiI/Gi6Pn8LSelxuPw67mS5pMYc0AaiIHDkKaIiIiIiIiIjIMUdVTkRERERERETkmKOAhoiIiIiIiIgccxTQEBEREREREZFjjgIaIiIiIiIiInLMUUBDRERERERERI45CmiIiIiIiIiIyDFHAQ0REREREREROeYooCEiIiIiIiIixxwFNERERERERETkmKOAhoiIiIiIiIgccxTQEBEREREREZFjjgIaIiIiIiIiInLMUUBDRERERERERI45CmiIiIiIiIiIyDFHAQ0RERERERH50cnJySEnJ4fFixe3uL548eLIPflhMx/tBYiIiIiIiBwPvF4v06ZNY86cOaxevZrq6mr8fj/x8fHk5ORw6qmnMmHCBJKSklr0e/bZZ3nuuedaXDMajURFRRETE0NWVhb9+vXjrLPOYsSIEQe0thtuuIG5c+cCcMkll/D444+3u++9997LpEmTDmje2267jdtvv/2A+orsjwIaIiIiIiIiB2nhwoXcd999FBcXR67Z7XZsNhtlZWWUlZUxb948nnnmGe68806uvfbaVmMYjUYSExMjz5uamiguLqa4uJhFixbx2muv0atXLx599FGGDh3a7rVNmzYtEsw4ENHR0SQnJ7e67vP5qK2tBSAhIQGTydSqjdPpPOB5RfZHAQ0REREREZGD8Nlnn3HXXXfh9/vJzMzkxhtv5IwzziA1NRUAj8fD0qVLmTx5MtOmTWPWrFltBjQ6derE7NmzW1zzer2sXbuWWbNm8cEHH7Bp0yauvvpqnnjiCc4///z9rq2mpoa//vWvxMTEkJqaypYtWzr8+h544AEeeOCBVtcXL17MNddcA8DHH39MZmZmh8cWORjKoSEiIiIiIj8aQa8L9/aNNG1biXv7RoJe10GNt2XLFu677z78fj8nn3wyU6ZM4YorrogEMwBsNhunnHIKTzzxBJ988gnZ2dntHt9qtTJkyBD+8Ic/MHXqVPr27UsgEODee+9l06ZN++3/+OOPU1lZye9+97tWR11EjnXaoSEiIiIiIsc9b3kBdUtnUL96LiGvO3LdYLUTM2A0sSPOxZqS1eFxn376aVwuFykpKTzzzDNERUXts32/fv145JFHOjwPQHp6Ov/+97+54IILaGpq4t///jfPPPPMXtsvWLCASZMmMXjwYK688ko+//zzA5r3SKqvr+fdd99l9uzZbNu2LfLedu/enXHjxnH++ee3eYxl4cKFvP/+++Tm5lJVVYXT6SQnJ4eLL76Yiy++uM3jMAdq+fLlvP322+Tm5lJRUYHFYiExMZHs7GxOO+00Lr/8cqKjow/ZfLJ3CmiIiIiIiMhxrWbxVKpmvQmEWt0Led3ULZ9J3fIvSDz7WuJHTWj3uGVlZcyaNQuAiRMnEhcX165+RuOBb5TPyMjg0ksv5Z133mHWrFm4XC4cDkerdm63m4ceegiz2cwjjzxyUHMeKStXruTWW2+lvLwcALPZTHR0NGVlZWzfvp158+aRlZXFqFGjIn38fj8PP/wwH374YeRadHQ0dXV1LFmyhCVLlvDZZ5/x/PPPY7PZDnqNn3zyCffffz+hUPi/JbvdjsFgoKioiKKiIubPn8+IESMYOHDgQc8l+/fD/69aRERERETkAIWDGW/QVjCjpRBVs96gZvHUdo+9ePHiyAfbs84664DX2FGjR48Gwkk5V6xY0Wabf/7znxQWFnLNNdfQp0+fI7a2A1VUVMSvf/1rysvLyc7O5j//+Q+5ubksXryYFStW8NFHHzFx4kTsdnuLfk8//TQffvghnTp14u9//zvLli1j2bJl5Obm8tRTT5GSksK3337L3//+94Neo8vl4rHHHiMUCnHppZcye/ZsVq5cyfLly1m2bBn//e9/+elPf9pmgEkOD+3QEBERERGR45K3vGDnzoz2q5r1Js7ug9t1/GTz5s1AOM9F9+7dD2iNByInJyfyuLCwkJNOOqnF/TVr1vDmm2/SuXPnY6Zk6lNPPUVtbS1paWm8//77Laq9mM1mBg0axKBBg1r0KSgo4LXXXiMmJoY33niDrl27Ru45HA7OP/98OnfuzFVXXcWHH37ILbfc0ma1lvbatGkTjY2NOJ1O/vKXv7Q4xhIdHc2IESMOuKyuHBjt0BARERERkeNS3dIZ7H9nxp5C1C2b2a6WNTU1AMTGxh7RIx3x8fGt1rBLIBDgwQcfjPz7WCib2tTUxMyZ4ff81ltvbRHM2JdJkyYRDAY5++yzWwQzdjd06FAyMzPx+XwsXrz4oNa5Ky+Gz+ejurr6oMaSQ0M7NERERERE5LgT9LqoXz33gPrWfz+HxDE/x2g99o4OvP7666xZs4axY8cyZsyYo72cdvn+++/x+/0AnHHGGe3ul5ubC8DMmTOZN2/eXtvV1tYCUFxcfOCLBLKzs+natSt5eXlcccUV/OxnP+O0006jV69ex0SOkuORAhoiIiIiInLc8ZYXtqhm0hEhrxtveRH2jF77bLdrp0RdXR2hUAiDwXBA83XU7rsydt+tUVhYyHPPPUdUVBQPPPDAEVnLoVBZWQmEj5akpaW1u9+u5KFNTU00NTXtt73bfWD/PexiMpl46qmnuO2229i+fTtPPPEETzzxBNHR0Zxwwgmcd955jB8/HovFclDzSPspoCEiIiIiIsedoNd1UP1D7ejfs2dPALxeL1u2bIk8P9zWr18fedylS5fI47/97W+4XC7uvPNOYmJiaGxsbNEvEAgA4cogu+45HI5jdnfBrtfz29/+lltuueWIzNm/f39mzpzJrFmzmD9/PsuWLWPbtm18/fXXfP3117zyyiu8/fbbLQJNcvgooCEiIiIiIsedgz0uYmhH/1GjRmEwGAiFQnz11VdHLKAxd274KI3FYmHIkCGR69u3bwfClT+efvrpvfafOnUqU6eGq7lMnjyZvn37Hr7FtsOuRJ1+v5/S0tJ279JITk5m27Zt7Nix43AurxWr1cr48eMZP348EC7fO2XKFP71r3+xceNGnnjiCR577LEjuqYfq2MzFCciIiIiIrIP1pQuGKz2/Tdsg8Fqx5qSud92qampkXKtb7/9diRXw/4Eg8EDWheEgxaTJk0CYOzYscdFidABAwZEjml8/fXX7e43dOhQAObNmxfZrXE0pKam8qtf/YrrrrsO4KCTj0r7KaAhIiIiIiLHHaPVQcyA0QfUN2bgGe3e4XHHHXdgt9spLy/njjvuaHXMY09r167loYceOqB1lZSUcOutt9LU1ITVauXWW29tcf9///sfGzZs2Os/I0eOBOCSSy6JXDvauzMAnE4n48aNA+D555+nqqqqXf0uueQSjEYjO3bs4JVXXtln2/YGm/bF6/Xu877dHg6geTyeg55L2kcBDREROeoKSurYkF9FKNTR0noiIiJ7FzviXKCjiToNxA4f1+7WvXr14rHHHsNkMrFgwQIuuugiPvroo0jCSgh/wF2wYAF33XUXl112Gfn5+e0e3+v1smrVKp588kkuvPBC1q1bh8lk4vHHHz9iR1yOhN/97nfExcVRWlrKVVddxezZsyMBBL/fz4oVK7jvvvtYuXJlpE/37t25/vrrAXjqqaf485//3OK99Xg8LF++nL/+9a+MHTv2oNc4ffp0rr76aj766KPI8R4I/4xmzJjBa6+9BsDpp59+0HNJ+yiHhoiIHBW5G8pwewPMWVbIgu/DZ1+7d46l0e3HajExtHcK0U4LPxnTG4vZyOotFUyZt5WkODsTz+uL064M4iIism/WlCwSz76WqllvtLtP4tnXYk3J6tA8F1xwAQkJCdx3330UFhZGKozY7XasVit1dXWRtlFRUZx77rltjrNjxw5OOeWUyHOXy0VTU1OLgH+vXr149NFHI8ctjhcZGRm89NJL3HLLLeTl5XHzzTdjNpuJjo6msbERn88HwEUXXdSi3+9+9zt8Ph9vvPEG7733Hu+99x5OpxOLxUJ9fX3keI/ZfPAffUOhEEuXLmXp0qUA2Gw2HA4HtbW1kZ9RTk4Ov//97w96LmkfBTREROSQ21Zcy6LVJQzskcSAHuFEX01uHw6bGYPBwOtT1/DpnM2t+m0tbv6Dr7C0HoBPZm/i5fvG8vAri3B7w+djPd4Av/np8fWHnIiIHB7xoyYAUDXrTWBfOwENJJ59baR9R51yyil8+eWXTJkyhblz57JmzRqqqqpwuVykpqaSk5PD6NGjmTBhwl4rYASDQSoqKsKrMRhwOp2kpaWRnZ1N//79OeussxgxYsQBre9YMGTIEGbMmMFbb73F7Nmzyc/Px+VykZaWRo8ePTjnnHMYNGhQiz5Go5E//vGPTJgwgXfffZelS5dSWlpKU1MTSUlJ9OzZk1GjRkUSeB6MMWPG8Pe//52FCxeydu1aysvLqaurIy4ujl69enHOOedw5ZVXYrVaD3ouaR9DSPt7RUTkENpcVMPvnp4b+ZPxt1cOZdaSAtZsrSQt0cndE4dz77/n4/O3PyFajNNCfZMv8rx/9yQev/XUQ7xyERE5nnnLC6hbNpP67+cQ8roj1w1WOzEDzyB2+LgO78wQkaNLAQ0RETmkHnpxAbkbm88Nxzgs1Lt8++jRMUYD3HnVMM4Y3uWQjSkiIj8eQa8Lb3kRIa8Lg9WBNSXzoEu8isjRoSMnIiJySJnNphbPPf5DW0btp2NzFMwQEZEDZrQ6sGf0OtrLEJFDQFVORETkkOqREdfieZ+shEM6/sxF7c8MLyIiIiLHLwU0RETkkFm1uZz3v9zQ8tqWykM8i05KioiIiIiOnIiIyCFUWtl02OfITI3m9n98jdlkpL7RS0qigzuvGkZqgvOwzy0iIiIiPxxKCioiIodMbYOHO56aQ0Wte/+ND6ETB6Rz/3WjjuicIiIiInJ06ciJiIgcEoFgiNemrjniwQyAJrf/iM8pIiIiIkeXjpyIiMgh8bc3lrB4TckRnzfKYeHqc/sc8XlFRERE5OhSQENERA5aXaP3qAQzemfF8/itp2LZo1SsiIiIiBz/dOREREQOWpTdjN165IMKGwtq+P0/v+HDLzfQ5PYd8flFRERE5OjRDg0RETlom4tqCASPTo7pbcV1bCuuY8HqHTz529GYjIajsg4RERERObK0Q0NERA7a8x+vwucPHtU1bCmq5e9vfkcgcHTXISIiIiJHhgIaIiJy0IK7VQA3GGDCqV0xHIWNEgtX72DO8qIjP7GIiIiIHHE6ciIiIgfM6wvwypTVBIJB7FYTgWCIq8f1ISbKSujonEChqs5Nk9uH0245OgsQERERkSPCEAodrT85RUTkWPfezPW8+8WGyPM//XoUr0xew/byhqOyHrvFhNsXwGEz8+AvRzGwZ/JRWYeIiIiIHH46ciIiIgesss7d4vmarVVHLZgB4PYFAHB5/Hw4a+NRW4eIiIiIHH4KaIiIyAE7/5RuxDjDRzt6ZsZx+uAMzKYfxq+W2Cjr0V6CiIiIHCZFRUXk5OSQk5NDUZHyZ3XUxIkTycnJ4dlnn211b9f7unjx4qOwso5RDg0RETlg3TrH8dJ9YykoqWPmonxenbqay8f05L0vj87uiJyseLz+IMnxDn510YCjsgYREfnx8nq9TJs2jTlz5rB69Wqqq6vx+/3Ex8eTk5PDqaeeyoQJE0hKSjok89XV1fHmm28CcO211xIbG3tIxt3d4sWLWbJkCRkZGVx66aWHfPwfuk8//ZQ//vGPB9R35MiRvP3224d4RbI7BTREROSgRDssfLE4n9lLCwFYuaniqK2lV1YiN14y8KjNLyIiP14LFy7kvvvuo7i4OHLNbrdjs9koKyujrKyMefPm8cwzz3DnnXdy7bXXHvScdXV1PPfccwBccsklhyWgsWTJEp577jlGjhz5gwpoWCwWunXrFnl8uNjtdpKT287JVVER/psnOjoau93e6n5cXNxhW5eEKaAhIiIHrbza1eb1jJQotpc3HrF1TPt2K907xzJ2VPYRm1NEROSzzz7jrrvuwu/3k5mZyY033sgZZ5xBamoqAB6Ph6VLlzJ58mSmTZvGrFmzDklA48csLS2NGTNmHPZ5xo8fz/jx49u8l5OTA8D999//gwr2/JgooCEiIgdtwmndWbW59c6M2kbvEV/Lmm1VCmiIiMheuX1uCut24PK5cVjsdInthN3S+tv19tqyZQv33Xcffr+fk08+meeee46oqKgWbWw2G6eccgqnnHIK1113He++++7BvgwRQQENERE5BFITnG1eb2jyHeGVgM3yw0hKKiIiPyyFtcXM3DSXb/IX4/Z7ItftZhunZ49iXK/RdInr3OFxn376aVwuFykpKTzzzDOtghl76tevH4888ggAoVCIs846i+3bt/PHP/6RX/ziF3vt95e//IW3336bE044gXfeeYeJEyeyZMmSyP2zzjqrRftLLrmExx9/vMW1LVu28Oqrr7Jo0SLKy8ux2Wz07NmT8847j6uuugqrtTmhdlFRUYsxlyxZEtmRsMtbb73FqFGjIs9DoRDTp0/n008/Zc2aNTQ2NhIfH8+wYcOYOHEiJ5xwQov+kydP5p577sFoNPL2228zYsSIVq/7o48+4oEHHsBkMvHWW29F2uy+vq+++orMzMxWfT0eDx999BEzZ85k06ZNNDQ0kJSURFZWFmeffTYXXnghCQkJbb/hR0EgEGDq1KlMnz6dtWvXUltbS3x8PJmZmZxxxhlcfPHFpKent+qXl5fH66+/zqJFiygpKcFoNJKVlcXYsWO59tpriYmJOWRrLC4u5tVXX2XBggUUFxcTDAZJTEwkPT2dE088kUsvvZTs7CP3xZICGiIictDydtR2qL3JCIHg4VlLZU3bx19EROTHa9qGr3h7xSeECLW65/Z7+GLLN3y5ZR4Th1zGBTlntTFC28rKypg1axYQrhrR3pwJRmM4+G4wGLj88st55pln+Pjjj/ca0PB6vUydOhWAn/zkJ0A4P0NCQgLV1dUAJCQkYDKZIn2io6NbjDF58mTuv/9+/H4/ADExMbjdbnJzc8nNzWXy5Mm88sorkYSlJpOJ5ORkmpqaaGpqwmKxtHp9u+eu8Hg83HnnnXz11VeR/tHR0VRUVDBz5kxmzpzJTTfdxJ133hnpc/HFF/PNN98wffp07r77bv73v/+1+PCdl5fHX//6VwBuvPHGNgMee5OXl8eNN95IXl4eEH7PY2NjqaqqoqSkhCVLlhATE/ODOSpSUVHBrbfeyooVK4DwfxuxsbHU19dHfkY+n4/bb7+9Rb+PPvqIhx9+GJ8v/CWSw+HA5/Oxfv161q9fz6RJk3j99dfJyso66DWuW7eOiRMnUl9fD4DZbMbpdFJSUkJJSQkrVqwgNjaW66+//qDnai8FNERE5ICtz6tiy/ZasjvFEBtlpW4/R0ysZgNef+iwBTMAFq8tZfWWCgb0aDuBl4iI/LhM2/AVb634eL/tQoQi7dob1Fi8eDGhUDhIsucOifa67LLLeO6559i0aRMrVqxgyJAhrdp88cUX1NTUEBsby7nnngvAc88912KXwscff9zmLgWAVatWRYIZJ598Mg8++CDdu3fH5/MxY8YM/vznP7N27VruvPNO3nzzTQwGA506dWL+/Pk8++yzPPfccwwdOnSfFTueeOIJvvrqK4xGI3feeSc/+9nPIgGNf/3rX3zwwQe88MILdO3alUsuuSTS7+GHHyY3N5ft27fz5z//mSeffBIAn8/HH/7wB5qamhgyZAi33npru9/Turo6rr/+eoqKikhOTubuu+9m7NixOJ1OgsEgmzdvZvr06YclieqB8Hq93HzzzaxatQqn08kf/vAHJkyYEFlffn4+M2fObBVQmjt3Lg8++CA2m42bbrqJK664gtTUVPx+P6tWreKxxx5j9erV3HbbbUyePDkSSDtQjz/+OPX19QwaNIiHHnqIAQMGYDAY8Hg85OfnM2PGjDZ3kBxOCmiIiMgBWbqulEdeXUQoBFaLkUdvPJmSyiYyUqK57z/f4vW1jlqYzSa8O78Z2lNyvI2KGk+b9/bHZjHi2W2+Jnfbc4iIyI9LYW0xb6/4pEN93l7xCYPT+7br+MnmzZsBsFqtdO/e/YDWmJqayplnnsmXX37Jxx9/3GZA4+OPdwZaLrigzWoa+/PMM8/g9/vp3bs3L774YuRoicViiXxwvuGGG1i8eDHffPMNo0eP7tD4O3bsiOQF+e1vf8sNN9wQuZecnMwjjzxCXV0dn3/+OU8//TQTJkzAbA5/FI2JieGJJ55g4sSJTJs2jdNOO42LL76YZ599lu+//56oqCieeOKJSPv2ePnllykqKsLpdPLOO+9EqqFAeKdG79696d27d4de4+H06aefsmrVKkwmEy+//HKrnSjZ2dkt3lMIH0959NFHCYVCPP7445x33nmRe2azmWHDhvHqq69ywQUXsGHDBmbNmsU555xzUOvctXvk/vvvZ+DA5qpyNpvtqL2nOmgsIiIHZMaCPHZ+KYXXF2TOsiLGjOhCKBRsFczonhHLeSd1JT2p7VwbABU1HgyGjq+jb9dE7po4guS48B94w/ukMqxPascHEhGR487MTXPbPGayLyFCzNw8t11ta2pqAIiNjT2ob7+vuOIKIFwtpampqcW9wsJCFi1aBMDll1/e4bFra2tZsGABADfccEOLPBm7jB49msGDBwMwffr0Ds8xc+ZMAoEA0dHRXHfddW222XVUorS0lO+++67FvREjRkQ+sD/66KNMmjSJl19+GYAHHnigw8clJk2aBISPAe0ezPih2rXe8847r93HapYsWUJhYSEZGRktghm7i4+P5/TTTwfg22+/Peh17joOVFZWdtBjHSraoSEiIgfE4Wj5KyS4M7rxn0+/b9V26/Y6tm6v2++YoY79zQnAurwqXv3fGv56yyk47Rbiom0dH0RERI47bp+bb/IXH1Dfb/IW8/NBlxxU9ZOOOPXUU8nIyGD79u189tlnkTwZAJ988gmhUIj+/fvTr1+/Do+9du3ayLGYk08+ea/tTjrpJFauXMmaNWs6PMeuPsOGDcNma/v3cI8ePUhLS6O0tJQ1a9Zw0kkntbh/++23s2DBAlatWsW9994LwLnnntvhHBdFRUWUl5cDdHinydHg8/lYvXo10LH15ubmAuHgwimnnLLXdrsCZDt27DiIVYaNHj2ajz/+mHvuuYfc3FzOOussBg0a1GaQ7EjRDg0RETkgV4/rg90aDmpYLUbOGZXFsx/msnV7xxKEHgo7KhuZ9u02BTNERCSisG5Hi2omHeH2eyiqK9lvu/j4eCCcsyF0IFH5nYxGY2T3xa7jJRA+VrDr2/vdgxwdUVVVBYSPl+xK+NmWXbkPKisrD3iOtLS0fbbb1xxmszmSABQgKSkpUg2mI3YfOyMjo8P9j7Ta2tpIotbOndtfZWdX0Mbn81FRUbHXf3YFNNxu90Gv9e677+aEE06gqamJ1157jauvvpphw4Zx1VVX8fLLL0d2LB1J2qEhIiIHJD0pihfuHcPGghq6Z8Qx5ZstfLG4YK/tjQYIduBvvYE9k2lo8rKteP87OwDydtTx55cXMqJvGhecemDnmEVE5Pjh8h3cBziXf//9e/bsCYSTOm7ZsiXy/EDsSg6am5vLli1b6NGjB99++y0lJSU4HA4mTJhwwGMfKz766KPI45qaGjZv3szw4cOP4op+uAKBABDeWfPGG28ckTnj4uJ45513WLJkCbNnz2bZsmWsXbuW5cuXs3z5cl555RVefPHFNvPAHC7aoSEiIvsVDIb4fksFW4pqWlxPinNw0sBOpCU6KSpr2Gt/A3DDxQO548qhxMe0bxdFdZ0bm8W0/4aAyWhg1eYKlq0v48VJ37Pw+4PfVikiIsc2x0EeF3GY999/1KhRGHYmgNpVrvRA7UoOCs27NHb9e9y4cS3KmXZEYmIiEP4mf1+7L0pKwjtS9rWLY39zlJaW7rPdvub49ttveeuttwDo3bs3gUCAu+66i4aGvf990Zbk5OYqZ9u3b+9Q36MhPj4+Uv62uLi43f12vc5DcZSko0aOHMm9997LRx99xJIlS3jyySfp3LkzNTU13HXXXUd0LQpoiIjIfv397e+47/n53PH0XD79elObbcaOysJoDP9RZ7UYyclKiNwLAfml9Zx1QhYZKdHtmrOorIH1+dXtahvcY5tvQUn7dnWIiMjxq0tsJ+zmAzuKaDfbyIzdf/nJ1NTUSNnUt99+m9ra9h27DAbbrl++Kzno5MmTKSkp4euvvwb2ngx090Skezvy0q9fv0jQZeHChXtd0657AwYMaHF9V999HanZ1Sc3NxePp+1jPlu2bIkEPPaco7q6mnvvvZdQKMSll17K22+/TVpaGtu3b+fhhx/e67xtycjIIDU1nBx8zpw5Hep7NJjN5sj70ZH1Dh06FIC8vDy2bdt2OJbWLlFRUVxwwQU89thjABQUFBzRIIsCGiIisk+1DR4WrGr+xTRjYX6b7U4dnMFjN59M5s6ARUKsDeNuVUsyUqJ5/uOVlFQ2YjIeQDmTfdjzb6xR/Tsd0vFFROTYY7fYOT171AH1Pb3rqHYnBL3jjjuw2+2Ul5dzxx130NjYuM/2a9eu5aGHHmrz3q7koFVVVfzud7/D5/PRrVu3vVa+iI5u/pKgvr6+zTZxcXGRpJEvv/wyXq+3VZu5c+eycuVKAM4///w256ir2/uXBeeccw4mk4n6+nrefPPNNts8++yzQDiPxp6v54EHHqC8vJzs7GweeOAB4uPj+fvf/47BYGDKlCkdrryyK5HoO++8c1Q/7LfXrvXOmDGDpUuXtqvPiSeeGMkR8te//jVyBKUtPp9vv/9d7o/f799rIA5okQx2b0Gtw0EBDRER2Sen3dLimIjDHk6/5PG1/sU5f2UxReUNeH1BFq0u4fKze3P6kAyuu6AfDquZzxfmUVnrJhAM0Sk5qkXftkq2juibGtn10RHPfbSizfWJiMiPy7heozHQsd8jBgyM69n+ahO9evXisccew2QysWDBAi666CI++uijSNJGCH/AW7BgAXfddReXXXYZ+fltfzmwe3LQZcuWAftOBhobGxtJxDl58uS9fqj97W9/i9lsZv369dx8883k5eUB4Q+606ZN43e/+x0QPkJz2mmntejbu3dvILzDYlfQY0+dOnXiZz/7GQDPPPMMr7zySuQDdGVlJQ899BCff/45EA4Amc3NqRw/+OADZs2ahdls5h//+AdRUeG/D0466aRICdg///nPHTqOcf3115OZmUlTUxMTJ05kypQpuFwuILw7Zv369Tz22GN8+eWX7R7zcLrkkksYPHgwgUCAG264gf/+978tAlR5eXk888wzvPfee5FrFouFP/3pTxiNRr755ht++ctfkpubGwk6BINBNm/ezEsvvcS4ceNYt27dQa2xpKSEcePG8eKLL7Jhw4bIf2uhUIiVK1dGdtJ07dqV7Ozsg5qrIwyhg0nHKyIix5XZSwsoKKnntCEZ9MiMj1xftamCP728EH8g/EsyMdZOVZ2bYTmpPPDLkVjM4VwXL3y6iunzm78J+dOvTmRE3zQamrxMX7CNdz5fH7mXkxXPhoKaNtfRp2sCWWkxeH1B1m6rpKza1eHX8vCvT2JYn9QO9xMRkePLtA1f8daKj/ffcKdrhvyEC3LO6vA88+fP57777ovkiQCw2+1YrdYWuxuioqL4/e9/z9VXX93mOGVlZZx55pn4/X4sFgtz587dZ16L5557LrL7wWazkZSUhMFgYNy4cdxzzz2RdpMnT+b++++PVNSIiYnB7Xbj8/kA6Nu3L6+++mqrufx+P+eff34kCBIfHx8JOjz11FORBJAej4c77riD2bNnA2AymYiOjm5RAeamm27izjvvjIy9bds2LrnkElwuF7/97W+55ZZbWszt9Xr56U9/ytq1axk5ciRvvvlm5JhNUVFR5LjPV199RWZmZou+27Zt48Ybb4wEj0wmEzExMTQ1NUV2qfztb3/rcFnY3eXk5ByScQAqKiq4+eabWbVqFRA+6hMXF4fH44kEY2677TZuv/32Fv2mTZvG/fffH6liYrVacTqdNDY2Rn62AO+++26LBKsTJ05kyZIlbY6563W99dZbjBoV3uW0+/sN4aMy0dHRLeaJi4vjlVdeYdCgQQf1XnSEqpyIiAgA077dyouTvgfgswXbeO4PY0hNdAIQCAYjwQyAqrrwL83lG8qYt6KYMSO6AHD5Wb1Yt62K/JI6Rg/LJDHGylUPfEaDy9fq+7G9BTMAthTVsj6vffkz2mI0QFLcwSWDExGR48Ou4MTbKz4hxN6/yzVgYOKQyw4omAFwyimn8OWXXzJlyhTmzp3LmjVrqKqqwuVykZqaSk5ODqNHj2bChAmRcq9tSU1NZciQISxdupQzzzxzv0k6b7nlFqKiopgyZQp5eXmRnQzV1S1/j1588cUMGDCAV199lcWLF1NWVobNZqN///6MHz+eq666CqvV2mp8s9nMG2+8wb/+9S8WLVpEeXl5pDzn7kcLbDYbzz//PNOmTePTTz9l7dq1NDY2kpyczLBhw/j5z3/OyJEjI+19Ph+///3vcblcDB8+nBtvvLHV3FarlX/84x9ceumlLFmyhJdffrnNdm3p1q0bU6ZM4f3332fmzJls2bIlsp6srCzGjh3LmDFj2jXWkZCcnMx7773H5MmTmT59OuvWraOhoYGEhAT69OnDmDFjuOiii1r1u+CCCzjhhBN45513mDdvHoWFhdTX1xMTE0N2djbDhg1j7NixB10tJi0tjeeff55FixaxYsUKSkpKqK6uxmKx0LNnT0499VSuvfZaUlJSDmqejtIODRERAeCJt5fyzYrmbOAPXj+Kkf3CCdGq693c8n+zaWjytep3+xVDWLO1koYmH5ef1Ys+XRMJhUIEgyEuu3cqgb0ftzzkTEYD/bolMnZUNmcO73LkJhYRkR+8wtpiZm6eyzd5i3H7mz+I2802Tu86inE9R9MlrvNRXGFYXV0dp512Gm63m5deeonRo9t//EXkx0Y7NEREBIAT+qdHAhrx0TZ6dYmP3EuIsXP75UP425vfRa6ZjAZG9k9j+rdb2Voc3kq7dF0JBoOBTslR9OoSd8SCGUaDgeR4OzdcPJBRA5QQVEREWusS15lfDb+Knw+6hKK6Elx+Nw6znczY9HYnAD0SPv30U9xuNxkZGa3yWYhISwpoiIgIAGcMyyQp1k5hWT0n9E0nIablH3fDclLpnBxFcUU4yZfRAAu/L2nRJhgCQiGKyhqorHW3a96kWBuVdW1nwx7VL43Fa/dd0x7gFxf045IzerZrPhER+XGzW+z0TOp6tJfRpi1btvDCCy8AcM0117QoyyoirenIiYiItFttg4dFq3fw1dIC1m1rf44Li8mAL3Dof91E203c/JOhnD4045CPLSIicqRcddVVFBUVUV5eTigUomfPnkyaNKnNnBYi0kwhPxERabe4aBvjTuxKz8yEvbbZM/lnl9Ro3vzzuXzw2HhuuezQZr1ucAd4/uOVPPvhikiiUhERkWNNaWkpZWVlxMfHc/755/Paa68pmCHSDtqhISIi7ebzB5m9tIAmt4+Fq3awqagG/247L4b1SeWmSwZy+z++xuMLJ9C48LTu/PrigUC4Vvndz81jY351+HjKIdS/exKP33rqoR1URERERH6wlENDRETa7en3lrNoRT7nO3M52dhAyNib9YHm4x7L15dxw9++wmk3w86Axq7SrxAuDXug5VitFiMTTutOYoyN79aVsmpTRYugyPbyhgN7USIiIiJyTNKRExERaZfNhTUsXVfKBc5czrSvY5C1kF9Ff02CsXUgocntjzyePn9b5PHUb7ce8PxeX5Di8kYuPL0nj954CpP+70LOHJ4ZuX/uiV0BKKlsZOaiPDYWHFjgRERERESODdqhISIi+/XJ7E28MX0tACnRdZHrFkOQBGMj1cHovfYNhUK8MW0NE07rjsPW9q8dgwHacwDS4w1EHhuNBu68ahhjR2Vjs5jonZVAWXUTdzw1h8adAZUJp3XjhosPbd4OEREREflhUEBDRETa1NDkYdn6crI7xfLJ15si1xd4epNj2YHZEKQgkMINv5pAnTtEfaOXb1cVk7uhPNLWZDRQUtnEJ19vZvGaEm79yWD+8voSXG4foRDsimF0SYuhoKR+n+uJi7by8/P6tLhmMBgY2CM58nz1lopIMANg6rxtxEXZ+OnYnIN4J0RERETkh0hJQUVEBAC/L8AnH69ia341q6oaaQgE99o2yVhPgrGRPH8KAUwkxzu46+cj8AeC3Pef+Xvtlxhrj1QjsVlNGA2QmhjFdef35ZHXlhDcmRTDZITdp7/kjB784vz+GI171lBp6ZvlRTzx32UtrnVOjuLFP569v5cvIiIiIscY5dAQEREAXvjPQjYs3Y6vvImegX3/gqgMxrDZn44fEyGgvMbFPz/IpVeXODolR+213+6lVT3eAC5PgKLSOh5/a2kkmAEtgxlWs4G1W6uYm1sEwIufruLK+6dzz3PzqG3wtBh/Shs5Orp1jt33CxcRERGRY5KOnIiICAA7imqx7XxswYAVcO+rwx6qal28NHk1OyoaOzRvIAiB3XJj7MnrD7GhoJpN79cQCASZtjPJ6NptVXw4a2OkJCzQfIZlp9OGZHDb5YM7tB4REREROTZoh4aIiAAQjLFGHjcQwrOPtgBRDjN2qyny3OUN8PXSwv3OM6pfGpmpe08iutf1BUPMXV7U4pp/j2Mxv754AElxdqxmI7+6aAB3TxyB027p8FwiIiIi8sOnHBoiIgLAjopGHn32W1yNHtxWIw2eve+aOBijh2ZGjo90hM1ixONrDmB0SYvmkRtOxuXxU1BST7/uiSTE2AGoa/QS5bBg2k/ODRERERE5dimgISIiEZsLa7jn39/i9R2eYAaAgVYnQw7Iy/edTUWNiwdfXIg/ECQhxsZjN5/Cvz7IZX1+NamJTv568ymkJToPwWwiIiIi8kOjIyciIhKxaM2OFsEMi+nQ73A4FMGMrLRoUuIdfLuyOHLspLrew13/msf6/GoAyqqamDxn8yGYTURERER+iJQUVEREInpkxLV47gscuU18JqOBQLB98xWUNvD4W0sZ0is5cs0ANLp9Ldo57Po1JyIiP2w+n4/XXnuNqVOnUlBQgMcTzmL11VdfAXDWWWdFnmdmZh61dYr8EOkvPRERiThpYGd+/7NhrN5aSXy0jQ9mbdxne6MBumfE0iMzgTnLi/Dso1rJ/rQ3mLHLotU7GNI7mfEnd2VdXhU9M+L58ruCyP1unWL5yZheB7weERGRfcnJyTngvrsHJx599FE++OADAGw2G8nJ4WC9yWQiEDh8R0BFjgcKaIiI/Mh8v6WCyhoXI/unt1kB5IzhXThjeBcAPL4AXyzOx+sLEAiEWh0XCYUgb0cDm4vqjsDKW/t49mYqalwA5O2o44xhmRRXNNC/ezK/OL8fRiUFFRGRw2RX4GFP9fX1eDweLBYLcXFxbbYxmcJVwhoaGvjkk08A+OMf/8i1116LwdD8u6uoqONJtEV+TBTQEBH5Ebn72W9YlxfOMZGVFs3Td56B1WLaa/vrLxzA9RcOAKC82sWrU75n/qodkfshWpdOPZJ2BTMgHFxxewM8+dvRR209IiLy4zF//vw2r997771MmjSJoUOH8vbbb+9zjK1bt+L3+wG4/PLLWwQzRGT/lBRURORHwOP189CL8yPBDAjnoSgqa2j3GCkJDs45MftwLO+QyU6PAcJBlinfbOGdz9dRXu3aTy8REfkxCbhc1G/YSM2KldRv2EjAdfR+T7jd7sjjqKioo7YOkWOVdmiIiBznKmtd/OqxWW3upEhNcHRorA35NS2eGwwQH22jweXD5z96OzV2cXn8uDx+Xvx0FV8tLQTg6+VFvHDPGCzmve9EERGR419TQQE7PptB2ddzCe4WSDDa7aSeOZpO48/FmZV1RNby6aef8sc//rHFtd1zclxyySU8/vjjrfqVlpby73//m2+++YaKigqSkpI444wz+M1vfkNSUtJhX7fID40CGiIix6lgMMTMRXm8OmV1m8GMxFgb0U5rh8YclpPCh7M24A+EMBoMXDehHxeP7sm7M9fz3hcbDtXSD9iUeVv5fGFei+BKWVUTlbVu0pP0zZeIyI/V9v9NJe/1N8PnE/cQdLsp+XwmJTO+oOt115Jx0YTDvh673U5ycjI+n4/a2lqgZU6O6OjoVn02btzIfffdR3V1NVFRUYRCIUpKSnj//fdZsGABn3zyCbGxsYd97SI/JDpyIiJynHrgxQU8/8kqPL7WwYxeXeJ48d6zOzxmTnYit10+BAMQDIV4dcoavltbwrgTs+m0M2AQ5dh7rNxpO3S7JIb1SWnz+p47Rbp2iiU5vmM7UURE5Pix/X9TyXvtjTaDGS2EQuS99gbb/zf1sK9p/PjxzJ8/n2effTZybf78+ZF/HnjggVZ97r33XnJycpg6dSrLly8nNzeXxx57DKvVSkFBAS+99NJhX7fID40CGiIix5FgMERlrYs3pq/h+80Vre47rCb+ctNJPHXHGdhtB7ZJr8Hla1HtZH1+NUlxDp6/ZwyvPXAO9/9iFBZT20nNvHsEG8y7tbOY2/8r6Yzhmfx8XJ99tjEbDfzqogH87dZTMZv0605E5MeoqaAgvDOjA/Jef5OmgoL9NzzCUlNTefnll+nduzcAVquVn/zkJ1xxxRUAfP7550dzeSJHhf7CExE5TjQ2ebn+sS/4xSNf8MnszS3uGYCJ5/Xlw79dQF2Dj4l/msH1f/mC1VtaBz32Z0ivlEhlFLPJwPA+qTsfG0lJcOCwm7FZw8GSPaum+gPNoRCjwRB5nhRnJ6Wd+TxOH5LBzZcOoldWImOGZ7a6bzRAVloM91x7Ahed3oNoR+vStCIi8uOw47MZ+9+ZsadQiB2fzTw8CzoIv/jFL7BaWx8VPfvs8I7LoqIimpqajvSyRI4q5dAQETlOPPnecipq3G3eu+/akZw4qBP+QJBn3l8e2Snx3EcreKGDR0+yO8Xy9B2n8/2WSnKyE+iZGd/i/sezN9Hg8gEQDEFWegwFJfWR+6cM7kRslI2vvivE6wsAUFnb9rr3lJbo5M6fDYvsuLjzZ8O5/qKBFJc38MqU1fh8QX55YX8G92r7OIqIiPx4BFwuyr6ee0B9y76eQ9drf47J8cM5sjhw4MA2r6empkYe19fX43Q6j9SSRI46BTRERI4Tmwpq2ryemuBgcE74A34oBIFg8zdVu++Y6Iis9Fiy0ttOPLbnjojdgxkxTgv3TDwBg8FAbJSVD77cCIDdasLtDbQ5ntFoIBgMYbeaeOCXI1sdH4mNshIblcg/fnP6Ab0WERE5PjUVFLaoZtIRQbebpsIiYnr3OsSrOnB7K+tqs9kij30+35FajsgPggIaIiLHgeUbyqhp8LS6Hhtl5ak7RuPYmS/DYjZy82WDeHHS91jNRm66dNAhX8s14/tRU++huKKBs0/I4r0vNkSCFVnpsRgM4XMoPz+3L6cOziAUCrE+r4rnP1nVYpxoh4VBPZO59MyelFY1kZOdSFqivnUSEZH2CbhcR7W/iBx+CmiIiBwHGpq8bV5/+o7RxEXbWlwbd2JXxo7MxmAgElw4lGKjrDzwy1GR5107x/HO5+uIcli45bLBLdp27RTe5dGtcxwuT4DXp63ZbZ3Z/OKC/kC4uoqIiEhHHOxxkR/ScRMRaZsCGiIix4GR/dPp2zWRdXlVRNnNjBqQzjXn9SNpL+VKjXtm6zyMhuWkMiwndb/tzju5K/NWbmdzYQ2pCQ7Gn9ztCKxORESOV86sLhjt9gM6dmK023F2aZ14WkR+WBTQEBE5DtitZv5266lU1rqIj7ZFqpAcSxw2M//4zelU1rhIiLVhMR97r0FERH44TA4HqWeOpuTzjlcsST3zDO3QEDkGqGyrHNOaGrx8+MZSXnryG1YsKTzayxE5qkxGA6kJzmMymLGLyWggNdGpYIaIiBwSncafCx09Xmkw0Gn8uMOzIBE5pBTQkGParGnrWP99CSXFdUz9cCWV5Q1He0kiIiIi8gPhzMqi63XXdqhP1+uuxZmVdZhWJCKHkgIackT9P3v3HV91fe9x/H1WcrJ3AgTCTtgbFHAhqHW0VevErXWPOmodtVdttbVWbeuo26o4UAtOnMjee++ZELL3Ts64f4QccpKT5CQkhB+8no9HHzfnN7/n5OTieZ/v9/PJK6rQuh3ZKmmigGFrlZUd7urgdksV5bSqAgAAwGGJv/6let14fcszNUwm9brxeiX++pdHZVwAjpzJ7Xa7O3sQOH6t35GjKodTowckKDWzWI+8skhllQ7FRNh1x2+GqaCkWn0SwxVgtSipS5jfHRecTpde/HStNm3NVmyFUyEuKWVIgi67boxMR7HYIQAAAIyhPDVVGd/+oOy587wKhZrtdsVPOkNdzzuHmRmAwRBooEOUlFfrP5+t16INByVJJw/posS4UM2Yu6vJc4b1j9VNvxys3QeK1D8pUhazWV1iQmQ2m/TazA1atSVTyT2j5HK6tGpbthzOw2/d4X1i9OhNJynYbuvw5wYAAADjclZUqDztgJwVFbIEBSm4R3cKgAIGRaCBdpdfXKkH/jVfuUXeLbISooOVlV/e7LkmSfXfkF1ignXu+F767zdbWrxvv+4R+sc9p8lqYSUVAAAAABzv+OSHdrd8c2ajMENSi2GG5B1mSFJmXrlmzN3p1313HShSdkHL9wAAAAAAGJ+1sweA409MeGCbzrOaTXK4DkcaYaZyOWVWeZlD/rxVo8ICFR1ub9O9AQAAAADGQqCBdle/tkWrzqsXZnS35OqAM9bz2KoaOeS7PobNatbQvrG69eKhsgfwEsMklQABAABJREFUlgYAAACAEwFLTtDuPvlph1/H2QMsmjC0q+IiGxdhijcXez12N/FWNZmkqNBA7c8s1nuztii/uPFSFwAAAADA8YdAA+2qstqhfZlFzR5z+qhuOmN0d102JVl3Xz5SA3tFNzrGanIowlQmSQoxVcgpS6Njelhy5HZL2YUVyiuq1JINGXrug9Xt80QAAAAAAMc05uej3cxbc0D/nr5GLlfzxy1clyHXoeUli9Yf1MPXjNXqbVkqq3R4jllR3V91PU8q3AGNrmGSSxnOqEbbM3JLj+QpAAAAAAAMgrataDfXPPG9CkuqWn1esN2q8nphxpG47vxBuuTM/u1yLQAAAADAsYslJzhiW/bm6aanf1JxaeMww2Y1tXh+e4UZQ/rGaEjfGL391SbNWZXaLtcEAAAAABybWHKCFhWWVKmy2qEuMSFe250ut6qqHXr5s/XKzi/3eW6Nw3sCkNVialUXFLNJcjU43Gw2eZas1FdWUaOHX14k56F9VTUunTu+l9/3AgAAAAAYB4EGmjV/zQH98+M1crrcumBib9168TBJ0sotmfrHB6tVUeVQUKD328geaFFlldPn9VoTZphM0huPTNGeg8V64aPVcrrcSogO1oFs33Uy9h707oyyfX8+gQYAAAAAHKdYcoJmfTJ7u2fGwzeL96qwpErZ+eV6+t0VqqiqXSpS93/rNBVmtJbbLb355SbtOlCoymqnahwun2GGyceqFpNJOmlwl3YZBwAAAADg2EOggWZFhAR6fjZJKiip1KL16XK2YqbFkdiRVqD8okqvbVaLd4Lhq6xteHCAkpMad0EBAAAAABwfCDTgsWl3rqb/tF2b9+RJkiqrHJo0urtnv1vS+99u1buztrTbPUODbYqLDJLNapbVYlZEiM1rf2FJlTbszlWArfat2jcxwq9lK0Vl1frfnJ3tNk4AAAAAwLGFtq2QVBtm/PHVxZ4CnPYAiyqrnbJYTB06G+OCU3rr1ouGyelyy+12a8HadP3z4zU+j73ojL4a2Ctaf313ZaN9ATazqmtcXtusFpMmDOum+68cJYuF7A4AAAAAjid8yoMkafOePK9uIpXVtXUwOnppyeqt2brj2Tlasy1LVotZZ47poXGDE2Qy1XY4qe/zebsbhRlms/TCvadpRHK8woJtCgu2yXzoXe1w1gYk89emd+hzAAAAAAAcfQQakCQN7Rfrs7hmRwqwmpWRV6a0rBL9fdoq1TicmrVoj1Zszqqti2GSbNbm36Iul/TYq4u1YnOmSsprVFJeo/FDunkdU1pe3YHPAgAAAOg4Bw4cUEpKilJSUnTgwIHOHg5wTCHQgCRpUO8YPXvXqerVNbxD7xMTYdcFp/TSv+8/XdERds/2qmqn0rJKtHlvvmebyyVNPSelxWuWN+iqEhdpV7e4EM/jd77erKUbD7bD6AEAAID2M3PmTL300ktavnx5Zw8FMCQCDXgM6BWtf91/hu65fITsARbP9vDggHa5fmiwTXlFlZq1eJ9+98J8JSdFeWZgJMaF6ncvzNeyTYeDB7PZpKSEcEWGtu7+XyzYo4M5ZZ7HTpdbn87e0S7PAQAAAGgvn3/+uV5++WWtWLGis4cCGJK1sweAY8vWvXkqKKny1NCQpOJ2WrJRWl4j6XCb1YXr0vXfP52t/ZnFevyNZZKkGsfhmh0ul1tPvbNc7VHFIzLs8GyQiiqHggJ56wMAAJyIqqscys4sUXWVQwGBVsV3CVMA/20IGBJ/ufD4Yv4uvf3V5qN2P5vFrNKKGkkmmSSfwcWRhhnREYHqlxilYf1j9eSby5SWXaKs/HJFhQXqirNSdO6EXjId7eIhAAAAOOqyM0u0avE+bVh9QNX1liwHBFo0bHR3jZnYS/FdwjpxhABai7at8Ljvn/O060DREV/HbJJXx5RG+80mxUbYNaRvrOasSpMkDegVpW37Cpq9brDdKovZpMiwQKVllfo1FnuARdefP0ivfb7R5/5RKfG68pwUDegZ7df1AAAAYDzL5u/Rj19vaf7bMpN09i8H6eTT+7T5PgsWLND06dO1fv16FRUVKTw8XEOHDtWll16qKVOmeI6bOXOmHnnkkWavtX37dkm1RUEnT54sSfr5559ls9n0yiuvaMGCBcrNzVVMTIzOOOMM3XPPPYqJiWnyesXFxXr//fc1Z84c7d+/X9XV1UpISNCECRN00003qWfPno3Oeemll/Tyyy9r3LhxmjZtmr766it9+umn2rlzpwoLC/XKK694PS/gaGOGBiRJ63Zkq7JBcc2GLGbJ6Wr5Ws2FGVLtUpJe3SK0fFOmZ9v2FsIMSSqvdEiSSg4tXfFHZbVTb3zpO8yQpDXbs7V2R7bOHNNDN1wwWBGhgX5fGwAAAMe+ZfP36MevtrR8oFue41obarjdbj3xxBOaPn26JMlkMik8PFwFBQWaN2+e5s2bp4suukhPP/20LBaL7Ha7YmNjVVRUpJqaGgUHBys4OLjF++zYsUOPPvqoCgoKFBISIrfbrczMTE2fPl1LlizRjBkzFB7euMj/hg0bdPvttys3N1eSZLPZZLValZaWpk8++URfffWV/vnPf2rSpElN3vupp57StGnTZDabFRYWJrOZcozofLwLoc9+3qE/vb5UB3Kan/VQvw7FkVqxOVNllYeDCXugRdHhHRMmuFoIYdxu6eeVaXr01cVytZTGAAAAwDCyM0tqZ2a0wo9fb1F2Zkmrznn33Xc9Ycb111+vJUuWaMWKFVqxYoXuvPNOSbUFQF999VVJ0nnnnafFixdr5MiRkqQbb7xRixcv9vqfLw8//LBSUlL09ddfa82aNVq7dq2efvppBQQEKDU1VW+88UajczIzM3XzzTcrNzdXF110kWbNmqUNGzZo3bp1+umnn3TBBReooqJC999/f5NtYTdt2qQPPvhAd999t5YvX64VK1Zo5cqVnvEDnYVAA1q4Lt2v44rLqjpsDBVVToUE2Rpt7xITrD7dOraVbJ3UzBIVllQelXsBAACg461avK/1Rdnch87zU0VFhf7zn/9Iki677DI98sgjio6uXc4cFhame+65RzfddJMk6c0331RhYWErB3RYfHy83nzzTSUnJ0uSAgICdMkll+iyyy6TJH333XeNzvnXv/6lwsJCTZ06Vc8884z69evnmV2RlJSk559/XqeeeqrKy8v17rvv+rxveXm5brnlFt11112eGSChoaHNLnEBjgYCDSjYz6rO9TuQdATfdTHcGtQnRl1iglvdvrWOxex/0c8XPlqjJ99apk9+2q7qGqe+X7pPn/y0XQdz/avZAQAAgGNDdZVDG1b7nnHQktrCoQ6/jl28eLGKi4tlNps9szEauu222xQQEKDKykrNnj27TWOSamd/BAQ0/m/iujoWBw4cUHl5uWd7ZWWlZs2aJUmeUMWXCy64QJK0aNEin/stFouuv/76tg4b6DDU0DjB7Uwr0Oa9+Z09jCblFFTqm0V7W31et9gQPTB1lN76apO2+lGfo876XbXrCldtzdL3y/Yrt7BCkvTB99tkNkkPXTtWE4Z1a/V4AAAAcHTVtmZtvkZcU6qrnMrJKlFiUlSLx27atEmS1Lt3b3Xp0sXnMeHh4RoyZIjWrFmjzZs365JLLmnTuIYOHepze3x8vOfnkpISTz2OTZs2qbq6WpJ0+eWXN3ndmprapeAZGRk+9yclJXlmnQDHEgKNE1xOQUWHXt9iNsl5BHUp2nruwdwyPfDiwjbfV5InzKjjcksvfrqOQAMAAMAA/J1h0ZSqSv/CkPz82i8HExISmj2uLuzIy8tr85hCQkJ8bg8MPFyLri6ckKScnBzPz3UFQZtTWel7+TVhBo5VBBonuBHJcYqJsCuvqGNqRzhdbpnU+qWLnSU0yKbSihpZLWY5fLV0McoTAQAAOMEF+LmsuimBdks7jaTzuA5Vx7dardq8eXObr2OxGP+1wPGJGhonuGC7TQN6dWzi2poMwGbt3LekzWrW3+6YqAemjmpUe8NsMunOS4d10sgAAADQGvFdwhQQ2LYP4gGBFsUlhPl1bN3shaysrGaPy8zMlKSjWkiz7l4Oh6PF8QFGxAyNE5zb7da4gQlavP5gZw9FkvTYjeP088o0LVqf3mK7VV+sFpNcLrfausolNjJIQ/rGSpIS40O1L6NYw/rFKjrcLpPJ/+KiAAAA6FwBgVYNG91dq5bsb/W5w0Z393uGx5AhQyRJe/fuVVZWls+lJ8XFxZ4ZEnXHS/L896Xb3THTgIcOHSqbzaaamhrNmzev2ToagBExQ+MEtm5Htq7803d68dN1CrEfG9nWX95epgVr2xZmSJLD6VZclL3ZY/r3iGy0zWI2KSE6WLdceLjQUu9uEZo0uodiIoIIMwAAAAxozMReUmv/M8506Dw/TZw4UREREXK5XJ72rQ299tprqqqqkt1u1+TJkz3bQ0NDJdUGHh0hJCRE55xzjiTpP//5j6feR1OKioo6ZBxARyHQOIG98cUmlVXUyOlyq7zKobiooM4ekhytKETdNzHC5/as/ObrgZjN0lnjkiRJsRF2TRjaVU6XW1n55Xruw9WqcbQxTQEAAMAxJb5LmM7+5aBWnXP2Lwcpvot/y00kKSgoSHfccYckafr06fr73/+uwsJCSbUdR1588UW9/fbbkqSbb75ZkZGRnnP79+8vSVq4cKGys7NbNU5//f73v1d0dLQyMzN12WWX6YcffvAq/pmRkaEZM2boiiuu0IcfftghYwA6yrHxtTw6hc1yOM+ymE0a2T9OP65I7cQR+W/K2CT16BKqtKwSVbcygNi+v1Aj+sfrf89coACrWbf+7WfPvqz8cu1ILdDgPkdvbSMAAAA6zsmn95Ek/fj1luaLu5lqw4y641vjuuuu0969ezV9+nS98847evfddxUWFqaSkhJPYc4LL7xQt99+u9d5v/71r/XOO+9o3759Ov300xUTE6OAgABJ0pw5c1o9Dl+6du2qd955R3feeafS0tJ0zz33yGKxKCwsTJWVlV7hxumnn94u9wSOFgKNE9idlw7XCx+tVlmlQ8P6xWrZJt99p481g/vEaM7qNLmaKJRhtZjkcB7eFxRoUUWDHuQ7UgsUaKstEhUabJPqdc/anV5EoAEAAHAcOfn0PuqTEqdVi/dpw+oDqq7334YBgRYNG91dYyb2atXMjPpMJpOefPJJnXnmmfr444+1YcMGFRcXKyIiQkOHDtXll1+uKVOmNDqvT58+evfdd/XGG29ow4YNys/Pl9PZiinLfho4cKBmzZqlTz/9VLNnz9aOHTtUWlqqwMBAJScna8iQIZo0aZLOOOOMdr830JFM7o6qQAPDmLfmgJ7/cHVnD8Mv44d21d70ImXmlzfaFxMRqKLSmkbtVnt3C9feg97rEh+7YZxOGtJVkvTzyv361/R1nn1/vX2ihvaLbf/BAwAAoNNVVzmUk1WiqkqnAu213UyOtMUrgM7BX+4JKK+oQvszS9S7a7iy8su1fX9BZw/JS4jdqi6xIYoICdCa7Tle+1Izi5VdWOHzvLyiKp/bS8qqvR7XDzMkafLYnqqocmrbvgKNGZRAmAEAAHAcCwi0KjEpqrOHAaAdMEPjBLM/s1gPvbRQZZUOr6UZZpNJrmPorWAPtCgsOEA5BY3Di0CbWVU1/tfNsAdYVFldO3Wve3yoXv79JFks1MMFAAAAACNjhsYJZsHadJVVOiTJq87EsRRmmOSSu6paOVWN1w/GRNp10qAu+nH5fq/xN6ey2qkpY3uorMKha84bSJgBAAAAAMcBZmicYOasStU/P17b2cNoUaSpVIXu0Cb3myRZrSbVONwa1CtKg3rHKDW7RKu3ZsvZoFio2STVbQoKtOj3V4/RuEFdOnD0AAAAAICORqBxAvpi/i79uDxVaVklHXJ9m9Ws6LBAZflYLuKvc+zr9WPlULnl32yKkCCbyipqfO7ztUTlnJN76q5LR7R5fAAAAACAzkWgcYKqrnHquQ9Xa+nG9m/Vag8wq7LapQCrWdUO/2tdWOWQ3VSj0wK36sygrUodd6++Wl+pfZnNBy9ms+Rq5jYWi0lOH8tT+iRG6N/3n+H3+AAAAAAAxw6KCZygAmwWPXr9OD187VgN6BUts6l9rhsaZFVldW260JowQ5IcsireUqwKBeqF4nO1NiugxTDDZjXr1l8PVWyE3bPtnJN76qxxSeoSE6x+3SN9hhmStCe9SE5n68YIAAAAADg2UBT0BDdxeDeZzdJf3833ud9mManGz+KbklRa4fD7WNOh+6/fmaOS8trlInscCdrjSJAkDQm0KqlLmFKbCTVqHC6FhwXqud+dpmWbMtU1JkSjBsR79heUVOrmp3/y2RXFbBIFQgEAAADAoAg0oMKSqib3tSbMaC23pFOGJ+reK0fpt0//5DWOyLBAXfWLAbKYTfpszk59tWC36hZHmUxS/YVSoUE2xUQE6fyJvRvdIyrMridvmaAv5++W2SwlxoXqywW7ZTabdPelIzvsuQEAAAAAOhY1NKCS8mr9/sUFOphTdtTvHRUWqD/ddJKCA6166OVFKiqrlj3ArKdum6iUntGSpLmr0/TCR2s854xIjlV4cKB2pxcpITpYDqdL/XtE6przBsnSXmtnAAAAAADHNObbQ2HBAfrVqX065d4FJVV684tNSogJUd/ukZKkiFC7osODJEnfL93nFWZYLSZdMLGPHrxmjG6/eJjWbM/Whl25mjF3l75ZtKczngIAAAAAoBMQaECSlBAd0mn3drvdWr45U2u2Z0uSsvLL9fn8XZLUKKR4+raJOmlIV0lSTmG5176cI2gTCwAAAAAwFgINSJLGDEzQlLFJqq1scXRZLSYFWL3finWPu8QcDlpCgmzqkxjheXzSkK5KjAuVJIUF23TWuKSjMFoAAAAAwLGAoqDw+N0VI3Xm2B567LUlcrmOXrCxaU++rjzbomC7VeWVtV1SqmqckqS7Lxuh8FlbVFxWrUsm95c98PBbNiw4QP+673SlZpWoS0yIwkMCjtqYAQAAAACdi0ADXgb3jlGA1azKaudRu6fJJFXXOD1hhiRt21fbRjYiNFD3XN50NxJ7oFXJSVEdPkYAAAAAwLGFJSfwYjabdO+VoxQeEqCI0ACFBttadX5YsE3JSZGNtpuaaD4SERKgOy8ZrmH949Q19vDykuH941p1XwAAAADAiYW2rWjWTU/9qOwjLLZptZj0l1snqKisWq/N3KDCkirPvgtO6aNbLxoqSSooqdTcVQcUGRaoSaO7y9RUCgIAAAAAOOGx5ATN6hobcsSBxnkTemtI31hJ0o79BZo5r7aDicVi0sVn9PMcFxVm18WT+vm8BgAAAAAA9TFDA83KK6rQI/9ZrIzcsmaPs1pMiokIUla+dyvVYLtVbz56lqdgp8Pp0ufzdikrv1xnn9ST+hcAAAAAgDYh0ECLKqoc+u/Xm7X3YJEkk7btz/fsM5kkm9Ws3181WuOHdtPMuTs1e2WaisuqlJQQrrsvG+FVGwMAAAAAgPZAoIFWKSiu1PMfrdbB3DKdN6G3Ljmzf2cPCQAAAABwAiLQAAAAAAAAhkPbVgAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDsXb2AAAA6AirtmbpzS82ymw26f4rR6l/UlRnDwkAAADtyOR2u92dPQgAANqTw+nSZY/OUo3DJUmyWsz67G/ny2phYiIAAMDxgv+yAwAcd5wutyfMkGoDjnmr0zpxRAAAAGhvBBoAgONOoM0im9X7n7jUzJJOGg0AAAA6AoEGAOC4NHZggtdjamgAAAAcXwg0AADHpfHDuno9jo6wd9JIAAAA0BEINAAAxxWXy60Faw9o/pp0r+1b9+R30ogAAADQEWjbCgA4rrz2+QZ9t2Rfo+1Z+WVHfzAAAADoMMzQAAAcV1ZuzvS5vayi5iiPBAAAAB2JQAMAcFwZ0Cva5/aIsMCjPBIAAAB0JJacAACOK/deOUr9ukdq54ECLV6f4dk+rF9cJ44KAAAA7Y0ZGgCA40qgzaLfnNlfVrP3P3GxdDkBAAA4rhBoAACOO3sPFml5g1oab365qZNGAwAAgI5gcrvd7s4eBAAA7WX7/gI99PJCOV2N/3kLDbKpS2yIHr52rBKigzthdAAAAGgvzNAAABxX3vpyo88wQ5JKK2q0K61Q//1m81EeFQAAANobgQYA4LhyMLe0xWM27spVZZXjKIwGAAAAHYVAAwBwXAkOtLV4THFZtR5/c+lRGA0AAAA6CoEGAOC40qtbuF/H7Uwt6OCRAAAAoCMRaAAAjiuXTk6WyY/j7IFW5RVVdPh4AAAA0DEINAAAx5XkpCiFBLe87KSkvEbvztpyFEYEAACAjkCgAQA47vz2V0N8bjc3mLqRlllyFEYDAACAjkCgAQA47kwem6SnbpugPonhshxKMawWk56+bYImDOvqOW53epG+WbRHkjR/zQH98+M1mr1if6eMGQAAAK1j7ewBAADQEf4xbZWKyqo9j4f0jdVPK9O0fFOm13Fb9uYrMS5Uz324WpI0Z1Wagu02TRjW7aiOFwAAAK1DoAEAOO6Ulld7hRmStH1/gSqqHI2OHTMwXvsbLD3Zl1FMoAEAAHCMY8kJAOC4czC3rNG2uEi71+OhfWP051vG68wxSRo3KEEhQbWFRO0BFo0f2rXR+QAAADi2mNxut7uzBwEAQHtwOF16b9YW7Ugt0N6DRaqockqSzGaTXK7D/9z16hquv9w6QZFhgZ5tOQUV2pFWoL6JEeoSE+LZvmprpuauPqB+3SP1q1P7yGLhuwAAAIBjAYEGAMCQdqYVaPaKVHWNDdUvT+0ji9mkJ95YqtXbsz3HDOkTI3uARau2ZTc6f1i/WG3bl6/w0AA9ct1YJSdFS5L2Zxbr4x+3y2Y1KyUpSq9/vtFzTrDdqhcfmKSE6OCOf4IAAABoFoEGAMBw8ooqdPvff/bMwLjirBRd9YsBuuzRbzzbWisu0i6ZTKqoqFFpZW2tjbBgm0rKa7yO65EQpn/cfapniQoAAAA6B/NmAQCGczCnzCu42J1eKEmKDg9q8zVzCiuVU1DhCTMkyeFsnPmnZZXozmfn+CwwCgAAgKOHQAMAYDh9u0coPupweNEnMUKzV+xXek6pX+cP6RMte4ClxeN+M6mfbr1oqEwm7+15xZX65Kftqq5xqrqmbTNCAAAAcGRo2woAMJyyCoeK67VlnbVob6uWgOzNKNHrj0zR7/89XzmFlV77QoNtemDqKMVEBKl3twht258vX4sz565O0xfzd8tkku6+bKTOHNOjzc8HAAAArccMDQCA4Xzw/VZVVh+eGVFaUePVxaS+G84fqMS4EK9tgTaLosPtigzzbuU69ZwUvfbQZI0Z2EW9u0VIkpISwhQX1XgpS35xlZwutxxOt974YmOj/QAAAOhYBBoAAMNxNqhtERUWqJzCCkmSzWpWgLV2jUhifKhio4L14NVjdMMFg5QQFaTEuBD9/qrRkqTu8aGea8RHB+viSf0VERrode1gu03/uPtU3fzrIerXPcLnePxZvgIAAID2xZITAIDhTD0nRTvSCpSZV6ZThnXTup05nn01Dpfn56y8Mv3jg9WyWc164uaT9dZjZ3v2rdqapflr0yXVBhKPXjdWgTbvYKK6xqm127OVkVemXl3DdfKQrtp1oMizP8RuVWSYXXdeOryjnioAAACaQKABADCcbnGheuORKXK63LKYTXrg3/NVklrY6Li6LiU1Dpc+m71Tw/rFefYt2XDQs0ylstqpgzll6ts9st65Lv3x1cXatr/As+2Xp/ZRQnSwsvLLFRZs09/vOkUxEUEKtFm0fleOsvLKNXpAvGIi2t5tBQAAAP4h0AAAHLOcLrdKyqoVERogU8NWI5IKSyq1fHOmusWGaIePQKO+dTtz9OPyfTr7pF5auz1buw4cPt5qMaln1zCv49OySrzCDElasTlTfbtHKCu/XCXlNfrjq0tUUFIlk0mewqHR4YH69/2TFBnmvXQFAAAA7YtAAwBwTMorqtAj/1msjNwyDewVrT/fOl72AKsqqx36Ydl+/bQ8Vfszi1t1zTc+36S0rFJ9vXC3nIdWpvTqGq6bLxyipC7hXsd+tWBPo/Ora5xasiHD87igpEqSvLqg5BdXaUdqgcYN7uLZlpVfrqfeWa6DuWU6b0Iv3fSrIa0aNwAAABqjKCgA4Jj09cI9ysgtkyRt3Zevt77cpOoap/723kq99eWmVocZklRV49QX8w+HGZIUE2H3Wooi1YYps1emem2zB1o8AUZzTCYpv9i7FewH32/VvoxiVR+6/7vfbJbbVy9YAAAA+I0ZGgCAY1Kw3eb1+Idl+7V9f4HSc0r9vobFbJKziXaukmQ2Seec3LPR9oZLTYICraqocjR7L7NJcrlrZ2u8/vlGVdU4tXFXrrrEhKimxuV17Iy5uxQZZteFp/f1+7kAAADAG4EGAKDTfTp7u35cnqqeXcJ035WjFBocoAtO6a39mcVacKgTiSTtyyhWv+4RXp1G6qtfy0JSs2GGJNmsFvXrHtVoe1WD8OLXp/XRuh05jYKO+urfyuF06a0vNzW4l9mrA8uutMJmxwYAAIDmEWgAADrVnFWpmvbdNkm1tSae/2i1CkqqtCe9SOMGdVGgzaKqGme9M9yymOW1bOSqc1LUIyFMizdkaOG6dPmrqsapp/+7XA9fN1b2AKsCAywKCrRq4fqDXsdZLGbtbEUAEWK3qqzSOxSpcbg8200mafzQrn5fDwAAAI2Z3CziBQB0EpfLrev//EOztSmC7VaVNwgHGoccUmRooEKDbTqQ3fSSlPFDu6pHfKg+/Xmn13az2SSXyy2rxaT7p47S+p25+mHZ/tp9Jslkan7pSn1TxiY1qr9RZ9ygBI0f2lXdE8I0oGe0X9cDAACAbxQFBQB0mpzCihYLbSYlhDXa5qODqwpLq1RY6vta55ycpMun9JfNatbc1Qca7XcdCiscTreenbZa50/opUmju2tQ72hdd/4gv8OMwACL+nWPaHL/2h3ZqnG6FWC1aNXWLN301I+65a+ztXFXrl/XBwAAwGEsOQEAHFUOp0tud21NifCQAIUF21RSXuN1THhIgBwOp1J6RmtnmnfdCpNJ6pEQ5nMJSEJUsJzOUlVUec/eMJvM+mT2zkbHN+Xjn3boyrNTtHxTpmYt3qvI0EAVllbJJMlXtDGod5TOPqmXBvaO1ic/7WjyujUOt/7zv/WyWkyyWS2eQqP/nL5G7zx2tt/jAwAAAEtOAADtrLLaodXbshUZGqjBfWK89s1bnaYXP10nt1u669Lhmjw2SbvSCvV/ry9RScXhUONPN43Tl/P3aEMzMxfOn9hb6Tmlqqlxan9mieyBVhWWVMrhbPzPmq8lKnVsVrPCgm3KL265JasvN/5ysC46o5++XbJXK7dkqaKqRpv35Hv2X3FWstbtyFFuYYVyiw63c63riiJJEaEB+uDJc9t0fwAAgBMVMzQAAO3G4XTpsdeWaPuhbiCxkXZNGNpNN/5ysCwWs177fKOn08drMzdo/NCu6p0YoZsvHKoXPl4jSQoLsclqtjQbZkjS7BWpevzmkxUTYdeX83dr9bZsn2GGpCbDDKm2WGdbwwxJyi4o16qtWXp1xgbPtoG9olTjdGvK2CSdP7G3rvrFQN3z/FyvQCMwwKrqGocsZrNuvWhYm+8PAABwoiLQAAC0m4zcMk+YIUm5hZX6auEeZReU6+Iz+ivQZlZZRe0+h9Oly//4rUKDrEqpVyCzpKxGWXllLd6rqsapx15drJCgxktW6ljMJnWNDVFZZY0KjiC0aM7PK1M1d1Wa17ah/eJ04el9tWprljbvydPgPjGN7l9R5dCLD5yhpIQwWSy1Ja12pBbo9c83yOWWbr1wqAb0onAoAABAUwg0AADtJibCLou5cUeQZZsytWxTpizm2mqeJskzm6K0wqHdB4o8x9qsZvXvGenX/VxuNRlm1LVIret6YlJt/Y3m6nvaLLX1O/KKq/26v6RG9TrCgm06eUgXPfjiAqXn1AYzd/xmuIKDrF5FS7vGhKhbXKgnzJCkv7+/UtkFtYnP395bqfceP8fvcQAAAJxo6HICAGg3gQHWZjuC1O1reES1w6nh/WMVaLPI5XLr8TeW+uxk0hplDVq9utV8mCFJNU4p348wI8Dm+59Pm9Ws5393mhwOtyfMkKRvl+zVwXqPe3cN0x2XDFNBcaV2pBaosrp2rPXDmdIK30ENAAAAalEUFADQZqUVNXrzi43Kyi/X+RN669SRibrm8e89MxHMLcyIqGOzmFTTRP0LXwb1ilaf7hH6ZtHeNo3bZjUrpWeUNu3Oa9P5zRk3uItKyqq1J71QVTW19UK6xgYrI7fcc0zdLJa6rik9EsL07N2nav6aA3p95ga5JcVFBunuy0ZoZEp8u48RAADgeMCSEwAnnJpqpxbO3qmykiqNO7W3ErqFd/aQDOvdbzZrzqH6Edv25at/UqTsgRapdpWHXG7JapYO1QFtUmvCDEkqLq/W90v3tWHEh+7ncCnAatF9V47QnvRi/bwyrV1mRIQF27Ric6YkyWYxKzzEpuKyGq8wQ2o8UyUtq0QL1hxQjcOpLjEhysgrU05hhf723gp98OS5CrBZtOtAobbszdPg3jHq2z3Sr+f4/EertWZblgb1jtGUsUlauilDvbtF6OIz+slsPsIpMAAAAJ2MQAPACWfWjI3asOqAJGnlilRdcN1ojRvWrZNHZUx59bp2OF1uzZizQ5l5hz+8R4UFqqCk/Ytx1tXFOBJrtmdrzfZsJcaFqLyyfZZ3VFYfrqdR43Sppsw7ybFaTHK53D5nrXwye3ujbisVVU5V1zi192CRHn5lkRxOt6wWs569+xT17xHV7Fjmrk7T4vUHJUmrt9U+V7dbWrA2XVaLSRee3q+NzxIAAODYQKAB4ISzeUuW52erTPrHeyvVLTFc/3fTyYqJCGp0/IHsEoUE2RQVZj+awzQEq+Xwt/wWs0k/Lk/12t9eYUbd0oyOUL/WxZGqcbhkMklud+1sjbKKGq/woqm2smaTfLaOHT0gQY+9vkTVNU7PuQ6nS+t25LQYaDSsZVJ/gWlqZomfzwgAAODYRVFQACecquDDWW6J3KqUtCe9WNf/+UdNfWyWHn11kUoPFWd8/qPVuv3vc3TjX37Skg0HO2nEHcfpdGlPepEKSipbPrgeh9Ol1MxirduRffhaTcw8OBJBgVbdc/kI3XHJcJ/7YyPsiggNaNd7njQ4odG2rjHBfp/vdtcWDS0pr2nz6zGod7SeufMUrd2Rrd0HipSWdXhGiklSSlLzYYYkTRzeTcF2q+ec8EOvk81q1umjurdtYAAAAMcQZmgAOOFcc9VI/enfC2WTVNRgX0mFQxt35enKP32riyf11bzVtUtTHE6XPpuzUxOO0aUpOQUVyiksV7/ukQqwWfw6x+F06fE3lmrDrlwFBlj0pxtO0vDkuBbPKy2v1mOvL9HuA0WeNqxNCQq0NGpreuaYHp66Gy2pqHLoxU/WNdreJSZYF57eV+dN6K2n3lmuFfVm3bSVxWzS2EEJSowL1fLN3tcLDQ6Q8sqbOLOx6poWioY00DD42LYvX2az5PKRiLglLdpwUMP6N/+72newSOWHOr24JSX3iNK543upe3yousWFtmp8AAAAxyICDQAnnP5J0QqLDlJmfkWzx82cu9vr8b6DRfrw+2266hcDOnJ4rbZuR7b+8vZyVTtc6tcjUs/ceYoC/Qg1tu8v0IZduZKkqmqnvlq4p8VAY/mmDD0zbZUch6p8NteiVZKiwuyKizJ7ljgE261KiG68rKe1MvPK9drMjdq4K0+D+8QccaAxcVhXpSRFKyTIqtc/39ho/860wiO6fkMtLaFxS4oIDdT4oV21dGNGo/3rd+RoxeYMLd2UqbED4zVhWGKjY+Iig2W1mDxLVbrHh2rc4C7t8wQAAACOAQQaAE5Iz9x1qt79ZrPmrUn3+xyH063pP23X2EEJSvZjyv/R8v3S/ao+FDDsSivU1r15GpHsu9Xn1r35euHj1aqscuriM2s7XdTNAoiNPFwjZPeBQhWUVGl4/1jZrIfDkXe+3uwJM/xxMPdwfQqTSbrvylEqascioYs3HNTlZyXLYjbpra82H8F1MrR4Q+PgoKG6+hh1woJtKilvfUHRllaiuN3SF/N365HrxurL+bv19tfezy0jt0x/eWeFJGn2ilR1j9+mYLtVF57eT6eOqA03usaG6HeXj9S077bJHmDRWeOSWhxXXUC1bke2Fm84qN0HilRSVq3knlG67aJhigwLVGpmsaZ9t1Vms0nXnz9YXWNDWv38AQAA2gOBBoATUkxEkB64aoymjEvSE28ua7JYoy9/f3+lHrvxJPXuFtGBI/RfQvTh+g4Ws0mxkU3PgHj5f+s8XUjen7VV914+Uj+u2K+uMSG67vxBcjpdmr0yTa/8b53c7tpaDn+9faIsltqSS/aAtv+z4XZLoUE2ffj9tjZfoyGLxaQAq0UThiceUaDhL3eDt0lkaGCbAg1/WC0m5RRWaNaSvZK8Z3U0fLfWdX35xwertGprpq76xUDFRwXrpxWpyi6o/X3/5Z3lmjS6u35akapeXSL04DWjFWy3ea6xaH26/vXxWlXXOBtdP6ewQg6HS4/deJL+9PoSTwHTjNwyvfjApDY/x4M5pXI4XUrqQutkAADQeia3u+F/ngHAiWVPeqF+98L8Vp0zqHe0/n7XqR00otapqnHq/W+3KD27VGef1LPZOh+3PTPb09XDbDbpk6fPkz3AqtTMYj351jLlFlYoItS71epjN47TqJQE2axm7T5QqH9/slYHc8tUVe30eQ+rRXL42GU2m/Tmo1N0/7/mq6i0us3PNzDALJuldtZIaUWNAmxmjRmQoCU+lmYcCZvVrMun9NfHP+5ocmnN6AFxWr0tp13vK9XOBDGbTerXPVLb9xe0+vwuMcF645EpuvaJH1RY6ntGzGkjE/Xg1WM8j6f+6TuVlDf9e4mNtKtLdIg27cnzbAu0WXTJ5P76asFumc0m9U2MkNVi1ugBCbJYzBo/tKvCQwI07dstWrQhQ0P7xuj23wyXxWzSjDk79e6sLZKki87opxt/ObjVzxMAAJzYCDQAnPCKSqt07RPft6ojRf8ekXrh3tM7blDtJCu/XMF2q8KCaztcrNmerWffX6mqGpd+++shOn9ib0nSX99d4bNWQ51eXcP1zJ2nKCTIpi178/TQy4uaPPaZO09Rek6pXp2x3mvmS7fYYGXmV/gsdFlfdLhdwXarZ9aBVDvzpC5UMJmkEf3jtHZH+wcJDQXZrao4VFjTlwCb2asAaEyEXQXFla16L1nNJjnauz2MpNsvHqq1O3K0bFOmpNpOLRn1CpsmxoXqtYcnS5IWrD2gFz9Zp6oa3yFVWzVcoiNJ4wYlqGfXcH21YI/nfmaTNOPvv5TVQvM1AADgPwINAJC0aXeu/vvNZlVUOjRxWDcVllXp+6X7vY4JCrSqqsapELtNf7xhnAb3iemk0frn5c/W6Ydl+2WzmvXQNWN00pCukiS3u7a9qsVs0s60AhUUV2n2ytRmAw1JuvuyETr7pJ7atj9fD7640OcxZlPtwoggu1VlFYeDgMiwQJnkVkFJyzMzzCbvrh8mkxQfFaysfP+7jLRWUkKIDuaWt2rpkS+xkUH61Sm99c43W9ppZP4LtFl8BhLJSVEamRyn/83Z6TXTZHRKvO6+fIS27y/Q395beTSH2kh0uF3vPX5Op44BAAAYDzU0AJxwsvLLtXxzhnrEh2lkSm3xzCF9Y/X877xnXBSVVmnNthzZrCYN6ROra84bqG5xobKYTTKZmm9X2tmy8sv1w7LaQKbG4dL0n7Z7Ag2TySSLSV5T/mMj7E1eq47JVBuSSE0Xw3QdysjrhxmSVFZerZiIIEm1gUZokFXd40O1bX+hj2t4P3a7a2s4tEZokE02q6lRgGKzmlTj8L7BGaMSde8Vo3TV49/LUXFk9TD694jUqm3ZR3SNpgTaLD7rW0iS1WJucnbFjtQCZeaVNlo2s3p7tu59Yb5OGd65rYh7JITq91eNaflAAACABgg0AJxQCkoq9cC/D9dwuPeKkZo81nf3h0evP+loDq1dBdutslnNqjnUkSQiNNBrf1WNUx/9eLg4Z25Rpc/rhAbZVFZZI7dbev3zjZ66GVZL6wKdGqdbWQWHZ1j8+rR+cjhdPgMNX1paptJQaRPBRI3D7dXKVJLmrUnXovUHvbYFBVpUUeX/8ovo8ECdNS5Jw/rH6cm3lvl1jklSSJDN51gbzlKRJLO56e4oDqd355kQu1Vlh5bKhIcEqLjM98yYwtIqhYcGyGoxy+F0NVpCczRce94g9Uk8NgrsAgAAYyHQAHBC2ZVW6FWQctXWrCYDDSMLCw7QvVeM1OfzdysiJEB3XjLCs2/V1iw98/7KRh9c46ODlJ3vPROi/FCYIcmrCGhblmbUX+C4cXeutu7Lb/U1jlR0eKCnQ0d9DZ9PiN0mm9XSZBDQkNPl1oZdefpk9k6/xxIYYGkyePGV37TmNS+rdCjYbtX4IV0UYLPqu6X7mjx2/NBumjCsm3amFmpwnxjNWrRbXy7c6/PY8BCbissOj7lLdLAyj2Ap0BVn9dfJh2YOAQAAtBbVtwCcEPakF2nemgNKzSr22j6o97FdB6MtSsurdcfff9Y/Plgtud168OrRWrU1U29+sVErNmfqr++uaNShJKlLqE7x0R2lA2pVSpIOZJd4Zo80dPa4JI3oH6euscE+9x+JpjqzNJRbVKnQIJuCAmtnurSkqLS61QFNpZ9jqdPU69WU8kqH+naPUrWvljOHWMwm9UgIU88u4Zo8toe6xoZoeHJ8k8f/6tQ+Xo/txftlU9uW6SR1CdNVvxjUpnMBAAAkZmgAOAGs2pqlv7yz3OeyhbPGGWt2xvb9+fpi/m5FhgXq6l8MVEiQzbNv2758PfP+ShWUVMp16LPvrgNFuvJP33lmR8xavNdnC9LM3HLNnLe7w8c/ekC8bFazp/OGL1arWX+5bYJWb83SE34u32hJ3fKbsmY6ljR0MLeszferW8LR2eKjgpSZ1/TzcLrcKi6r0j8/WqP1O3M0uE+sHrtxnC4+o5/mr0mTW/LMaLFazJo0OknVDrdmLdyloJoC7XPEqnbxjFS7IKb+z6r32FuAzaw/3zK+HZ4hAAA4kTFDA8Bxb9H69CZrMFgM1CayrKJGj7+xVIvWH9Q3i/bq6f8uV2HJ4eUTr32+QXlFh8OMOvWXevgKMySput63/0dS7rRHfIgiQgNks5oVG2FXoM379d17sEjrWmi3mpZVorSsEs2Yu8uvYqUtmTK2R5PXsTcYn7mdar2G2K3tdq36woJtLR8kqV/3SN1wwWCdNKSrLp2crAE9oxRgM6tX13AFBlg8x506IlFLNmRo7Y4cudzSpvR9+mzheg3pG6OishrlF1cpwGqWxSwlJ0UqKjxQ15w7UGd3L1GN2yrvd0vtzxGRUo8ks5p7J41Kjj9UJBYAAKDtjPNf8gDQRn0TI31uH9w72q/lBMeKwtIqrxkGG3fn6a7n5ni+ga9pZmlBnUCbWWeNS1LvbuGaMq6HLjy9r269aKjM9V6GI1llkltYocoqh2ocLpWUV6uqQZ2O/OKqFpdaZOdX6IWPVmvj7twmi5W2xupt2XI0EeRUNhifr8MiwwI8P1stJr+CiqKy6g5ZrlNSXqMxAxOaLMpqNpt0/fmD9M/7Tteg3tGaMWensgvK9Y97TtM9l43Uvoxir2U3N1wwyPN8rN13yD5skWblv613flzpmWFS7XDJ6ZK27M3Xd0v3aenGDM3JjFKR2/eSoPiwSD1yxSQFBVp87u+bGK4Hrh59BK8CAABALZacADjuXXBKbx3MLdU3iw4XOgwLtumR68d5HheVVim/uFJJCWGdPmvD6XKrusapoECrSsurVVxWra6xIeoSE6IR/eO0bufhGQ5FpdVatilDJw/p2qigpy9VNS5t3pOnm349ROMGdZEkzV6R2mhWhy8Nu4P4UlF9+EINwwx/ZRWUK6ugTaf6VHBoFovJ5D1bxV+TR/dQem6Zlm3K9Dz/UQPiNTolXvFRQfrbeys7rNaILzvTCtQjIUx7DxY32udyuTWwd7RWbsnUX95ZLre79nnfcMFglfkoQLpsU4Z+Mb6XvlywS5mVIXLmJ8gSnaXMsgxJCY2Of/vLTXKr7nX0HarsTCvUZz9v1+VnJcvpkj7+cZsch1rl9u8eoed+d7rMHTF9BQAAnHAINAAc90wmk845uZdmLd7r+UA7eWySp5Xppt25evKtZaqsdmpo31g9ecv4Tpu5sXpblv781rJGH5C7xYbo91ePVv+kSAUFWrV0U4ZnX/f4MG3aned3kcmDuWV6+r8r9MlT58oeaNPG3bl+nXf9BYP1w9J9Sssu9fv5HEvcbum2i4apotqh/83ZobIK/+ppzPBRW2Tz7lztP1gss9lUWznCJJ0+MlHb9hV4un6EBtvkcLhaXfyzJVU1Tj107Vg9+eZSZeR5dxgxSXro5UVe29xu6Z2vN+uO3wyTSd4zcN7/dqtMJpPSc8olJcqZ200BA1fI1MQETn+Dm7mr0yWla8rYJH3wxLlauC5dQXaLThmWSJgBAADaDYEGgOPSrrRCfTJ7uzbsylV1jVOXn5Wiey4bqR+X71f3+FBddc4Az7FfLdzj+dC5cXeutu3L19B+sUd9zDUOp88wQ6oNIR58aaGch2YInD4yUQ6XW6NS4jVmYIL2ZRS3qhCly+XWe7O26NaLh2tkSrzmrEpr9nizWSoqqTRsmFFnT3qB9mWU+B1mNKWqxqWqGu/lMPPWpGvcoARPoFFWUaPwkIB2DzSG9Y1V15gQZRUcnpFjD7QoKSFMO1ILmzzvg++3NlpOVFnt1H+/3lxvi0mO7ETZyuLaZayrtmXpd1eM1C/G92qX6wEAANRHoAHguFNcVq3HXlvsVW/iw++36c1Hp2iKj64mMfUKRppNUlR44FEZZ0NfLtjT7DfgznrLPaxWs35/xSgVlVbpx+X7NWPODkWHByosOEC704v8ut/iDRm69eLhOmNUd7306VpVN7NExOWSPpuzy+/n4mt5R0tLVmxWswb1jtT6na1rf9oaP65oPrg5Umu3Z3t+drtrlwTVafiaWCwmr99pS8YOSlBiXKgSooJ1y99my2wyyXUooggPDlDPruHNBhrFZdXytUykukE7WFded9WVmq3rDtOSAKtJJpOp0TKjwcdhW2QAAHDsINAAcNzJKShvVXvOa84dqKpqpw7mlukXJ/dU9/iwDhxd04rLqprc1zUmSHlFVZ4Pn6OS4/XT8v16deYGrw+cBSVNX6Oh8JAAzV6xX/17RCkmIkgZR9CmtCG3W5o4rJtSekZpX0axDmSX+PywHRFiU1FZbW2HGodLG3d1XJjR0RLjQpWe0/wMlj7dwtW/R6RSekbL5Zb2ZxZrzqpUrxkj15w7QBVVTn27eK/Kqw5vn3rOAEWFBerGv/zoCb7sARZVVjuVXVChlZuzNKRPtLbvL1CNr6DEViXV1IV39VusNq1hmGExm3x2yrnojP66+tyB+nrBbn3y8w653W6dNa6nptabCQUAANDeCDQAHHesDYp6mky1oUWXmBCfxwfbbbrn8pFHY2jNim2mjWVGXu3yApvFrLsuG6G5aw5o1dasRsc5/VxyIkkHskv070/WyWoxyd2WapktWLzhoM6f2FsXndFPX8zf7TPQKCn3LlTZ8LNyWwt5Dukbo02781p/YhtEhNrUIz5cKT2jNG/NAeU10ZnF7Zb2HCxWn+6RSs0q0RfzG9fmkKQDWaW645LhSssq0fLNmZKkhOhg9ewSppzCCq/XqP5ylsLSKpWUV6tbXIjSshoHK5a4NDkze0sui5oLM+pCEl/GDExQYWmVdh0o9MwusVpMmjy2dubTL0/rq1+e1rfJawMAALQnk7sj/isWADrBlr15euGjNbUf+up96jttZKIevHpMJ47MP0s3Zuiv765o8bjIsEAVtmImRlvYAyyKDAtUZoOik60VG2GX0+VWl5hgbd3XfOsSi0lqOLHgksn9ZHK79dkc3x/+mzKwZ5S27m99q5SQIGur62vUD13sAWb1TYzU5r2HZ5oEBVhUUS8gMJtMig63K7eo6a40EaEBXstVrBaTBveJ0WVTkvW/OTu1dntOk+eG2K2NZihFhAaoqKJMctrU3OyMCcO6ymI2aeG6gz73B9ut+uDJc2WzmrVpd6627c/XqcMTldBEWAgAANCRCDQAHBfyCit0w19+bFT00Gw26ZHrxurkIV07ZVyt4Xa79cbnG7Vo/UHZA83KzGu5DWtHue/KkUqMC9XvX1zYaWNois1qUo2j5X+6mpvd4auex0mDu2jt9uxGNSXaYkDPKO1MK1SAzayKqsazHRoGFv4KCrRoSN9YrdzSeHZOU2Ijg3TdeQP1/Edr6m1tHGr06x6hX4zvpa8W7FFqVkmT17vyrBRN/QVLSQAAQOfrnL6EANCOHA6nXvlsXaMwQ5L+cdephggzpNr2sr26Rai4vLpVYUbvbuHqFhui0GBbq+9pNkkPTB2lhp00YyOClJwU5fd1jmab26F9YxuN1xe3W+oeH6rQIO/X5aRBCfrsbxfovqmjvLbnFVW0S5gh1dbGcLrcPsMMqbZYaGRY64vPVlQ5tWGnf212B/aK1tC+Mbr1wsH6dsm+Bnsbv4C7DhTp5c/WNxtmSNKMeTt1ILv5YwAAAI4GAg0AhlZWWqXXn1ugbduyG+279twBSu7p/4fyY8H0H7d5LZdpitVS+4E0xG7VyUO66mBumUrLa2S1mPwo9XiYyy298r/1jWpXpGWXHuqK4Z8ah0unj0hUn8Rwz/iCAjvmnxizqXGtjaYcyC5VaYV3nY6DeWV64F8L9E+vGQvyuzuMP5oKMuqzmE2aMKyrbFbv31hyUmSznXaqamqvHRtpV6+uTRew3bovXxt35+npd1dp6762F1sNCvD+PVbXuPTzyo7tFgMAAOAPioICOOY5XW59t2SvMvLKdM5JPdUjIUwHskv16oz1qjpQrIgql7rJpO315mgM7x+jS6ekdOKo2yYyLFC5h4pKmk0muRqsmQi2W9W7a7inRkNZpUMf/7jds7+5tqhNqax2Nupe0T0+VGHBAa2qKTF/XbouPL2v7r1itHp3qw020nNK9PyHq7Uzrf3CglXbGtePsAeYVVnt3+yKQJtVuw4UNtp+tBdg5hVVasmGDM/jyNBAPXv3KeoaG6qfV6bqxU/WyuWubSs8ZmCChveP1bPTVnuOj40M1rYjCCrqCwq0NBnCXHhGf/VNjNBT/z1c3yU+Orhd7gsAAHAkqKEB4Jj35hcb9dXCPT73jZRZ1kNzEmrkUu+xPXTySUka1DvmaA6x3aRlleiNzzeqrLJGO9MKj/h6NotZNa3ofFJn8tge2p1eJLvNom2tLK4ZE2HXqw9NVlBgbWZeXlmjt77cqE178pTcI0rz16a3ejzt6fyJvTVr8d5OHUNTLjqjn2785WBJ0vbUAr35+UZlF5ZreP843XPZSH34/VbNnLtLVqtZPeLDtOfgkQdFp41M1D2XjdA3i/aqrLJG0eF2lVZUq0t0iLrGhiilZ7Qk6asFu7VyS5ZSekVp6tkDZPZn3Q8AAEAHItAAcEyrrqnRVf/3fZPfvg+XSVaZZJZJJotJjz1znkwG/KBV43BpX0aRZi3eq4oqh84+qaeenbZK5ZVNz46wmCV/sorWLNFoL3deMly/GN9LpRU1Sssq1kMvLfJZ46Qz+CoI2pHMZsnlZ6YUGRqgyDC7ggKtslnN2rDrcL2MiNAAVVQ5ZbOaPLNm/HkuZrNJ4cEBslnNyilsXJvlnJN76q5LR/j9fAAAAI4VBBoAjlkzNn+r9z/LlKuk5dkWfWXWuWf2k2KCtG1fvuIigzWgd7RGJsdpf2aJ0rNLNbRfrMJDAo7CyFsnu6Bcj/xnsbLzW98i1Ww2edXcMEmNggN/g4+2aLhUpU5YsE33XjlKf39vZbsV2jxWtGZ5iyQF2syKCLOrsLiyVa9FgM2s6pqWj3/shnF69oNVqq5x+ezscuqIRP3hmjFyOF3auCtXX8zfrTXbD9ecufa8gbp0crLf4wIAADhWEGgAOCbllxfqt/99STV7hvl9TmiQrVEByIG9oj0FEWMj7Xri5vHq2SW8Xcd6pN79ZrNmzN3VpnMDrOZWBwYWl0Px1QUaUbRDeQERWhE1xPuafn6QbnZcNou6xYZoX0Zxq847fWSiFq5L92tGicVsksVsavfAJMBq1uA+0Vq7o+luIgE2i6prWi782ZSUpEhtTy1s9pjI0AAVttDaNSE6SI9eP06SSd8t2avvl+1vdEygzaLXHp6s2Mggz7Y5q1K1YG26eneL0FW/GCCrhRrhAADAeAg0AByTCiuLdf2/psmZ073dr53UJUxP3zaxTW0zO8KMOTv17qwtbTq3a0ywMvJaN7PjF9lLNaJ4p+fx290vUI492vPY1yyP1gq2W1VR5Wiy0GbDmQRHcxlIclKkCoorlVNY6XP/BRN76ZvF+5q9xpC+0dqyN9/vpSS+jB/aRZt256uk/HBoUfe6mE3SkL6xCg6yatnGTK/zfAV3XWKCNaxfrH5cnurzXn+9Y6KG9o1t+2ABAACOQXwlA+CYFGkP10n9e9Xb0n4fdlMzS/THVxd5HucXV+qT2dv1/dJ9PpdPdLSkLk233mxJ/6TWt6UNcHl/GLa7vGcBtPUVMJtNio+qnQVQXtl0mCE1XhZxNGta7EgtlMstTRnbQ8P6xeiUYV299i9cf7DFa4TYbeoWG3JE41i/I0fjBid4bat7XVxuacOu3EZhRqDN3CjMkKTMvHIVl1WrrnxMXVtfSeqREKp+3SOPaKwAAADHItq2AjhmuYvjJNW1taz9gGY2SRaLSTWOI/sAnJpVqgVrD2j80K56+OVFysgrkyTNmLtTFVUOdY0J0T2Xj1SPhLaHDU2pqHLo1RnrtT+jRCNT4vTlgt1e+wNtZvXpHqGdqUUymWoLhvpiMknlPj7ctmRp1FAlVWQq1FmpbSE9lRaU0GzbTn+5XG5lFzQuOlmne3yIDmSXHdE92kteUaVmr0zzPA6xW1V2qABrUQvLPCRp+easIx5DeZVT63fmtGrZUHOdRZZtqg0/+naP0B+uGaOKSoey8ms7pNR1nAEAADiesOQEwDGpssqh6//8g+dDZkN1U/OD7VaNSonXonrfqo9IjtW6Zuof1AkKtKrG4WxydkByUqSe/93pXtuWbDioV2dukNVi1n1XjtSwfnE+zy0qrZLNalaw3dZo33uztuh/c3b6OOuwQJtFVYdqNATazBo/tKvmrTnc7tRsNmnK2B5yuqSfV/peZlDf0H6x2rwnz1NA1Ox2KcBVrUqLvUOLhtYXFFi7DAWN+Vu3JMhuVcWhv4mYCLtOHtJVW/flKyuvzOtv5f0nzlFUmL3DxgsAAHAsYMkJgGPOii2Zuurx7xqFGZZ6307XRbHllQ4lxoXq3itG6uQhXXTNuQMVGxEkf1RUOZpd6pCd7z3bwOVy64WP16iwpEq5hRV64s1lWrUls9ESgA+/36arH/9eV/3f91q4Nl0NFZVWeT2O8lHLo6pewcmqGpdu+OUQ3XvFSPXrHqGhfWNlMZv04/JULVrf+PqSZA+weD3euCvXqxuKy2RWpcUus8mkiCOoJdLUfIH+3SN0xdkpXl1lOiLMCA8O0LXnDdQFE3t7vT+MprkwY2RyrKLD7RreL9YTZkhSeEiAbrt4mP59/xka0OtwDZSw4ACF+AjSAAAAjjcEGgCOOe/P2uLzA15T9S1iIuyaPDZJf7zhJF02JdmrXoDJx2fclJ5R6tOt5U4nI1K8iyi6Ja9QoMbh0pNvL9eVj32r6T9tlyTlFVV4fnY4XXr/u8bFPn99Wl9FhNZ+0B/cJ0b/vv90/f6q0V7BhkmHw4KJw7spOrz2Of7zvjPUv0ekZxlKVbVT5gZP0mySKqudsll8f8CvX1/BZjOr8giWmrglRYc3ngmw80CRpv+4XcVlLS/f8Ffda1afw+XSpZOTdctFQzUyxfdsmc6SnBTZ7BKROjZr8/8Ub9qdp3NO7qnHbjpJ0eGH3yP13+f3XjFKU8YmafzQrvrzLeMVYLP4uBIAAMDxhSUnAI45t/xttjJyfddaCLFbNX5oNwUHWbUztVADe0XruvMHeX1wdLvd+m7pPu09WKxThnVTalax3j0UkvTrHqG/3XGKKqoduv9fC5RbeHgWhsVs8oQmYcE2vfHoWQoN8v6me/aKVL34yVqfhTPfeGSy/vT6EmXVm9nRr0ek/nnv6Y2OraxyqLC0SnFRwXK5XMrMK1dYsE2f/LRDmfnlOndCL3WNCVFZZY1SkqJkqhdazF9zQM99uFpS424h/jh3Qi+VlFVr6caMdimCajabNGlUdy3blKmySt81Peq/tm0RFGBRRXXj4MVski6e1F9fzN8tq8WkSh/HdIYhfWL0tztP0a4DhfrDSwubrIMSHhKgh64draf/u1LlTSyvqvPPe09XkN2qbxbtUWRooC46ox/BBQAAOKFRJQzAMWdo35gmA43ocLvuvGS4Zs7bpciwQPVJjGj0LbjJZNJ5E3p7Hg9PjtNpI7srp7BCPbuEyWa1yB5o1e+vGq1H/7NIdZ+zH7vxJPXsEq6MvFL16x7ps/7FlHFJslhM+tf0tV6zNQJsFm3clecVZoQEWdU3MUL/nr5WvbqGaezgLuoWG6oah0sFJVWKjbSrvLJGD728UGlZpbJZzRreP053XTpcMQ2WzZRW1Kii0qG4qCCNHhDvad3pdkuhQVaVVvi3nKN7fKi2789XcVm13wFDVFigCkqqmtxvMZuUXVjeZJghNT27xl++wgypthtIXT0Sh7N2qU21wyW3293qoKc5ZkmtKTNS957s3S1CTX1vEBZs07N3n6qKKodnRpLJJJ0yvJsWrT/YaPw1Dpf6xYXq1ouGteEZAAAAHH+YoQHgmLMjtUAP/HtBk/tjI4M8MytMJukfd5+qlJ7RTR7fnDXbs7VuR44G947WSUO6tnzCIdkF5dqRWqAZc3aqstqp688fpPJKh174eI3nmACbRdX1amEEBVr151vH68VP1iotq1RdYoJ19kk99f63W72uPSI5Tn+5dYLn8Yotmfr7eytV7XDpF+N76ZRh3fTY60s8+3t2CVNadolcR6GwZ2ewWc1NznBoaEifGJ0yvJte/3xjOzb6rV32s2l3rqcDSliITSVl3gFOVFiACkpq99960VBdcEofSdL/ft6h9xr8ji1mk566bYKG9I3VF/N36+2vNjV7/1OGd9ND145tr6cDAABwXGCGBoBjTnJSlMYOStDKLb5bY9ZfJuJ2Swdzy9ocaIxKideolPhWnxcfFaz4qGCdMjzRsy0zz3tWicPhPaugosqhz+fuUlpW6aHjy7X3YHGja+cUVGjr3jztyyzWyYO76uMft3vaen6/dJ+Wbjzo1QXlYG5ZozCj/n6j8zfMkKS07BJ9/NP2dg0zpNolQv++/wxN/3G75q5OaxRmRIQG6OUHJ2vJhnTFRgRrzKAEz77zJvb2CjQiQwP03/87R1ZLbe2MQb2jm1w61L9HpK45d6BGtuE9CgAAcLwj0ABwzJm/5kCTYUZD8VFBzQYSDqdLr3y2Xht352pEcpxu/81wTzcMp9OlL+bvVlZBuc4+qadXkcW26BITotsuGqrpP+1QcVmVGq6yMJuknl3DtWRjhmdbjcOpwX1itD+jWKUVNTKbpPjoIP3h5UWSpLe+3Kz+PbzHVTdLQJJGD4jXtn35ng/9JpPUs0u4poxLUlpWiRZt36Lq6J1yFcbKmdf9iJ5fu3G7NSV3hQaV7FOqPV7fdjtVJluAqvxoW9qS+q9Ne6qqcSoiNFDpOaU+x1lUWq0Faw94ZlrcdekITR6bJKm21W99o1ISPGGGJCUlhPkMMwJsFt192Qj17hbRjs8EAADg+EGgAeCYs3lPnt/H/vmW8copqFBggEX2gMb/L+2HZfs1e2Wq5+cBPaM0ZVxPSdK077ZqxtxdkqQFaw7otYenKNJHC9NZi/dq5tydio0M0gNXjVZ8VLBcLrdWbsmUyWTSmIEJnpoJ55/SR6u3Z3sFMqcO76bwsECNHZigUSnxqq5xaunGDFVWO7RsU6YkKTEuVE/fNkEhwQG689k5nnOra5zqER/a5Guyelu2wkMO1/pwu6V9GcV668tNGtQnUkED18jlKJM7OlNuR4BcRcfAN/0mkzaF9dXQ4j1KKU9TkTI1t8Y7bElKCFXqoZksTRnQM0rb9he0aQhnju6uxRsO+hWiBAZYtGl3nq5+/PsmZ4vERNj13rdbPG2AX/xkrYb2jVV8dLB2pxd5HTu0X4zXY6vVrGC71VMUtEeXMP361L4a1DtaPRLC2vL0AAAATggEGgCOOSNT4vXd0n1+HfvQy4tUVFatxLgQPXv3aQoP8W7tWd6gUGXZoQ+Nm/fkadbivV7bM/PLPIHG7BWpWrElU93jQ/W/OTvldkvZBRV66OVFeuuPZ+nf09do7uoDkqTJY3vo3itGea4VGXo4FDGbpKvPHahucaGebbGRQTrYoOhpek6pYqOCFR4SoIiQAGXXW1aTWO9cX4rLfBfj3JKapaDY2vuYTFJI350qWXMMBBqSMu2xWhuRrC2hvZStmEb703MahxkmyWspyZF0NJlz6HfXkujwQOUX1xZELavwfp1tFpOmnNRTFVUOXTY5WX94eaGk2jG53NLbX23WI9eP1YRh3fT90n1yON0KDwnQ8P7evwOrxaw/3jBO783aInuAVbddPIwgAwAAwA8EGgCOKW63W0WlVbJazHI4W/72vKisdolBek6Zlm48qHNO7uW1/5yTe2n+mgPan1miPokRGjc4QX97d7mWbMz0Oq5HQqh6dQ2XJK3fkaN/f7LW5/1yCyv0woertXhDumfbwrXpXoHG9RcMVvmhgOSCiX28wgxJ+vnQjJH6BvaKVlhw7UyLJ28dr7++u0IlZTU6b2IvnX9Kb82Yu0uFpU13GvHJEahhsUO1IXdj7XO0DtGW1l2h3ZjNJq+uMJKUGRitbHvjMEOSfP3qG67KSM9ufgaHxWySySTPrIm2qAsz6sRHBSm7oDZsmjg8UXf8Zrhn39W/GKDXZm70PF666aAWrk3XqSMT9a/7ztDejGIN6ROj2EjvDjaSNKxfnJ7/XeP2vgAAAGgaXU4AHFNmzt2l/36z2a9jrRaT14fVwb2j9YsJvXXK8G5eNQpWbcvSR99vU0WVQwd8fAg2m6R3/nS2dqQWKDrCrl1pRXpt5oZm720xmzytSFN6Rum5e07za8yS9M+P12jOqjRJtZ1Prj1voKaMS/K5ZKbOtU9832zr1HPH92o0q+UXJ/fU7ZcM07ac3crMqda/3tnV7sUy/RETHqi4qGDtTCuUy+2WzWJWVHigsnLLJLO52XMbzsroSPV/pw1FR9gVHxmk2y4epiffXqaCQ0HH7y4f4VnCJEkvfbpOPy7f73ncNTZEbzwypWMHDgAAcIJihgaAY8qOVP9rItSFGXUfRDfvzdfmvfl64cPV+sO1Y3TK8ESVV9bomfdWqqqZ5Qk2q1m///cC5RZVSpImDOvqVdPAF6fLrQlDuyo+OliXnNnf7zFL0m0XD1NUWKAKSqr069P6qk9iy0Ufk5OitHxzZqPtQ/vF6sYLBjWq02APsOjOS0dIkgbF99e2zd5hhtkk3fDLwZJqa4lU+1mQs3tcqA74WA5iNpsUE25XTr2lMlJt6FRW6VBevVoX1Q6Xpp4zUAvXHdCqrdlN3isxLkTnnNxT73zt/7yS5kKJljhdbo1Oidfq7d5jqmsNHB8VrA27cjxhhiR9s2ivosLtGj2gtqvJrRcN1YK1BzzLYcKDvZdAAQAAoP0QaAA4poxMidPiBl0hWuJ0uVT7XX4tt6SXP113KNBwNBtmSFJVjUtVh8IMSVq6IUOnjkjUgnXpTZ4THhKgOy4ZrojQxkVEWxIUaNX1Fwxu1TkPXDVan/y0XfPWHFBxaZUmjkjUnZeMkD3AIqlxHY1fjO/l9Xh4/1iv1qAJMSG68PR+kqQVm7O0cXeuX+PwFWZItUHHK384U5l5Zfroh23KK6pU9/hQnTS4ix5/c1mj4zPzytQ3MdJnoHHu+F6KCg/Ul/N3652vt2hEcpwG9IxSYUmVNu3J8znLpo7T5VZwoEXlVW2rrzGoT4w27s5RteNwWHbLRUMVHxUsSTKZTF7H704v0hNvLtOFp/fVTb8aogCbRY9cN07vfbtFQYFW3XnJ8Eb3AAAAQPsg0ABwzHA6XdrbYKaBf0yNtlRUO7V6W5ae+3C151t7f5cvmMwmnTG6hxZvOCiny62IkAD9+ZbxKq2sUUZuuQpLK3XqiMQ2hRltVReCNBWEjBoQr5t/PUTLN2cqpWeUrvrFQK/9fbtHKsRuU+mhwpYZuWWqqnEq0GbRnZcO17+nr1VxWZV+eUof7Ugr9CyJkQ7Pemhu9kNda9EuMSG6f+poSbUFWZ98q3GYIdUu0xnWL045heWas+pwgc7YSLuuv2CQ/vHBak8B13U7cnTdeYOUGBeiK//0XYuvVY2j7YtUZszZoZjIYGXklsliMem68wbpF/XqspSU+W4LO3/NAd30qyGSan8XowYcG8VXAQAAjmcEGgCOGe/O2qJZS/a1y7VcLreefHOZV4ARERqgwlLfH0hNptqlJyaZdOelwzV2UIL+ed/pSs0s0dB+sYoOt0uShvVrl+F1iF+d1le/Oq1vk/vHDkrwdGYZ3CdGgbba2R2JcaF69u5TPccNzijW8s2ZKquoUXx0sH532UilZhVrYK9ozV+brs/n7VKAzaxzx/dWeWWNwkMCdPlZKY3uN2vxXm3Zm99ouz3AouSkKGUXlHva1tYpLqtWUKBVIfbDrWhNJinYbtWKLZl+LSdxHUFpqIpqp8oPdaBxOt165+vN2nWgUA9ePUZS7esWFxWknALvpTX+LBsCAABA+yLQAHDM2LjLv2UP/mr4sbaoiW/XbVaz7rxkuCaPTfLa3rtbhGfmwfHgd5eP1LB+saqqcWnymB5NHtera7hefehMpWeXqk9ihILtNg3rHyupdqbH1HNSZLNaZDE3nhlTn7nB8oxh/WIVGmzTr0/rq7DgAL3z1eZGdUocDrecTpfCQwIUYrfKbDbp2vMGqVtcqM8aIr6cNLiL0nNKtT+zxK/j64uLPNzFpM6Ctem6+9IRsgdaFREaqH/ee7o27cmrDVk2ZSowwKJLJie3+l4AAAA4MgQaAI4JTpdbmXllHXb9rjEhio8J1vodOY32ud3Smc18wD9eWCxmr44czYkKsysqzO5zX3PdWOo7f2Jvbdidqy178jRqQLx+f9UY2ayHu5rYAy2Nzrn+gkGatyZdXy/a49kWFGhVUWmVpn231a/71jhc+v3Vo3X3c/P8Ol6SRibHqaS8WrsONF7yFBMRqMCAw2ONCA3UxGHdDp3H0hIAAIDOQqAB4JhQUeXw1Ew4EmeO6aFt+/J1MPdwOHLHJcM0eUySbFaz3vt2qw5klWjXgULlHSoEGh1hb1TsEUfOHmjVkzePb3L/1HMGKCO3TKlZJTptRKJ+c2Z/Hcgq1Sezt3sdl1dUqaLSKtU4vDuxXDKpn75dsrdRAdC07BL16hqhh64do1dnrG9UMLWhoECLLp2SrGffX+Vz/yPXjeP9AQAAcAwi0ABwTAgNsumkwV38XlbQUJ9uYfrrHacqJMimzLwyPffhahUUV+qyKck6p15Rx+vPHyRJSs0s1jtfb5bL5fa0L8XRFRYcoCfqBR4bd+XqsdcWq36ZjIToYE0a3V0RoYHqEhOszLxyz74xg7ro6vMGyel06Zn3V2rllixJ0pRDS4dOGZ6oft0j9eRbS3Ug2/fsn99M6qdLzuyv0OAA/eq0Pnr/29pZIAFWs2xWs67/5WCl9Ixu76cOAACAdmByu4+gehoAtCOny62127MVFGjVzLk7teLQB1RJOmV4Nw3pG6PNu/O0eW++YiPtKiqtVnWNU7dcOFSnjEjsxJGjPUz7bqs+nb3D8/g3Z/bXFWcle5a4lJZX65n3Vyorv1xnn9RTl9arW+F0urR2R45C7DYN7N04gHC73dq2r0Cf/rzd0yrWajHp73edquSkKM9x+zOLVeNwqV/3yA56lgAAAGgvBBoAjkkOp0tP/3eFVm3NUvf4UD112wTFRAR19rDQgdZsy9YTby2V213bKvbZu73DhvayaXeutu7L17B+scy+AAAAMDACDQDHtMpqh99FKGF8a7Zna+vefI1MidOg3jGdPRwAAAAcwwg0AAAAAACA4ZhbPgQAAAAAAODYQqABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGAAAAAAAwHAINAAAAAABgOAQaAAAAAADAcAg0AAAAAACA4RBoAAAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAAAAYDoEGgGPeSy+9pJSUFJ155pmN9h04cEApKSlKSUnR8uXLO2F07euaa65RSkqKHn744c4eClrQ0nvvzDPPVEpKil566aVOGJ00c+ZMz/gAAACORwQaAAAYSGcHJQAAAMcKAg0AAAAAAGA41s4eAADgsGnTpnX2ENBO5syZ06n3v/jii3XxxRd36hgAAAA6EjM0AAAAAACA4TBDA0CruVwuzZo1S99//702btyogoICBQcHq0uXLho9erTOPfdcjR07ttF5OTk5+uCDD7Rw4UKlpaWpoqJCsbGxGjNmjK699loNGzas3cdaVVWlZcuWac6cOVqzZo3S09NVVVWl8PBwpaSk6LzzztOFF16ogICAJq+xY8cOTZs2TStXrlRmZqacTqeioqIUGxurUaNGafLkyRo/fnyj89asWaOPPvpIa9euVU5Ojkwmk6KjoxUfH6+xY8fq7LPPbvScr7nmGq1YsUIXXXSRnnnmGZ/jycjI0GuvvaYFCxYoJydHkZGRGjVqlG666SYNHz682Ws8/PDD+vzzzzVu3DhNmzZN27Zt01tvvaUVK1YoPz9fUVFRmjhxou644w4lJSW14RX37aWXXtLLL7+sxMREzZkzRzt27NDbb7+tZcuWKS8vT1FRURo/frxuvfVW9e3b1+c1Go59/fr1ev/997V69Wrl5uYqPj6+0ayIrVu36qOPPtKKFSuUnZ0tt9utbt266dRTT9WNN96ohISEZse9YMECvf/++9q4caMqKyvVpUsXnXXWWfrtb3/b4nM+88wzlZ6errvuukt33323z2Na87dU9/zrvPzyy3r55Ze9rlf/XjNnztQjjzwiSdq+fXuT45w/f75mzJihtWvXeu7fp08fnXXWWZo6daqCgoJ8ntfwfbZq1Sq98847Wr9+vYqKihQfH69Jkybp9ttvV2xsrM9ruN1uzZo1S19++aW2bt2qwsJCBQYGKjo6Wt27d9eECRN0/vnnq1u3bk2OHwAAnLgINAC0SkZGhu68805t3rzZa3t1dbUKCwu1bds2ffjhh40+QH333Xd69NFHVV5e3uh6X3/9tb7++mvdc889uvPOO9t1vM8//7zee++9Rtvz8/O1dOlSLV26VDNmzNCbb76p8PDwRsfNmjVLf/jDH+RwOLy2Z2VlKSsrS5s3b9ayZcv0zTffeO1/++239eyzzza63sGDB3Xw4EGtW7dOO3fu1Ouvv96q57N69WrdcsstKi0t9WzLycnRDz/8oJ9//llPPvmk39f69ttv9dBDD6m6utqzLTs7W59//rnmzJmjadOmdUiHjPnz5+uee+5RZWWl132//PJLffvtt3rhhRd09tlnN3uN6dOn689//rOcTqfP/W63W88995zefvttud1ur327d+/W7t279emnn+pf//qXTj/9dJ/XeO655/Tmm296bdu3b5/efPNNzZo1q8nAyV9t/VtqL9XV1XrkkUcavXeLioq0du1arV27Vh9++KHefPPNJkOmOu+++67+/ve/y+Vyebalp6frgw8+0Jw5czR9+vRG4ZHT6dTdd9+tn3/+2Wt7TU2NSktLlZqaqiVLlshsNuumm246wmcLAACORwQaAPxWXFysa6+9VqmpqTKbzbr00kt14YUXqlevXnK73dq3b5+WLFmimTNnep03f/583XfffXK73Ro9erRuuOEGDR06VHa7XampqZo2bZq++uorvfjii+rSpYt+85vftNuYw8LCdMkll2jixInq0aOH4uLiZLPZlJmZqZ9//lkffPCB1q1bpyeeeEIvvPBCo+f72GOPyeFwqGfPnrr77rs1fPhwRUZGqqKiQnv27NGyZcsafSDdu3evnn/+eUnSkCFDdPvtt2vAgAEKDw9XSUmJdu3apUWLFqmkpKRVzyU3N1d33HGHSktLFRISonvuuUdTpkxRcHCwtm7dqn/961968sknFR0d3eK19u/fr4ceekjDhw/X7bffroEDB6q6ulo//PCDnnvuORUVFenxxx/X9OnTWzXGlpSUlOjBBx9UXFycHnjgAY0dO1YOh0MLFy7UCy+8oPz8fN1///364osv1K9fP5/X2LNnj/7yl79o2LBhuuOOOzR48GBVV1dr69atnmOef/55vfXWWzKZTLrwwgt1ySWXeD6Ub9y4Ua+88orWr1+v3/3ud/rss8/Uv39/r3vUhVySNGDAAN1///0aOnSoysrK9NNPP+mll17So48+2ubXoS1/S3/+85/1pz/9SRdccIEOHjyoW2+9VbfeeqvXdW02m99jePrppz1hxmmnneaZHVNYWKhZs2bptddeU3p6um666SZ99dVXPgM/SVq5cqW++OILTZ48WTfeeKP69Omj0tJSzZw5U6+++qoOHjyoZ5991vM3UWfmzJmeMOP888/X1KlT1aNHD9ntduXl5Wnr1q2aM2dOs7OnAADACc4NAH56/PHH3cnJye7k5GT3rFmzmjyupqbG83NlZaV7woQJ7uTkZPcDDzzgdrlcPs959tln3cnJye7x48e7Kysrvfa9+OKL7uTkZPekSZManZeWluYZ07Jly1r9nLZt2+YeOHCgOyUlxZ2amuq17+eff/Zce+vWrX5f8/3333cnJye7Bw4c6C4oKGjVeK6++mp3cnKy+6GHHmq078knn3QnJye7BwwY4F6xYkWj/RUVFe4LL7zQM2Zf13jooYc8+2+66Sav31Wdd955x3PMrl27WjX+ptT9DpOTk90TJ050Z2dnNzpmx44d7qFDh7qTk5PdN998c7Njv/LKK91VVVU+77Vp0yZ3SkqKOzk52f3JJ5/4PKa6utp95ZVXupOTk9233nqr176qqir3SSed5E5OTnafd9557pKSkkbnL1682HOPpt57kyZNcicnJ7tffPHFRvva8rfkz3XrmzFjhuceDW3dutWz7+677/b5d/nDDz94jnnmmWca7a97ryYnJ7sfe+wxn2P4y1/+4k5OTnYPHjy40et41113uZOTk90XXXRRs88DAACgKRQFBeCX0tJSzZgxQ5J0wQUX6LzzzmvyWKv18OSvWbNmKTc3V0FBQXr88cdlMpl8nnPXXXcpODhYeXl5WrRoUfsOvhkpKSkaNGiQ3G63lixZ4rWv/nKG+Ph4v69Zd15QUFCT32q3lsPh0FdffSVJOuecc3zWKLHb7XrggQf8vuYf//hHr99VnYsuusjz88aNG9sw2ubdfvvtiouLa7S9f//+mjp1qiRp4cKFys7ObvIaDz30UJPf3E+bNk1ut1ujRo3SZZdd5vMYm82me++9V1LtDKLi4mLPvjlz5qigoECSdP/99ys0NLTR+RMmTNBZZ53V5Pia09a/pfb02Wefea7/2GOP+fy7PPvss3XqqadKqp2xUn85SX1BQUF68MEHfe6r67JSU1Ojbdu2ee2rW8bl670AAADgDwINAH5ZvXq1p9ZCa1pB1oUEI0aMkNlsVllZmc//uVwu9e7dW1L7f4guLCzUG2+8oWuuuUYTJkzQkCFDlJKS4vlf3f327t3rdV5KSorng96jjz6q/fv3+3W/AQMGSKr94PrYY48pKyvriJ/Dzp07PUtUJk+e3ORxEyZMUHBwcIvX69Gjh+f1bigyMtKzbCU3N7cNo21ec/Ux6va5XC6tW7euyfENHz68yWvUvecmTpzY5PutrKzMs6TF5XJ5LRtavXq1JCkwMFCnnXZam55Hc9r6t9SeVq1aJUkaPXp0s2FdXdhSVFSkHTt2+Dxm+PDhTQZ39d9jOTk5XvsGDhwo6XDh1Yb1dQAAAFpCDQ0AfklNTfX8XPdBxB979uyRJC1dulSjRo3y65z8/PzWDa4Z69at0+233+7XNRvWtEhKStJVV12lDz74QHPnztXcuXPVr18/jR49WmPHjtXEiRN91qs4+eSTNWnSJM2dO1czZszQzJkzNWjQII0aNUrjxo3ThAkTfH7r35z09HTPz00FEZJkNpvVs2dPr3oSvrQ046Sus0X9wp3tITw8vNlv5OvXzaj/nOvr0aNHk+eXlZV5AqSXXnpJL730kl/jqv/+qLtvz549m61J0VSNj5a09W+pPR08eFBSy8+h4e+jLqyrr7n3Uv0OKQ3fS9dff71mzpypjIwMPf3003ruuec0YsQIjRkzRuPGjdOYMWM6bIYKAAA4PvBfCgD8Ur+rRkhISJvO81f9rhtHorS0VHfeeafy8/MVHR2tG264QePGjVPXrl0VHBwss7l2ktpvf/tbrVmzxmfHjMcee0wpKSl6//33tXPnTu3atUu7du3SJ598IqvVqrPPPlsPP/xwow4OL774ot577z1Nnz5dBw4c0ObNm7V582ZNmzZNgYGBuvDCC/Xggw8qLCzMr+dSVlbm+bmlGRj+zNCwWCx+3dfdoEPIkWrN2Os/5/qaaiMqte39JtW2961TN1OgPV5nX9r6t9Se6l7blu5ff39Tv4+2vpfCw8P1v//9T//5z3/09ddfq7i4WMuXL9fy5cv1yiuvKCYmRr/97W91/fXXe/5WAQAA6iPQAOCX+jMKysrKFBgY6Nd5dR/6zj77bL+/LW8v33//vXJzc2U2m/X+++836mRRp6kPapJkMpl02WWX6bLLLlNGRobWrl2r1atXa+7cuUpPT9e3336rdevW6csvv/Sadh8QEKCbb75ZN998s/bt26d169Zp5cqVmjdvnnJzc/XJJ59o48aN+uyzz/z6Frr+B8uKiopmjz2Wp+63NLb6+9vyYb9+yPDYY4/pmmuuafM1WjPW1mjr31J7CgkJUXFxcYf/PloSGxur//u//9Mf//hHbdmyRevXr9eyZcu0cOFC5eXl6e9//7sOHjyoxx57rN3vDQAAjI+vPAD4JSkpyfNzS8sZ6qtbHlB/mv3RUleEMCUlpckwo7q6Wvv27fPrel27dtV5552nP/3pT5o9e7anAOfBgwcbtaqtr1evXrrwwgv19NNPa968ebrqqqskSVu2bNHcuXP9une3bt08Pzes9VGfy+Xyu9ZHZyguLm5US6G+Xbt2eX5OTExs9fXDwsIUGRkpqe3vubr77t+/XzU1NU0eV3+srdHWv6X2VPccd+7c2exx9fe35ffhL4vFoqFDh+rqq6/Wyy+/rHnz5mnkyJGSpA8//LBdl6EBAIDjB4EGAL+MHj3a803y559/7vd5p5xyiiRp+/btbf4A2FZ1S1d8LSWp8/3333stN/CX2WzWzTff7Pk2v65WSEtsNpvuuusuz2N/z0tOTvZ8s//zzz83edzSpUuP6RkakvTjjz+2uM9sNmvEiBFtun7de+6nn35q0/Kl0aNHS6pdhrJgwYImj2vuebR0/bb8LdWpm9HT3Pu6JWPGjJEkrVmzptnCr99//70kKSIiQsnJyW2+X2tFRUXpuuuuk3Tsh3QAAKDzEGgA8EtoaKguueQSSdI333yjH374oclj69oxStKvfvUrxcbGyu126+GHH25UeLOhtLS0dquh0b17d0m1oYGvWQ1ZWVl67rnn2jyW7Oxsz/KPulkBkrRv374mW1xK3jMH6p/XHKvVql/+8peSaj9k1nXiqK+qqkrPP/+8X9frTK+++qrPWRo7d+7URx99JEk69dRTW9Uqt77rr79ekjzFJpv7XUjS7t27vR6feeaZioqKkiS98MILPpckLVmyRD/99FObxtfWv6U6dWNrrq1tS+ruX1NTo6eeespnrZTZs2dr/vz5kqTf/OY37V7HouHr3lBaWprnZ3//TgAAwImFQAOA3+677z4lJSXJ7Xbrvvvu0xNPPKG1a9cqPz9f+fn5Wrdunf7zn/94tbMMCgrS3/72N1ksFm3cuFG//vWvNW3aNO3atUtFRUXKy8vT5s2b9cknn+iWW27ROeec0+bCjg2dc845slgscjgcuvXWW/XTTz8pOztbmZmZmjlzpi677DIVFxc3OZX+iy++0KRJk/TUU09p3rx5OnDggIqLi5WWlqZvv/1WN9xwg9xut8xms84991zPea+99pqmTJmi559/XosXL1ZGRoaKioq0f/9+/e9//9M999wjqbZWw6RJk/x+PnfeeaciIiLkcrl0yy236P3339fBgweVn5+vJUuW6Nprr9WOHTvUpUuXI3vhOlB4eLiqqqo0depUT42TrKwsffbZZ7r22mtVVVUlm82mP/zhD22+x9ChQ3XbbbdJkqZPn66pU6fq22+/9fz+srKytGrVKr3xxhu6+OKL9bvf/c7r/ICAAD344IOSapeVXHXVVZo/f77y8/OVnp6u//73v7rzzjuPaAlGW/6W6gwZMkRS7Uyd5cuXq7y8XA6HQw6Ho8Xwps6AAQN0xRVXSJK+++473XbbbVq9erUKCwu1b98+vfLKK7rvvvsk1S61uv3229v8XJty880367LLLtM777yjtWvXKicnRwUFBdqxY4deeeUVvfjii5KkwYMHN9vZBwAAnLgoCgrAb2FhYXrvvfd0xx13aOvWrfr444/18ccft3jeaaedpv/85z966KGHlJ6erqeeeqrJYy0Wi99dE1rSs2dP3X///frHP/6h/fv3ey31kKTAwED94x//0AcffNBki9Dc3FxNmzZN06ZNa3K8f/zjHxu130xPT9cbb7yhN954w+d5drtd//jHP1o1CyEuLk6vvPKKbrnlFpWWlurpp5/W008/7TWWJ598Ul9++aUyMzPb7XVsT2FhYfq///s/3XPPPY2CBKl2Sc4LL7zQ5paode69917Z7Xa99NJLWrt2rdauXdvksYMGDWq07Te/+Y327Nmjt956S1u3btUtt9zitb9r1656+umnPcsiWqutf0uSNHXqVH322WcqLCzUtdde67Xvrrvu0t133+3Xdf74xz+qtLRU33zzjebNm6d58+Y1OiYxMVFvvvmmV8Hb9rR+/XqtX7++yf2JiYmGmHUEAAA6B4EGgFbp1q2bZsyYoa+++krffvuttmzZoqKiIoWFhSkhIUFjxozxmq1Q54wzztDs2bP16aefav78+dq5c6eKi4tls9kUFxen/v37a/z48TrnnHMUERHRbuP97W9/q759++rdd9/Vpk2bVF1drbi4OJ188sm6/vrrlZycrA8++MDnudddd5369++vpUuXatOmTcrOzlZBQYFsNpsSExM1btw4TZ06tdGH79///vcaP368li1bpq1btyonJ0eFhYUKDAxUz549NX78eF199dVehT79NXbsWM2aNUuvvfaaFixYoNzcXEVGRmrkyJG64YYbNGrUKM8H4/rdNI4lZ5xxhj799FO99dZbWrFihfLz8xUZGanx48frtttuU9++fY/4HiaTSbfffrsuuOACffzxx1q2bJnS0tJUVlamoKAgdevWTYMGDdIpp5yiyZMn+7zGgw8+qJNOOknvvfeeNm7cqMrKSnXt2lVnnnmmbr755iOuVdLWv6W+ffvq448/1ptvvqm1a9cqLy+v2eKlTQkICNDzzz+vX/3qV/rf//6ndevWqaCgQEFBQerbt6+mTJmiq666qtk2uUfirbfe0uLFi7Vs2TLt27dPOTk5KisrU1hYmPr166fJkyfr8ssvb3N7XAAAcPwzuX0tnAUAGJLb7dbYsWNVUlKihx9+WDfccENnD0mS9NJLL+nll19WYmKi5syZ09nDAQAAwHGAGhoAcBxZsWKFp/Dq4MGDO3k0AAAAQMch0AAAAyksLGxyX1lZmZ555hlJUkJCgqf9KAAAAHA8ooYGABjISy+9pL179+rCCy/U8OHDFRUVpeLiYq1evVqvv/66pxXm3Xff3a5FQaurq9tUpyEwMFBWK//UAAAAoP3xX5kAYCBut1uLFy/W4sWLmzzmpptu0qWXXtqu93399df18ssvt/q8v/3tb7r44ovbdSwAAACARKABAIYydepURUREaOnSpcrIyPAsQYmNjdXo0aN15ZVXauTIkZ07SAAAAOAooMsJAAAAAAAwHIqCAgAAAAAAwyHQAAAAAAAAhkOgAQAAAAAADIdAAwAAAAAAGA6BBgAAAAAAMBwCDQAAAAAAYDgEGgAAAAAAwHAINAAAAAAAgOEQaAAAAAAAAMMh0AAAAAAAAIZDoAEAAAAAAAyHQAMAAAAAABgOgQYAAAAAADAcAg0AAAAAAGA4BBoAAAAAAMBwCDQAAAAAAIDhEGgAAAAAAADDIdAAAAAAAACGQ6ABAAAAAAAMh0ADAAAAwP+zd5+BbZVnH8avoy1ZlveecRJn7x0SAoS9N7SsFgq0jE5moS20lAKlb0sLlLJa9t6bMLL3Hs6yE++9be1x3g9yZMuWHTuJkxDu34fWOkuPZAf7/PU89y2EEN85EmgIIYQQQgghhBDiO0cCDSGEEEIIIYQQQnznSKAhhBBCCCGEEEKI7xwJNIQQQgghhBBCCPGdI4GGEEIIIYQQQgghvnMk0BBCCCGEEEIIIcR3jgQaQgghhBBCCCGE+M6RQEMIIYQQQgghhBDfORJoCCGEEEIIIYQQ4jtHAg0hhBBCCCGEEEJ850igIYQQQgghhBBCiO8cCTSEEEIIIYQQQgjxnSOBhhBCCCGEEEIIIb5zJNAQQgghhBBCCCHEd44EGkIIIYQQQgghhPjO0R3pAYiBeffbQj5YXERKvIXbr5xKUpz5SA9JCCGEEEIIIYQ47BRVVdUjPYhjnaqq1De7iLboMRkHniEFAiovflrAmoIaSmvaQtuPn5jB7VdNPZRDFUIIIYQQQgghvhNkhsYgaWpzUVlnJyc1mn++uZEVW6qwmvXcf8Ms7E4vm3bXMXZoIkMzY1i4rpz6ZieTRyYzZWRKj2t9u66Md74t7LHd4fJSWddOfIyJFz/dTklVKydOyeLk6dmH4yUKIYQQQgghhBBHjMzQOAC1jXYKK1pQgJT4KPIyYkL7/AGV/3tlHUs2VaCqEB9tpLHNHdo/ekg8O4obCXS86zqtgs/f+S34/XUzyM+Ow2jQoqrwv4+3samwnora9rAxWM16/AEVp9tHcpyZ2iZnaN/ffzmPYVmxg/LahRBCCCGEEEKIo4HM0Big9xbu5vmPCsK2jc1L4C83zwHgixV7WbyxIrSva5gB4PUFQmEGEBZmALzy+Q6KKlrQaRXioo3UNbsijqPd6Q193TXMAKhrdvYINLbtaWBNQTXDs+M4bnx63y9SCCGEEEIIIYQ4ykmXkwF64ZOCHtu27mlgw85aALYXN/V5/pmzc9BqlF73F1W0AMGgo7cwY38yk61hj/dWtnDvU8t459tCHnphDUs2VPRyphBCCCGEEEII8d0gMzT6we708t6iIjxeH/5A5GMKy5sx6LXUNDp6vY5GUXhvYRH+wOCt8jEbtSTGhnc+2V3WHDYTZEdJI3MnZQzaGIQQQgghhBBCiMEmgcZ+tDs83PDQ17TZPX0e19zu5q4nlvZ5TEBVKa1p7/OYg6XXafl2XRn1zU6S4yzMnZjB2KEJmI06nG4fGoWIhUeFEEIIIYQQQojvEikK2gtVVfm/19azcF35fo+dOiqZ+hYXxZWtYdv1Og1eXy9TOg6TIWk2/u9X86hpdLBxVx1DM2MYmRN/RMckhBBCCCGEEEIcLKmh0YuCvY19hhkWY3Byi06jcPK0bHJSo8P2J8SYeOPPZ3LO3Dy6V8wwGbSHeri92lvVSn2zk4wkK2cdN0TCDCGEEEIIIYQQxwQJNHqxtqC6131GvQaH2weAL6Dy/McF3HLJRCbmJ6EARr2Wa88Zw7LNVZgMOrpOgYmLNvLyH8/goZvn9CjeaTHpmDUu9ZC+DrNRi1Gv4cH/rua6B77k5c96FjUVQgghhBBCCCG+a6SGRi9Wbus90HB7w5eRmA1aTAYdf7pxNl5fAKfbx6//sShigdDmdje1jQ7SE6Mor+2sp5GeGMXjt59EcVULK7b0/twD5XT7+fGfFoQKkb7x1W4SY82cPmvIIXsOIYQQQgghhBDicJMZGr1IS4zq13EJMSZ+efnk0GO9TkNheXOv3U5UFW565Bte+mw7FlNnnpQcZ0Gv05CRZCU7JTriuQeqe1eVlVsPXWAihBBCCCGEEEIcCTJDoxe/uGwSf/nf6mDL04BKoJdWqydPy2ZYVmzYtswkK0aDFrfHD8CJU7IwGbSs3FpFU5sbgAWrS7n3x9P5YHERVouBKSOT+fnfvqWq3o6r47zBMiE/aVCvL4QQQgghhBBCDDYJNHoRYzXy0C1zQ48vvuujHktNjAYtk0b0DAeS4y386YbZfLuujPQkK+fOzUOjUSivbQ8FGmajlle+2EFxVSuTRyTz+FubBvcFddBqlB61O4QQQgghhBBCiO8aadvaT0++s4nPlhcDYIsy0Gr3AMHaF/+5++R+XaO2ycHDL66hpKoNg15Dm8M7WMPtU7RFz5N3zCc22nhEnl8IIYQQQgghhDhYUkOjn266aAJ/unEW918/i64ZUGW9Ha8v0MeZnaxmPcWVrbi9/kENMzTd+8R20+bw8tgbG8K2tbS7e9TaEEIIIYQQQgghjlay5GQAJuYnAzB/WjbvLyoC4ITJmeh1/cuFPN4Ani7hh0Jw2Up8jInKOvshG2dADV67r3hiw85aPlhURHldO9uLGympaiU1wcKff3YcyXGWHsfvKGnkmfe3oCgKN5w/jvzsuEM2XiGEEEIIIYQQYqBkyckB2lJUj9cXYOLwJDT7mxLRxd1PLGHrnsbQ49FD4rGYdKzdXhvxeLNRh9PtO+jx9tfs8Wncfc30Htuvuf8LGltdACTGmfnvvacetjEJIYQQQgghhBDdyZKTAzRuaCKTRyQPKMyoa3KGhRkAeytb+jynv8tZujPq+z+urrYW1dPS7uaTpXtYsaUKAFVVabO7Q8fUNznZVdp0QNcXQgghhBBCCCEOBQk0DiN/oGc44XT7abP3Xk/D5z+wQMPtVRnerZ1sf7TZvdz2z8U89d4WHvzfat78aheKojB/ek7YcR90LLkRQgghhBBCCCGOBAk0DqPUhCgumT88bFtOWjQ2q6HXcwYwAaSHovLmAZ+jAtUNjtDjtdtrADhzdi5Kl7HESIcUIYQQQgghhBBHkBQFHWTNbW6izDr0Oi0AV5w2kkn5yfzu6eX4/So1DQ5SIhTh3OdgGo8ciqYlo4fEo6oqzW1uzj5uCAV7G8lMjuas44awp6KFnDQbVfXtvPnVLlZvqybKYuC2H04hNtqIXqchMdZ88IMQQgghhBBCCCG6kaKgg0RVVR59eR2LN1YQbTFw2xWTeeGT7eytaiEjyUp5bXvo2MQYE/UtriM42sgUBd5/5FyeeHsTX64qAWDyiGQCqsqWwnr8AZXRQ+LZXdaE19f5Y2SLMtBq96BR4MYLx3Pm7CFH6iUIIYQQQgghhDhGSaAxSHaUNHL7P5eEHqclRFHVcOhasx4uV50xile/2M4BlvIg3mbkhT+cfmgHJYQQQgghhBDie09qaAwSi1EXVnPCoA9/q+dMSMdk0B7mUQ3cS59tR1H6X8hDoyiYjZ0rmeJspsEYlhBCCCGEEEKI7zmpoTFIYqNNRJsNtDqCSy+mjU6hpLottH9LUT0uj79f19JpFXz+IzeRZiDP/eNzRjMyN54XPinAoNdyw/njBnFkQgghhBBCCCG+r2TJySBZuK6Mv726PvQ4K9lKWZe6GRaTDofLdySGtl9aDQzPjmNHcVOPfQadgsfX80dmYn4Sp8/M5bgJ6YdjiEIIIYQQQgghvudkyckgsVr0YY8d7vDw4pw5eei1R+fb7w9ATYMj4pKYSGEGwMZdddQ1OyLu64vb66eirh2vr3+zVYQQQgghhBBCCJAlJ4PC5w/w7AfbQo/zs2OJizbR0FId2lbf7ESjUeAovY9vanMP+JxlmyupbXJi1GuYMDyJsUMT0UUIbVra3awpqMZk0PHfj7dR2+QkKyWah2+ZQ7TFcCiGP6g8Xj+fLNuLx+vnjNlDsEUd/WMWQgghhBBCiGONBBqDoKHFRUVd5/ISl8fPzy4aT5vDQ8HeRgC+Xlt2pIYXkdmow+3xEziIFUg7iptCy1Te/qaQ5Hgzv/nhFJ58exONrW4uPyWfk6dnc9s/F1PdED6bo6ymjcXryzlrTt5BvY7D4f9eW8+yTZUALN9cxWO/OSG0r7S6FUVRyEqJ7nGex+unpLqV5DgLMVbj4RquEEIIIYQQQhyTJNAYBAkxJrJSrJTVBEONicOTSIgxc8KUrFCgcbSZPT6NhevKoZc8IzPJSnmXkKY/ahud/O4/y/F4gz1fn/1wK/E2U48wY5/Y6O9GR5SCPQ2hr/dUttDU6iLOZuLFTwt46+vdAFxx+kguP2UEdc0O/vK/Newuaw6dYzHp+NONs8nPjjvcQxdCCCGEEEKIY4YEGoNAp9Xwl5vm8PWaMmxRBk6amgXAyJyj9wZ20foK/IHIaYbFqOXKM0fyyEtrCQQGdt19YQaAqkJSnJkokw57R0HU/OxYfH6VqaNSjvqCol6fn/LadsYPS2LRhvLQ9mv++AXnzc3jw6V7Qtve+moXFTXtLNpYTvdJLw6Xj89XFJOfHUdDi5PPVhQTbTFw5uwh6HVHZ10VIYQQQgghhDjaSJeTwygQULnmj1/Q3KU+xbRRKWwvbqTd6T2CI9s/vU6D19e/NKN7m1m9VoNfVblk/nBsFgMLVpfi8wc4aUoWF500HI1Gwe70otEomI1HZ8bmdPu464ml7KloIdqiZ+bYNBasLj3g60Vb9PzwtJF8sLgoNGPllOnZ/PyySQAUljXz9dpS0hKjOPu4vGC9FSGEEEIIIYQQIUfn3eMxSlHg+EkZfLi485P8gQQF+3Mor9XdQK57yfx83v22ELc3WPH0itNHct7xeTz+9ibeWLArdNyny/dy7ryhfLakmOc/2opWo/DzyyZx4pSsQz7+g7V2ew17KloAaHN4cboPruVum8PLf97b0uM5Xvq0AIfbx1erS3F5gu+fw+Xj8lNGHNTzCSGEEEIIIcSxRgKNw8Tl8fGHp1f0qKGxfEvVIXuOwQozBiI22siFJwxjzoR0Fm2oIC0hipOnZ/P+oiK+XhNeCLW+xUVxZQvPf7QVVQWfX+X5j7aFAo3GVheF5c3kpceQGGs+7K9lw85aHnl5LX6/ynnHDw3bl5tmo6XdzZaihl7OHrimNjdvdtTg6KqwS/0NIYQQQgghhBBBEmgcJss3Vx1QQVCdRsHXS22Lo4lWo+APqDS3ubnryaU8+vPjueqMUUCwRe073/a8UY8y6XnsjQ1hNSb21ZCoqrfzm8cW0+bwEGXS8citc8lOtUV87kBAxen2EWXWD3jcC9eX88z7WzAatPzmh1MYk5dAQ4uTvZWtPPTCmtAsk7e+3sX1541l6aZK8jJiuPDEYVx2ygj+8do6vl5bvp9nOTgzxqYO6vWFEEIIIYQQ4rtIKhAeJlGmntmR0o+yCIMZZqQnWg7ZtayWzjChqLyFWx/9ln3lWf7z3uawuiEAGgXsLm+oE8w+qfEWthbVs2JLFW0ODwB2l49Xv9wZChe6+mTZXi6/9xMuv/dT7n92JT5/cJZKq91DQ4uzzzF7fX4ee30DrXYPdU1OHn9rI2U1bdz812+5/9mVYc/nD6jYXV5G5sbh9fl599vdON0+brp4IsMyYwbwTg2c0+VDVVX++9E2bv7rNzzx9qbQ6xRCCCGEEEKI7yspCnoYPf7mRr5YVRJ6nGAzkZ5kYUtR/2dudO0QcjSxmHQ4uo1ryohkxgxNYN2OWrbt6f/SDK1G4dpzxvDMB1vDto/KjecvN89Bq1H4dNle3ltU2KMFrKIEw5J99/tnzxnCjReMj/g8Hq+fS3/7Sai7S1piFCdOyeLVL3b0OFajUQh0C5fMJh1erz+sAOpguOCEYQzPiuWRl9aGtv3w1BH84LSRg/q8QgghhBBCCHE0kxkah9ENF4wLqwXR0OoaUJgBHJVhBhBx9sS6nbW8+Ol2rGY9Rr2239fyB1S0Wg03XjAOnbbzR3R7cSP1zU5e/3IH/353c48wA4KtYbtOXvh46V5KqlojPo9Br+VnF43HoNNgNev56YXjyUyyhh2TlWIlIymqR5gBwZkTgx1mxFgNnDI9m1Z7cLZKnKad0fpyPl+4NTSDRQghhBBCCCG+j6SGxiBotXt47sOtNLe5ufCEYURHGXj+o60oisItF09g4+46vl5bSpv96G7V2p0CRLp9VxTw93Fjv3FXLVedMYpnP9zW6zEp8WZqm5yoarCOxvhhiTzz/pawpRXxNiOx0UbeW1Q0oHFvKaonJy28/sbusiZe/3IXFpOOp+6eT1Js5/KbFrubjbvqcLi8h7To5/7kpEXT7vDi8wXISLZyztw8JuYnYzXribOZWPDZYm4wfYpJ8dESMFNaNIG41DRsUQasFsNhG6cQQgghhBBCHA0k0BgET76ziWWbKgEo2NuA1aynvsUFwNaievx+NWIwcLTrbcz7W7Tk9gZYvKECq1lPuzMY4kRb9LQ5OgOdWKuJmsZgzYtAIBhi7CptCrvOb66YwoufFAyom4sCDEkPr3Hh9QX4w9MrQzMcmtpcPPDT40L7j5+UyQeLiyLOABlMx41L54QpWTzw31XsrWxh2aZKZo1LB4KFVb2KiafaTuY881qG6Ov58uNP+aQ+F4Newy8vm8zcSRmHdbxCCCGEEEIIcSRJoDEI6po6b4RdHj8uT+dyjP4uUTAbtTjdPZdxfFft6mg9mpMazQ0XjEcBfvvvZaH9Lk/nUhp/ACrq2rFaDGFLbP73cQG7+9HCNMqsY8rIFHRaDdNHpzImLyFsv8vjC1uuUdMYHlxsLqyLGGakJ0ZR3WDHbNKjUQgLZA6FL1eXsn5nLaXVbQAs3VRJUfnXzBibwrJNVdQ5TICJZ9tP5M9xb7Gj2QSAxxvgr6+sxdLxuvvL39EdxnoA3WGEEEIIIYQQ4kiTQGMQHD8xg12lzQd1DVUFs1GHy+Pb7wyIwdZ1qUlOqo2S6sg1KfQ6Ba+v78GWVLdRXNnCiVMzyUmNpqreTlZqNJfOz+eRl9biD6gkx1sYk5fA6Nz4sLChtinyjIkYq4GW9s6AIinWwu1XTu11DNEWAydOyeTbdeUoCpwzNy9sf0aStUcR0GiLnqvPHM1b3+yitd1D/X46qBwIg04TqpWxT1WDnfcX7QnbZldNvNA2hyJfZztXVYV/vbkRf0DF5faRmx7DTReNJynOEjGwKKlq5fdPL6ex1c3xkzK47YopKP1puyOEEEIIIYQQRwnpcjIIbnzoKyrr7Ed6GIecogRvnHurpTF7fBrLN1ft9zpnzxnCgtUluD2dS0ceunkOVoueitp2xg5NxBZl4B+vr+frNWWhY+ZPywo9npifxJwJ6QzPiiMtMYof/+lL7B3LWWaMSeXea2f0OQZVVdld1ozZqCMrJbrH/hVbqnh9wU7KatqIizZy1zXT+N/HBWwurN/v6ztQCnD5qfm8/uWu/S5J0mk1/WrdqlHgF5dP5qSpWWHbH3lpLUs2VoQe/+Wm4xg7NPEARi2EEEIIIYQQR4bM0DjE/P4AVfUHFmYMSbdRUtVKhIYag0qrUUKtS/uyL/pSAYNeg8cbvKFOiDFx+SkjWLGlstdzjXoN7o7jP166t8f+LYX1XH7qCHJSO4t3rimoCTtmwrAk5k/Lxu3xM2lEMlpN54yC+66fydtf78YWZeCas0bv97UoikJ+dlyv+0fkxLG3sgVVhdomJ899uA2v78CWAHUPgMwGLU5Pz2upBJeZXHP2aFxuP+98uztivZCUeAvxNhPbi/ffISegwoufFvQINEyG8K4zJuPh+U+Bw+Xlg8V78Pr8nDM3j7hoU2if0+3jjQU7abV7OPf4oeR2KeTq9QWobXIQZdIR23FO285dBLxebGNGy+wSIYQQQgghvock0DjEtFoNM8emsWLL/mcqdJUUZ2ZvZeSlHANhi9LTOsDuKUMzYwa8ROa8uXlEmQ1YLXpOnJKFVqPwxNubej2+a/gQicPdsx2tyagLW4IxJi+e5PioiOePzInf76yMrp55fwtfrCohM9nKPT+aQVKcOWy/qqphS32qG+y43H40ikJggJOauh89b0omn68oiXhsWU07//u4gEvnD2dIui3i92VUbjxXnTmK5z/aRnltO6XVrX0uS4ru0gGlttHBewsLURQYMySB2mYHZ8zKZVhmbJ+vobbJwUdL9tBq9+D3B8hJs3HhCcPQagfW+fmvL69j7fZgULVyazX3/WQG/3lvC/6ASmu7h93lwdf71ZpSFEUhL93G5afk87dXN+Ds+BnRKBCt9XNS2WJG2MtomTyPnflzyEy2MjQjhjibqUchWCGEEEIIIcSxR5acDIJWu5tr7v+yX0sCjrQokw6nxx+qF6HVKKQnWSmraYt4vNWsx+HyhW7qrzxjJAvXldPu8GI0aEKdSrrrOkMjkpljUtmyp4HslGjuvmYa/oDK+p21PP3eZtzeAJefms8Vp406yFcbtG1PA3c9sTT0+JTp2fz8skk9jnvnm928/PkOjAZtaDkLwJSRybTYPRT2o0BpJJefMoLXF+zs85jeZs0MzYzhnh9NZ+mmShpaXJw2M4f3FxXy5arSiNeJsRr43bUziLYYSIozc/Mj31LVYA89x19umsOoIfF9jsXvD/DTh7/uUSj1h6eN5Aenjug8LqDy8mcFrNleQ06KjWvPHUNCTDAo2rCzljXba/hqdWkomDhYuoCPk+pWsyBpJqomPFi57vRhzNbWoY+xETdl8iF5PiGEEEIIIcTRRQKNQbJ6WzWvfbmTwo5PnA+l3mpYHAqnz8xh4+7IXT5MBi2ZyVYKy1v6Na7+jnP8sAQ2FzaEHo/JS2D73gYCKpw/byhXnDbykC6J2FJUz2+f7OywMn9aFr+8PPJNr8fr40d//DKso4lRryUlwYLZqGVnSfOAnnvuhAxy0qN5+bMdBzR2nVZDfnYsBXuDy01iogy02j0R32e9VuEvN8/hoRfWUN/iIic1mpLq8KBqwvDEsJa1+yzbXMm67TWMHpLA1FEpXHXf5z2OibeZOG1mDpedMgKtRuGtr3bx4mfbQ/vNRh1P3TWf+mYnt/9rSViR1UNCVYOFXSJsv7X4LaL8wVbJsVMmM+b39xza5xZCCCGEEEIccQObLy76zaDX0NjqGpRrD2YCtWRjRcQwA8Bi0vUaZkDPcUUap8moRacNvwntGmYAFJY1h+qIvL+oKJiMHELjhiZyxqxctBqF7NRoLj5pOJV17RFrZHy2oqRHe1a3109pdVu/w4wEm4l5kzKYMjKZuZPSqaxtP+Cx+/yBUJgB0NJLmAHg9au8t6iQ+pbgz2H3MAOCoUN3WwrrefjFNSxYXcpjb2xgS1EdI3J61htpbHXx2pc7+WhJEQAL15eH7Xe6fRTsbaCoomVQwgyN2suMH0VBq3Z+L5vXrcfT3PvPrRBCCCGEEOK7SWpoDJK/vbqe5jb3ER3DgczkUP29F750ug+sKGZXrv1cIyXejNmop7gqWE8k2qJHr9P2ec6BuOniCfzsovE0t7m584mlVNXbyUiK4qGb5xIbbQwdt2RDRR9X6R+DQcOijuus21F70Nfral/nmd5s3FXX675Yq5HrzxsHQCCgoumoc7KvGOo+izdUUljWBMDYvASGZsbwweLOVrIfL92Lw+UjOcFCaZelSgrBNr+lvbT53R+LUYujy89LXkYM0RY9m3bXg6IQUCL/XGgDPgyBbstaAkf/8i8hhBBCCCHEwMgMjUESqTuFosAlJw/nrqunctKUTKxm/aCOYfR+aiNE4vD0Xt/gYGofmI1azMb9BxM1jU4m5icxeWQyY/IS+N21M/dbULS//P4Az3+0jbueWMr7i4pQFIWv15aFutJU1Nn5Zm14LYpDUe+hqj7yjJdDIVKY0fXtsjt95KRGk5cew/nH5zF6SDwKkJ4YxSO3zsVo0PKrvy/kvNs/5LdPLsXl9jF1dApRHT+bBr2WkupW9pWD2bqngflTs0lL6CzOWtPo4LUvd5KVbMViCmakeq2GO66ewuNvbeThF9fu93UMzYzh6btPIt7WGSb95Lxx2KI6C5qmJUQFw4z90Kl+2gzW0OOMC87DEN97RxshhBBCCCHEd5PU0BgkC9eX84/X1kcs7HjFaflcfuooymva+Osra9lTcfDdTSKZNS6VmkbHoF1/IBTguAnpLN3Ue2vXfXRaDe8+fPZBteL0+vysKajBatEzflgSAB8sLuLZD7aGjrn/hlk0tjh57I2NoW2/vHwS86dlhx4/9+HW4LIXgrNFui8/6W4w65v0V4LNSENr+OwgnVbB71dDY7vpovGcMXsI//t4G+98Wxg6Lj7ayDP3nEJzu5sdxY0My4zlP+9tYf3O4MwSk0HLC384DQi+n69+0VncdP60LH520QSaWl0kxpi49dFvKa/ru4XxCZMyGT88kbkTMzAZdTS0OFm7vYbM5GhGD4nnsns+Cc0MMht1eHw++phEFHL1acM5e1wchrg4tCbT/k8QQgghhBBCfOfIkpNBcsLkTOZOSOeq+z7vcRP8yhe7+HZdBa0OD+37uUHuzb57/b7iqBVbqntsi4s2YtBrqWkcvFkDkajQZ5hhNupCsyFirYaDCjMCAZX7nlnJ5sLgp/lXnj6Sy04ZQX1zeAeWhmYn86dlU1Ldxubd9UzIT+LEKVlhx1x7zhiqGuwU7GlgRE48M8em8uTbm+itJMSRCjOiLXpG5cZjMuo467gh3Pn40rD9Pn/4yBZvqGDG2LQeM1Aa29zc8Jev+NHZYzhhciYAt146kafe3Uybw8Nlp4zg8xUlrNxaxdDMGNITLVTWOzDoNMyfmo1eq+HLVSWs3V7TI8wwGrTMGpsWVmsjPSmKU2bkhB4nxJg5bWYuEGyd27X2htPtw6DToGjV0OtRFLjjyqlMHJFMdX07bQ4v0VGG/bahFUIIIYQQQnz3yQyNQdTS7ubKP/TsDnGwLCYdZoO2x6fw+5ObFs3wrDgWrI7c4vNQios2khxnoaSmlYQYMxW9FMKcPzWL3PQYRg+J54VPCvAHVH5y7liGZcUe8HPXNzv58Z++DD3OTLby7zvnU1bTxt1PLqWl3UNmspVHbp1LtMXQx5Vg06467v3P8tDji08azqbddew+wJat+8RaDbQ7vPgOoFimRqOE3ehPG5XCnInpPPHWJjy+QFg4tD+91eDQahSeu/eUUNvVfdZur+H+Z1eGHv/orNEMyYghPTEKg17LO9/s5sMle7pfLiQ7NRpVhbKaNlLiLTx8y5yw5/D7A/z73c1s3l1PQoyJbXsaeoREs8enMWtcGhlJVoZlxh5U+CWEEEIIIYT47pIZGoOoqGJwOis4XD4crsg3rFazHkVRaXOE79dqoLiqjeKqnp0uBoM/oHL23DxOmJzJjpJGbv/nkh7HaDQKPzp7TKgI559/1rN96IGIsRqIt5lCXWaGpMcAkJUSzVN3nUxNg53MlGiM+s6aHnanl1e+2EFLu5sL5g0LBSp2V/gMmsZW10GHGQDN7Z4DPjcQUIm3GXG4fJw0NYsVW6pYs70mtH9/YUbXEKO3ONMfUHl/USG2KCO7Spqwu72cP28YTd1CtMLyZspq2/H7A6zaVtWjcKzVrMfu9IZCidLqNt7485m0tHtIiDFh0IfXVVmwupQvVpYAUNUQebnK8s1VbN5dz+O3nyhhhhBCCCGEEN9jEmgMosxkK3qdgtd34JNgslOjibEa2NKttWlv2p2Rl7D4D0GTB63qZ3xrIVo1wCbbMLyankVN9VoFr1+l1e7hb6+s459vrCfKFH6cosDwrBh+ct64sI4ih4pep+XBm47j/UVFRFv0XDI/P7TPatZjjbAc4fE3N7J0c3BJzOpt1bx43+mYjTqmjU5l4vAkNu6uIynOzJmzc/lmbVmfz282aElPtlLUR4vbg5WRHE1Ng51VW6tpGmA3nXibiYaW/bcUfn9R+EyLLYUN3PvjaaQmWKhucKDQ9zIiAKtFz8T8pNBxU0elYDHpsZgiF8R1uCL//FrNeuJjTJR2tJ5td3rZWdLE7PHmiMcLIYQQQgghjn2y5GSQ7Shu5Jt1ZXy+orjPehe9iY028tJ9p/PSpwW8+fXuQz/AATi/ahEj7cFPz0tNKbyaedoBX+v0WbncfPEEABauK6Oizs7xkzLISok+JGPtj2WbK3nl8x3YogyUVbfS2qWeyc8uHM+Zxw0BgrUcGlpcLNtcicPpxeP18+7CIgJdvqGxVgPzJmdi1Gs5b94wfvef5ewZpBk6USYd9l5m6OyPyaAhKc5CVb0dn19Fp9XgG0DaZdBr8PsC+Afws2yL0tNq92I2annwpjkUV7aweEMFw7JiueK0kWi1nc2WWu0e7vn3MoqrWklNsKDVatAoCj+7aDyVde08/tYmINg151+3nURKvKX/AxFCCCGEEEIcU2SGxiDL7miZqddq8ERo5bo/cdFGahsdh6XuRW80ikKs0soITUVoW7arBo0aIKAcWOfffQU6319UxHMfBjuPfLR0D0/ecRLxtsHvStHu9PLoy+tCN/NGffjr+HpNaSjQUBSFN77axecrigFIS4zi1T+dwVX3fR5qz9tq9/DB4uCMhiEZMWHtRvuiUei1wGgkeWk2NDoNhQe47MXlCVBWE6xn8sNTR/Dqlzv3c0Y4j7f3n2G9ThOxXXGrPRgUOd1+Hnt9fWjZ04ZddWzaXQcE34PrzxvL6CEJ/OPXJ9Da7sZmNYa17B03NJEos56SqjZmj0+TMEMIIYQQQojvOQk0BtGO4kbufWo5bm8/+kxGoNUo3H7lVP7++voBLys4VCaNSGKauYyRJe+jjVVxt0DjTigzJR9wmGE0aDl/3lAACvZ2LqWxO70UV7UelkDD7fGFzUyIjjLi7tIFJb5bMcxtezrHWVVvx+708usfTub5j7YRCKhhSzjWba9l3qRMNu2q22/Xk4HWBN1b1TrgTipWk452l69HAdDSmjZ0WiXUMUSnDYYH3Tui9FekMKO77jVcdpU2h77+ywtreOm+09FqFOJ6+RmYMyGDORMOaHhCCCGEEEKIY8yB3ZGKfvnLC2sOOMyAYDcTnVZDcVVrv8/p8oE2Wg2cODkDRQlO0e/tE21NH3UVC/Y0YCxahFYJ3uQaY2Bd2mjeSp8fOsZm0WPQ9+9H6dQZOTz721OYMDwJgMQuwYGiBGekHA4JMeZQqGI0aLn54gmcPWcIBr2GtAQLPzlvbNjxU0Ymh74ekm4jIcbEnAkZPH/vqfzlpjkYDZ3FLcfkxbO5MDzMSIkzM7XLNQ6ExagbcJihUUCj1fDD00aEzXYAWFNQjV6nJTXBwrhhCfj8ar/CDEUBW5SBaaOTOdiSnF2HZHd6kRVwQgghhBBCiP6SGRqHkNfnxx9QMRmCb6u9lwKd/WHQa7jyjFHc8a8ltDv6f52un/j7AxATbeK9R84N3cw+/OKaHoUc+5ol4PYGaDBYGUawi4ZH1bLSOgaP2lnUsbWP8V179ij++/H20I346oJqbr10Ymi/t8ssCVWFkuq2UFeSg9HS7sbp9pGaENXrMdedO5aLTxqOQa9Fo1F49oOteLwBqhocLN5QHlZM9NpzxjA8K5Y2u4d5U7LC6j6kJUbx0M1zWLmliiHpMRw3IT2si4lWo/D7n8wkO9XG429u4ItV/Vs+NGNsKlpFIcqsZ/qYVArLmnnjq10Deh8CanA5zGtf7OwRhri9ASCA0+2jrskZ6fQetFoFf0fR1zUFtaQnRlFZH7kbSW9mjUvD7w+QHG8hOc7C/z7ehgpcc9Zo6VoihBBCCCGE6DcJNA6RFVsqefSV9fh8fn58zhjOnzeMq88cxTMfbD2g63m8Af730TacngOf4QHBWhV1TQ62FtUzNDOWK88YyfItVQQGsNbhXcc0fKqGWI2DRa5RtKmRO0ukxFuoaXSEHlsterJSbMREG2nuWDKTGBt+7rDMzvBCq1HITbMN5OVFtHRTBX97ZR0+v8oZs3O56aLe1yjEWIMzQvZWtlBR1x7avqagJizQUBSF4ydl9nqdYZmxDOvSPeWCE4YBUFLdyrxJmWSnBl/XLZdOYsHq0v0uNTEZtMTbTHy2vBgItjMdlROLQa9BVVU0ioKiUXC5+/fzsb/vtr+fPw/+bjM4poxKwbOlkvrm/XdNgeDsjtuumBLWrvXk6dkEAmroeyGEEEIIIYQQ/SGBxiHy7Ifb8HQsL/nvR9s4Y/YQzj1+KG9+vZuW9p71L/pTDPJgwwydVmHWuHR++fdF2J1eNApkJFuxmnU4XL79Li/YV3PBpRp4yzGrz5tis0HLH34yk9v+uRhHRweOdoeXh19aywM/nc2rX+xEr9Nw3bnhSzlOm5kLKOypaGb2uPRDEmi8sWBX6LV9tryYy07OJyGm7/aeKfEW4m1GGluD36uRufG9Htvu8LBqWzXDs2JDQUV3Wo3CxScNj7hv5tg0lm+p6nM8v7t2Bg/8d3XYtu0lzV0eBV+fyaAhxmoKC5IOVkq8hYQYEwV7G0PblI7/6b4iJN5mJC7a1O9AY/qo1LAwAyDa0r8CqkIIIYQQQgjRlQQah4ipSw0FvV6LVqPg9flx9LLsZKDFIAdCo1EIBIL1EJZvrggtfQmohDpcdHf9+WN5/cudtHVZPtL15lUFokx6VNRQYNGV2aTn0+V7e+xze/3kpNq4/4ZZvY73tJk5QE7/X+B+xHb5pN9o0GI27v/H3GLS89DNc1mwuoQEm4nTZw+JeFxjq4vrH1wQ6vbxi8sncfK07H6NS1VV3v22EBWYMzGd8pp2SqpbUVXCCnZqFBiaGYvFpMPp7rs9q8sTwNXoYFRuHNuLm8L2mQ06vP5Aj7as+5aN9HgPjDpmjUvjx+eM4Z6nloXt++GpIzGbdTzbbcbRyq3V/PC0Edz/7Kpexxht0XP+vGGYjTpOn3Xovs9CCCGEEEKI7zcpCnqI/PLySeSm2UhLiOL2K6ag02qwO31hNSIGU5eSDmHLSQrLm/d7brRFT22jIyzMiGTa6BT+/st56HQ9f2waW118vHRvj+3HjU/H6fb1e0nDoXDrpROZPDKZ/OxY7r5mGhaTvscxgYDKp8v38uKnBVR2LDVJS4zi6jNHc9acvFDNEZfHx8MvruG6B77kmQ+28N7C3WGtS98aQE2LT5cX879PClixpYplmyqxWvShEGPf/ytKsLZHYXkz58zJC52r1Sho+qgvUd3g4Ednj2ZETlxom9PjY8bY1LDjxuYl8OsfTMZq1tP9cjqdwo0XjifGaqSyrrMuhkYDl582IvQ+ddXu8PDg/9b0+bqdbh9nHTeEc+bmoddp+zxWCCGEEEIIIfpLZmgcIsOz4vjXbSeGbYuOMqDVBItzDjZ/gLAWnKExWAwEVPos+tjm8PLB4j19Xj/eZuSK00eSmhDFDeeN5cl3Nvd5/L7XvXRTJUs3VZKeGMWpM3NoafdwwuRM8jIOvvBnb5LjLdx/fe8zQgBe/nw7b329G4AFq0r5913zsZp7Bh8fLC4KFVH9cPEezjouN2x/fEzk9qK7y5pYsKqUpDgzF5wwDJ1WQ3ltZ8tSVSVi/QtVheVbqnjmg60oCpx/fB5J8RYmj0jGaNDy8Atr2Nml1ek+TW1uXv5sBxedNIydJZ0zNSYOT6S4sjVUH2Trnga27mlg3qR0xuQlhn0fW+1e7nx8Cf/8zYnMnZjBN2vLADh+UiYFextC9Ty6qm50RJzt0ZXPr9LQ4iQqwvsrhBBCCCGEEAdKZmgMotpGx2EJM/aJVBOjsLyl3x0sIkmwmXjqrvm88IfTQx1DJuUnoemj16vVrOvxuivr7fzv4wLeW1jInY8voaHlwMd0KGwv7qwP0dzuprqXTh3Obkto8rPjmD81iyizniHpNu69dkaPc5raXNz71HI+W1HMi59u5+XPtgMwb3JmqL1rYqyZGy8cR3KEVrrb9jQAwXBjc1ED584dilajoarezo0Xjg977zOTrKGvff4Am3fXMWF4IulJUUwfncK00alkp0b3eI5FGyojhlKl1cHQ5eeXTmT8sEQANu2u455/L4tcQ6UfE28Meg3pXcYphBBCCCGEEIeCzNAYREb9d2t6vcWk61EDY+KIJDK63YyW19l7dElRlGCNjdQEC7/8wWQefXkdxVWtEZ/H5fFTUt2230Kdg2naqFS2FgWDg7SEKDKTI99wnzM3jxVbqqistzMmL4HjJmRw0tS+a2bUNDjC3sc9FS0AjMyJ54nbT6Kspo387DhWb6uidj/FPJtaXXy6fC9PvbMZFdDrFH79g0mU17YzJD0GW5SB3/57WWjJStc6GpV1dtb+6UvMpv7/M99XlHV1QTWbC+s7xtCzqO0+/VlKdP/1s9BpJTsVQgghhBBCHFoSaAwii0kXKtB5tBuRE0dijJllmytD2yaPSOYXl00CoKKunQ07axmaEcvwrFgSYkw0tAQ7W8wen8aFJwxjRE5nZ5AHfjqbD5cUsaWwgcr6dlraPaF9Bp2G4Vmxh+eF9eLCE4eRmWKlvtnJcePTMfVSODQhxsy/75xPm8ODLcqA0kcdi31y021kpURTVhOc7TB3YkZoX0q8hZSOWRmfRFjC0V1Tm5vnPtgamgjh9ak8+sp60hKjOGP2EOJtJu6+ZhqL1leEfe/2Cahgd/ZdWHSftAQLE/OT2birlk+W9ayHMlBmg5Yn7jiRpLiog76WEEIIIYQQQnSnqGr3RoziUPloyR6efn/LEXnu1AQLw7NiWbKx501uJDecPw5VVXmmo4uFRqPwj1/NY0h6DC98XMC7C3cT6OjG8fPLJjIpP5m/v7aBzbvriI4yYDbq8AdUZoxJ5cozRoXVo7A7vfzq74uoaggu67jpovGc0UsXkWNFu9PL+h01JMdZem0B+8hLa/r1/dFpFHwRQrFYq5Fzjs/j5U+392flx0GzWvQkxZgZnhXLup01NLT0PnPDqNfyxB0nhcIbIYQQQgghhDjUJNAYRJ+tKObJtzcdkef+5aWT+MebG/p9/Dlz87j+vLF8sLiIvZWtzJmQzsT8ZO59ahkFexvDjtVpFe66ZhoPPL864rVGD4nn4Vvmhm1rtXvYuKuWlDgLeZmx6CN0Svm+aXd6ueHBBaHuMrlptlAb166mj05h3Y6aQ16PxajXYDbpaW7rPZgYKI0CZx03hFNm5DAkffAKvwohhBBCCCGEBBqDyOsL8JvHFrG3MnItiaPJ1FHJDM2IodXhRatRuHR+Put21PLYG5FDkXPmDuGjJZGXJShARrKVqno744Ymcs+Pp2My6li1tYpHX1mHxxfgR2eNIinOQmKMudcZDN8Hja0u3vl2N1qNhotPGs4zH2xh4bpyINiqdV+NinPmDGFHSRO7y5pD50Zb9LQ7vT0CkP7SKHDqzBzy0mN57sMtuL2HJjF54KezmTA86ZBcSwghhBBCCCF6I4HGILvqvs8P6Sfgg0GhZ7OKEdlxnD4rt9dAY0iajb29FP3s7tpzxnDG7FxufuQbaiN0XLnp4gmcMSt3YIM+Rnl9ARasLqG6wc57C4tC24dlxdLY4qSxS4HOP904iy9WloTayh6opFgzdc2d3xejQUtqvIXaJidOd//qb3T13L2nkBwnS02EEEIIIYQQg0vm/Q+y5LjOTh46bWdByYQY05EYTkSREq3C8mZsVgO9dWftb5gBsHJrFZfc/UnEMANg0fryfl/rWKfXaThz9hCuOmNUWOeVySOSSUsM78Ry3zMrqKxri3idxNj+/3x1DTMAHv358Tx++0k8+LPZYT+z/XHK9GwJM4QQQgghhBCHhQQag+yOq6Zx3Ph0xg1NQNOlQ0ZSrJkXf38aOanRh3U8/WjSAQTbcf75v6sYSIMWk6Fnm9oR2bFhNTi0GoV4myns2CHptv4/yTHM5w/gcAXraXi8AeZNymTuxHRuu2IKV50xijuumsr00Smh4/0B2FMZOdAw99K1pT/ibcEwJDvVxrihiX0ea9BreOTWOcyflsUvL5/Izzu64gghhBBCCCHEYJO2rYMsJd7CXddMY8GqErYUNYS27yhp4v3FhaHWnofL/hYYxVoNNHe0WA30o6SCRgnOKvAHVM4/YRiL1pVR1eAA4Fc/mAyo7CztXLZiMel44Q+nUVjezOcrikmIMXPxScMO9OUcVVRVZWtRA3q9hpE5A6sLUrC3gT89t4p2p5dz5uaxvbiRwo56GQa9lnmTM4m3mThrzhBWF9REvIYC5OfEkZ1iZcHqsgN6DdedOwZ/IMDa7TW8+dUuthc39nn8jeePZ1RuAqNyEw7o+YQQQgghhBDiQEmgcZgMy4pFUcIDhXe71Eg4WuwLM/ZJT4yist4esc4GBMOMfcUk3/56Ny/+4TQ2F9aj12uYPjqVDxcX9bgewLDMWG65ZCIQbOu6q7SZjCQrsdHGQ/2SDpt/vL6Bb9YGg4RLT87nqjNGsWprFf94fQOqqnLrpZM4bkJ6xHNf/mwH7c7g7IyPluwJ27dkYyVJsRYuOyWfoRmxGHQaPL6eaZMK7CxpYmdJ0wGN32TQMm10Cjf+5Sucbv9+j73z6mlMHZXS53FCCCGEEEIIMVgk0DhMhqTHcM+Pp/PM+1txe/20tLsPuDvFwdBqFJLjLFQ12Pt1/KQRSVTW2yOGGUBYZwx/IMDKbVU8+fYmfH6VE6dkMn1MatjxU0aFP25qdXHbPxdT2+TEatbz0C1zyEnt/xKUirp2Vm+rJifVxuSRyf0+71DzeP2hMAPgi5XFXHXGKP711sZQUPHPNzf0GmiYjJ1LcDQKZCZHU9oxe8fj9fP6gp2oqIzOTRjQMqBIlI7n6x5axNmM3P/Mqv2GGRBckiRhhhBCCCGEEOJIkhoah9GMMWk8e88pvPiH0wZ03sDKMvYuM9nKQ7fM4ZqzR/Xr+HibkU+WFff7+j84ZQSfLNuLzx+84/52XTlDM2I4bWYOtigDU0elcN7xeWHnrNxWHSoW2u708u3a8KUSgT7u3uuanPzmscU8/9E2/vDMChYeweKiBr2W5PjOYpiZycHaKEo/v3s3nD+OUbnxJMdbuOniCfz0wnGY9OE1Scpr2vlwSRE+f99rgUbmxmEyajHqI//zVkP/E66q3tHvoGtGt6BKCCGEEEIIIQ43CTSOAEVR+PFZo0OPzUYt2i7tRIzdbmQj3dIbdAP/1pXXtrNqSyX/enMj6Draf2q9vR7ftUXoPqOH9F4boqiiBatZH3qsKKDXaTl+Yganzsxh+uhUlG5VSVPiwztiLN9SxZKNFXh9AR54fhXn3/Ehv/nHIlrt4UthAHaVNWF3do5/w87aXsd2OPzphlmcOCWT02bmcOdVUwG49bKJRFsMWM16ftFHwczUhCgeuXUuz91zCqfNzOXNr3bj8nbOlNBqYP60LJIidBDpHplU1tl59renYDHpexy7j6a39jX9kJpg4Y6O1yeEEEIIIYQQR4qiqkdi4YMAaHd4QFGwmvWs3V7DW1/vwmzUkRhr5ouVJYP63NqECvQ52/FWDMNfk9uvc6LNOjJTbL0WisxNs5GeGMXyLVWhbakJFqo7ioQCZCVbmTMhnTFDE5kwPAmAz5bv5a2vd4fah2o0CtecOYr/flwQOi8jKYrHbz8JnbYzyKlpdHDro9+Elkj8/NKJnDIjp39vwFHuD0+vYH2XgOZ3182gYE8DawpqQktRemMx6Yi3mSivbQ9tM+o1BFTwRqi9MVAZSVaeumv+QV9HCCGEEEIIIQ6GBBpHoT89t7JHJwudVgkt5TgkND6MI9fg3jkV/L1/kr+PXqchMdbM8KxYFm+oAIIzAwx6Le6OmQTGLl/vj6LApfPzqWlyMDInnnU7aljT5TVrNQr+bstNbrtiCvMmZ4Zt21vZwsotVeSk2Zg9PnJ9iu+i0upWHnpxLY0tTi6Zn09lg50vBznk6g+NRuEXl03ipKlZR3ooQgghhBBCiO85CTSOQr99chlbiupDjycOT6K0po3GVtchfqYAKCqo2oh7f3bReLKTrdz97+WhbVFmHXanL/R4dG4cBcUH1lWjq4tOHMbHy/bi9vQeiNx59VTmTMiIuK+x1UW7w0NWSnSPZS3fdZX17dz08Dc9Ap7D7bpzxzB3YgYJMeYjOg4hhBBCCCGEAKmhcVRqbHWGPd64u47GVhcaTXCmxsHSh66h6TXM+OFp+bg9Pv7w7Kqw7a5uHTBMxv03yslKtqLdz7hVFZ757cmcPWdIj3MtJh0nTc1i9rjIMzCWba7kuge+5Oa/fsujr6zb73i+S2oaHfz80YUHFGYcbK6TFGsOtdGdPCKZs+fkSZghhBBCCCGEOGpI29ajUGKsmYq6YLeJrksvAgEI9NpAFaJMOuwuX6/79/FGWLpi0GvwdGnB+uoXuyKeOyk/idomJ6U1bWSnRvPzyybx7reFLNlYQVNbzyKiGkXBbNLh7/KcqfEWqhs762rotRp2lTbx638sZsaYVMYOTWD73kYmj0zm7mumoddFDl32eeeb3aHlOIs3VHDF6SNJT7T2/SZ8Rzz+1sZ+L+PpLtqsp9XRe9HX/RmaGcMdV02l1e4h3mY65ma+CCGEEEIIIb7bJNA4ytQ2OdjRZQnH/j6Zj7EacLp9eLyBfoUZ3el1GoZlxlLT2E6jt2cnka7G5sWzdkewUKVGgYtOHE5CjJnrzx/HxfOHc+9TyymtDhasjDJpsbv8BFSVXaXNYdfJz44NCzSmjUlh+eZgIdFPlu3l99fNYNpN/W8LGm8zhb426LVYzYb9nuP2+vlk6R4+WbaXgAo3nD+WWb3MADmS+lqCsz8HGmYoQFK8havOGIVep5VZGUIIIYQQQoijkgQaR5FXPt/O6wsiz4yIRKdVaGnvO4TYn+yUaKrq22nux3W27unsbhJQ4V9vbuC4CekY9Vriok08cftJOF1e2pxe3ltYyMdL94aOH5kTh9PtY97kTM6ek4dOp6WkupWTpmZR2xi+xMbpHlgwc/PFE9DpNDS3ublk/nBsUX0HGl5fgHueXMbO0s7g6NFX1vPmn1PRao+uVVhXnjGS3/1nBYHDVD8jK8XK/dfPitgeVgghhBBCCCGOJhJoHEXe+baw130aJRgidHWgRSLzs2NDsyaKKloO6BoAfr9KfZMDl8dPbpoNrVaD2aTHbNJzwuRMFqwuxe3xE28zctc104gy69FqNOh1Gn71g8mh69Q1OVldUE1VvZ0JwxOZNS6t1+dcva2at77eRWy0kZ9eOJ6EGDNxNhN3XT2t3+MurW4NCzMAfP4AAVWl78Uth9/4YUnMGpvKss2drXDjbUYaW3su7zkQU0clU1lnZ2J+ElecMQqbZf+zW4QQQgghhBDiaPC96nLy5aoSXvpsO9EWA7dfOYUh6TFHekhhfvi7T2nrtkxgRHYct181FVD5xf8tDOswcjhFaqMaF22k1e7BH1CZMDyR+6+fFTbDobrBzsuf7WDppnKMBh2OjiUxCTEmfnn5JCbmJ4eODQRUHC4v1j5uqFva3fz4T1/i9QVrfcwcm8o9P54x4NfS0u7m+ge/Cs0EURS48fxxnDUnb8DXGkxen5//fVLAh4v3hLbptAr3/HgGf3p+1UHN2ogy65g6KpWCvQ3ER5v49RWTj5m6I0IIIYQQQojvh6Nrfv0gqKxvp7K+nZZ2N0+8vYnmNjdlNW38+53NR3poPfzu2hkY9eHfktnj0zEZtPzh6RURw4y8dNthGVukupxNbe5QyLFpdz3/emsjz324lfpmJ7tKm3jzq10s2lCOP0AozABoaHFx/7MraWnvnGWg0Sh9hhkAdpc3FGbse/7+qKhrZ9XWKtocwWU1W/c0MHdiBtNGp3DRicN49U9nHpVhxt1PLgsLMwAyk6OZOiqF3/xwci9n7t/xkzJ44vaTWLKhnLomJztLm/jPe1sOdshCCCGEEEIIcVgd00tOXl+wk1c+3wHA2XOGhH2i7fUHejvtiKisa2dzUT23XDqRResr2LirlrF5iZw5O5ev15SGup50l5cRw57K1l6vm54URUq8hV2lTQc8u+Omi8azYHUpu8ua+zzu6zVlAHy8dC++/by/Pr/KE29tZGhmLOt21FJa3cqJU7K48cLxvZ6TnmjlhCmZLFxXjl6n4eKThu937JsL6/j9f1bgD6jodRouOGEob361GwCzUcdPLxiP1azf73UOt12lzewsCV8Wo9dquOfH0wGYOiqFuGhjj1BHUYKdZXpbjjRrXCq3XzmV6gZ72BIm1wDrlgghhBBCCCHEkXZMBxpvfdVZYPPjpXs5fWYOX64qIcqs57pzxhzBkYVranNx2z+XhGYQ3HD+OP7wk5mh/fExpojnKUD0fgpgahSFzbvrB1RvY1J+Eht21WEx6bjr6mlMGpHM6LwEbvnrt/06f39hxj4rtlazYmt16PHHy/YyY2xq2FKU7n7zwyn84JQRRJn1xFiNvR63p6KF5z7cSml1W+i1e30B3lvYWafE6fZRVNFMcvzRVwAzIcaETquE2tHG24zcfc10UhOiALCY9Dx0yxwWrCol1mogJtpItNnAiJw4fv/0il7Dp2hL8D1LTYji/HlDeX9REVFmPVefOfqwvC4hhBBCCCGEOFSO6UBDr9Pg6bJEoc3p5Z2Hz0GrUVAU5QiOLFxxZWsozADYUlTPOXM7l0DMGpfOFaePZMGqEuqaneyreqICny4r7rNIZNdlIRD8BF9Vg5/2R5qlkhhroqajpapepyGuoyWq5yDahw7Evhv4rorKm/F4A4waEg9AepKVr1aXsrqgmpE5cVxwwrAe388//3cVtU3OHtfy+jqvbzHqGJ4Vd4hfwaGRmhDF3T+azmfLi0lLjOLqM0dhMoT/c01PtHLNWT2DiHuvncHrC3Zid3qpbXJQWWfH6wswJN3GlaePDB133blj+eFpIzHoNEdddxchhBBCCCGE2J9jNtB4/sOt2F3h0+jjbSZ0EW7cGlqcvPL5DvwBlctPGUFaYtRhGeP2vY18u76MmChDWNHNCcOTwo5TVZXTZuYwfXQqv/i/hWH73F4/bm/vYcP8aVls39vI7rJmzEYtN14wjn+9uanXJTf1za7Q1y3tHt7+ejfzp2XxwPOrIh5v0GvweA9u+Y7Vosfu9HL8xEzG5CXQ3OYmNjo4k+CJtzby+coSAE6els0vLp/Ept11PPbGBgBWbKki2mLglBk5YdeMVF9DIRgC7XPtOWNIjDUf1NgH0/TRqUwfnTrg8+JtJm66aELocUlVK/98cwOtdg+7y5qZPqbzmmbjMfufACGEEEIIIcQx7pi8m9m2p4H3FxWFbUtPigr7dLqrB/+3OtTGdGdJI0/ddfJgD5GaRgf3/mc5nghhxH/e3cyyTZXce+10Plqyh1e/3DngjhZajUKUWc9HS/agqsGb+duumEpirHlAy0+izDreW1QYNtOlq8BB1iLR6zQ8cstc0hOjKChu5Ed//AKHy8dpM3M4flJGKMwA+GpNKTdeOI7Kuvawa1R0e1xZ105SrJnK+vC6I3MnpbNiSzVeX4Ds1GjmTso4qLF/Vzz2xobQEpSHX1rLq386A6P+aGtQK4QQQgghhBADc0wGGu8tLKT7LftZx+VhMUUu/lhR23lDXFVvxx9Q0WoGd0lKWU1bxDADgrMIthTVc80fv8DlDj9Go0B/8gh/QKXV3rmMRQV2lTYxbXQKx01IZ9mmyrDjxw1NYEtRQ9i2UTlxXHH6KO58fEmvz9M95+g+C6Iro16Du8tsDq1G4bYrppAYa2bF1iqeeX9LqBvKFytLeowRgq13Y6IMxEQZaLF7MOo1ZKVEhx3z6CvreoQZAIs3VHL1WaPIz4ojPzvuezM7ob1LK2CP14/PF5BAQwghhBBCCPGdd0wunI/q1rVi5thUzj5uSK/HnzYzN/T1ydNzBi3MqKxvp2BvA35/gJE5cSTH9b3coXuYAaDT9f4t02oULEZdxK4dGgXGD0+ktLqNsupWoi0G8jJiQvu7hxkAu8tb2LanHp22/+/HBScM7XXfb388HaupM0TwB1SeencTdz+5lIdfXNujDki709v9Erz6+U4efWU9LXYPaYlRuL0B/vH6Bi6+62Pue2YFbQ4PTa2uHuft88rnOxiaEfO9CTMg/N9DQowJry/Qa5gmhBBCCCGEEN8ViqqqA1vLcBRbtbWKz1eWUFjeRHNb5+yEy07O58ozRvV57va9jfgCAcYNTRyUsS1aX87/vbaeQEBlYn4S910/i/KaNm55dP+dQ/QdIUZGopUWuztifQiA5Dgzz95zCvc/u5J1O2pD2ycOTyQtyYrL7WPZ5qoB3cxajDp+cOoInvtoW2jbsMwYMpKsLNpQEXasosAPTh3Bq1/sjHitjKSoXtvPHkparYI/QnHRfZ695xRSjsLOJgP1xcpiSqvbmDsxg5G58RGPUVWVH/zuM+zdwiGrWc99189kRE7k84QQQgghhBDiaHfMfExd3WDnoRfXROyS0dIeOQDoal8HjcHyybK9oToYG3fVUV7TRnyMKawYaCQzxqRyx1VT+dur61i+uQpDHzM0apucnH/HhwS6LQPZUtTAxt31/RqnXqeEdQJxenx8u76c4ydmUNvsICPRyo/OHsM3a0vDAg29ToPVrOez5cW9XvtwhBlAn2HGydOyj4kw46Mle3j6/S0AfL6imH/dfiLpidbQfofLywPPr2bbnnpirEa6v/PtTi+vL9gV1h5YCCGEEEIIIb5LjplAo77ZGTHMADhlevZhHk1PqQkWthc3AsGlIZ+vKGbmuDSMei0Ot6/H8YoCs8ens3l3Hbc9tpi9Va0AvRbn3Kd7mAH0GphEW/TcduVUNuyoZcXWKgKqyg3nj+O9hYUU7A2OVVVhT0ULeypauOOqqSTFmbn/2RU9lod4fYGIM0diovSgKLS0e3rsO5xuumg8E/KTwm76jwZ7Klr415sbcHn8XHvOGKb1s6vJrrKm0NceX4CSqraw1/b5ihK2FAVDrKY2N4mxprAONgBRvdSUEUIIIYQQQojvgmMm0PhmbVmv+zQRWrUebjdeMB6jQceSDeXYXT4+XraXhevLI4YZEAwS9hXFbHP0rCXRXwkxRlravfgidCOZNzmTySOSmTwimevOGxvaPnNsGoXlzfzq74vCjv98RTE7S5twe/peshJvM9Lu8OILqLTYD3zsBys7NZqYKCMT8hM5Y3bvNVSOpL+/tp7ijrDqkZfW8toDZ0ZsLdzdrLFpLFpfjqpCXLSRkblxYfs13S7R2BIeNk3KT+Lac8cc3OCFEEIIIYQQ4gg68nf6h4DD5WXB6tKI+8bmJbBiSyX/eXczmwvr+iwYOZiizHpuvngCri5hgMM1uDf7UWYdE4Yl9QgztBqFWy+dyPXnjev13GGZsT1ukjcX1vcaZijKvvNi+Ped83nhvtMH3Gq2LydOyQwrohobbeSl+04j2mIIbbN0KfSpUeD0mbk8eNNxXHbyiEM2jkOta6Dl9vojBk+RzB6fziO3zuXnl07k77+aR1y0KWz/6bNymToqBZNBy6xxaYwa0vm9HDs0gT/eOJt4m6n7ZYUQQgghhBDiO+OYKArqD6hceOdHEW+gk+PM1DY5Q481CvzqB5M5YUrW4RxiyF9fXsvijtoTs8el0erwUNPowO704HAdWIvWrgx6DbPHpbJ+Zz2tdg+KEpztsY8tysBNF03guAnp+72Wy+3jtS93sHhDJfUtzl6Pu+7cMWQmW7GaDQzPjkOrUVBVlfPviPw96U33+h0aJfh65kzI5NZLJ1Kwt4Hf/Wd5aGnR3ddMIznewjvf7KbV7mFzYXidEJ1W4bUHzsRkOHonIi3dVMH/vboenz/AVWeM4pL5+Yf0+v6Ayt9eWcfSTRXYoozMn5bJZSeP6LWFsRBCCCGEEEJ8Vxy9d3oDoNUoTB2Vwupt1T32dQ0zIBgQvL5gZyjQqG928sZXu1CAy07JJyGm71aqB+vXP5zCcePTURSYMSYNTUeL2Evu+rjHsQEV5k3KYOXWatz97Ezi8QZYuL4y9LhrmKHRKNx6yQQCarBQaozVGHZufbMTh8tLwd5G3vp6Fy6PD7vT16MGh16nwdullsei9WUUlreiUeDik4azdkctTrcPW5Q+rNtMX6JMuh6vcdroVO69dkbocUu7J6xOyqpt1fzqB5O58+ppLNlY0SPQCKjAUR7XzZmQwdRRKfj9ao92wwer3enlgedXsm1PsB5KS7sblycgYYYQQgghhBDimHBMBBoAd1w1lTv+tYQ9FS37PVbZtz4CuP/ZFRRXtQGwu7yZv/9y3qCNEYLhy+zx4bMj6pqcuHoJLBZtqGD66BRWF9QM6Hm6z8wACARUHnxhDaoaDCWiLQbGD0skOzWayrp2vlrTex2SfVITLNQ2OsK2FZYHa0AEVHjz690DGuc+DpcvLHu4+sxRnHv80LBjhqTbMOg0ocKoI3OCyyicbh8ZyVbmTcpgdUENHq8fRYHrzx+HyXj0/4gP1gySFz8tCIUZ+6zbXoOqqmH/BoQQQgghhBDiu+jov9vrJ6Nei8sTucBmd1X19tBNXUlHmAGwtx9hyGCwWvRYTDocrsjjX11Qw9yJGSzdWNGvCQcXnTiMUbnxrNhaRVWdnYLizpvafSGH1xegsdXFwvXlAxqrTqsZ8DKY/uh6SaNBy/nzhqLXacOOSU+y8uBNx7FscxW5adGcNDWb2kYHdz6+hPqWztoo588byo/PHhOa/fJ9FaleTE2jg7pmJ8lx3/3WtUIIIYQQQojvt2Mm0ACIjzZSWWff73GBgIqqQqvdHX4jrddGPL7d4cHt9Q/achSzUccffjKTNxbsZP3Ouh77tRqFmy4az2Un57NtbwPV9XbeW1QU8VrjhyVyxemj0Os0DM2M5boHvgztO5CaHN0pvUQqWg0k2MzUNvdea6M/YqwGJuYn8ZcX1jB6SDwl1a2s2lqDosCpM3Jwe/00t7mZNTYNgK/WlIaFGQDvLyrighOGfe+LXnYtmNqVyRD551wIIYT4PlpbsZkWVyuzsqZgMQzu0mMhhBCH1jETaOwobmTb3sb9HwjkZ8ei0ShYTHpiogy02IN1Hkbmxvc4dummCv72SrBo4/nzhnLduWN7HHMojB6SwP03zObX/1jE7rLmsH1nzM7FajFgtRhIS4zi3n8v6/U6mwvrefOrXVxx+ki8vkBYgHGw5V/1OoVTZuTy/EfbeuzzByArNfqgAg2FYJ2MReuDRVPXdFtm836XEGfT7jqeu/fUiKGFQafpNZz6PmloidzRp3tNFCGEEOJY522qxrlnE6ac0ejj02ld9zmu8p1sdzfz30ANTq2GT7d9zkNn/h69LvIHAkIIIY4+x0TbVoDC8uZ+3bDrtAr3XT8bCNaRuP+GWcwal8bJ07L55Q8m9Tj+1S92hFppvr+oiJZ29yEdd3cP3zKXUd3apa4p6Cx2+shLa9le0tTnNaobgrNU0hKjuOjEYUDw0/oxeQkHNKbcVCsP3jSbh26aw/8+KYh4zJB0G1nJ1gO6vtGgwWrWDah+p8Pl4++vrWP+1CzMXepkKArcduWUQ15g87vIoO/5zzs22tijxasQQghxLHPu3UzZv2+h/vOnKf/PL6l6/c80fPk89oJlZBdt45clDYxsd1PmqGfJkzdgL9t5pIcshBCin46ZGRrDs2L7dZzPr/L+okKuPGMUAEMzY/ntj6b3enzXaftGg3bQP/nX6zTcdPEEbn10YWhbTaOTxlYX8TYTmwt7LkkB0CgKAVXFoNNw6oyc0PZrzhrND04biV6rwR8I8OXKEt5bVERNt8KewWsAihLWajU5zszdP5pBepKVv7+2Pmzf0AwbeRmxpCVGccbsIbzz9a79vj6jQUt2ipXdZZ31StyeAG4CfZwV2eptNfzgd5/i8QZQAJNRx69+MJlZ49IGfK1jUaSaLOfMGXIERiKEEEIcGX5nG42LXgubpuoq3hJ2TExA5ayGdorNcTyVYuarrx7h5ynTSD3zp4d7uEIIIQbomAk0Nu6OfKMfSUl1a9jjxlYXtU0O8tJjMOi1BAJqqKDkLy6bxBNvb8Lu8nLl6aMOS9eM3LSYsKUwABV17cTbTIwbmhix40lAVUmKM/PQzXNYu72Gv7ywGq8vgMcbYNSQeH537QyizHrOmpPHog0VEQONC08cxtvfFIYejx4Sz8O3zA09drq9YcfbXT5+flnnrJb+vDduj58rzxjNFytLWL65stfjdFqFgEpYgBLxet7OIMTt8TEiJ66Po79fxuYlhLWyHZ4Vy9lz8o7giIQQQojBt6exhMUlq0k12hj59bsEWsPbuqv+AEq3SYxLY824tMGNVUYdOwq+JfH4y/HUltC8/F1Ur5v4k67CnDOGgNdN28avQVGInjgfTccSFV9rA67KXRhThqCPSz0sr1UIIb7vjplAYyAzJ2aNS8ffsYzk76+tZ/HGClQV8jJsTBiexIeL95AQY+J3180kN83Gn3923GANm6WbKthR3MTUUclMzE8Obb/6zFH8661NAKTEmxmaEQPAvMmZvbZwNeq16LUa/vPu5rDaGdv2NPDxsj1cdvIIAK47dwy//fcyPN7wWRF5GbHodRq8HW1R9y1Rcbi8rN1eQ26qjRVbOpe/dK1f0Wr3UFTeTLRFj8vjD10jEluUgduumMItlS1U1vdexNVi1NHu9Pa6v7uASp/P+31z+akjSIw1U9fsZPb4dHLTbEd6SEIIIcSganA0cd+3f8flc6MLqNzT3oBfq/BWso1GvZZZzU6mVTvRd2v2NbrdjT4AxSY911U1Yw6oFP3zOvwomDpmd1S9/Ht8BhOmuDR8NXsBcO7ZSOqld+Ntqqbiv3cScLaj6I2kX/UAxjT5EEEIIQbbMRNoDKQDyT9eX8/fX1vfY/ueilb2VARnb9Q2OXnhkwL+8JOZEa9R2+SguKqV4VmxB1yTYNnmSh5+cS0AHy3dw19vnUt+dnCGwakzc8lIjqa6wc64oYmUVLawbmcdxVWRW8vqtAo/u2g8/oAasZOJRulsYToiJ56n7jyZPz63ktLqVvR6LecdP5S5EzOwmvV8tboUo1HLlqJ6bntsMS12N9UNwRkd+dmx7CptxmLSoaDw4z9+wZyJGazbXk1ZbWc4MSwzhsLyFnQaBV+XAaXEWxiWGdsxjrheAw2fXx1QmAHBdq0p8dKOdB9FUTily/IjIYQQ4mgScDuofuthXGU7MOdNJPWi21B04TWwVFVF9bjQGPv3d15FSxUun5scp4fT69sxB1TeSo5mZ5QRgI+SrOTZPaT6/WHnjXB6GeH04lQUzKrK1igDr6fE4Ffg4tpWprQFa6jpPC68NXvZ91eVc+9mAByF6wk424Nj9rqx71wpgYYQQhwGx0ygURthCUVv+tvtw+X28e26MtrsHk6cmhWqp7G3soU7H1+K0+0j1mrkb784nuRuN9KVde089e5mXB4/V505inFDE3tcf1eX4p6BgMrusuZQoAHBGRI5qdHc9s8lVNS19znW9CQr44clAXDF6SN59YsdaDUKiqIwJi+Bs44Lr52QFGfmX7ed2OM6k0YkM2lEMtc98CW1TT07lpgMOl5/4Eze+XY3b329GwjvPrLPnspg8OLrlq7kpNq47Z+LSYmzMCInjm/Xlff5ugZic2Fd2HIhIYQQQhwZ7uo9eBuqsO9ahbuyEEPqEExZo4kaNhmNyUrbxq9wVezEVbIVAGfhWvY+8kPMueNIOucWdNHx+FobqHrlPryNlZjzJpF66Z0o2vDAw1G0AdXnxZgxnJo3H8JavYdfGfWkuDqLuCd5/JxW3872KCOlZj1OFPxu0Bp7jtvc8UfiZwlWfB1/T3iV8L8ruj4y544DwJCUFXaMIVk+UBBCiMNBUdWDbeZ5dKhusHPbPxfT0u7BqNfg8QUG3KY0I8FCTbMTnz94YrRFT5sjOEsgOzWax359Ajqthhc/LQjdzAPceMG4HrUJbn7kG0pr2gCwGLW88qcz0WnDF2xuLarnnn8vI6CCVqNw1zXTmDk2vKDl12tK+cfrG/Y79gnDE3ngp51LY/z+ANqO51u1tYqNu+sYPyyRWePSI56vqiqfryimYG8j+dmxvPDJdtxef4/jzjt+KD85byzPfrCVDxb3DDL2R1E6A6XEGBNNbS78h3CVyPGTMvj5ZZOkbasQQghxGKmqSuPXL2LfsRI0GnxNNRChf5nGFAX6aBo2VBPwgTUNjDHhx+gTs/Dbmwh43ODvnK1pHjqZ1Mt+i9IRMNR/+Rytaz4FQBefhq+xqs8x+oAv4qM4rUGL32fEoKtD6eUzkH9mxlFpCoYn8xrtnNEYPqPUE2Uj7bhLgjU09MFkpL1gGY7C9ZiyRmKbdEqfYxFCCHFoHDMzNFITonj8tpPYW9lCbroNvVbDXU8spaS6rd/X0Bt0oTADwOnu7BJRWt1GY4uL3WVNFFeFFxXNSo4Oe/zipwWhMAPA4fbjcvuxWsIDjbFDE5kzMYPFGyrwB1T+8foGnr47AVtUZ2eVpLi+p1hazXqGZsZw66XhLWf3hRmbdtXxwH9XA/Dx0r3cd/1MpoxM6XGd9xYW8d+PtwGwcH05CTEmPK3BQOPc4/PweAMkxpjR6xUef2sjE4YnkZYYRVUfNTAi6Roy1be4Ih5jNmpxunuGKf2xeEMF6YlWrjh95AGdL4QQQohO9p2rcFfvxd1mxF5SjSEhkeQT52FKCdb9UtUATYvfwLF7LZ6a4v1eL+Cy077Xjs8JPjc0F0HyJMKCBW99WcRznUXradu6GE/5Ttp3rCDg6vwbZH9hBgT/6D2r0Y6rFZp2QlQa2DomVhgzR+Au72zXenFtG++k2HArkOP0hF3Hr0Dm2bdgHTYlbLt19HFYRw9e3TUhhBA9HTOBBkBstJFJIzoLaz5++0k88/5mPlyyt8exuanReHwBAmqA6gYneq3ClaePpLC8hdcX7ESnVUiIMVHTGFx2kZ4YxXsLd/PxsmIg+Is3JyWaMXkJGI2dswE8Xn/Y7I19fvbwAm44fwI2q4EJw5NC2xtbO2/q7U4vtU2OsEBj/LAkJg5PZOPu8Ard+7Q7vSTHWXqtHbG7vDnscWF5c49AY+mmChauD//joaHFxR1XTmHM0MRQ8c/3FxXy3IfB0OPrNWU89pt5fLqsmE+W9Xx/D4bVYsDp7rncpTdx0Uaa2jqnlu4saTyk4xFCCCGOZa0bv6Jt49foEzJIPPW6UL2K9q1LqP3gH7RXQluXFaJVn3zCpH/+HW/dbmreeRQCvX8Ioar0mAVhTgjOzPC5wR65znmv5zctfgN/cy8nKRpQ9z/t02gDnRkwpmIZnkXUiOlYx59I67ovaFjwXwj4SPf4uI0U3KXbe5xviE0lasiE/T6PEEKIwXdMBRqRXH/+eNITrTz9/hYMei3XnjuG4ydmEmXuXIPZ0OLEZNARZdYzY2wacyamc+e/loTCjMkjkvjFZZP4yYNfhc5RVSiubqO4uo1Plhdz/ryhXHfuWN75pmeYAdDc7uWRl4MFQK85azQXnzQcgOMnZrC1qAGA3DQb2SnRPc79442zWby+gk+W76W0uhW7yxe2v7aps35IdYOdT5cXExNl4Nzj85gyMpnXvtyJx+vHoNP0CDPeWLCTlz/fEXHMj76ynlsvncjJ07MB2FPRWZDU5w9QUWvnnLl5LFpfPuACnn2pi1C7oy9NbW4sRi2OjlkdG3bVsWxzJceNj7y8RgghhDgWtG7fQfFLr+CqrCJ+2hSG/uxGFI1m/yd24aktofqdf2OvAb9nF/Wbyxh+6z14W9twlAQ/xHCHT0zF19pG++5CWhb/q9cww14DzoZgcBCTAygQ6PjzRdvxuY3OGJwh0duyD+i5r9cwA0JhhqqCvRr0lp7LWfZdU2+BtLMvIOWUk0Pbo8cdj6euGMeuNSgmK9ZxJ+Iu6xlo+JuqaVryFvEn/KD3sQghhDgsjvlAA+CsOXmcOjMXjUZBG6FgZPcOKc1t7rDQQK/TsrO0qc+WoJ8t38t1545l6ebK/Y5nyYaKUKBxxuwhZKdE89nKYlQVtu5pYHKXWSYQ7FYxb0om86ZkUtvo4I5/LaahtaPatlbhnI76HW6vn7ufWBpaylHVYOeWSyby2K/nsX1vIyNz48nqFpis31nb6zgDqsprC3Zy4pRMNu2uZ0hGDIs2VBAIqCTGmBg9JJ4Yq5FTZ+Tw7sLC/b7uUTlxbO9SCDXsNRJppW3/ObotUSnY2yCBhhBCiGNWxQcfUfz8/0KPa778CtuYMcRPHYfq86KPTe5xTnthEaWvvoanqRl9bAzx06bhzDXTrijE5gR/C7dXFrLm2htQvV5ixuZjNoMhGjxdQg2NyUTUkFxavvX1eA4ATzu0lgS/9raDVg/RmcH/766vMENVwecCVEJtVpfaTBzX6mJ/5b/t1WBJBl2UAa0uuGREJfj3hkOrpfaKs5k8PxhmBDwuWtZ8Quv6L/G3dsyIbW+mYcFz9PYXirehYj8jEEIIcTh8LwINAL2u/59Y5GXEEG8zhZaDTBmVgsfb9xRGq8XA4g3lNPRSF6L79bvaUdLIovXBX4zLN1fyz9+c2CN42Cc53sJTd51MdaOdXSVNrN1Rw46SJibkJ9Hc5g6rS7GzIzzITI4mMzny9cYOTaRgb+9LNNRAgJ88+BX1zcFZE+fOzSM/O44Jw5OIsQaLYI3Mjev1/H3GDU3kwZuOo6nVxdX3fxG277SZ2SxcV457P+9xf2kUmDKiZ52Q74ttexr4eOkeEmPNXHH6SEyG780/cyGE+N6o+XJBj23VH/6X9mVtgErMzPNImH91aJ/q91PwxwfwtnQmE6+b9rCzzYRuVCI/rG5htMODKR7ayoOzLlt37EI3OhpLuoa42dNwle1Ga4km5ZyrMSYlEXf85TR+82LwYlo9+L34CavjCYC/SwkKV2NwqYmh488SY0oc3vomfG5wNUFMNiha2OtNJKnFTtue4N8fSprCN1OsbLaZsQRUJre76UvC6OAMEOh88q/io2jQa9lj1tNWv5JxraeSYUul9oPHcOxa3fMiXje2KafjKFqP1hpPwNGKt7ESNDpMOWOw71iFKXcsGqMZ1ecNFQcVQghx+MidTgTRFgN/+8XxrNhSRVpiFFNHpeD1BZi8roz1O2pJibdQ061N7MnTs/nbq+sJdGlTmhBj6hFwmA1a9lS2cP+zKzhzdi7/fHMTLV1+Kfv8KuW17b0GGgAmo46EGDPPf7S0YyZJNW0ODz+7cDxDM2MoKg8uDZk1Lq3Xa+xz5ekjSUuwUN/iYtOuWrbuCQ836ltcYYU81+2o5frzx4UdM2tcOr/+4WRe+LiAhtbIgU5dk4NPl+8lN7Xn6/piZel+x9lf86dlcfrMXEbmxh+ya36XNLW5uO+ZFbg8wRkrbo+fmy6Wdb5CCHGsMWdk4CwPnyVgMLXS2vEr1e/9gLg5l6AxmnE3NNC2c1dYmNEUrWVnbrBGlk+jsDAuitEOD06vBgh+wBCbBwZTsMi5t+RrdKjQDu3r3sfTeAK2cfOJnno6eFz47c0Uff4fVmwqIbfehd4EGhdoLCYSTpiEv3w1BPy0lnYJOBRItTShMweXpmi0sKI8m6KEbPJPOB3ry48AwUAjUKWy1Rocr0vb94dUirIvzAhXZdBRYN23Q6XdEywq6q7Y2fNgQGuNI+74y0g8/frgGNxOXOU78DZW0/Dl86AG0EYnoHqcBNwOUDQoBhNJ59yKdcT0PscohBDi0JBAoxeJsWbOmdvZilWv03D/9bNweXxoFIU7H19CYUdwMG1UCpPyk3hjwa6waxgizApxevzsqWhhTwVs2FmHPxA+jdGg1/LRkiKSYs0My4rtdXwNLa6wZTGl1W1otRoe/NlxLN9cic1qZPro1P2+TkVROHl6Tmi83QON7q1vs1KsEa9z4pQs/vlG7+1lqxsd/PudzZgMA1vbO1Czx6d/b8MMgIZmVyjMACivbT+CoxFCCHEoqYEA9UuW4XPYGfKTazEkxNO8aTOuiuBy16ZdEOiYHeFsgTwV7CWlbLrjLlSXO6x3utETQOtX8WuDizf0xihq83MYOfsqql9+G0dZOTpzZ8Fwpcuyi7Yty6l9eTnGlGQmPPoIelsMitHMbp+VEYWdH2x8M8XKziEmAqZibr7idlKbmvDv+B94gh/kaHTBOp77aAwwY/YUzrrwYuJsJjZ+kYSvNRjCOM0KAY1CdADGdvkgSGOOJuBspz8LV09osrPHrMel1TA5Lo/kkkJKX/8rqr/z96YuIZ2oYVPQxSQRNWImWout87mMZgzJOTQsfB1XYwBFCwYaOt4fQA2guh3Uvv0w+p/8DWNK7n7HJIQQ4uBIoDFA+6bvP3TLXLbvbSAx1kxmcjR+f4CJw5PYuLsOCP7NcMn8fFZurWJ1QeQCVl3DDEWBpFgztU1OthQ1cN+zK/jdtTNIiY8iNrrnxwyZyVZG5MSFlpWU17bxxcpixg5NZOXWalQVUuMtZKfaepzbm/PnDeODxUU0dtTnGDs0nvJaO81tbhRg+thUfnHZpIjnqt2Tj164PAHmTQq2qj3QmhlGvRZ/IBDWYnef/Kz9L385luWk2RiZE8eOkiY0Cpw6I/tID0kIIcQhsve5/1L18acARA39hgmPPkTdosXs/se/gM4wAyDghE233401Pz8YZgCoKhqTCa9fxeJ2M2tTO8smWlE1CrVqgBFn/5xYcwyxd95GaUMpy176PTPsHW3otYbQ1Ip9RULdNbU0b9pM4uzpVL18H9rNRaHn9yuwdZgJVatB4/fxzNrXUL1u4maYOWWljxiPH0ueDkNqLp7qQlQVPM5Y8s8/G0NHd7WRd/yabb+9FdUfID5T5VclDfw9O56q0VNRNSbyZ19KVHwaropdNHzxHI72Jt6MVigwKYxqd3F5bRv78hI/UFOlcM3KBjxWLZOvOIWmz58OjVcxWkg85cfoYlOp+/Ax/C47ikaHbcpptG36Bmf5TlBV2guW0bTdRcAHxiHQ2yKTqpd/T9ZNT6A19z7jVgghxMFT1P7eiYr98gdUymracLi8JMVaSIoz09zm5qr7Pt/vueOGJlBW205zW/iaULNRxwM/nU1+ds8bdbfXz52PLwktMQGwmvWhjiMp8RaeveeUAb2GdoeHz1YUY9BrOWNWLm0OD1uKGshNs5Gb1ns48tyHW3l/UVGv+/fRaRWuOH0Ur3+5A19AxR8hlNifCfmJbNrV2cZWUYJ1M64+cwwXnjgMAK/Pz3sLi2hpd3PmcUPISIo8s+RY5PH62bangfgYEzkDCLSEEEIc3db99GZcVdWhx9P++yyepiZW3H0HFnfk36cas5mA00mFKZFyUwp59nISE21QVcaSiVFsGB0VOvan067ipLzZANz55YPUVBYzpt6Fz2ZkVt6JaD9+j6j2AM66Lk9gNpH/06tpW/Y0DbvA09y569P5Ns512Unw+qkw6clwefEr8HqKjW1WE1pV4ce7VRqdzRSmGZiYnMnZl/05dL63sYqy//wi1EnFrcA7yTY2RwcDj/yEPP44/zdoOqZ5vFfwOa9t+SB0/sU1rUxtC84YeT7GxhkLOpfcRGUlYkvr/FsCrY68u96g4vk7cFd1/D2jaIg/6Soav34hdJijAQgEW88q+5l02jBqKmnzf0RmzP6XAAshhDgwgzv//3tGq1HITbMxekgCSXHBzimx0UZ+esG4HkVJuy//9PlVLj5peI9q3063j89XFEd8PqNe26PgY9f2qTWNDirrBrbkwGoxcMn8fM47figGvZaEGDMnTM7sM8zYWdLIh4v3H2ZEmXVkp9p486uduL2BUJiRnx1LWoKl32PsGmZAcPZstMUQCjMA/vPeFl76bDsfLtnDb59cissduRL7scig1zJpRLKEGUIIcYyxjRoV+tqckY4+xkbBnx7sNcwACDidlJmSeTnjdFbEjSXa70SpKkMBhpV0/m5UVBXef5K6L18LnldVx5WfNjJ7iZ1Znzei+9c7WFoDmOKCHUtCbUacLgpefQufRodWG/7cU9tdJHn9aIAslxcNoFfh7Prg3ybzVrcQtbaWrG0exq1x8oq/nrItX4dmfdZ99h8I+FEJLigxqvDDmlamtgbrauxq2EOzs5WAy46jcD0+R3h/WV2XJR+NhvDBaSzhH3TYpp5J+44VBNxdWserAZrXfB1W5NRghfZKaNzZ0R62Bmo3QsN28HerU7qpuoC7FzxEeUtVz2+MEEKIQ0KWnBwGZ83J46w5eQQCKmW1bdQ0OMjLiOFPz61iT2VwdsWciemcO3coM8akUljWzCMvrw3Vr0iK6/1m/6ozRvH7p1fg8UbuA//12jKuOmNUxH2HyiMvryPQj4kWdqePPRUtPVrn7iptPugxNLd7KKtpCxVT3V3Wec3GVjeNrS7Sv0ezNIQQQhx7ht50I1F5ufjsDlJPOwVVVfG2dM7SVIE6fQzJ3pbQY4AScyqqosHms2MKdHb9SGtyM7+inZpoHWMcbnKdblpXv40hYxzztrgxdwQlej9o9MEioYoCxAYnTdg77tObXa1YFRVbFnidwRv7XXlGTNEKhGcMACh6IwnmOLJqGkLbElv8GD0q5Z//B1PJDpLOvhmfsw2vEgxBusp1ellrM5NoiceqKpQ/fwe+pmrG6PRsGjuK3fYaJqWO4Xg1ntbCHQD8IDqV5RM8TNlmJ3aIkfjRZgxJJ6PRGzHnTaR52du0rvowOD6DGdXnhkCAQGt5WHkOnRGsGdCyJ9ietqUkmO34PdBaBnEdn624FIUlsRbcfg9ba3fKLA0hhBgkEmgcRhqNQk6qLfTJ+V9uPo7VBTUk2EyMG5YIQGpCFKkJUbg8fhauLyM3LYaLTxre6zXH5CXwr9+cwE8f+jpiTYrEGNNgvJQwdoenxzaNQq8hR0q8hap6e9h4R+XGsb04WA/EZtHT6vBGPrkPFXXtvP3NbqItBqaPTmFPRfAPumGZMSTH938GyNHK7w9QWN5MXLTpmHg9QgghBkaj15N+ztlh2zIuOI+Kd95DBdbZRhDnbSPZ28LamJF8kzgFfcDH7MYtKGqABkMMVcZ40tzBAuAKMHaRg+mpYE0N1urUmaHosQeIb1DDfk9rDYTNIlXMnV/HtvlxrQbVBr6OJnBDi9wsybEyBdACdo2CU6Pg1Wh4J8FEg7OJ0jQDsbuDMyLqYnWM9LhJ8fhp3fwtL8cZ2BjjxWVN4qQmB6e2elB9XkAhYeRszkpK4YzhJ+At24GvKbgMx+Tz8nN/PEmX/B5FUdj78A9CY8wsKeSK2x/Dt2Uxvm9fx1OxHU/FdlJ/8Dv0sSm4y3cSAF5LsbHVauK2EpWEgCv02rtSA8ECporSOVEFQO34bEkF3kyx4dRq0CoahicM6ed3WAghxEBJoHEEWUx6TpicGXHfydOzOXl6/wo6pidZuWpGLi+vKu5otBYMMuZNzuS0mbmHZrB9+PE5Y3jync0EAioGgwZFVXD3MmMEoL7FiVan4PN1fPKj1/Dgz+Zw/3MrqKyzMzInnsUbK3o9X6FnLfPJI5L55xsbaOsIQuZMSOf+G2bR0u5m5tg0dPtp8Xa08/sD/OGZFWzaXY9Oq3DHVdP61ZZXCCHEsS336itJPulENvzyN0xu3YkG8Cg6vk6ciqpocGu1bI4ZxuWVCygzpeBH2+Majmpw1ELiqGDnkdgcL61asFd2HuNzBWdf6M3B2Rld62joOv74cDd1btMEYFqLi44mKkQFVN5JtnVpmwqLp0aTMXYSW0s2M97s5tKOZbLVei0rytcHD1IUvo6P4vzz78VUXoghOYe8nDGha3jig+1SUYODMCRmoHQkLzpbIt7G4IvQ2hJIj06hweWic04L+JpqMGWORBsVw1ZcbOmoz1GkU0noWJHj94KiV1BUFb8nOAMlYSToTGBOBGc9KFqwpgeXofgVqDJqUYAfTbqEofE5/fhOCiGEOBASaBwjLrl0AtOmZVJQ3ET+sMQ+W74eaqfNzGXOhAxU4N6nloUVKY3E4w2EPfZ6Azz59kY2dtTGqG3qPcw4fmIGtU12dpQ0h21fv7M27PG6HbXcefW0/r+Io9zeylY27Q6+Pz6/ysdL9/QINBZvKOebtWVkpUQzZWQydpePqaNSMOp7/vEqhBDi2GHJzCD78kspfekVINhiVaFzhoVGDZDjrCHHGbnrGgRnIeg764MSnR6sD8G+WQd+sDen4y+uxOcK76gSiQrUmXUMdfnCtmpUlUBH4JBsSyZx9glsXFFIkc9IS6MDnaKwIM4cdi2NosEcl4Y+MZvtdYWktFaTYQu2pjckZ5Ny8R20b12MISmbmJnnhc5LueROGr95CVSV+JOuCr6ucSfQtuErAq52dDFJWEZMR2MwkXbF/exe/iq4igF4L8OGf08rOU1enEYNQ/U+UIJLTmxZnWMzJoAtOxho7JvBogBJbh9Neh2Nzr7/JhJCCHFwpMuJOKSu+P1ntNp7LkHpTqtRwtvW0p8O8gPzw9NGcNLUbFKOgeUZDS1Orn/wK7y+YBh0yvRsft6lhe7eyhZ++X8LeyzzGZUbz19untOjbokQQohji9/lZMMvfoO7OhhabLUO4dvEqRgCXs6pWUq6u77P8xUNJI0PX17RWgr26sjHG1NTic424igtwdWoEPB0+QWk0WA57xQSzjqVne//FXNTHbH+AJaASrlRz6rMdFSdgSuOv56E+Ezu/+bvFDWVEKU3MzNrMl/vWRZ8Dq2BKIOFS8eew+ysyfz2q0cob61Cq2j4zXE3MjVj/AG9V97mWuo+fgJPYyXW/OkknHYd9j3FoNXycu1iVpStZ749QHpdDWUmPaUGDY1GPQkeH5fXtIU+DfQHehZ53ycAPJsey0Un/pSJtkx0sckoGvmAQQghDjUJNMQh9e63hfz34219HvOT88YyYXgif/7vaqobHIM6nnibkSfumI/VrB/U5zkc1m6v4aOle0iKNXPtOWOwmPS4PD6a29x8u6qE177ejUrPcOiZ355MakJUL1cVQgjxXWffuZqa9/6Pus1efPYDv47WCJaU4OwLTxvEDoX6LaHVHGgMBgKe4IcW0aNGkn35pUTlZeNuaGbTr25nXzXzjIsuIPfqKwFodbXxxZM/Y4qzs3tIvV5DojeAeehk0i6/B1/AT3V7LfHmWCx6M+srt9DucTAjcxJGnYEXN77DgsLFuP2dH5jMyJzEb467YcCv0dfaQOuGBTQvfSu0zaMZQ/OGbVgzwJiUjClnLN7ib0L7P06IYmlcFGPaXVxVHaHKKcGJLJqOX777Zmq0Zo8gtr6KgKMVY+ZI0q74AxqdIeL5QgghDowsORGH1IUnDmPG2FR8vgBarcLWonqeeHtz2DFRJh25aTHMGJPKB4v3DPg5YqIMtPRjFggEO5xU1LYxIid+wM9zNGhpd6PRKERbDEwdlcLUUSmhfeW1bfz2yWU0tYX3iesaZsRajcRGGxFCCHHsqvn4Oeq39gwzFG1nocr+8LuhrbTzcf3WzjDDlJ7G8J/fQtmbbxNwu2nbuYttf/gjlpxsxj/8IMN/eSu1X32DOSuTrMsuCV3DZoomqjUAXT5XsHoDqICvKdgmRafRkmlLY2vNTspaKpmUPpZUaxIAO+oK+XjnVz3Gum/JSXcNK1bRsGo11mFDST/7zLB9jYteDwsyIJjBGALbSBoXnKWCWotz+zfouqx6ifEH3wSv0vtsx0KLniynF0uXX8LRpTtDtc3c5TtwFm0gasSMXq8hhBBi4CTQEIdcRpf2qBlJVhatr2DrnmBrNq1GYWhmLG6vn6/WlPZ2iV5NHZXMTRdNxGLSUdvkoLy2nUdeWtvr8TqtEmrlCsGlG1+uLMFo0HLajByiLAZUVQ0VEDta+P0B7npyGTuKG1EUuPWSiZwyI7yo2Cuf7+gRZnT36ysmYzLIP3MhhDhWVX/xJVWLIy8nUQMRN/db1zBEFxWFxmhkzB/uZcfDj6L6grUxHCWllL35DnWLl2CM02KONtG66gNiZp5H5cef4aqqItufSb1uL0aNirtdywd5URRG6TmjuZ3xT/6UtNR8NhsCPGcvwtbuZ2MDXH32zWSMnoAvEJ7IJEclcHzuTC4cfUaP8dZ88Q6FT74KQN23Cyl99XXGPnA/1rwhtDmaeWTPAiqHJDKh3c35de3BWiP76l50WTqi0QffO0UT/JCgxBhMY3ZZDCyJMTOh3U2lUUexSc9Ih4dKo45PE6KY1eLkrIbOVKn7XxbaqJgD+0YIIYToldzpiEGlKAp/uXkO364rY29lKzPGpDIkPYa9lS3Ynb6wY0+fmcOusmYcLm/EpShXnDaSy08dEXo8xBzDkPQYahrsvLuwkHanl+4LqKKMOiym4B8iXp+fu55YGrr2C58UMH1MKqsLarCa9dz3k5kMz447xO/Agflo6R52FAfb6qkqPPfhVk6ZkcPWonq+WlNKRpKV1duq+ryGQath9JCEwzFcIYQQR4C3tZWifz/d+wGHcFFx++5Cttx9L5P++XeMyUmdOxSFinffQ6OHuBxw7a3BtXctjWuWU724DICEsZDYsR7SovcxY3E7sbPMHN/YDrThbKpjXXI00Ro9py9rJa3BR/GKB7D+6T7GjBnNiUNms7B4BWnWZH57/C0kWxN7jM9TV0rdZ6+FbfPb7ex85FEm/O0RPtj9DXssweUeW6xGzqpvw9DL++NzgaHjsxkF0AdU9AGV2S0O3BqFx7LjMWoN2BwOFsZHBX9RKwozW129vn+KwUzrui/Q2ZLQ2eR3sxBCHCoSaIjD4sQpWZw4pfNxSryFWKuB5vbg0pHxwxK5+ZKJAGzaXce9Ty0PHZsab+HH545h9rj0iNe+eH4+F8/Px+cPsHJrFX99eR2BjuqYF5/cGYA0tLjCgpKACiu3Bqudtdo93P74Eow6LQFVJSPJyvjhiWwvbmRMbgInTcuipd3DyNw49LrBL+rV0h6+pEav11LT6OAPT6/A4+v7IzejBoZnx3PTpROlw4kQQhzD1ECAHkn+IAq4XGz/819wlJSitVhQ/X4C7uBMQa0Ruta89NaXhbqp6rosN9HoIaHVz9AGT9gUBodWQ5tFy5unxTOm0MnJq9toXLOWmLFj+Nn0q7hx6hVoNL23YPc112GMUdHowzuwuKqqKfjTg/i7FNLOcXnDwgxVDbat1ZmDLVr10WYgWPPDroENMWYmtLk4ocmBOaAyo91L7JX34XvxD7QSoF2jsC7GTGyXlvX7alqFHnuctG9djLehgoxrH+nP2y2EEKIfpCioOGIq69r5clUJ8TEmzpo9BG2XUuHfritjbUENo4bEc/acvAFdt93pZfueBlITo8KWm/j8AX7xfwsprW474DGPyo3nzz87ju3FDWzf28iE/CRGRqjP4XB5URQFs7H3zNAfUGl3eLBFGXosealusPObxxbTavdg0Gu490fTWbypkq9W971M52cXjuPM4wb2fgkhhPhuUlWV5edfPGjX10VH42vr/J2pMZnA7yIqBQL+jg4ood6wkDhWQW8Kbti3ZMNRBz6tCVt8cPZCe3WwTse3c6I5M2An1hegRavh4dyEUDtXgOvfqWPHvDxKh8Vw9cSLGJcyss+xBjwuKl+4B2d5MR67hubdXcJ/jYZRLz/NA9/8jQp7PTNbHJxbbw8LHOq2BEOZ+HwIGKMoiYvB1lDD/1JjqOv4XZ7t9HJTRRMAitmG6oxcILRPigZj+nDi5l6CZeik/R8vhBCiTxJoiO+VNoeHFz8pYM32GhJsJtpdXirrBlYS/obzx/LMB1tR1WCNjr/eejzDsmJD+x9+cQ1LN1UCcO05Y7jghGGhfQ0tTj5fUYKiwNdrSqltcqLRKEzMT6S13YPL7eMn541lyqhUXG4fdc1O4m1G/vjsSgqKm/oc14M3Hce4oT2n4QohhDg2+RwOVv3gqrBtURlgrxj4tQxJSfja2wk4naDTYs3LwpKTR+2CYLcPRasl/eIL8Gx/G50peI6zHpo7ansnHj+HoTdeS/nTvyDgDP/gIPmSe6lSPDR++An6CgeJ06eTfNG5/OL9uzE72qg3aPFqNKFsxBjQMKFOz+qU4OwPi97M8xc8SrOrlS8LF2HRmzlj+InotZ1TP5rWb6B500aisuKJn34chU/9j4ZlKwCImzKZ0b+/B4DmjV/h2rUWT30pvqZgi9uAH1qLwZYDXr3C0xmxVJh6dkdTVJU/F9XR+zyRcLq4VAJuJwFHS89r6Y3k/PwZNCbpQiaEEAdDlpyI75VoiyG0tAXA4/Xz8dK9rNhSyY6SvgMDAINOQ2W9PTTD1+dX2ba3IRRoVNa1h8IMgBc/LQgFGt1reOwTCKis31EXenzfs6v46QXjOGtOHo+8tIbiqv3PKDljVo6EGUII8T3Tuq2gx7YeYYai9GtZit9hD4YZgE7vx2orpmltcWi/6vcTlZlGYG/nOfqOOhMag4G8G36CzhpNxo8epOr1P+Nrqu48LiaO4Sm58JvODh9un4emgIumjuAg1mQjPzEPh8fJJWPP4u/LnwVXMNBwel14/V7u/+bvVLXXAlDaXMktM38EQPPmLRT88c+hWhZj/phH/q9/Sd2UyRAIkHTCPAC21+3m7eZtRGUkcNUpV6MufY+2bRtxNnqJGdqGAhREGSKGGQCmgMpTGXH8qKoZS6D391QXl0ZU/lRMWaOpef8fwW3xGRDw4WsOhiiq103A7ZBAQwghDpIEGuJ7zaDXcuGJw7jwxGGs31HD7rJmLEYdtc1OdhQ3UtVgZ0h6DJnJVuqbnZw5ewgajcKny/YSUEGn1TAmr7O4l9sbXo1d02X6bPcaHn15+v0t1DY6+hVmDEm3cdPFE/v3goUQQhwzwopz9iZSmNFRoLMrv73z95PPCfU7QO1Si0IfE4Nt3ATcu/Lw1ASnZaj6JNA0EPB4KPzXE4y86w708emkX/Unat//B96mamKmnYkxJbfHELw7V3MDibzrqabeoCN7UzUzNhSRMHkyI+bkYtFbaHYFl3SoqDyy5KlQmAGwq6Gz7XvLtoLO16mqtO3cRez4caTMP6ljU4DaVR/yl+IvcHU0UnV4ndx7zs9JPgfaNn1D3cdPADCu3U1aaQNvpNioMupBVRna5qFaq8MepaXUrMGh1WAJ9N4PN+nMGzHnjqP6jQfBFwxlfI0VKAZT6M2PnnASuph+fP+EEEL0SQINITpMHpnC5JEp/Tr2wZvmsL24kQnDExmWGRvaPiQ9hikjk1m3oxaNonDjBeNC+xJjzeSm2SiuCv6BFhdt7LXtakCFosqeU1T3+cVlk2hzelCA02fm9mvMQgghji2K5gALP3cJMxSdhuhRo2ndsjXsEF9759faKAsT/vYwxrg40q95AHvBMhSjmcq3XyBxdAB3CzSuWkP77kKiR+Sji44n/ao/hl/P4WTvc8/jqqomflwy7j0LyQNu1en50KdnzrpgoNK0dh1FX39BTZfwAmBL7Q4sejMOb3AWyZT08aF9rsrwrl/mtLSwxy0rPqBq8au4hnTOZGxwdM7KNOdNRDFGobrt6IBUj58Latt4IyeNXweSsY4Zw927PwsdvyzGzLn17T3asoJCzKzz8Tta8TZVQ7f6WKonWEck8cyfYpt0So+zhRBCDJwEGkIcgDF5CWEzM7q67/pZtDs8GA069LrOlbY6rYa/3DyHRevLsUUZmDMhnd1lzWzb00C0Rc9jb2wMHZuRZOX844eyaXd9aFtWspXxwxK54YJxfVZ6F0II8f2gj7GhGAyoHs/+D44g64KpKFHDKX35tT6P89sd6KKDRbY1eiPRE06idf2X6JQ6sIDeAl6ngi7a2us1Sl56mdqvgvU4tJ4CTB1d0o0+L8ne8GCmbOVS/CP9PQIBh9fJZWPPIcOWSnp0Cp/u+oZh8bmovvA28Dpr+DIOd3UR0f4AU1qdrLOZUVA4d2RnoKCLjifjx3+h/Kmfh7bpVZXGgIfUqWfQvvoTzjEl8pbaQEABS0BFAep0Gqz+AOaOgEjRG2nb8CUtLjuKTo/q8xKJt7GKiv/eBapKwqk/xpTZd8FTIYQQvZNAQ4hBYO3odd9ju1nPWccNCT3Oz44jPzuOirp2dFoFnz/4V9Hs8WlMHZ3Kn386m7U7apk+JpWxvQQoQgghvp/0Nht5N1xH0eP/PrALGPOo/erbsE1aI/i7TB5UgXazhhVrFzB7xqk4SsrR2aLxO8I7fKScMBtzeuT26gCe+rpgW1Q3uFsIBRqKxUbdsOHElW4mqSEYABg37Gai1sbGfFPYNRQUThgyi5a6an775UN4VB8aRcMvTzgXzfoNBFwuovKGUL98Ja3bd5Bx4flojUaiRs7Cvn0ll9S2Mc9rJPeye0hNyO58jarKyrZy9GNnkLR1FR6NwieJ0eQaY6l/+xFUn4dJwHCtgh+FGH9w2UqrXhuspdGx3CXgcYUymN7CDIDWDV+huoMFyatee4DcX/0XRRe5bocQQoi+SZcTIY4Sqwuq+XpNKRlJVn5w6siw2R1CCCFEJKqqsvOvfwt19BgslQla0r1+aAVFq2HozTfQtuJ5NIoHrwOUxOPI/9WvI57rd7ZR9vRtBNrr8XvA7R9G7hXn42upxesw0bB2Cz6fj5ZVa0LnbBlt5puJ0WHXGZk4FI/LRWtFKfUxnbM6zh15CpfmzMdVXcWOv/wVb3MzAMknncjwX9wCgKtiF97GSix5k9BGxQDQ6mpjQ9U2NtdsZ0nJagDSTHHkp+SjAhemTsD1ygM9Xo8KBBT4v6z/Z+++46uu7z2Ov84+Odk7kJCww5aNCAqKiqKoWLVVS9Xauq3a1m2d1dprHa2jrVtxLyiIgiKCyhQIe4+EhOw9TnL2/ePAgZAEEvZ4Px8PHz3n9/uuc8K9OeeT7/fziaOL18gleaUYgLoiiGjXpPlemiYwCe81kuQJd+2vo4iINEM7NESOEUN7pTC0V8rRXoaIiBxHDAYDPe75M5UrV1E6bz62+HhyP/6EgLflpJUHwtEQgJ1VzgM+P0UzZ1Oz0Y3JCj43mCNWtNi3bv1C/LXBI5QmK8R2sOCrKcOU0Is1dz8Afj8rutrJiDARU+ujwWpgaeewJuOsL90SfBBtClU0gWCgwxoTjb+hPhTMAKjbtrskiz21O/bU7qHn83J+5sVFb+MP+BvNUdBQwb29ziPeEcfLC9+mX0Q4nWsbl3evNRoID8DdFzxEtNfM+huCR1XqbAYqUuPI7NaRzt2GYbTYqVnxPfVbl7MriGGwhRFwNU4Q3pC3vsX3riW1a+fhLsomvMep2Np1aXN/EZEThQIaIiIiIse5mH59ierZg5xJ72OOisZTXn5Q45nCHTTYTFjKa/AaYXMHG4PX14fu25KTCPh81G4OBhkie2Q26v9D9iJeX/ohqSVexv9UBXUQlQ6OJHDlrsOVu45AWHfwBwMKnfLdlMaayepnp53NTzc8LAmYmuTR2CW+ykenHS6GjL6I3iSy6v6H8NbWEpaaSv2OYO3ahJEjmu3r9/t5ZfGkJsEMCO6f8Ph9fLVxNgt3ZLEo2UF6lBlrAFLcXjo7PWx0WPAbDNwcmYTDEkbqhEvIW/I/PhkWR7XFhMm7nRvXOhmQeQb1W7MajW80W/HtFdBwdO7f8g9ip4DPQ8WPn+GpKMAcFU/VwqkAVC6aRtrvn8Uan7rfMURETkQKaIiIiIicAHZ8MYX8/007uEGMkHL++aSMPYflfwgeIQkAgzbWE9fbjrPUTETmKXS+4XcAFEz/GqPZTLsLx4WGqF7zI/9Z/SFeApw6v4xATXC3SFUO2ONhV3EWo68QW1IiruISopx+opxuutW5SeoO1EGMx8fs6HD85sZBDQPQyZLAb04fQ8pZZ7Pq/oeoXrsueM9iYd7pyRRaXZgi1vK072JMpsZJR/0E8PkbJxLdJUBw90bhziorAYOBHIcNgE3hNn6M2b0zpPuWnxjf4xxSLzqHZZVfU20JzuMzGFhSnUf6N2/uHjcQXHni+Nvw1pTh3LQUjCbCuw0ios8Z+/2xlM/9iKoFU3a+AXscSfV52Mrxca0AAMt9SURBVPHG3aRccT+2nTtQjBbbfscTETlRKKAhIiIicgKoy807+EH8wRKsVct3HyGx+MEaH0fPp15r0jz9V1fgddaT+9EneKpriOmdStXCSdA5EYx77a4wGLGndsVduBGA8MyBJF12Ecvv3J17w7BHwZaODR4M0XtNGAgQMBhYEl5JTEwRNwDe2t01ZgMeD2sSfdTbrVC1g9eXfcRV/S7mtSUfUlRXwnldR3Nm59O4buAveXPZxwRomkpu5ua5XNJzLAvzsprc23PHyKay7NCakt1ejIEA/p33U9xe8PsadStcGqDTvX0wmM04ugzEGBaB0RxMIu6tKqFoyvN4q0qIHnYRMcPGN5rWU7pjj/eg8c6SgMdF8dR/4asLlnuPHnIB1uSOhHcfitHW9OiOiMiJRAENERERkROA2W7ff6NWcJeWNrnm6NCBdU/9HYC6rdvAaMTevh2uwiJcxcUEfMEv72XzrST2gsuLq5mSGMnPw+IZt9CJwe2l02+vIenMM6hZ+T1b83ewzAIUL8YeZSa22ovfABE7C6X4feDJCTCioJasng5qwnfusjAYiK72UhVlZva2eUzs/wvSr76Sjc++gN/tJndIOvX2htC6S53lvL9iMgvzlgHwnyXvkZnQmbHdRnFW59P4cNVUvtwwq9Frrfc2cEpKT+ZvX0JO1Q5aMrB9HwAsce3odeplXLN0KqsibWRg5ZxTLqZ+2wpcucGdI+5aCPjA53JR+vnfqd+ShSk8hnZXPYI1KZ2y797BlbcBgPJZb+PoOrDRMZLIfqNxbvq56SJ28tVWhKqtVC0KHkepiE6i3dUPY4ndb6ZSEZHjlgIaIiIiIieA8E4d992gaYGNVjFYLFQub5r001VU1OSar95N0QpIMbj4U6qPno/+E8utKVQv/w5PWR51GxZRtGge3gXraFcD1Q4jUc7gjgNbKoTFBcep3AIxlV4G4KVHjotXL43H6g0wYK2TongzVVFm/IEALq+L+FOHMeSdN/C73XQ01DP1m6fw+r0YgAszxzBj05zQ+gKBADXuYJJPi8nCb/r/gjq3k++3zQ+1SQqPJyMmjb+dez//nP86i/OyCOyVy8NhsTO60/DQ89jTr+D8069g5JofKfnyFSoLPwJT8GO23wuVW6HDlb/EU7SJ+i3BnR++ukoqF/6PpItuJ+BxNxp/7+fhPU7F1qEHrty9EoiazFiiE/HWVRJw1Te65a0qJu+1P5N63dNYEzs0+VmJiJwIFNAQEREROQGknHcupT/Np3rt2ib3DBYzaReNAgLEDT+H/GlfUzL3h1aNG/B42rSOgDcYN6nJ9lI8ZxGO5ADFX02iJg9iu4DZCHE9oHwjRFbtcXyiEnztwQR49sibGebyc/MnJZj8YApAUayJshgzQ/uOIiYseCbF7HCAw0EqMbxy4V9ZU7KRDlHtSY9JxWaysaZ4Iw1eF3FhMYRbHKGxC2uK+SF7Ueh5SkQifz/3AUxGE36Pi1OXL+biqkq2hVl4p100bmMwf4XN1DRPRe3qHyn53wu7L/iCeTqMZuh+61XEnfELCjY33mVhDIsIjpfWA+fmZUCAsK6DsMSlUPDRX2nYvhZbanfaXfkX4s++jvz3HgaPK9Q/vPdIfJUleMoLmv9ZeBrIe+NuwjOHkjyh+bK6IiLHM+P+m4iIiIjIsc5gMtHnqceJG3Fak3sBj5e8KXPI/Xw2K+59kLKFi5oZ4dDLfvtdtrw5hapsMFl257M0GMAWCW7L7p0Phe2SyE1KYVmkjcqU3Yk8nRFmJo+L5ZuzotjUwcon58ZRE2FmWd4KKmrKKflxHnnzfuCurx7l6k9v59UlH5ARnYbL5yYQCNAjsQtxYTEAlNdX8pfv/oF3Z7ChoLYEX2B3rguryUKYJXh0p2b5d7SrqsQIdKn3MLR691GWawdc3uS1Vi6Y3OL7YEtJZ93Wn7l72dt8FR9Omc2CpetAYk+/goDfR+VPn7Jr+4ynNJfqJV9TvyWLgMdFQ/Yqtr90C5bYZDLueB1LcqfgexgWhdkRTcP2Nfv+Ifg81K2dR+5rd+H3uvfdVkTkOKMdGiIiIiInCGd2DuULFjZ7b1eeC3x+/L7df+XHYAjlX2iLyJ498NXX4K/agacefA3Nt3OV1OAKh/CaYD5LgzE4XZ7JxNRzoukdlcFFnUZz6uBhvP/mTRTZrQzo6CfW7sM08nIeq/0er9lIYaSF4kgzflMwCFLhqeXb158ldc56NmTY2DEiuFtjyY4VrN2chdNh4oyMYfx+8FXk1+w+HlPncVLjriM2LJrE8LhGa61z73Fsw9D4735mk5VYexSX97mQ4emDQtfza4rYUV1IbGQ0xuLd7R3dhxLwugjrPAB7Wg++/fCPuCPM/BAbzg+x4dw0ZDQpDXUUfvI3AnsGGvx+Av7GiT99NaUUfvp3EsfdRNyoX+EpL8C5YTFVC//X4s8nEGhc9dZdvJ01/7qeqFPGkDrsEkzhURgM+tumiBzfFNAQEREROUE0FBbBXl+G98eamIi7uLjZe5YI8NYHE1rurW7bJhIyfZiSgoGK6jxwFjZtFwDM9eAOQNk6sEaBpxbCnT6MvWC73UVCZi+mbvyOL6ODVT+yIu3cl9KeQHok3o27v3Sb9viCbgwYsGVtAqAkdo+PtAYDAzY4WdoznB9yFtEvuScmgym0E8NuthFjjwIgyRFPlCWcqNwKoup8xA/uFRomqv8Y6rctp37bSkxpmdx0+X0YLTa2V+7gr3P+hdvnZmTGUN7O+hSv30tCWAx/zByCo76O2JGXE9apX2ishtx1JDqdEBGc1+APkLp+OXmrXmoUzGiosuKtisIXXoXBYifg2R0lcuVvIu+1PzaqnrIvhr2LzADh9U58C6exfeE0PEYjFkxEDz2f+DHXtGpMEZFjjQIaIiIiIieI6FP6EtYhjfrcvOA3WqMRfPv+Aux3u8FsBq83dM1oMeFIjaA2u6rZPuaoKMzmanalkjAYITo9GPioL9ndzmcI5r0w+YOBDXcdeOp2jgF0zHfRefFGlr/9e5afkwKJwXteo4F1WbmM7TuePk4vqx1mrH4/l5bVkGeKoTgunrNHX47hx7eor8qjS66L5ZkOfCYDNpefbttdeOKMLM4I56XFb+Ow2HGYo7CYLdx56vUYdn7bt5qt3FGZSfXsGQDUr1/I3521nJMXRpQ1nDX9M6nu1o2xXUdhtARf7BNz/kmVqwaADaVbQnlWSxsqWV1ayCl17lAJ1V2siekMJwJ3aQ25NgvnOFKxZM1ulKPVXQsVG9zAVmo2bCXtsouhch6+6mDVGVNYFL7a8hZ/joFAMNZhauWne4vfD/ipWjiV8B7Dsad2b11HEZFjiAIaIiIiIicIs8PBKc88Te3mLdhTUljzt79Tv2XrPvt4KyuDgY89+D0+6otbzrfgra6GsKbHGuyxjQMabguE7THMnpsGAkB6vot2ZcFASpd15axPiCZgMBBV6yNhawVr/vJXLu6WzPkJJYQHAtj9AbqFu+n4mycBcD3+CPlTp5FmtdLJ4mX5j1/TvsRDjNvP+Q1OlgQc+A0GnJ4GLu99IRdkjmnyWgLrt4Ueh1U1kDk5i/pKH/WAb76ZaefHsSB3Gf8c9ygGDKFgxq7XsIsxECDB6STg8VLw5YuURTk4pV1vfsxZjAEDJaeeiamigJvSh0HOWqq3rWu0Dt9eb7e7spaut75C3fqFBPw+6nPWULs8WGLW5wJnSTDhqCM5GEgqWx/838S+TU7L7NfeVVVERI4XCmiIiIiInEBMYWFE9+2Dc/v2/QYzQpo5ppI4ehSFX81osYu3fmd51c67v0DX7FUbNsy7+5kB8LM7I70BqIgy0aFkZ0Ajz01mdgMRTj8D1zuxe4I9azcXkRKzR+DEt3sniS0+jk7XBY9LZADhK2fj9rmwx4HZFMAcCODe2TE1ql2oX/ncD6le8jWW2BSienajZsMGIFhGNrZm946WhEovBAKUOsupaqghITyOPkmZrC7eEGpzbpczcHob6LZ8Ae3dwbV5/X6em/8a7aKSKahpfJwn22rirs4jqF7ydehaQ2XwzfE5wOQMvklJY0bjc9ZQOe8z3MXbMdjCgODxnrJ1uwMg3gYwh4HXGTzOcyBpMewZvfbfSETkGKSAhoiIiMgJaPPL/zmo/oUzvsFos+F3uVps01AOpfUQnmrDYI1kvbuOruyRWNO/e1dGnd1ASUo4HbNrAfCY4MeBkRgMBjrmu9mRaGFTup3MHV7CXHWhIQxmCxH9zqBu1XfBId0NVC6aRsyw8U3Wk3r5NZRMfwX8PmJOu5Rfp6WyvmQz/dv1pn+74Jd2V+FWKn/6LPi4YAu15cEdFwEDFMSaiGow0K4sGNTYmGEHg4EucRmhSikPn3kn7634gtyqAkZ1PJXTdiYIdSYNIHfyc7g8TiYnRoLB0CSYYXX7qV23lnp/UuhaZTbU72yWn2RmwYhIHA4rp0RHU/rt27iLtwfX56on4A8GMvbczeGuCe7SiO8J5vAWf1QtSjj/RiUHFZHjliEQOIC01iIiIiJyTPJU1+Ctq2P9/z2Lc2srd2gcBJPDgb/BSUQqGC1QkwcEwO/Z3SaiXx8KsjcQVu0hLMqGr8FFXqqFT4fHNhkvptrL8JV1dN/uwhwVSbc7bidu8CByX78bT9Gu12Mg/Q+vYY5s2t9XV0XA58UcFd/seht2bCL/7fuCbd3BXSbumqbt/AYojzKSM6YXN1z9AHazrcX3wOusx1VURKnVxfdTn8Lq9fJTjINS6+6/HUbXeLnqmwqsrgAmK0R1gspNwR0Xe3r9ojjO/rmWjgVuojpBeGLj+wE/lK4J7pABiGgPkWktLq2R5Q4rPZ1udr2SiH5nkjT+ttZ1FhE5BmmHhoiIiMgJomLpMtY//Qx+t5vwzp332z4sPR1rbAzVa1ZiMDQOQuzNEhuLp6Ii9DyqXx/Sf3UFm/71MvYUJ46E4HV7NBSv2N3PmphA/eatRDqDg5ssLhJ6QBIedlQ6WRFmJ7zGi9dsoDzGQmWUmRmnRRFfVc6ACy4gbnBwB4TRYm12XZ6aGtxl5YSltsdosWAKj27xNQR8PvKn/0DZ5ggslloi0poGMywRwRwVMenQPs5P5sbVmJ21ENV8QGPH1C/JmfQ+Abeb2EwDZ0QH/1bYs87N/3WMxwecH55OrzUFeF3Bez43VG5uGswAuGtTOV4PBOLAsVdMZlfZ2/ieUF8WDCCFxTUdoyX9nW5sQ8ZhDYA1PpWoQee2vrOIyDFIAQ0RERGRE0TeZ18Eq5YAda3YnVG/fTupF5xKmG01Bvz4DEkUL2pawjV2yCDSr7qSVfc9iN/lwmi30/0Pt2NLTCBp9Cgq532C3xvcNeCuA4Mp+OW7vmcqvvPOxPT8e6GxXJXBZKLbw8x0q3MzbKEbf7mbz8bEhNoEjAbCfzGOtPG/CF1LOOc6ir74B766KmJHX4k5MpbazVtY/fBj+OrqiOjejT5/fQyTreWdFEXfzaZg+lcAuAke0TA7gvknAAxmiO8BVTkQtjOYYHVA5YIpJIy9vsl4ZYsWk/3GW6HnZuvujc/RPj8On58as4nkzasIr3bTqPbJXmVVAUw2cDjA0BG8rqb5MKoKTJgNPhp8FiKTfdisfjDbgo13sdgxmi3464ORGnvn/kT0Og3nhsWEdT6F6MHjWnx/RESONwpoiIiIiJwgLNFRu58YDMHIwX5UL56KyRTcKmAKNA1mAFSvW0/p/AWhaij+hgYKZ8wkoltXcj/5DPxQV9h0h0ds0Q4Kl35CtBEMO3cjBAJGFp06hillwW0c7c1uzp/npSDBEupnNBjZkRFJgN3f+23tu5J+W+O8IAXTv8ZXF8y3UbtxE5XLVxI3eCC1m7dgiYnBnpzUqL23eq/tGMZIYrvWUJMHFgeEJQSDCGF77YwwmC00p27rtkbP68t2H//YFGahxmQkwe2lU70ba0JwZ4a7BmzRYLZDxaady7BAZJoBe0wAo2lnCVYPELZrnSaSL7ub9kk9KFyzlYyMJKLap+BvqMVoD8ddkoensghHx74YrXYAPJVF+OqqsLXrgsFoIuqUphVeRESOdwpoiIiIiJwgOt/wewJ+P+7yCtqNv4DqNeuoXr+e+pztLfbx1DRgigk+DmAkWIukMV9tHTs+/bzRtfXL5lG54GvSdlZIaXJcxQDhKdCzwc22DpE4ijxYY2MwX/cLvt70CWG+APV2I/nJVopjTfhNu7csGDxepq/7loSwGMY1U2p1F2tc4xwa1pho1j7+JJXLV2Awm+n+pztJOG146H7S2WMo+u57GvLzCeuQRuc/3ce6x/5KQ2UhUelgsgaDCbaoncc7LBbsqd2IGT6h2fnjhg1hx+T/hRKn+n3gT0hlU3pnAmnd+JMtisjJL2PbGZmJTN3d196xH7GDLNRtWIo1IZGYM66kfNZb+BvqqNnup6HSQMrINCwRdmJH/QpH5/4AdDztlNAYprBIAGxJ6diS0hutzRKTjCUmucX3TkTkRKCkoCIiIiInuJ+vvxF3aWmz94xWiO4IRjM4ep6JKbYTOW+/S8DrbaaxMVTiNbDzv5bqY8T3AmtEsHnJimDAI7JnDxZlWuk+bSVmHyztEcaS3uFcN6WUr06PIae9FaM/wLifqnDU+9neK4E/3PR3zBERzc7hc7nY9sZbOHO2k3TmaCK6d2PFXX8O3Y/q05u+Tz7eqI/f48FdXoE1Pg6j2Yy3ro7KrMVUz30p1MYc246ki27DntajhVe3W31+PrWbthDepSOWSBtgoPDDx/GU5ePoOoiowedT+Onfwdc44mNJTKfDDc/j97gwWmz8kL2Ij1dNJdLi4Ma+vyQtKhlLZOR+5xcROZlph4aIiIjICc7RIa3FgIbfDRUbwWA2kfq7cUR26Uzq+Avwu91sfP5flC1YCIEABpuNsOQknNtzQ333DGaEd+lE8lnDyf30K7w1lfhc4A5AbcHu3RsNBYV0KvNjDlZFZdD6ehLLvVh9cNHcSkpizDhcfiKdwaBJxJIiir6bTerFFzW7dpPNRtdbbgo9d1dUYLRaQ3lE7EnBIyee6mpmz/qE7+s3EpGaxm3DrsFuDn4MNoeHE9O3D9VzDQRDNGCJTsCWmomrtAyf04ktIYbCT/+GK38L4T2GkXTxHRiMJgDC2rcnrH370BpKv3kTT1k+AM7NS2nIW98kmAHBpJz+gJ8Xl7zH+pItlNUHE66WUM7bG/7HY2f9qdnXLCIiu2mHhoiIiMgJzlVaxtZXX6dy5Sr89fUttjPHRNP74YewxMRgiw+Wz3BXVlK7cROOjhl4KipZ89hf8dXV4TOAaeenSJ8BOv36Kjpc9guW3ngrDYWFu8d0gCNhZ5LLiA7UF5TgdzYAwdKoxv18Eu1y682knHt286+rpISNL7yIu6yMtF9MIPmcs6lYlkX+tOnY4uPpeN1v8Hs8LLvrT/jKK/GaYPKZMXQbega3Drum0ViVi6ZS/v374PPu3IkSoK44QHU2JI/IwOjJCbVNmvBHInqNaHZN5d+/R+X8yS2+ngCwLi6Gz2NthIXHUuosb9KmU0wH/j72gX2/MSIioh0aIiIiIic6W0I8PR+4F+f2XJb/8W4Cnubrs3orq1jxx7sBsMbHYU9JweRw0PHa32BPSsKWkEDckMGUzJkbCmYApIwZQ4fLghVJ/B53ozFN9mAuDYDq3Fz8zt339hXMMDnCSBgxguQxZ4aueaqrMdps1OfmEQgEyPvsC6pXrwFg8yv/Jab/KcQOHEBkj0wqlmbhzM2jMmsFvvJKAMw+yMxxUTegodFcnupqAqZEAm4vBhOhYzXhSVBfCs6cHCLa0yrRwyfgKsqmfutKCPiabZNl8RPw+5oNZoSZ7fy6/6Wtm0xE5CSngIaIiIjIScKR3oGut9/Cpuf+ud+27rJy3GXBL9wNBYUMfPmf5E/9kpI5c5u0rd20iZpNm4ns1pX0q65k84svh+65yoPVPUzWpolDqx1GKqJMZBR6cFkMTB8ZTVG8ma47PDx87+sEGlz46usxR0Sw/v/+Qdm8BWAygS8YKLDG71GOxO/HV9+Az+Ui6+57ceflh27tWS2lLt7BL3rvLl1al53NqvsexFffAEZIOgVMexU1cVbYiB+SgbtwG44ewwjvcWqL75vJHo4x4TSKJ2cR37PpWABXF1VTZjbyXHocPuPugzuPnvlHuid0xrzzOIuIiOybAhoiIiIiJ4mA38+2199qcz/XzvwbztzcZu/X52xn/d/+jyFvvkry2Wex+eV/h3Y5AJRtgNguYIsN7njYpTbMyE8DIkj4vpKV3RzktrMCsLaTjYVTP4B3pxHw+TB1y8C3MTvYybd714O7rCyUqDT5nDGYo6NYcvNteMsa73zYFcywd+nIH/70N6xWa+he4YxvgsEMAD9UbIaEPmYMGPD44gnrGE+HX15OTL++zb72gNdD2ex3cRdvJ6LPGUT1H0NdXh6+BihdC4m9gwlXg4wYdlaRiff6GetII6nHaWytzOWsTiPoldSthZ+AiIg0RwENERERkZNEwOvFW1PT5n7JZ4/B63LRkF/QYhtPdTWBQACDwUBkt67UbNgYuuerh8qtEN8DDKbdJzFKY8xc+l0lYe4A/r3KpfinfIdhZ6UV78ZsDLRgZ+Bk+w9zKF66hEB5VYtrbNiSzcYn/0afxx4JXbPGxjVqY7DE0fm+11ocY2+V8ydT/fNXwfFz1mBNymBxiptUA+CC8iKIaw9GA9jTe9KwPXhExmC2cvUZv8cSm9LquUREpDEFNEREREROEkarldRLLmLH5P81uWewWgjPyMBgsVCzdl3ouik8nIIvp1M8+3t8TmeTfsHOBuKGDSXr9jsx2WwEMGCJjcZTsTu4EPAFdyrE9wSvIYPZ/nLWZJjptyW4O2LAeie56eEURxoYlNqPgC0rFMRoMZixB5vLh99Vtd+2VctX4qmuwRIVLImadtkEypcsoXbjJjAa6Xjtb1ox226eij2DPAG8lcWsMJXxzfg44qp9XOmqwegLBl0atq8hdtSVeCuLieg3SsEMEZGDpICGiIiIyEmk47W/Ifmcs8FoxO9qoHLFKqxxcSSeHqzaUbt1K2sffQJPVTX29u1CuzKaC2YYLRDbHcwxiRTNX9DomAlAeDuoKwAMEJFqxrcz6aY1KoquS3OpsodRFW4kus6PwxXgnqgxtL9sAvmfTWZrcRkG9h3MMIaFNara0prAhyUuFnO4Y3cfk4lTnnkaV2kZRqs1FOhoLYPF1ui531VHpDWcLRFmaiPM1ObWEbszoGGwhhEz/GIMzSXWEBGRNlNAQ0REROQkE5a6u2RHeMeOje5FdO7M4Ddfw+esp3DGTLa//2GL4/g94K4Cg7EY/E3v1xWBLQZSzhmEc8NSTDtTV/jrVhHjs3Hm0joAjDYr6VdfRerF46nLzmb7+x82+pC6Z1LPRvPvowTtLrHDhlK7ZQve6hoiu3Wly803YjA1TbppS4hvpvf+mSP3OrJisnBqhwEsLwweLfkkOYpflbvoGJFM/Fm/VjBDROQQUkBDRERERBoxGAyUzP0Bd0UlccOH4SoqxpoQT8XiJU3ael2AwUjABAbfXlENP7gqwdL+NIzbstgV9TAYIeBzBR9bLPR75u+EZ6QHu7gal30FMHTvCLuSggYXCIEWar7uUQUlont3ej1wbxteeVMFn71Izaof8dabSLzoVhJHjmx0P2rIBdRvW0nDjo04ug0movdIutYU0SuxG1UNNQxNO4WRfS/GYGjN/hEREWkLBTREREREpJHtH31C3iefAcGAQ8KI0zA5HM22baiCQIl/n8c9alcvIuHc31I+6w0COwMRiX2gbC343J5Gx1kiM7sTN/xUyhcsBCAsLY0+DzzEmkefwJmdg8FkwtEpg7rNW5udK/mcMdRu2IQ5KpKut94EgN/rZdvrb1GzcSNxQ4eQ/qsrWvU+1G1aQv2GOZitYLb6yP/wXyQMH47BZCLv88lULl9BdJ/etP/VQ1T//BV+Vx2FJdn8Zd7L1HuDuUFSo85TMENE5DBRQENEREREGqnduCn0OODxUDJnLuaoqFCJ1NA9oB4DVXEmksu9mO3ga2g6ninMS8yw8/E3VFH506dgAJMV7HHg8SbgyEjHW1tHfX4+YWlp9LzvbjxVVXhr67CnJGMwmRjwz+dCVVQKvp7J1s2vNrv2mvUb6P/Cs42CCIVfzaDw6xkA1G3ZSkTnTsQNHbLf98HvrG703GgKvvbSeQvIefe94HzrVuHa9i1GXxkAa7YuoD5y9+6R1UUbOKPjsP3OJSIibaeAhoiIiIg0Ej/8VCqXr2h0zVtdTdypQylfuDh0zQCEuQNYqrwUZZhIyfE1O54tJRMAa0Jao+sxg4YRf/pZuIryWfPo3/BUVmKJiaTbrVcTM+RsDBYrDUVF2JODQQ2DwYC3uozE04dTNn8BVStXYbDbCTTsjqI4s3NY99TfiRt8CmZDAX63i+JZqxrN665subTrnsJ7DKd87mf4aorwuSHh3KswmEy4SkpCb0B8D0LBDID2ZSWExaZS7w0eqemTnNmquUREpO0MgUBLBxBFRERE5GRVtWo1BdO/pmzn0Y+ILukkXzCeLf96udn2eyfuNFrB74awDqn0+7+/Y3aEAVC5aBoNOauxpWZSs+I7vBWF1BZaqNnuCfWNSoeEkcPZPm0V3ppaovr0ptcjD7Fh+j/5sXAV0T4YmTaW5LPGM/PhPxO7rYy9xXYHe0zwscsL5cuCjy3xcQx88QXM4eH7fP05pdtwrl9IClbCuvTHEtsekz34GlxlZay85wG8VaUkD2jcz5aWif+S21iav4r06PYMbN93n/OIiMiBU0BDRERERFqU9/6/qF42F7MD6usScOZW43cHE3e2VH3EZIPUyybg95ppP/5CLJERTdpUL/+O0umvAOAsgaptu+/FdgNbnJXCRbsThHb4wzU8Xvgl1eZghZLTC+oY2e5s3ij9gV9+W4ExEFyP2Q4RqWCMM2A37P6Yu2aTkYJYK9WDunD+OVfTu4WdE67Cbbw9/Wm+izACcFZ5HePt7Um97ulG7bxOJ87cXKrm/hdPSQ4AYZ1OIfnyezHuVcpVREQODx05EREREZEW+crXYLJDySogUBq8aDQSO6A/tWFGGuYtwbTnn8cMENW3P9vfnwxAzdp19PnrY03GtcQkhR6HJYA1rT/Va9dhdbiwxwK2OKAw1KYy3BoKZgDkhFsYvHYjZb3tvDU+js75bqLsdi5wlVJgM2H1B7B7gwtb57CyoJedzRl2oITFc17g8TP/RI+krk3WVf79+8x17A7T/BDj4Nytm6jP20BY2u4giNnhICozk/CMJ6hdNRdTWCT2HsMxmvXxWkTkSDEe7QWIiIiIyLHLmtCB6u0Etz/s4vdTsXQZ8VGJjYMZQLuLxlO3LTf0vGrVary1dU3GDevYl4Tzfk9Yp1OIHfkLOt/6Z+ztMiAADbVRJF5yJ2Ed0jBFhJM8qg+JzmISTGGh/h1y3KT27McVNR3olO8mrsrHyB2leID2bh8JXj8+4LPESCYnRlCREdlo/h9zFlNUW8IXa7/mx+w98oKYzMR4d+cC2fW44J0HKJ/zYZPXYbKH4xhwHv9YYGLCvdO5+ZlvqKp17f+NFRGRg6YjJyIiIiLSIl99DSvuvIP6wuYTadoSE0NJMg0WC/2f/wc5777Hpg3LKIk109ETzmmPPElYclKz/Xcp/GYWeR/8m9jOgBGqC+Jx5gVzYxhMkHQKNMTHsXXYOMzZRQxO7EXS6DPIuuNPOLOzQ+NE9wBH1O5xJ8VGMi6/jjmpDlaG2/GYDfiNcEu383g/dz5VrhoArup3CZf0HIunPJ+VU/7BNGMNxrAozs3JI8njBcBoDyfx9v8wed0MGrwuLso8B7vFzl+/+IJ1S6JDcw4ZZOfhq8a29a0WEZE20p44EREREWmR0R6BJSmd+sJVzd53lZRQ2DOJhupq4gxhlMybR7aphg/Pi8NnMmBz+XHffQdDb76D+OGnNupbl7Odra++TsDrJfqUfkSlB4MXAJ7K3Yk+Az7wucFRVc55nYZgHbK7WorRYsEWA2Fx4HFCQyHYI8FogNoGA2d9U4PHCKetquU0anHbTET0tlCz4yOq0mJD46wp3sAlPcdiiWvPoN8+xyBga/l2at+6H3YGNMwxKfxr4VtkFawGYNbmHzEaTTRUJAD9Q2PlVecf+BsuIiKtpoCGiIiIiDQr4Pez4f/+QfXK5oMZu6SsK975qIG8Dz+hqGMYvk7BIx4um5GcBCNpX37VJKCx8dnnceZsB6B+Rz5x3S1AsNqJI9lMVZ0PAgEsEWCygiWxA5aY5EZjRPdKx5e/CYMBwoCqHKjcasLv8uGpCwSThe5RTdbq8hHY4CM+HWITPVTYLAD0Te7Z+LUHAvztx5exJDk4tzyAwxbOmZf9mZy5z4fa+Ang93sxxRXir9qBryIJY0Ql/fraW/P2iojIQVJAQ0RERESaVbtpM2ULFmE0gyU8uAPC79l/v7ia3REEgz9AYqUXe0bTIyeeyt3HWLw1NVSsh+jOYA630+mmOwmYE3CVlrLjs08pWrYFS3Q1bt4hZey5hGekAxA/tC8l//suNE5YYjjtr/4jm//xBJ7a4DWLI7j2XYwWiIyEP26u4HuDnXYZA7ioxzkALM5bzpIdK+kU24GqhmqwmvkgJZoYexTnRicxqH0/vt3yQ6PXYTCAtfPuoE+UY8z+3yQRETloSgoqIiIiIs0qN3soamchtk8w0BCZDkZr8N6i3mHU2Jsr2grxZW7OWVBN301Oxv9QRUqZl7ihQ5q0S7/qV2Dc/XHUUwelq6BiayTh3YcQ0bkTAa+Xmg1bgverqiic/jWr7nsQV1k5AI5O/TBHJQQHMJnJuOFeonr1p/1FYzHt3CixZzDDYIbojsHHFhv0LWpgtjmX4royNpZu5dl5rzInewFvZX1Cv+QewT4YuKjHOfj8Pioams8lsiev37ffNiIicvC0Q0NEREREmpi/fSkvLn0T35mxdK50c8HXlRj3SCVfGWnG5m3aLz/BTG6KlQ6Fbnptawhdr1iWRfzwYY3appx3LnHDhuD3eFn316dCx0+ieu0+/mG0WpvM4XM6Kdm0jrT4EZjCo0m9/h805K3HmpCKJa59cOxLbsCV8zP1ReWUrdnd1xIePL4SWleYmQKbmzumP8JpHQYS2KOcS4foVH7T/zKsJgspkUm8tuQDluxYsc/3zWEJC+32EBGRw0sBDRERERFpYubmOfgCfgC2xlgpjzKRULV750H/DU6s3sbF8nKTLEweE0vAAIv7BLj82wpSyoJRjwDNF9azxgYTc/b562MUzvgGU1gYKeedG7ofN3gQ7cZfwI5vvsHoCp53qbMbWWouZVdqUJMjuKNjb+2ufIiy7ybhadhK9bYqjGbwOqGuGKzhUFsJHw+PAcAX8PHT9iVEWMOpdddhMVkY3mEgTk897634ApfPzbqSzft932Lt0SSEx+23nYiIHDwFNERERESkidiwmNBjszeAoyEY3HBZDCwa24mYGi+JC/IxuoMBi4TRZ7C+g5eAL/il3280kJ9oCQU0EvZKCLo3S1QUHa64rNl7nX/3W3LH9OJ//3uVmGofW9NsXB0bv9/XYE3KoN2VD9HuSij54Uc2PvcCBKA6O3h/+zVn4vKsadTnkTPvJL+miIyYNOLs0dw47X7qPQ1Nxm7JjppCal11RNjCW91HREQOjAIaIiIiItJEjC1YpcTkDXDh3EocruAOi9JYM1lRtRAFUXdexKiCMMI7dSR20EB8xZv4Zs7zBAIBTEYTIy+aSExmAdF9ehM7cMBBref0jkPJHpXHyqJ1jEzqzpmdTmtT/8QzTsddUUn22++C309E1y788sIbOKUymxcWvEGd28mV/S4mIyaNjJjg3o9SZ3mbghm7WIz6iC0iciQYAoFA8/v/REREROSk9eqSD5i15UcABq5zctoqJ4FIBx+faqE0NljqdGhqf/488sZG/daXbGFj2RZ6J2XSJS7jiK97f+p35OMqKSGyZw9MNlvoeiAQwGBomuT0hfmvMz93aZvmuOu03zG8w6CDXquIiOybwsciIiIi0kTHmNTQ42U9HSzr6QAgLiwG6isxGAyMyBjcpF+PxC70SOxypJbZZmGp7QlLbd/kenPBDIA7hl+PwxrGrC0/tXoOA82PJSIih5YCGiIiIiLSiN/tZs1nHzG6uJoF/SNw2XaXVh2ZMYSucR1JiUikY2yHo7jKI2ND6ZY2BTOGdxjE0NT+h29BIiISooCGiIiIiIS4SkpZes+9pFOD12RsFMwAGJJ6CpkJx+4OjEPt5UXvtrrtVf0u4ZKeYw/jakREZE8KaIiIiIhIyNJHHqHAUEtKmY/SaIiq8VIdGfzIOCx1wAkZzKhuqOG1pR9S5qxgfI+zQ/kvyp0VFNWVtHqcJMf+K6+IiMiho4CGiIiIiACw43/TKKotJqUqWKI1ocrHaSvraLj4DJJSOnBRj3OP8goPj7eyPmFRXhYALyx4g65xHUkMj+fDVVPbNE61u/ZwLE9ERFpg3H8TERERETkZ/JzzMzF1jQvgJWZ05ZYxN3FZ7wuwmixHaWWHV5mzIvQ4EAjwxdqvAQgz21rq0kSkLYKB7fse8rWJiEjLtENDRERE5CRWVO6kps6NuWIpXXasodq7+16dzcDZN9199BZ3hAxLG8D60i2h58V1ZQBc2ut8Zmye22wfAwZi7FEM7zCIHold6J7QOVgBRkREjhgFNEREREROUq98toIZC7MJBOCRxA+ICYMSqwGbO7hLY0N3O+eGRx7lVR5+YzqP4OtN34cCGbuqlMSERXNN/8t4Z/lnACSExWE1W+mR0JmJ/X9BuNVxtJYsIiKAIRAIBPbfTEREREROFAWldfzfe0vYnFsJgCk+n3ss35Pi9tHggm21ZkoiTfS+8naG9Bh+dBd7hFQ31PDzjhUkhsfTL6Vno3u1rjowQIQ1/CitTkREmqOAhoiIiMhJ5o7n5rB1R1Xoubn9FjJjVzOuvA6Hz88PMQ6Sep/Nr0dOPIqrFBER2TcdORERERE5yZRUOBs9D5S3pyBjB684rEQHzPx+wFUM7nHaUVqdiIhI62iHhoiIiMhJ5tPvNvLuV+sAGNQjiVsuO4Uwh5+86gI6RLfX0QoRETkuKKAhIiIichLKLarB5w/QsV3U0V6KiIjIAVFAQ0RERERERESOO8ajvQARERERERERkbZSQENEREREREREjjsKaIiIiIiIiIjIcUcBDRERERERERE57iigISIiIiIiIiLHHQU0REREREREROS4o4CGiIiIiIiIiBx3FNAQERERERERkeOOAhoiIiIiIiIictxRQENEREREREREjjsKaIiIiIiIiIjIcUcBDRERERERERE57iigISIiIiIiIiLHHQU0REREREREROS4o4CGiIiIiIiIiBx3FNAQERERERERkeOOAhoiIiIiIiIictxRQENEREREREREjjsKaIiIiIiIiIjIcUcBDRERERERERE57iigISIiIiIiIiLHHQU0REREREREROS4o4CGiIiIiIiIiBx3FNAQERERERERkeOOAhoiIiIiIiIictxRQENEREREREREjjsKaIiIiIiIiIjIcUcBDRERERERERE57iigISIiIiIiIiLHHQU0REREREREROS4o4CGiIiIiIiIiBx3FNAQERERERGRkIkTJ5KZmcmLL77Y5F5mZiaZmZksWrToKKxMpDHz0V6AiIiIiIjI8eq+++5j8uTJTa4bDAbCw8NJT09n5MiRTJw4kaSkpKOwQpETl3ZoiIiIiIiIHCSLxUJCQkLov+joaGpra1m7di2vvvoq48aNY/ny5Ud7mSInFO3QEBEREREROUgDBgxg0qRJja65XC6+++47HnvsMSorK7nnnnuYOXMmBoPhKK1S5MSiHRoiIiIiInLSqHd52ZBTzvKNxWzIKafe5T1sc9lsNsaNG8cDDzwAQE5ODlu2bDls84mcbLRDQ0RERERETng5hdVMn7eNOUtzqXf5QtfDbCZGD+rABSM6kZESdVjm7tmzZ+ix0+k8oDF8Ph/Tpk1j+vTprF27lqqqKmJiYkhLS2P06NFccsklpKSkNOmXnZ3NW2+9xcKFCyksLMRoNJKens4555zDNddcQ2Rk5AG/rr3l5+fzxhtvMH/+fPLz8/H7/cTFxZGSksKpp57KpZdeSkZGxiGbT0QBDREREREROaFNmbuFN6etJhBoeq/e5ePr+dnMWJDNb8f34ZJRXQ75/OvXrwfAaDTSoUOHNvcvLS3l1ltvDeXgMBgMREVFUVNTQ1ZWFllZWXg8Hm6//fZG/T799FMee+wxPB4PAGFhYXg8HtavX8/69euZPHkyb731Funp6Qf3AoF169YxceJEampqADCbzTgcDgoLCyksLGT58uVERUVx/fXXH/RcIrsooCEiIiIiIiesKXO38MbU1fttFwgQaneoghput5vZs2fzt7/9DYCLL76Y2NjYNo9x8803s3LlShwOB3/+858ZP348UVHB3SQ5OTnMnDmT6OjoRv3mzp3LX/7yF2w2GzfddBNXXHEFSUlJeL1eVq5cyZNPPsnq1au57bbbmDJlCkbjwWUjePrpp6mpqaFfv348/PDD9OnTB4PBgMvlIicnhxkzZjS7g0TkYCigISIiIiIiJ6ScwmrenLb/YMae3py2mgGZiW0+fpKVlcWIESNCz71eL5WVlQC0b9+eW265hVtuuaVNYwJ88cUXrFy5EpPJxGuvvcbgwYMb3c/IyOCGG25odM3n8/HEE08QCAR4+umnOf/880P3zGYzAwcO5I033uDCCy9kw4YNzJo1i3PPPbfNa9vTrt0jDz74IH379g1dt9lsdO/ene7dux/U+CLNUVJQERERERE5IU2ft63ZYyb7EgjAV/O2tXkuj8dDaWlp6L9dwQyA2tpaampqcLvdbR538uTJAJx//vlNghktWbx4Mbm5uaSmpjYKZuwpJiaGM844A4Cffvqpzeva265cHMXFxQc9lkhraYeGiIiIiIiccOpdXuYszT2gvt8vzeXaC3sTZmv916WhQ4c2KtsaCASoqalh2bJlPPfcc0yaNIlly5bx3nvv4XA4WjWmx+Nh9ergDpNRo0a1ei1ZWVlAMLiw566Rve1KUFpQUNDqsVsyatQoPvvsM+69916ysrIYM2YM/fr1w2q1HvTYIi1RQENERERERE442wurG1UzaYt6l4/cohq6p7ct38WediXuHD16ND179uSCCy5gzZo1TJo0iRtvvLFVY1RVVeH1BsvKtm/fvtVzl5SUALt3jexPQ0NDq8duyT333ENOTg4///wzb775Jm+++SYWi4W+ffty1llncfnllxMTE3PQ84jsSQENERERERE54dS7vAfXv+Hg+u8pOTmZ008/na+++orp06e3OqBxoHy+YCBn+PDhvP3224d1rl2io6N57733WLx4MbNnz2bp0qWsXbuWZcuWsWzZMl5//XX++9//0r9//yOyHjk5KKAhIiIiIiInnLYcF2m2v/3QflVq164dALm5rT8GExMTg8ViwePxkJ+f3+p+CQkJwKE5StJWQ4cOZejQoQDU1dXx/fff8+yzz5Kfn8/dd9/Nt99+e8TXJCcuJQUVEREREZETTnpKFGE20wH1DbOZ6JAceUjXU1RUBASrjLSW2WymT58+AMyZM6fV/QYMGABAdnY227a1PcHpoRIeHs6FF17Ik08+CcD27duPSpBFTlwKaIiIiIiIyAknzGZm9KAOB9T3zEEdDnqHx54qKiqYP38+AL17925T30svvRSAGTNmsGTJklb1OfXUU0lNTQXgqaeeCh1BaY7H46Gurq5Na9qb1+vF7/e3eN9ms4Ueu1yug5pLZE8KaIiIiIiIyAnpghGdMBja1sdggHEjOh2S+QOBAGvWrOG2226jvLwcgN/85jdtGmPChAmccsop+Hw+brjhBt5//31qampC97Ozs3nhhRf48MMPQ9csFguPPPIIRqORH374gd/+9rdkZWWFgg5+v5/Nmzfz6quvMnbsWNatW3dQr7OwsJCxY8fy3//+lw0bNoQCKIFAgBUrVvDYY48B0LFjRzIyMg5qLpE9KYeGiIiIiIickDJSovjt+D68MXV1q/v8dnwfMlKi2jxXVlZWkxKptbW1oQoiRqORP/zhD5x11lltGtdisfDKK69w8803s3LlSh5//HGeeOIJoqOjcblc1NfXA3Dbbbc16jdq1CieeeYZHnzwQRYuXMivfvUrrFYrDoeDuro6PB5PqK2hrVGfZmzfvp3nnnuO5557DrPZTERERKN5oqOjeeaZZw7JXCK7KKAhIiIiIiInrEtGdQHgzWmrCQRabmcwBIMZu9q3VXMlUsPCwujYsSODBw/myiuvDOXDaKuEhAQ+/PBDpkyZwvTp01m3bh21tbXExsbSo0cPzjrrLC6++OIm/S688EKGDBnCe++9x48//khubi41NTVERkaSkZHBwIEDOeeccxg0aNABrWuX5ORkXnnlFRYuXMjy5cspLCykoqICi8VC165dGTlyJNdccw2JiYkHNY/I3gyBwL7+z1pEREREROT4l1NYzVfztvH90lzqXbtzSoTZTJw5qAPjRnQ6oJ0ZInL0KKAhIiIiIiInjXqXl9yiGuobvITZzXRIjjykCUBF5MhRQENEREREREREjjuqciIiIiIiIiIixx0FNERERERERETkuKOAhoiIiIiIiIgcdxTQEBEREREREZHjjgIaIiIiIiIiInLcUUBDRERERERERI47CmiIiIiIiIiIyHFHAQ0REREREREROe4ooCEiIiIiIiIixx0FNERERERERETkuKOAhoiIiIiIiIgcdxTQEBEREREREZHjjgIaIiIiIiIiInLcUUBDRERERERERI47CmiIiIiIiIiIyHFHAQ0RERERERE56WRmZpKZmcmiRYsaXV+0aFHonhzbzEd7ASIiIiIiIicCt9vNl19+yZw5c1i9ejUVFRV4vV5iYmLIzMxk5MiRjB8/nvj4+Eb9XnzxRV566aVG14xGI+Hh4URGRpKenk6vXr0YM2YMgwcPPqC13XDDDcydOxeACRMm8PTTT7e673333cfkyZMPaN7bbruN22+//YD6iuyPAhoiIiIiIiIHacGCBTzwwAPk5+eHrtntdmw2G8XFxRQXF/Pjjz/ywgsvcNddd3HNNdc0GcNoNBIXFxd67nQ6yc/PJz8/n4ULF/Lmm2/SrVs3nnjiCQYMGNDqtX355ZehYMaBiIiIICEhocl1j8dDVVUVALGxsZhMpiZtHA7HAc8rsj8KaIiIiIiIyEnD767HXZKL312P0RqGNbEDRmvYQY351Vdfcffdd+P1eklLS+PGG29k9OjRJCUlAeByuViyZAlTpkzhyy+/ZNasWc0GNNq1a8fs2bMbXXO73axdu5ZZs2bx8ccfs2nTJq6++mqeeeYZLrjggv2urbKykqeeeorIyEiSkpLYsmVLm1/fQw89xEMPPdTk+qJFi/jNb34DwGeffUZaWlqbxxY5GApoiIiIiIjICc9dsp3qJTOoWT2XgLshdN1gtRPZZxRRg8/Dmpje5nG3bNnCAw88gNfr5bTTTuOll14iPDy8URubzcaIESMYMWIE1113HR988EGrx7darfTv35/+/fvz61//mptuuol169Zx33330b17d7p167bP/k8//TRlZWU88sgjfP311wcU0BA5VimgISIiIiIiJ7TKRdMon/UOEGhyL+BuoHrZTKqXfUPc2dcQM2x8m8Z+/vnnqa+vJzExkRdeeKFJMGNvvXr14vHHH2/THLukpKTw8ssvc+GFF+J0Onn55Zd54YUXWmw/f/58Jk+ezCmnnMKvfvUrvv766wOa90iqqanhgw8+YPbs2Wzbti303nbu3JmxY8dywQUXNHuMZcGCBXz00UdkZWVRXl6Ow+EgMzOTSy65hEsuuaTZ4zAHatmyZUyaNImsrCxKS0uxWCzExcWRkZHB6aefzuWXX05ERMQhm09apoCGiIiIiIicsILBjLdb0TIQatfaoEZxcTGzZs0CYOLEiURHR7eqn9F44MUmU1NTufTSS3nvvfeYNWsW9fX1hIU1PTLT0NDAww8/jNls5vHHHz+oOY+UFStWcOutt1JSUgKA2WwmIiKC4uJiduzYwY8//kh6ejrDhg0L9fF6vTz22GN88sknoWsRERFUV1ezePFiFi9ezFdffcUrr7yCzWY76DV+/vnnPPjggwQCweCY3W7HYDCQl5dHXl4e8+bNY/DgwfTt2/eg55L9O/b/VYuIiIiIiBwAd8n2nTszWq981ju4S7a3qu2iRYtCX2zHjBnT5vUdqFGjRgHBpJzLly9vts0///lPcnNz+c1vfkOPHj2O2NoOVF5eHr///e8pKSkhIyODf//732RlZbFo0SKWL1/Op59+ysSJE7Hb7Y36Pf/883zyySe0a9eOv//97yxdupSlS5eSlZXFc889R2JiIj/99BN///vfD3qN9fX1PPnkkwQCAS699FJmz57NihUrWLZsGUuXLuX999/nl7/8ZbMBJjk8tENDREREREROSNVLZtDcMZN9C1C9dCYJ5/1+vy03b94MBPNcdO7cue0LPECZmZmhx7m5uQwfPrzR/TVr1vDOO+/Qvn3746Zk6nPPPUdVVRXJycl89NFHjaq9mM1m+vXrR79+/Rr12b59O2+++SaRkZG8/fbbdOzYMXQvLCyMCy64gPbt23PllVfyySefcMsttzRbraW1Nm3aRF1dHQ6Hg7/+9a+NjrFEREQwePDgAy6rKwdGOzREREREROSE43fXU7P6wEqV1qyag99dv992lZWVAERFRR3RIx0xMTFN1rCLz+fjL3/5S+h/j4eyqU6nk5kzZwJw6623Ngpm7MvkyZPx+/2cffbZjYIZexowYABpaWl4PB4WLVp0UOvclRfD4/FQUVFxUGPJoaEdGiIiIiIicsJxl+Q2qmbSFgF3A+6SPOyp+64gcix66623WLNmDeeccw5nnXXW0V5Oq6xatQqv1wvA6NGjW90vKysLgJkzZ/Ljjz+22K6qqgqA/Pz8A18kkJGRQceOHcnOzuaKK67gqquu4vTTT6dbt27HRY6SE5ECGiIiIiIicsJpzQ6LfQm0ov+unRLV1dUEAgEMBsNBzdlae+7K2HO3Rm5ubqhs7EMPPXRE1nIolJWVAcGjJcnJya3utyt5qNPpxOl07rd9Q8OBBbh2MZlMPPfcc9x2223s2LGDZ555hmeeeYaIiAiGDBnC+eefz7hx47BYLAc1j7SeAhoiIiIiInLCMVoPLjGjoRX9u3btCoDb7WbLli2h54fb+vXrQ487dOgQevy3v/2N+vp67rrrLiIjI6mrq2vUz+fzAcHKILvuhYWFHbe7C3a9njvuuINbbrnliMzZu3dvZs6cyaxZs5g3bx5Lly5l27ZtfP/993z//fe8/vrrTJo0qVGgSQ4fBTREREREROSEY03sgMFqP6BjJwarHWti2n7bDRs2DIPBQCAQ4LvvvjtiAY25c4O5QSwWC/379w9d37FjBxCs/PH888+32H/atGlMmzYNgClTptCzZ8/Dt9hW2JWo0+v1UlRU1OpdGgkJCWzbto2CgoLDubwmrFYr48aNY9y4cUCwfO/UqVP517/+xcaNG3nmmWd48sknj+iaTlbHZyhORERERERkH4zWMCL7jDqgvpF9R7dqh0dSUlKoXOukSZNCuRr2x+/3H9C6IBi0mDx5MgDnnHPOCVEitE+fPqFjGt9//32r+w0YMACAH3/8MbRb42hISkrid7/7Hddddx3AQScfldZTQENERERERE5IUYPPA9qa18JA1KCxrW595513YrfbKSkp4c4772xyzGNva9eu5eGHH27jmoIKCwu59dZbcTqdWK1Wbr311kb3//e//7Fhw4YW/xs6dCgAEyZMCF072rszABwOB2PHBt/zV155hfLy8lb1mzBhAkajkYKCAl5//fV9tm1tsGlf3G73Pu/b7XYAXC7XQc8lraOAhoiIHFV19W6e+2Ap/3h/KSUV9VTXuamoaX57sNd34H/REhGRk481MZ24s69pU5+4s6/Bmpje6vbdunXjySefxGQyMX/+fC6++GI+/fTTUMJKCH7BnT9/PnfffTe/+MUvyMnJafX4breblStX8uyzz3LRRRexbt06TCYTTz/99BE74nIk/PGPfyQ6OpqioiKuvPJKZs+eHQogeL1eli9fzgMPPMCKFStCfTp37sz1118PwHPPPcejjz7a6L11uVwsW7aMp556inPOOeeg1zh9+nSuvvpqPv3009DxHgj+jGbMmMGbb74JwBlnnHHQc0nrKIeGiIgccRU1Dbw/Yz0lFU7W51TgbAiWavtpxQ58vgAADpsZu83EH64YwKCeybz95Romz9lMTKSNv1x/Kl3TYo7iKxARkeNFzLDxAJTPegcI7KOlgbizrwm1b4sLL7yQ2NhYHnjgAXJzc0MVRux2O1arlerq6lDb8PBwzjvvvGbHKSgoYMSIEaHn9fX1OJ1OAoHd6+7WrRtPPPFE6LjFiSI1NZVXX32VW265hezsbG6++WbMZjMRERHU1dXh8XgAuPjiixv1++Mf/4jH4+Htt9/mww8/5MMPP8ThcGCxWKipqQkd7zGbD/6rbyAQYMmSJSxZsgQAm81GWFgYVVVVoZ9RZmYmf/rTnw56LmkdBTREROSQe2PqahasKqB7h1j+9OtBlFbWs2JTCZ3bR9O1QwxPv/Mza7c13U66K5gB4HR5cbq8PPr6Qp64aTiff78ZgPJqF+9MX8sTN552xF6PiIgc32KGjcfR+RSql86kZtWcRolCDVY7kX1HEzVobJt2ZuxtxIgRfPvtt0ydOpW5c+eyZs0aysvLqa+vJykpiczMTEaNGsX48eNbrIDh9/spLS0NrstgwOFwkJycTEZGBr1792bMmDEMHjz4gNd4rOvfvz8zZszg3XffZfbs2eTk5FBfX09ycjJdunTh3HPPpV+/fo36GI1G7r//fsaPH88HH3zAkiVLKCoqwul0Eh8fT9euXRk2bFgogefBOOuss/j73//OggULWLt2LSUlJVRXVxMdHU23bt0499xz+dWvfoXVaj3ouaR1DIE9w30iIiIH6at52/j3FytDz0f2a8fidUW4PcG/kJzaJ4VFqwv3+Tey/RncM5lHfnfqQa5URERORn53Pe6SPALuegzWMKyJaQdd4lVEjg7t0BARkUNq9tLcRs9/3iOYAbBwdeEBj202GUhLiuR3F/c54DFEROTkZrSGYU/tdrSXISKHgJKCiojIIZWZHtvoudViOmRje30B0pMjSU2MOGRjioiIiMjxSQENERE5ZDxeH9vydyc+s1tN2K2HLqABsHxTyf4biYiIiMgJT0dORETkkPlpRT6rtpSGnje4fTS4fYd0jugIGztKaol0WCmucBITYSMhRmefRURERE42CmiIiMghYzuEx0taYiDATU9/h8lowOcPYDYZufc3gzm1T7vDPreIiIiIHDt05ERERA6Zfl0T6JIafVjn2F5UC4DPH6yT4vX5+d8PWw7rnCIiIiJy7NEODREROSTyimt46D/zKatqOOJz68iJiIiIyMlHAQ0RETloPp+fvxyFYEaH5HC6dYhTGVcRERGRk5ACGiIictDqGryUHoWdGTVOL3ddOfCIzysiIiIiR58hEAgEjvYiRETk+HfVX76ixuk54vMaDZASH85tV/Snb5eEIz6/iIiIiBwdSgoqIiIH7fPZm45KMAPAH4D80joefXUBJRX1R2UNIiIiInLkKaAhIiIHbebCnKO9BNxeP398YY6CGiIiIiInCQU0RETkoHi8PpLidlcZiY208fD1w47KWipr3SxcXXBU5hYRERGRI0tJQUVE5IDll9TywL/nUVbVQHyUnV6d4+jfLZHvl+ZhMhrw+Y98mqZtBVX8uHwHp/dPPeJzi4iIiMiRo4CGiIgcsClzt4RKtZZVN9CrUzz/mbwKj9d/VNZjMsK3i7bz7aLtFJTWccXZ3Y/KOkRERETk8NORExEROWARDkuj5/Uu71ELZgD49pg6a2PxUVuHiIiIiBx+CmiIiMgBu3xMd07vn0pqYgS/OjeTM/qn0j4h/Kitx2wyhB73UwlXERGRE1ZeXh6ZmZlkZmaSl5d3tJdz3Jk4cSKZmZm8+OKLTe7tel8XLVp0FFbWNjpyIiIiByzMZuaeiYNZn1PO468v5KNvNjCoRxL5pXVHZT0j+rWnQ0okiTFhnDmow1FZg4iInLzcbjdffvklc+bMYfXq1VRUVOD1eomJiSEzM5ORI0cyfvx44uPjD8l81dXVvPPOOwBcc801REVFHZJx97Ro0SIWL15Mamoql1566SEf/1j3xRdfcP/99x9Q36FDhzJp0qRDvCLZkwIaIiJy0D6YsZ4apweApeuP3lGPytoGbhl5Cg67Zf+NRUREDqEFCxbwwAMPkJ+fH7pmt9ux2WwUFxdTXFzMjz/+yAsvvMBdd93FNddcc9BzVldX89JLLwEwYcKEwxLQWLx4MS+99BJDhw49pgIaFouFTp06hR4fLna7nYSE5nd9lpaWAhAREYHdbm9yPzo6+rCtS4IU0BARkYMWZm/+18mwXsksWlt0xNaxYlMZn363iWsu6HXE5hQREfnqq6+4++678Xq9pKWlceONNzJ69GiSkpIAcLlcLFmyhClTpvDll18ya9asQxLQOJklJyczY8aMwz7PuHHjGDduXLP3MjMzAXjwwQePqWDPyUQBDREROWjXX9SHBSsL2LtI65EMZuxSWll/xOcUEZHjR4OngdzqAuo9DYRZ7HSIaofd0vSv6621ZcsWHnjgAbxeL6eddhovvfQS4eGN80nZbDZGjBjBiBEjuO666/jggw8O9mWICApoiIjIIbBtR1WTYMbRkhATdrSXICIix6DcqnxmbprLDzmLaPC6QtftZhtnZAxjbLdRdIhu3+Zxn3/+eerr60lMTOSFF15oEszYW69evXj88ccBCAQCjBkzhh07dnD//fdz7bXXttjvr3/9K5MmTWLIkCG89957TJw4kcWLF4fujxkzplH7CRMm8PTTTze6tmXLFt544w0WLlxISUkJNpuNrl27cv7553PllVditVpDbfPy8hqNuXjx4tCOhF3effddhg0bFnoeCASYPn06X3zxBWvWrKGuro6YmBgGDhzIxIkTGTJkSKP+U6ZM4d5778VoNDJp0iQGDx7c5HV/+umnPPTQQ5hMJt59991Qmz3X991335GWltakr8vl4tNPP2XmzJls2rSJ2tpa4uPjSU9P5+yzz+aiiy4iNja2+Tf8KPD5fEybNo3p06ezdu1aqqqqiImJIS0tjdGjR3PJJZeQkpLSpF92djZvvfUWCxcupLCwEKPRSHp6Oueccw7XXHMNkZGRh2yN+fn5vPHGG8yfP5/8/Hz8fj9xcXGkpKRw6qmncumll5KRkXHI5tsfBTREROSgeXxHr1Tr3uatzOeXZ3fHbtOvOBERCfpyw3dMWv45gWbC7w1eF99s+YFvt/zIxP6/4MLMMc2M0Lzi4mJmzZoFBKtGtDZngtEYLDZpMBi4/PLLeeGFF/jss89aDGi43W6mTZsGwGWXXQYE8zPExsZSUVEBQGxsLCaTKdQnIiKi0RhTpkzhwQcfxOv1AhAZGUlDQwNZWVlkZWUxZcoUXn/99VDCUpPJREJCAk6nE6fTicViafL69sxd4XK5uOuuu/juu+9C/SMiIigtLWXmzJnMnDmTm266ibvuuivU55JLLuGHH35g+vTp3HPPPfzvf/9r9OU7Ozubp556CoAbb7yx2YBHS7Kzs7nxxhvJzs4Ggu95VFQU5eXlFBYWsnjxYiIjI4+ZoyKlpaXceuutLF++HAj+24iKiqKmpib0M/J4PNx+++2N+n366ac89thjeDzBXGZhYWF4PB7Wr1/P+vXrmTx5Mm+99Rbp6ekHvcZ169YxceJEampqADCbzTgcDgoLCyksLGT58uVERUVx/fXXH/RcraVPeyIickC8Pj/vTF/L5rxKhvdpx5Beyfy8tohwuxkDUNvgbdLHZjHi8hze4EdBaR1ZG0sY3rfdYZ1HRESOD19u+I53l3+233YBAqF2rQ1qLFq0iEAgGCTZe4dEa/3iF7/gpZdeYtOmTSxfvpz+/fs3afPNN99QWVlJVFQU5513HgAvvfRSo10Kn332WbO7FABWrlwZCmacdtpp/OUvf6Fz5854PB5mzJjBo48+ytq1a7nrrrt45513MBgMtGvXjnnz5vHiiy/y0ksvMWDAgH1W7HjmmWf47rvvMBqN3HXXXVx11VWhgMa//vUvPv74Y/7zn//QsWNHJkyYEOr32GOPkZWVxY4dO3j00Ud59tlnAfB4PPz5z3/G6XTSv39/br311la/p9XV1Vx//fXk5eWRkJDAPffcwznnnIPD4cDv97N582amT59+WJKoHgi3283NN9/MypUrcTgc/PnPf2b8+PGh9eXk5DBz5swmAaW5c+fyl7/8BZvNxk033cQVV1xBUlISXq+XlStX8uSTT7J69Wpuu+02pkyZEgqkHainn36ampoa+vXrx8MPP0yfPn0wGAy4XC5ycnKYMWNGsztIDicFNERE5IB88f1mpszdAsDqLWU88rth3Peb4FbSX9z3ZZP24XYzYXYLrhZyXMRG2qiocTV7b3/aJYRTsLNUrMEACTEHfhZaREROHLlV+Uxa/nmb+kxa/jmnpPRs1fGTzZs3A2C1WuncufMBrTEpKYkzzzyTb7/9ls8++6zZgMZnn+0MtFx4YbPVNPbnhRdewOv10r17d/773/+GjpZYLJbQF+cbbriBRYsW8cMPPzBq1Kg2jV9QUBDKC3LHHXdwww03hO4lJCTw+OOPU11dzddff83zzz/P+PHjMZuDX0UjIyN55plnmDhxIl9++SWnn346l1xyCS+++CKrVq0iPDycZ555JtS+NV577TXy8vJwOBy89957oWooENyp0b17d7p3796m13g4ffHFF6xcuRKTycRrr73WZCdKRkZGo/cUgsdTnnjiCQKBAE8//TTnn39+6J7ZbGbgwIG88cYbXHjhhWzYsIFZs2Zx7rnnHtQ6d+0eefDBB+nbt2/ous1mO2rv6cGFaERE5KS1YlNJo+ff/ZyL1WLim0U5Tdp2SI4gMyOOWqe7xfEONJgxtFcyt152CheO7ETfLgncdnl/unU4ds7DiojI0TNz09xmj5nsS4AAMzfPbVXbyspKAKKiog7qr99XXHEFEKyW4nQ6G93Lzc1l4cKFAFx++eVtHruqqor58+cDcMMNNzTKk7HLqFGjOOWUUwCYPn16m+eYOXMmPp+PiIgIrrvuumbb7DoqUVRUxM8//9zo3uDBg0Nf2J944gkmT57Ma6+9BsBDDz3U5uMSkydPBoLHgPYMZhyrdq33/PPPb/WxmsWLF5Obm0tqamqjYMaeYmJiOOOMMwD46aefDnqdu44DFRcXH/RYh4p2aIiIyAHp3TmelZtLQ8/TkoJndT/+dmOTtrlFteQW1R6WdSxeW8SSdUX85fpTuXFCv8Myh4iIHH8aPA38kLPogPr+kL2IX/ebcFDVT9pi5MiRpKamsmPHDr766qtQngyAzz//nEAgQO/evenVq+1lydeuXRs6FnPaaae12G748OGsWLGCNWvWtHmOXX0GDhyIzWZrtk2XLl1ITk6mqKiINWvWMHz48Eb3b7/9dubPn8/KlSu57777ADjvvPPanOMiLy+PkpLgH13autPkaPB4PKxevRpo23qzsrKAYHBhxIgRLbbbFSArKCg4iFUGjRo1is8++4x7772XrKwsxowZQ79+/ZoNkh0p2qEhIiIH5PIx3RiUmYTJCH06xzOkVwoTH5lBZe2B7bQ4GP4ALF5TiMd77CQnFRGRoyu3uqBRNZO2aPC6yKsu3G+7mJgYIJizYVfQ4EAYjcbQ7otdx0sgeKxg11/v9wxytEV5eTkQPF6yK+Fnc3blPigrKzvgOZKTk/fZbl9zmM3mUAJQgPj4+FA1mLbYc+zU1NQ29z/SqqqqQola27dvfZWdXUEbj8dDaWlpi//tCmg0NDQc9FrvuecehgwZgtPp5M033+Tqq69m4MCBXHnllbz22muhHUtHknZoiIjIAbGYTTx6w+6/rjz19uJ9BjPamiPjzEEdcNhMTJ+f3ar2C1YX8PWCbHp2iuPx3w9XlRMRkZNcvefgvsDVe/ffv2vXrkAwqeOWLVtCzw/EruSgWVlZbNmyhS5duvDTTz9RWFhIWFgY48ePP+Cxjxeffvpp6HFlZSWbN29m0KBBR3FFxy6fzwcEd9a8/fbbR2TO6Oho3nvvPRYvXszs2bNZunQpa9euZdmyZSxbtozXX3+d//73v83mgTlctENDRET2q6C0jn9/voJ3pq/F2eBpto3BsO8xfnlOdyb/3/jQ0ZT9WbKukNlL81rV1mg0ULkzWLJuWznfLt7eqn4iInLiCjvI4yJh5v33HzZsGIadvwB3lSs9ULuSg8LuXRq7/nfs2LGNypm2RVxcHBD8S/6+dl8UFgZ3pOxrF8f+5igqKtpnu33N8dNPP/Huu+8C0L17d3w+H3fffTe1tW07spqQkBB6vGPHjjb1PRpiYmJC5W/z8/Nb3W/X6zwUR0naaujQodx33318+umnLF68mGeffZb27dtTWVnJ3XfffUTXooCGiIjsk8/n58H/zOOr+dl8NnsTL3yU1Wy7ay/oTcd2UVjMRjLaRXLJqC6N7ucU1uDx+kmMCWvVvDVOD/WupqVfmxPwN97m6/Mf+LZfERE5MXSIaofd3Hw+h/2xm22kRe2//GRSUlKobOqkSZOoqqpq1fh+f/NHJHclB50yZQqFhYV8//33QMvJQPdMRNrSkZdevXqFgi4LFixocU277vXp06fR9V1993WkZlefrKwsXK7md2Nu2bIlFPDYe46Kigruu+8+AoEAl156KZMmTSI5OZkdO3bw2GOPtThvc1JTU0lKSgJgzpw5bep7NJjN5tD70Zb1DhgwAIDs7Gy2bdt2OJbWKuHh4Vx44YU8+eSTAGzfvv2IBlkU0BARkX2qcXooqdhdanVbfvMf1tolhPO7i/sQCEBOQQ3zVuYTGxn8IGk2GTmlWwK3PTObrI0l2CwmjPvZ0QG0qg3QKH+92WSkR0ZM6zqKiMgJy26xc0bGsAPqe0bHYa1OCHrnnXdit9spKSnhzjvvpK6ubp/t165dy8MPP9zsvV3JQcvLy/njH/+Ix+OhU6dOLVa+iIjYveuxpqam2TbR0dGhpJGvvfYabnfTimNz585lxYoVAFxwwQXNzlFdXd3iazr33HMxmUzU1NTwzjvvNNvmxRdfBIJ5NPZ+PQ899BAlJSVkZGTw0EMPERMTw9///ncMBgNTp05tc+WVXYlE33vvvaP6Zb+1dq13xowZLFmypFV9Tj311FCOkKeeeip0BKU5Ho9nv/8u98fr9bYYiAMaJYNtKah1OCigISIi+xQdYaV/t8TQc4vZxLrscmYv2U5xeePScnOW5uH1BX/ZlVTU8+vze3L/NUN48c+jKSpzUrwzMOLy+OicGr3PecNsJm67oj/h9rblwvD6/Dz86oJGQRgRETk5je02CgOtjI7vZMDA2K6trzbRrVs3nnzySUwmE/Pnz+fiiy/m008/DSVthOAXvPnz53P33Xfzi1/8gpycpiXOoXFy0KVLlwL7TgYaFRUVSsQ5ZcqUFr/U3nHHHZjNZtavX8/NN99MdnY2EPyi++WXX/LHP/4RCB6hOf300xv17d69OxDcYbEr6LG3du3acdVVVwHwwgsv8Prrr4e+QJeVlfHwww/z9ddfA8EAkNm8+3f7xx9/zKxZszCbzfzjH/8gPDwcCOaG2FUC9tFHH23TcYzrr7+etLQ0nE4nEydOZOrUqdTXBz8X+P1+1q9fz5NPPsm3337b6jEPpwkTJnDKKafg8/m44YYbeP/99xsFqLKzs3nhhRf48MMPQ9csFguPPPIIRqORH374gd/+9rdkZWWFgg5+v5/Nmzfz6quvMnbsWNatW3dQaywsLGTs2LH897//ZcOGDaF/a4FAgBUrVoR20nTs2JGMjIyDmqstDIGDSccrIiInjBqnm+c/XEZuUQ1nD03nl2dnhu5tyavkzufnhp4bDBAIQESYhefvGkVKfPDDxxffb+KtL9cCwbwW//zjaOxWEz+vLWJTXgXfL9mdEyMxJoySyuaDDmf0b095jYv12RU47Caq65rP27Evj/zuVAb33He2dREROfF9ueE73l3+2f4b7vSb/pdxYeaYNs8zb948HnjggVCeCAC73Y7Vam20uyE8PJw//elPXH311c2OU1xczJlnnonX68VisTB37tx95rV46aWXQrsfbDYb8fHxGAwGxo4dy7333htqN2XKFB588MFQRY3IyEgaGhrweIK/Y3v27Mkbb7zRZC6v18sFF1wQCoLExMSEgg7PPfdcKAGky+XizjvvZPbs2QCYTCYiIiIaVYC56aabuOuuu0Jjb9u2jQkTJlBfX88dd9zBLbfc0mhut9vNL3/5S9auXcvQoUN55513Qsds8vLyQsd9vvvuO9LS0hr13bZtGzfeeGMoeGQymYiMjMTpdIZ2qfztb39rc1nYPWVmZh6ScQBKS0u5+eabWblyJRA86hMdHY3L5QoFY2677TZuv/32Rv2+/PJLHnzwwVAVE6vVisPhoK6uLvSzBfjggw8aJVidOHEiixcvbnbMXa/r3XffZdiw4C6nPd9vCB6ViYiIaDRPdHQ0r7/+Ov369Tuo96ItlAJeREQA+GDmen5eGzzb+t7X6zmlayI9OgaTfNXtlQh0Vyi8tt7Dik0lJMaE4fUHuHhUV3z+ANn51ZwxIJU5S3P5/PvNzc7XUjAD4Iflu/8KU13X9lKssZE2unWIaXM/ERE58ewKTkxa/jkBWv5brgEDE/v/4oCCGQAjRozg22+/ZerUqcydO5c1a9ZQXl5OfX09SUlJZGZmMmrUKMaPHx8q99qcpKQk+vfvz5IlSzjzzDP3m6TzlltuITw8nKlTp5KdnR3ayVBRUdGo3SWXXEKfPn144403WLRoEcXFxdhsNnr37s24ceO48sorsVqtTcY3m828/fbb/Otf/2LhwoWUlJSEynPuebTAZrPxyiuv8OWXX/LFF1+wdu1a6urqSEhIYODAgfz6179m6NChofYej4c//elP1NfXM2jQIG688cYmc1utVv7xj39w6aWXsnjxYl577bVm2zWnU6dOTJ06lY8++oiZM2eyZcuW0HrS09M555xzOOuss1o11pGQkJDAhx9+yJQpU5g+fTrr1q2jtraW2NhYevTowVlnncXFF1/cpN+FF17IkCFDeO+99/jxxx/Jzc2lpqaGyMhIMjIyGDhwIOecc85BV4tJTk7mlVdeYeHChSxfvpzCwkIqKiqwWCx07dqVkSNHcs0115CYmLj/wQ4h7dAQEREAnv9wGbOX5IaeP/b74QzsEUyq5fP5eeDf81i7rbxRH6MBbpjQl3e/Wke9y8tlZ3UjMz2WpDgHdquJG/52cBnf2yop1sFlZ3VlSK8UElqZfFRERE4OuVX5zNw8lx+yF9Hg3f1F3G62cUbHYYztOooO0e2P4gqDqqurOf3002loaODVV19l1KjWH38ROdkooCEiIgDkFtXw0H/mU17dwLDeKdx/7VBMe2Tl3LKjkjuf233sJNJhoWfHOFZtKWtSjcRogI7totia33ICsdYwGqA1BUsiHRbOHprBJaO6EBd1cGX6RETkxNbgaSCvupB6bwNhZjtpUSmtTgB6JLz99tv87W9/IzU1lVmzZjWqZCIijSmgISIiIT6fn7oGL1HhTbecArz06XJmLszBZjHh8rScTRvAbDLg9e3/V0xitJ2SqoZm78VH2SirbjlTtsNuJiUunNuuOIVuHWL3O5eIiMixbMuWLVx99dVUVFRw//33c+211x7tJYkc0xTQEBGRNqmt9/D8h0tZvKao1X36donHbDKyZUcV1XVNy8UdjInn9+DyMd0xGNqWxV5ERORYceWVV5KXl0dJSQmBQICuXbsyefLkZnNaiMhu2r8kIiJtEhFmYUjPlGbvGQyQnhzZ6FrfLvE8dctIHr/xNP7y22GNjrEcCpO+Xs+VD33FknWtD7CIiIgcS4qKiiguLiYmJoYLLriAN998U8EMkVZQlRMREWm13KIaXp28itp6N8mxVooqGu+2yEiO5OJRXfhk1iYKyoL150cN7BC6n5YcSVSElYp9HCNpiQFazE1f1+Dl35+v4I2Hzm3zuCIiIkfbrlKnItI2CmiIiEir/d+kJTQUb+emiFlEG53Md3TnU+epofvZhTX88+Pljfqs3FTC2FMzAPjv5JUHFMzY5b5rhjCiX3u25FXyxZzN/LQ8H//Ok5MmkzYdioiIiJxM9OlPRET2y9ng4e0v17CjpJZxYcuJNTkxGmCkfSMdTKX77LsptzL0eO3WsgNeQwD4at42ALqkxXD3rwfz518PIjrCSmJsGLdf0R+AmQuz+ct/5vP2l2vw+fwHPJ+IiIiIHNu0Q0NERPbrH+8t5eedOSq8gcaxcIvVisllwNdCfdXaejfXP/ktv7uoD13SYiiuqG/Sxm410eDed9UUgOQ4R6Pnp/dP5fT+qaHna7aW8dKnKwBYvqmEucvy+O/9Z2O1mPY7toiIiIgcXxTQEBGRJpZtKGbR6gI251aSlhJJ1sbi0L1p9QOJN9WSYKzhZ/rS/9SB/GFAKu0TIpj241Ymfb2u0Vg1Tg81Tg/PvLeEB68bysbtFdQ3eAhgoN7lBaBXp3iWbSimJWE2E6MHduDaC3vtc93FFc5Gz0urGvjbOz/zyO9ObaGHiIiIiByvVLZVREQA2LqjkvtenhcKMrTVr8/vwdBeKfzh2Tmt7mMxG+nZMY7T+6fy8mcrQtf3TABqNMCdvxrI6EFpGAwGnA0eNuRU0D4xosmOjU9mbWDS1+sbXUtNDOc/9519QK9JRERERI5d2qEhIiIAPPzfBQcczACY9uNWzuifRvuEcArLnfhbOIKyJ4/Xz8rNpazc3DgPx549/QF47sNlLFhdwG2XncI9L/3IjpI6rGYjj94wnL5dEkJtf8ja0WSO84Z3PNCXJCIiIiLHMCUFFRERAOoaPAfXv97D/733M/mldfsMZhgMBzb+glUFzFiYw46SYDlYt9fP90tyG7XpkBwZemy3GnnshlO5ZFTXA5tQRERERI5p2qEhIiIA9O+eyJJ1Leex2Fukw4LZbAyVYfX6AmzOrdpvv6vP68H0n7ZRUdP28q3Td1Y52aV9YkSj57dd3p/46DCq61xMGN2VTu2j2zyHiIiIiBwflENDRESA4PGPD79Zz+I1BdTVeyitanvAoTW6dYhpVMr1QE0Y3ZWJ5/Vg6o9b2ZxXyWn92nN6/1QKy+rI2lBMp/bR9OgYd/ALFhEREZFjknZoiIgIEEzQ2SE5kk+/23RY5zkUwQyAi8/ozDeLcnh7+loA5q3Mp7Csjo++3YDb48dogAevG8bQ3imHZD4RERERObYoh4aIiITk78xPsYvpAPNdHG7dOkRjMhrJLa4NXQsE4N2v1uH2+IFgMtHFawuP1hJFRERE5DBTQENERELOGJBKRJgFgHC7GV8rDyXarKbDuKqmNuVWcfP/fUefLvFYLcG5w3eue089MmKP6LpERETayuPx8N///pcLL7yQfv36kZmZSWZmJnl5eeTl5TV6LiKN6ciJiIiEdEiO5JV7zmJ7YQ0Ws5EH/j0P3z4qlrSLdzCsdzKL1hRRXuPC5fYdsbXWOj1k51fTu3McOQXV9O4cz/yVBfj8AQzAFWd35+yhGUdsPSIicnLJzMw84L7fffcdaWlpADzxxBN8/PHHANhsNhISguXITSYTPt+R+70qcjxSQENE5CTibPDw2v9WU13r5uJRnenXNbFJm9goO7FRdgCevHkE3yzKoaSinpJKJ4VlzkZtC8qcTPlhW5MxjpRPv9vIrnjLj8vzuWBEJ5LjHPTsGKeEoCIicljtCjzsraamBpfLhcViITq6+WpbJlNwd2FtbS2ff/45APfffz/XXHMNhj3qm2tXhsi+KaAhInKS8Hj9XP3w13h3niPJ2lDEm38ZS0ykrcU+vTvH07tzfOj5glX5PPX2z4d9ra219+aRsqp6brq039FZjIiInFTmzZvX7PX77ruPyZMnM2DAACZNmrTPMbZu3YrX6wXg8ssvbxTMEJH9U0BDROQkMPvn7bz02YpQMAPA4wtQUdOwz4DG3sqrD08p10NlRL/2AOSX1PLCR1lU17m4emxPTh+QepRXJiIixwpffT3O7bn46usxhYXhSO+AKSzsqKyloaEh9Dg8PPyorEHkeKaAhojICe7Ln7by38mrmr2XnhzZprGcDZ5Gzzu3j6Z3l3jWbi1jy46qA17jofLZ7E14fX4+m72ZHSXBCijPfbiUU7onEhVuPcqrExGRo8m5fTsFX82g+Pu5+PcIJBjtdpLOHEW7cefhSE8/Imv54osvuP/++xtd2zMnx4QJE3j66aeb9CsqKuLll1/mhx9+oLS0lPj4eEaPHs0f/vAH4uPjm7QXOdEpoCEicoIqLKvjhQ+XsWZbebP3xwzpgMnUtmJXY0/tyNxleeQU1mA2GUhNCue6C3vz7eIc/v35ykOx7FYzGgz4A43PnOQU1vDPj5c3uub1BXB7lFRNRORktuN/08h+651gje+9+BsaKPx6JoUzvqHjddeQevH4w74eu91OQkICHo+HqqrgHwT2zMkRERHRpM/GjRt54IEHqKioIDw8nEAgQGFhIR999BHz58/n888/Jyoq6rCvXeRYorKtIiInoKpaF3c8N6fZYIbNYuTR3w3jzl8NbPO4UeFWfnFmVyAYKPhxeT5fzd/G2FM7csmoLmSmx9JzH8k4E6LtbZ6zOXariUtHd25V2wmju5IQc3S2EouIyNG343/TyH7z7WaDGY0EAmS/+TY7/jftsK9p3LhxzJs3jxdffDF0bd68eaH/HnrooSZ97rvvPjIzM5k2bRrLli0jKyuLJ598EqvVyvbt23n11VcP+7pFjjUKaIiInEC2F1bz0TfruefFH3E2eBvdMxrg9P6pfPDE+disZjZurzigOer3Ks3qbPBiMhq4/qI+/OOOM3jwuqF0SIqgubxmpVUNjZ7vahNmM9G9Q/OZ4Jvz6/N7MuHMbuwrdVr7BAfvPjKW347v3epxRUTkxOLcvj24M6MNst96B+f27YdpRQcuKSmJ1157je7duwNgtVq57LLLuOKKKwD4+uuvj+byRI4KHTkRETlBrNhUzEP/WdDsvZT4MO6dOJSuHWJ49oOlzFkaLAN35bmZXDW2R5vmGT0wjVmLt7Mpt5IOyZGMO61jo/vzVxWQWxzMX2ExG7FajdQ5dwdXDEAAMBkN+HaWKfF4A2zMbV0Ojj9fPYhRA9MAePyG4bz79TpKKuuprAkmLE2ICePcoemcN7xjqPysiIicnAq+mrH/nRl7CwQo+GomXW76/eFZ1AG69tprsVqb5oM6++yzee+998jLy8PpdOJwOI7C6kSODgU0REROEG9/ubbFe/dMHELXDjE0uL2hYAbAzIXZbQ5oOOwWnr3jDKrr3EQ6rBiNjfdJLFtfFHrs8fqJdFipIxjQMBjgnl8PJirCynMfLKNs544Nn9/fqrmH920XCmYA9M9Mon9mEi6Pj6/nb8Pt8TPutI5EOJQAVETkZOerr6f4+7kH1Lf4+zl0vObXR636SXP69u3b7PWkpKTQ45qaGgU05KSiIyciIicAZ4MntCtib+cOS6dbh1gAbBZTo3wS7RObJh1rDYPBQHSErUkwA6B3591Z1sPtZsqrdx8ziY+yM7J/Kv26JvLnqweRlhRB+4RwkmJb/vCVEBPcZXFKtwT+dPWgZtvYLCYuGdWVK87urmCGiIgA4Nye26iaSVv4Gxpw5ubtv+ER1FJZV5ttd/l1j8fTbBuRE5V2aIiInAAWry3C5W5ayWNY72Ruv2JA6LnBYODxG4bz8bcbsVlN/Pq8tu3OaI1LRnUlJsJGfmkdp/Vrz7PvLyW7oBqAQT2TQ+36dEng3/eOASC7oJon31xEYbkzdL9nxzguPqMLI05pj8/nb3NFFhERObn56uuPan8ROfwU0BAROQHERdmaXEuJd/DgdcOaXO+QHMmff938TodDZfSgDqHHT948glmLcwgPs3D2kPRm23dsF8WNl/bjsdcXhq6d1q8dI05pD6BghoiItNnBHhc5lo6biEjzFNAQETkB9OuayG/H92beinw6p0Vz/fje2KzHxv+Ljwq3cumZ3fbbbnDPZH4zricLVhWQmRHLhSNbV5ZVRESkOY70Dhjt9gM6dmK023F0SNt/QxE5qo6NT7siB6G23kN1nYuUuPBmz/OLnCwmjO7KhNFdj/YyDsrlY7pz+ZjuR3sZIiJyAjCFhZF05igKv57Z5r5JZ47WDg2R44ACGnJcW72llMffWES9y8uQXsk8eN0wTApqiIiIiAjQbtx5FM74pm2lWw0G2o0be/gWJSKHjA4ly3HtizmbqXcFy0H+vLaITbkVR3lFIiIiInKscKSn0/G6a9rUp+N11+BIbz7nk4gcW7RDQ46oWYu3sz6nnKG9UhjaO+WgxnJ5fFjMu2NyRkPwrL6IiIiIyC6pF48HIPutd/a9U8NgoON114Tai8ixzxAItGX/lUjrVda4eG/GOtweH1ec3Z0teVX84/2loftDeyXhbPARF20jKTac80/rSFKso9mxXB4fxeVOkuIc2CwmSirqueP576mp82A2GeiQHMklo7pw1mBF00VERESkKef27RR8NZPi7+c0ShRqtNtJOnM07caN1c4MkeOMAhpyWCxeU8jLn62gvDr4yyIxNoyRp7Rn8pwtLfZx2M1ceFonNudX0S7eQXS4jcG9komPDuPO5+dQUe3CbjXhcvvY+x9tVLiVB64dSu/O8YfxVYmIiIjI8c5XX48zNw9ffT2msDAcHdKUAFTkOKWAhhxy67PLufelH/Hv9S/LAE0CEftjNMBpp7Tnp+X5+20bZjPz1l/OJTzM0sZZRERERERE5HijpKByyG3Lr2oSzIC2BzMA/AFYsGL/wQyAepeX6jr3AcwiIiIiIiIixxsFNOSQ65ASdUD9jHv8azQEfIR5g8dVjN7WBSkG90wmJb75HBwiIiIiIiJyYlGVEznkNmSXt6n9rqMofv/uaxnOIrLD2wPgMVmxeV24zLYmfY0G6N89kbMGd+C0fqkYDIaDWLmIiIiIiIgcL7RDQw65KXM37/P+rpjD4J5JPH3rCNJTIpu0ifbWNnruMjVXjjWAPwDLNpTwj/eX8asHp/Pz2sIDXbaIiIiIiIgcRxTQkEPG5w8wd1keVbUtHxExABee1ol+XROoq/fi8wcYM6Rpeaw8ewKJDWU4vE5iXZW7oyB76G7a0ei52+vntSmrD/ZliIiIiIiIyHFAR07kkPnXx1nMXpK7zzYBYNq8baHnj7++iD/8qn+TdmW2uNBjp7lpXgwzXjb60ppeNytGJyIiIiIicjLQtz85JDblVjB/ZeuqkezJ5fHxzKSlbe7nbSYWZ7ea+MMv+7d5LBERERERETn+GAKBwIFU0xQJ+XjWBt77en2z92IjbVTUuI7IOob3bUdaUgRzluWRkRLFn64eRESY5YjMLSIiIiIiIkeWAhqyTz6fn28Xb6e23sM5Q9OJjthdaWTl5hIKy5y8P2M95dUNh2X+bh1iKCito7beA0BkmIWanY/3ZDSAyWTE491dKuWSUV24/qI+h2VdIiIiIiIicnQph4bs038mr2LGgmwAvl+ay7/+dCYmo4FnP1jKnKV5AJj2Ori0qwzroXD5mG5Ehdt45LUFuNy+4ODN8AfAv0cwA6DB7TtEqxAREREREZFjjQIask8rN5WEHm8vrKGq1kVBaV0omAHgaxxHOGTBDIDPvttERruoYDADqHE23Z3RnJhIG5eO7noIVyIiIiIiIiLHEiUFlX3q0TGu0fM1W8uY+sOWwzbf3tVZd5TU4vc3DpE4bPuPw1XVuCgsqzuUSxMREREREZFjiHJoCAA+f4A3pq5m1eZSTumWyBkDUtleWM2Okjo+m70p1C45zkFRufOQzduzYxyZGbGUVdUTCMCO4hq2FdQ0aRcTYSXCYWFIrxQmz2ldQGVgZhJ/vGpgo7wfIiIiIiIicmJQQEMAmLkwh5c+XX7E5z13WDoXn9GF9JQoAEor6/ntX7+huX+VGSkRZLSL5oesHXtdjyIp1s66beXUNngb3YuLsvHsHaNIiAk7bK9BREREREREjjwdOREAquuOTGnVvX27eDu3PvM9r3y+AgCb1USPjFisZiORjsYlV3MKa5sEM4wGmHh+D9ZlB4MZEWEWUhPCQ/fLq10sWlN4+F+IiIiIiMhhkJeXR2ZmJpmZmeTl5e2/g8hJRAENAeCcoRm0T3AcsfnsVhPhYebQToyv52dTV+/ho283sC67ArfXT43TQ2pi+D7H8Qfgr28tprY+uDOjtt5DZsfYRm0KSuua5OEQERERETnavvjiC1588UUWLVp0tJciclxSQEOAYFWQl+4ew3Xje2E0tlAb9RA4Y0B7rji7GzdO6EeHpMjQ9XC7mS9/2kpOQXWj9lef1wO71dSmOerqPXRsF4XVHPzn/b8ftvDGtNUHv3gRERERkUNo8uTJvPTSSyxevPhoL0XkuKSyrRJiMRu5dHQ3LhrZhV8++CVub3BXg8nYtDTrgbBajPyQlR963jUthlP7pFDr9JBdWM17M9Y36bNodSEuj69N8yxaU9Tk2urNZW1fsIiIiIiIiByzFNCQkLp6D+99vY6NuRWhYAYcmmAGgNvTeKDNeZU8+vvzyCuu5b6Xf2q2z9y9cmYcqP7dE3F7fJRXN7B6Syld0mLo1D76kIwtIiIiIscPt8tLcWENbpcXq81MUkokVpu+Fokcj1TlREL+8d5S5mYduURD7eLDOffUdJwuL98szKGq1r3P9iYjJMU6cHl8lFe3Lolpp/ZRXHRGF+avyOfndUUYDITydvTqFMd91wwhNtJ+sC9FRERERI5xxYU1LJmXzcqlebhdu3cAW20m+g1KY/CIjiSlRO5jhP374Ycf+Oijj1ixYgVVVVVERUXRt29fLr/8cs4+++xQuy+++IL7779/n2Nt2LABCCYFHTNmDADfffcdFouFl19+mR9++IHS0lLi4+MZPXo0f/jDH4iPj29xvOrqat59911mz55NTk4Obreb5ORkTjvtNK6//noyMjKa9HnxxRd56aWXGDp0KJMmTWLq1Kl88sknbNq0icrKSl5++eVGr0vkSFMoUkLySmoOyTgGYF9RMrPJwLjTOrG9sIZ3pq8DoF2CY78BDZ8fCsqcWMytT/2yLb+a+SuDwQygUTnYtdvKue3/vufsoen85oJemA5j7hAREREROXoWzt3KN9PWNvsh1e3ysWR+DksW5HDu+F6cOqpzm8cPBAI8+uijfPTRRwAYDAaioqKoqKhgzpw5zJkzhwkTJvDkk09iMpmw2+0kJCRQVVWFx+PB4XDgcOw/Qf/GjRt54IEHqKioIDw8nEAgQGFhIR999BHz58/n888/Jyoqqkm/lStXcvPNN1NaWgqAxWLBbDaTm5vLxx9/zNSpU3n++ec588wzW5z7r3/9K5MmTcJoNBIZGYnRqHSMcvRph4ZQ63Tz9vS1zFuRT229p8V24WFm6nZWEzlYYTYzXp8fj3f3MZQ9d08cabGRNv7wywEM7pl8dBYgIiIiIofFwrlb+Wbq2la3P/eitgc13nrrLZ5++mkArr32Wm688Ubi4uKoqanhrbfe4uWXXwbg9ttv57bbbgv1mzhxIosXL+a2227j9ttvb3bsPXdoREdH07NnTx588EG6d++O2+1m6tSpPPbYY7jdbn7/+9/z5z//uVH/wsJCLr74YiorK5kwYQK/+93v6Ny5M0ajke3bt/PPf/6TL7/8EofDwbRp00hLSwv13bVDw+FwUF9fz2233cZvfvMboqKiqK2txeVy7XNXiMjhprCa8NJnK5i5MGefwQwAu+XQbeipd3kbBTMcdjPd02MO2fhtVVHj4ul3f8bdxgSkIiIiInLsKi6sCe7MaINvpq2luLD1O5fr6+t55ZVXALjiiiu4//77iYuLAyAyMpI//OEPXH/99QC89tprVFZWtmk9e0pKSuK1116je/fuAFitVi677DKuuOIKAL7++usmfV544QUqKyu56qqrePrpp+natWtod0V6ejrPPvssp59+Ok6nk7fffrvZeZ1OJzfccAO33XZbaAdIRESEghly1CmgIRSU1LWqXVl1w2Fbg7PBy+bcqibX+3aN57rxvWkXH96moyYHwuX2kVdcS4Pr0OxCEREREZGja8m87H2fhW5OYGe/Vpo3bx7V1dUYjUZuvfXWZtvcdNNNWK1WGhoamDVrVhsXtNu1116L1Wptcn1XHou8vDycTmfoekNDA9OnTwcIBVWac+GFFwLw00/NJ+o3mUxce+21B7pskcNGOTROcj6fH5//EJUxOUg+f9PfNtsLaygur6eo3NlMj5ZFhVuwWcx4fH4qa1qXQBTgL/+dT3Wdm47torhxQl8+mLGewvI6EqIdnHdaBmcNTm/TOkRERETk6HC7vKxcemAJ71cuzePsC3u2qvrJ6tWrAejUqRMpKSnNtomKiqJPnz4sW7aMNWvWcNlllx3Quvr27dvs9aSkpNDjmpqaUD6O1atX43YH89T98pe/bHFcjye4U7ugoKDZ++np6aFdJyLHEgU0TnJL1xeT04YtdUdaVa2bKvadLLQ59W4fl4zqytfzt7WpX3VdcK7sgmoe+s/8UJClpLKBdTnlZG0s4U9XDWrzekRERETkyAqWZj2w48Rul4+SohpS02P327a8vByA5OR952LbFewoKys7oDUBhIeHN3vdZrOFHu8KTgCUlJSEHu9KCLovDQ3N78hWMEOOVQponOTsNtPRXsJh4fH4eferdW3qYzYZ8fp271ZpbsfIgpUFcNVBL09EREREDjP3QR4jdjUc/7nV/Dt3YpvNZtasWXPA45hMJ+Z3Bjn+KYfGSa5f10S6dog+2ss4Jnh9fpJiw4iJsJES33zZrPho+xFelYiIiIgciNYcF9kXm711X+J37V4oKiraZ7vCwkKAI5pIc9dcXq93v+sTOR4poCGkJzetVX209OgYS9hB/vI5GG6Pn0mPncfTt44kPSUSgOhwK5EOC93TY3j6tpFHbW0iIiIi0npJKZFYD3A3stVmIjE5slVt+/TpA8C2bdtaDBpUV1eHdkjsag9gMBgACATamrm0dfr27YvFYgFgzpw5h2UOkaNJAY2T3LL1xXRuf+zs0OjdOZ64qKaZm1vLbDIQF2XbZ5uwffxiG9IrePYxPjqMl+8+iy/+fiHvPX4+HzwxjmfvGEVspHZoiIiIiBwPrDYz/QalHVDffoPSWr3DY8SIEURHR+P3+/+/vfsOkLMs9z7+e6bP9t6zyab3QhoJhITQOwiCHlE4oEcRBAuKIlheyxEsSBVFEFEOHZWmEAgllfTek0229953yvvHZCc7O7N9N8kk388/Zp56z2TN8vzmvq/L3761qyeffFKtra1yOBw677zz/NujoqIk+QKP4RAZGamLLrpIkvTEE0/46310p7Y2uOsgcDIj0DiNPffOLv34qTX68xs7FB0x8BBhKL22/IAKy/vX0aQzl9urppb2Ho8ZmxUni9nwv46PtivSaVFirEOzJ6YEHGu1sF4QAAAgXM05a5Rk9HpYIOPoeX3kdDr19a9/XZL04osv6oEHHlBNTY0kX8eRRx55RE8//bQk6Stf+Yri4uL8544bN06StGLFCpWVlfVzoH1z9913KyEhQSUlJbr++uv17rvvBhT/LC4u1muvvabPfe5zev7554dlDMBwoSjoaeyTzYX+P9c3tWn2xBRt3DM8/5AOhxsuGK+Xlu0L2t7S1nMb2oOFNbrrhln6ZEuh0pMilVtUp+0HKtTY7NKv/75RM8YlK+okCXgAAAAwcClp0brwisl6741dfT7nwismKyWtb8tNOtx0003Kzc3Viy++qGeeeUbPPvusoqOjVV9f7y/MefXVV+u2224LOO+qq67SM888o8OHD2vx4sVKTEyUzeb779Dly5f3awzdSU9P1zPPPKPbb79d+fn5uvPOO2U2mxUdHa2WlpaAcGPx4sVDck/geCHQOI2NzoxVaZVvNkRKvFNWS3/j6xPnsoU52rqvvPcDQ2hqcWvNjmL96NYzJUm3/vw9/z63x6st+8t19ozMIRknAAAATqwzF4+WJL335i6pp1IVhi/M6Di+PwzD0E9/+lMtXbpUL7zwgrZt26a6ujrFxsZq2rRpuuGGG3T++ecHnTd69Gg9++yz+tOf/qRt27apqqpKbvfQd1eZNGmS3n77bb388st6//33tW/fPjU0NMhut2v8+PGaOnWqzj33XC1ZsmTI7w0MJ8M7XBVocNJramnXax8eUG1Dq/blVSu3aHjW7g2luCi7Jo6K19odJSH2WeWwW1VW1aTOHVdz0mOUWxz43s6cmq4f/vc8SdIvn12nNduL/fu+9pnpuuysnOF5AwAAADghykrqtWHVYW3bWKC21mOhgc1u1vTZWZpz1qh+z8wAcGIRaECvLd+vZ9/u+zS848VQcIh+zqxMbdhdqqaWvvcVT0uMUEnlsbocEQ6L/vj98xR3tMDngfwa3fP4CrW1exQbZdPv7lqslITQbVsBAAAQ3tpaXSovrVdri1t2h6+byWBbvAI4MQg0TkMfrM/Trtwq5WTEqKSySYVl9dpwEtXOMCQtmpkph82s99blBexz2ExqbfeoPz+1CdEOVdUfWxv43I8vUnxMYLeSkspG5RbVacLIeCXE0MkEAAAAAE52BBqnmVVbi/Sr59YHbTcM9SskOB5CjclkSGmJkSqqaOzzdcwmQ16vVx6vdPGCUbr9uhlDPFIAAAAAwPHG3KrTzMHCmpDbT7YwQwo9JrvNrEinVVkpUZK8Kq5sVEfdpO5CGbfHqwXT0lTX2K75U9KGdcwAAAAAgOODGRqnmf351fr+46vU1j701ZNPlDGZsVpyRpbeWX1YpdVN8ngCf6StFpPaXcdauZ4/d4Tu+twZx3uYAAAAAIAhRKBxGioqb9A7q3P1r08ODcv1R2fGKMpp1bYDlYO6jtlkyGI2yeP1BgQS/WWzmtTWHnh+hMOih7+1RGlJkYMaIwAAAADgxCDQOI2t2FKox17Z0q+OIb2xW31FOyVfvQvPIH66vnr1NP393T1qbG7v8bj4aLuq61v9r7vet7ulKHarWa/+6vKBDxAAAAAAcMJQQ+M0tmhmpqaMTtSHG/P1t3d2yz2Y9OEol/vYNQZ7ua0HKnoNMyxmk+750hy9veqwVmwpVEykTfffOl8Oq1mfbCmU1+vVq8sPhDy3td0tt9sjs9k0uIECAAAAAI47Ao3TXEKMQxEO65CEGZL6fZ1vXD9TOw5W6MONBUH7xmfHKTHWobdX5XZ7vsvtUXlNi773xTn66jXTFOGwyGoxS5JGZcSqrd2tjXvKlFtUF3RuTKSVMAMAAAAAwhSBBhQTYQvc4PX61mkcB3UNrfr2f81WTUObNu8t82+fPjZJ1547TiaToSmjE/Xg3zb490U4LP5lMjarWelJkfJ4vIqNsgdd32Y164E7FmnLvjIlxjqVlhihJ17dJsOQbv8s7VsBAAAAIFxRQwOSpIde2KjlG4JnSRwPX7lqqq48Z4we/Nt6rd9VqpFp0frJVxYoKsKm1na3/vLmDr296rD/+HNmZeqs6Rnan1etzfvKdbCwVhlJkfrl189SYqzzhLwHAAAAAMDxxXx7SJImjkw4Yfd+f32eKmubtXV/hVra3NpfUKu9edWSpCde3eoPMwxDmpAdr5svm6KF0zOUnR6jg4W1kqSiika9MUxdWwAAAAAAJx8CDUiSpo1Nkun4rDIJkhzn1PaDlaprbJMkeTxerd1RIkk6UFDjP87rlb73pTlKjvfNwnDYAldMOR2soAIAAACA0wWBBiRJWSm+ZR5O6/FPNfblVSs13ilTp5/GtIQISdLZ0zP82yaMjA9YUnLm1DRddc4YpSRE6KwZGbr6nDHHbcwAAAAAgBOLGhoI0Nrm0nU/ePu43/fe/56nB/663t8lZe7kVP3o1jMlSZv2lKmusVVnTksPmpUBAAAAADg98XSIAHabRSNSo5VfWt/vc80mKTbKoeq6FvUnJYuNsikxxhHQ8rWuoc3/5zMmpvR7LAAAAACAUxtLThDkp19ZoEsWjtIVi0Yr9ejSj75we6SquhZlJkcG7UuOcyoiRI2L8SPi9OA3Fml8drwumJctyddq9YYLxg/8DQAAAAAATnksOUGPvvyLZSqtahrUNVITIvTbu86R1WLS9x9fqdyiOv++W66YrGuWjPO/LqtqUoTDoqgI26DuCQAAAAA4tTFDAz1aMC190Ne4buk4xUbZFeGw6obzJ/i7qWQkR+rys0cHHJuSEEGYAQAAAADoFTM00COv16snXtum/6w5LEkypJD1MdISIzRvcpreWZ0rl/vYERNHJejBO86WYRzrnlJQVq/KmhZNykmQzWoe3jcAAAAAADglEWigT7YfqFBpVZOKKxr08gf7JUk2q0kj02KUkRSpmy+foqQ4p/JK6rR2R7EqalqUkxGjC+ePlNnMRCAAAAAAwNAi0EC/eL1e/WftERWVN+jc2SM0OjP2RA8JAAAAAHAaItAAAAAAAABhh7UAAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAAAAAAAIOwQaAAAAAAAg7BBoAAAAAACAsEOgAQAAAAAAwg6BBgAAAAAACDsEGgAAAAAAIOwQaAAAAAAAgLBDoAEAAAAAAMIOgQYAAAAAAAg7BBoAAAAAACDsEGgAAAAAAICwQ6ABAAAAAADCDoEGAOCUdaS4TkUVDSd6GAAAABgGlhM9AAAAhsMfX9+mt1blSpKuWzpON102+QSPCAAAAEOJGRoAgFNOS6vLH2ZI0qvL96uytvkEjggAAABDjUADAHDKsVrNQds+WJd3AkYCAACA4UKgAQA45ZhNhqIjrAHb3F7vCRoNAAAAhgOBBgDglHTF2aMDXs8cl3yCRgIAAIDhQKABADglOZ2Bda9Lq5pO0EgAAAAwHOhyAgA4pZRVNenPb+zQocLagO35pfUnaEQAAAAYDgQaAIBTym+e36jdh6uCttc0tJ6A0QAAAGC4sOQEAHBKqeimPWtjS/txHgkAAACGE4EGAOCUcu2542QYwduzkqOP/2AAAAAwbFhyAgA4pVx2Vo5mT0zR+p0l+tO/dkjytXE9a0bGCR4ZAAAAhhIzNAAAp5y0xEh9uKnA/9rt8Sq3qLaHMwAAABBumKEBADjlvLhsb1CXk6f/tUMJ0Q6lJEYoIynqBI0MAAAAQ8Xwer3eEz0IAACGyhsrDuqpf+7odr/ZZOieL83RgmksQQEAAAhnLDkBAJxS3vjkUI/73R6v/r3m8PEZDAAAAIYNgQYA4JTS0urq9Zit+8q1L6/6OIwGAAAAw4VAAwBwSkmIdfR6jMcr/fyZT4/DaAAAADBcCDQAAKeUiaMS+nRcY0v7MI8EAAAAw4lAAwBwSrnp0smymIxej3O5PNq0p+w4jAgAAADDgUADAHBKiXRalZ4c2etxHq/05sqeC4gCAADg5EWgAQA45dz33/OVnRatrvM04qNsMneavZFXUqeGprbjOzgAAAAMCQINAMApJyM5SufOHiHv0dcmQ5qQHafffWuJlpyR5T+urLpZz7+7R+0uj3757Dpd94O39JOn1qilrfdOKQAAADixDK/X6+39MAAAwofb7dE133tTnX/BpcRHyOP1qqKmOeDYJbOzNHV0oh57Zat/2y1XTNE1S8Yep9ECAABgIJihAQA45VTVtahrWt/U0h4UZsRF23XduePk6XKwp+sGAAAAnHQsJ3oAAAAMtdqG4LoYTrtZDc3HWrXeePFEfebcsbJazEpPitTaHcXasrdMk0cn6pKFo47jaAEAADAQLDkBAJwy8krq9OOn1qqmvlUOmy/AMJkkj+fYMYYhzRiXpG99brZyi2uVmRyltERfVxSv1yvDMORye/z/+7vnN2rr/nJFOq36+rUzNHtS6gl6dwAAAOiMQAMAEJZeXLZXb608pPTESH3vi3OVHO/Ul3++TKXVTf5jMpIilRjn0PYDlUHnO+1mNbe6JUkXzM/WLZdPkc1q1gfr8/THf2yXxWLS7ImpWr2tKOC8e2+epwXT0of3zQEAAKBXBBoAgLBzqLBWd/3uI//rJWdk6TtfmK0bfvi2mlqGrkOJzWpSW7sncJvFpPtuma9ZE1KG7D4AAADoP4qCAgDCTrvL3eW1R+0ujyLtQ1saKibSJovZCNjW5vLoJ0+t0aHC2iG9FwAAAPqHQAMAEHYmjEzQxJHx/tfxMXY99soWlde29On8GWOTNHl0Qrf7oyNtykiK1HdvnKNff2NR0H6PV3r9w/36eFOBVmwulJuuKAAAAMcdXU4AAGFn3a4S7TlS7X/91spcJcc5Qx4b4bAELUPZfaRar/3qcn3n4Y+1L68mYN/8KWm69+Z5Mpl8MzMO5Afu77ByW5E+3lwoSVq8M0t33zh7gO8GAAAAA8EMDQBA2Fn26ZGA12aTodZ2d8hj7/niXF1+do4/oJCkcSPiJEmGEbic5Mnvn6f7bpkfcOyYrFgtnpUlSTJ1Ot7tPjYrY82O4oG9EQAAAAwYMzQAAGEnMzkq4HVspE1V9a2SfOFGfIxdDU3tGp8drw835SsnPVZ//dFFemPFQZkMQ1cvHiO326PkOKf25VXL65UWz8oKuq7kCz3uvnG2brlyih5/davW7SwJOmZ8dtywvE8AAAB0j0ADABB2vnDxRJlMhorKG3XB/Gz97v82+fe5PV5V1PhqaWw7UCFJ+kgFspgNfenSyf7jXl2+Xyu3+lqyGpKuWjw66D4H8mv00rK9Kqxo1ISR8TpjfHJAoDF9bJIm5STo6nPGDMfbBAAAQA8INAAAYcdqMQeEE3MmpWj5hoIez3lz5SFdtGCU7FazJKmwvMG/zyuppLJJ40YcKzRa19imH/5hpZpafUtZ8kvrVTUhRUvOyNKnO0uUnhSpz10wXsWVTVq5tVBrtpfI7fHqgnnZWnxG1hC+WwAAAIRCoAEAOGntPVKl/fk1mjk+WVkp0QH72trd+stbO7XjYIVqG1plyBdMdKekskmPvrxZd39hjv74+ja9vy7Pvy8zOUqzJqQEHJ9fWucPMzoUljcov8yr5laXDhXW6od/WB10z+0HypWdFq2cjNiA7XkldSqpatLU0YmKcFj7+hEAAACgGwQaAICT0ua9ZfrJU2vk8UpOu1kPfWuJMpOjtD+/Wk++tlUHCurk8favXerHmwq142CFKmtb/dsm5yTox18+MyhkePjFLUHnl1c3B9wz1N09Xqm8pjkg0FizvVi/em69PB6vstOi9Zs7z5HTzq9gAACAwaDLCQDgpLRxT5k8RxOD5la3HnhuvQ4W1OhXf12vffm1/Q4zOnQOMyQpMdYZFGbsy6tWcWVjwDazSX2+56othQGvl2/Ik+fom8krqdf3H1+h2obWUKcCAACgj/h6CABwwnm9XpVXNys60uafuTApJ0H/+uSg/5jcojp979EVMkxGd5eRpIClJyaT4Q8SQomPtuumyyYHba+oaQ54nRLvVE19q9weT7fXsttMam3z7V++sUDFlY06WFCryAir0hIiA449VFinF97bq699ZnqP7wUAAADdY4YGAOCEcrk8+vqDy3XrL5bpxh//R3uOVCm/tF5ut0ffuH6GzJ1+U7W5PJo5LinoGh3HxEfbA5aB9BRmSFJ1fWvImRK5RbUBr79+7Qxlp8X0eK2OMKPD7sPVanN5VF3Xqt2Hq2QxG12OD6zPAQAAgP4xvN4BztkFAGAIPPziZr2//liBzqQ4h2rq2+RyexQbZVNLmzvg4d9pM8tkMtTY4vJvmzE2STdcMF6vfLBfm/eVd3svsyEZJkMu97FffWaToS9cNFERDotiouw6e0aGfvLUWm3aW3bs+uOStHV/RZ/eT2ykTe0uj5paXUH7RqXH6HBxnVISIvSzry5QRlJUn64JAACAYAQaAIATpqXNpS/c/2+1ubpfyhETaVNdY1vANos5MJTokBznVHmX5SIdTIb0P1dPk81m1iMvben2fmdMSNbsial66l87JElx0XbV1Pe93sV1S8fp1eX7Q+4bnx2nX3ztLNltZhmGoX151TKbDI3Jiuvz9QEAAOBDDQ0AwAlTU9/aY5hhMqQpoxO1ZntxwPbYCJsqQ4QMba7QyzhuvXKK8krq9ezbu9Ta3vNSj017y3Xh/FG6/5b5Kqlq1MSR8freoyvl7mX5iuTrmBLl7P5X64GCWv3smU81ZXSiGpra9ObKXEnSDeeP142XTOr1+gAAADiGGRoAgOPG7fFq7fZieeXVgmkZkqR7n1ipXblVAcdNyklQQrRdDc3tAUs9Ogp+RkfY1NLWrnZX4K+w8dlxOlhQGxQ+TBgZp71Havo8zpyMGM2emKrV24tUVN4os8mQ3WZWU0vwMhKL2dDdX5ituZPT5JX06Etb9PHmAv9+u80csl6GYUgdv4EjHBa99IvL+jw+AAAAEGgAAIbYvrxq/fPjg4qNtOniBaOUkRwpq8UsSfrt/23URxt9D/tnz8jQPV+aq7Z2tx782wZ9urNEkmQxm/SbOxfpvj+uVkNTe7f3ueLsHM2bkqbahjbtPFSp4soGbdkXus6F2WR0O8PCbDYUH2lTRd3A2qh++/OztGB6hn729KfadqBCyfFOlVf7lr3YrWb9+s5F2rq/Qqu2FmrPkWr/eZ2DjtGZsXr420sGdH8AAIDTFUtOAABDpqG5XT/642p/wc63VuUqNSFCv7r9bCXFObV6a5H/2DXbi/Xu2sPKSI7S6MxYf6Dh9niUV1rfY5ghSW+uzJXZbNLItBit3l6k5hCzJzr0tFzE7fYOOMyQpBVbi5RXUq9tB3xhSnl1s5ackaWcjBidOTVdGclRysmIDWhBK0nt7W7NnZwqp92iL116rHVsWVWTvJJSEyIGPCYAAIDTAYEGAGDI1NS3BHQfkaTSqiZ9+/cfa8a4ZKUlOpVX2ihJ8ni9euyVrZKkMVmx/uO9Xl+o0Rf//PigfxlKVwkxDrW73HLYLDIMqaw6dLHQwVq/q1Trd5UGbMvJiNHI9Bg9/cZOpSQ4ddOlk2UEdm2VxyvdeuVUZSYf63Ty2vL9evbtXZKkL14ySdefP35YxgwAAHAqINAAAAyZ9KSokMs7qutb9dGmgoBtnRc8llU1yWoxqd3lUXK8UxmJkX2+Z3dzL6rqWiRJ9Z1mephMUk9ZSWq8UxEOq3KL6/p8/86sFpNmT0zRvClpuvO3H6n9aMHT5haXGpsDZ5wsnTMiIMyQpBeX7Q34M4EGAABA9wg0AACD0truVlNzu+JjHEdnS/S/NJPb41VMhFWVda0qr27WPY+v6rY162D0NvGjtLpZ0sBncrS7PLrlyikqKmv0hxmSr65I54KiI9OilBjr0DNv7pDXKy2Ylq7JOYmKj3GouMI3gyUmwjrgcQAAAJwOKAoKABiwfXnV+vGf1qihuV2LZmbquzfO1q0/X6bymmOhQITDErI7yGCcNT1dI9Oi9eKyfepDN9UgNqtJX7pkkt5amauSqqYhHZvTblFzq0vx0XZVH20tGx1hDZgp0pXFbNLD314sj1f69d82KK+0XpJ01Tlj9OWrpg54LDX1rTpYWKNR6TFKjHUO+DoAAAAnIwINAKedkqI6vfLsBtXVtWje4tG64JKJJ3pIYetnT3+qdbtKjr3+2kL9/oVNqqz1LfcwmQx5BpI49KK3gKAvrBaT5k9J07lzsvT4K1tVNYjCoJKvDWtc1LEQo+MenWdq9OSKs3O0L79GR4rr1NKpzesLP7tEkU6rnn93j7btr9DM8cn6r4t6/5ktrWrS3Q9/opqGVkU6LJo6NkkbdpVqVEaMfnTrmUqIcfT/TQIAAJxEWHIC4LTzxstbVV3p+1Z+9fv79c9N+Xr8hxec4FGFJ6vVFPD65WV7/WGGJDmtJjW2urueNmiDDTMk3/KQlVuLtGpr0QAWyQTzehUQZhiGgsIMwwisHdLZ26tyg2abOGxmVdW1aMWWIr20bJ8kaffhKmUmR2nxGVk9jmftjmLVNPjG09ji0qc7fMHTwYJavfLBPn31mun9eXsAAAAnHQINAKedovJGdTyGGzJUUtWkK77zL33tmqkal52gEanRctp9/zxW1jbr/XV5io2y64L5I2U2Gd1f+DRUcrTeQ4ftBysDXg9FmGG3mpUc71RRecOAlpf0puslewod+iIm0iav1xuy7Wx3142wW9TUemxZToTDoqzkKFksJt3+6w9lMQcGR5W1vdf56FpwtDOja8sVAACAMESgAeC0EzkqVrV7KmSRVCSv2o5uf/IfOyT5lkn81wXjdfW543TPYytVerTGQn5Zvb5y1bQTM+hhkl9arw835istMVIXzMvu84NublGt1m4vVv7RWg/91Vu3kQ4xEVbNm5ymqvoWFZQ1BOyLjbRp6dwR2ra/XAcLB9aVJJT/vnyKnnlzZ8C2eZNTta5La9bu1DW29X5QJ2aTERBmSFJKfIS+du10ffv3n0iSXG6Pvz2tzWLS5JyEXq+bkxETsORlTGas8kvrNSojRp89b1y/xggAAHAyItAAcNq57cbZ+vx9/+52v8fj1d/f3atXlu9Xa/uxp+4Nu0r1pUsny241H49h9pnH49W/1xxWUXmDFp+RpfHZ8X06r6a+Vfc8tsK/fKO2oVWfPa/nNqFer1fvrMrV02/u7FNtiLSECFXWNqm900SNa5eO02vL9/dpjHVN7Xp/Q37Q9szkKJ05NU2XnpWj0qqmQQcacVF2JcU5dN3ScfpkS2HQ/s37ygd1/Z50bXErSYeL62SzmANqkHQc1eby6Ll39uiXXz+rx+sWlDUE/B0lxTn1+28vGaphAwAAnHCm3g8BgFNLlNOm8+dm93pc5zBDkooqGnXPYyvU0ja0HTsG67UP9+vJ17fpjRWH9MM/rFJ5dc/LEQ4U1GjHwQrll9YF1KLYlVvV673+/K8devIf2/tc6LK6oVU267HsfMLIeMVGDr4daWF5g1778IDueXSFLpyXLZtlcEsoopwW2axmvbb8gFZvKw7a3/F+o45jK9Wy6ibddcMsxUXZg/aVVDboB4+v1Ofvf0f/7+m1qq5rUUVN4N/72Kw4pSVGSPIto1k4PaPfY/B6vWpudcnlDvz7bmt3q9019LVRAAAA+oMZGgBOS3d9bpaWnJGln//l04COEr05WFCrjzcV6KIzRw3f4Pppf36N/88tbW4VlNUrOT50i85XPtin597ZLUlaOC1dSXFO/4Pw3MmpkqTWdrdefn+fqmpbdNnZORqbFec/f/X24If9nrS2udW5d8jNl03Wpr1l/bpGTypqWxQX7dAvv75Idz/yyYCvU1DeKJU39npc17oYyXHOgBa1Q2n1tmLd9blZkrx67JWtASFSeU2Lymt8xVfX7yrVTf/vXXm90jmzMnX3F2bLMAxFOq266bLJeuSlzerII1xujwrLGpQY61BUhC3gfh6PV+t3lai6vlUrtxbqQH6NmlpcvmUuVrN+dMt8zRifrP+sOawnX98mwzB01w0ztWT2iGF5/wAAAL0h0ABw2poxPlkv/eIy/eSp1dq8r6LP5z3+ylZ5PF5dsjBnGEfXdwunpWvN0aAhOd6pcSPiuj32ndWH/X9evb1YT3xvqbbtL1daUqSinFat2FyoDXtKtfzoMo+1O4r11A8vUJTTNzNhQna8PwAZSPHMSKdVH20s6PPxvd0jOsKqw8V1faopMRAWsyGXu/sBxETahi3QMBnSmu1FevjFzb0WQ+34jD7ZXKjNe8t027UztGhmpp59a5eajxZmffTlLXrl/b0qKG+UzWrSA7cv0thOPyuPvbJFy9blhbx+W7tbz769Uz/JWKA/vLb16Hi8+tM/d2jxGVnatr9CZrOhqWOSehijN6BGS3OrS2+uOCSX26MrFo1WdJeABQAAoDeG1zuYWu4AEP5yi2p1528/6tc5o9Jj9Ojd5w7PgAZgV26lisobNXtSiuKjHd0ed9+Tq7R1vy+8SYix65n7L5LZZOiD9Xl6+KXN8nolm9Wktk7LbS47K0fnzR2hcSPi1dLm0qsf7Nc/Pzmo1m5mtuRkxqi4olEtXTqc2K1m3XLlFD3/nz39LpzZWWKsQ2Oz4rR1f7l/dk2Ew6KmlqFdCmRIunThKL3dKQTqzGRIE0cl9GmpzkBFRVhDdkvpjdlk6JX/vVy3PfCBv6ht10KsE0bG6zd3nuN/fd0P3ur271TydWJxe7xq7VQQxWySIp02/9+nzWKSV9KI1CjFRtq1cHq6kuOcevSVraqsbVGU06qHvrVYaYmR+umf12rDbl+h1bEj4vTQNxf3+30CAIDTG4EGgNNeu8utO37zoYr6sOSgw8Lp6frBTfOGcVSDV1PfquUb8hQTadfSOSNkMhmqrm/R397ZrZY2t244f7xGpsdIkn78pzU9LgWxWkz63TcXa1R6jDbvLdOP/rQm5HE2q0l33TBLhmHo13/fEDC7YkRqlPJLG0Ke19nYrDh5vB4d6lTos3O3DkmKdFjUOMQBRigdnUX6akRqlJpbXKqobRmuIfXZ9LFJ8sqrw0V1crs9Sk+O0sGCWv/+0ZmxevjbS9Ta7tZvn9+odTtLQhYoHWoOu1kOq1m1jW0BPx//ePCKoPa0AAAAPWHJCYDTntVi1kPfXKwVWwrldnu1+Iws7TlcpZ/8eW3AcZNGJSg+xq6YSLu+dOmkEzTavml3uXXPYytUVOELaY6U1OnWK6cqPtqhO2+YJUlqaXXp2bd2qqquRU5Hz51b2l0e7T5cpVHpMcpIjgrovtFZW7tHv/77xqDtI1Ki+jwr40BBTcBrkyGNSI3WocJjD+N9CTP6GkYkxtp16cLRemd1riq7BBH9fbxvaXPri5dO0kMvbO7nmYNnt5oCCtluO3BsJs7ZMzP079VHAo43mQx9uDFf1XUt/iVLx0NLqzto9s4ZE1IIMwAAQL8RaAA47by/7oiWrctTVkq0vnLVVDnsFkU4rAGFPmdPStVPvnKm3lt7RFGRVp0xPkXzp6aHzUNXeU2zP8yQpK37g9uO/uIv67Tl6HazqecuIWaToYqaZn3+vnfkleSwmfu1xCO/rEEpnQqVjs+O01nTM/SXt3b1eq7Hq4Awoy/sVpNkSK1tgd05QtXEcNosSo5zqrpu8LMqrlw0Ws//Z8+grxOKw2ZSS1vo7jKGEdyVp0NVXaveWxtcG+NAfo0eemGTLpw/ckjH2V/nzMzUNz8/64SOAQAAhCcCDQCnldyiWj3y8hZ5vb42pZFOq265YkrIY2dPTNXsianHeYRDIznOqczkSBUeXUYzY1xywP7V24oCQo7ulhqMTIvWkZJ6uT1evfz+Pv/2gTRJLevUTnbK6ETtPFQ5gKv0TXcP94bhq/PQ1mn5SkF5o373wqaA4zISI1RU2dTn++VkxOiuG2bq481FQbM8umOzmBThsKqmobX3gzsG342ui0dTEyNUenT8o9JjdLi4LsRZvvPGZsVpf2aNDhXWauLIeB0uqQuaQTFcTCbp+gvGy2rpeYYQAABAKAQaAE4rlbUtAQ9/lbXD06HiRCuuaNQlC3JUWdus7LQYLZ1zrLXm71/crA/WB35jbzYZuuLsHP3zk0MB24+U1Ie8/mArLWzZV67cotAP2WaTMWy1HGIi7Krsw0yMsppmTRgZp71Havp03YKyBn330ZUBdT564/J4+h5mSAGFWntTWtkkw5C+evU0FVU0dBtoWMyGzpqRoYsXjFJLm0sOm0XvrM7VH17bFvL48SPitK9Tm+DsOEP5NW55NbCZS7//5hKNTIsZ0LkAAAAEGgBOeW63Ry+8t1eHi+tUVHGsKKXJMHTF2aNP4MgGxu3xdrtEZHdulfYcqdKzb+2Ux+v7Uv+/Lpyo+55cpcLyBs0Yl6wPQ7RNHZEWrQ17ui8KOhQ66m5YzCaVV3cfJP33FZOVnhilDzfmaeXWvtV26EsLWavFpPrmvtXxcLm92nc0zIiLsqmmoefz+hNkdPD085RQNUt64vX6flZ6WhrkcntltZhUVt2k/Xk1GpMVqyk5ibKYTXK5gwd41eIxeuTlLf5uKPV1dfIqun9v5KiLzhypnMzYAZ0LAAAgEWgAOA28/tEBvdRpuUQHj9errNSBPYydKC8t26sX3turmEib7rtlvsZnx/v3vbp8v/76dmBNCq9Xev7dYzUdQoUZknS4m9kSQ8nj8eqCedmqqGnW5n3BNT06HMir1VXnjFVslE2f7iztU1jQU5hhNhmKjrAFzYYwju5zdRMUdGztLcwIJe3oko8T2UbMbjNrxvjko2PI92/vPAPGbDJUXNGoHzy+Uo0tLjntZj1wxyL97KsL9MK7e1XT2Kq8o7N00hIjNHdymn7+1YV6/rUVqiytUL47qZu7e6QeZm3ERtl0x2dnDsXbBAAApzECDQCnvOKK0O1YbRaTIh3h889geXWz/n604GR1fat+9vSn+p+rp2nRrExJ0vvrggs/htK1+0fXlqgmkyGz4VX7AMooLJqZrsZmt/LL6jUyNVq7j1Srsbndv//9dXm9PuSX1jTp/XVH9OgrW/s9KyGUSxeO0qa95UGBhleDXzrTnZKjSz6G+gYZyZEqLm/s8bIOm1nXnz9eZ05N14jUaI1IiZbXKx0oqNae3GqVVvtqa1jMhu763Cxt3lvu6xpjbld74kE9u65aY2yztO1gRcB1G5vbVF3foomjEhRr82qPO/RSkauWZCsxNkLP/Kv74qjXLR3X7/cOAADQVfj8lzwADNB5c7P10aaCoG/6rzxnjIweCi2ebEymwKUVNQ2tevDvGxQdadXM8SmyWXuvY2C3mfXlK6eotrFN08YkyWI2KdJp1e0PLvd/a+/xeNX/BRQ+K7YcWyISallJX57vDxbU6K8VDUMSZkjS26tyu/177kutjlnjk7X7cKVa2jwyJDntFjW1umQ2SRaToVZXNzM8hiEtKSpv1IxxSdqXV63mbgp3/uxrCzV+RLyefXuXth+s0KzxyfriJZP06vL9+nhTof84l9urjMQoxUTYJUm28Rtljq7R7tb92r/HLCky4Lr1TS69+N4+GYb08WFDkjXk/T9cX6I/33u+1m4r067cqqD9d14/QxfMHzWg9w8AANBZePQfBIBBmDI6UbdfNyNg2+iMGN102WT/6w/W5+lv/96tvJLhX3rRmw835uuJ17bqw435eu6dXXrohU06UlKnxFinvnLVNFktgf90Hy6u0/YDFd0W2eystc2tx1/dptLKJk3OSdT47Hgt+/RInx7sU+KdysmI6bXF62C1tXtUU9//ZR7d8XgVsMSivxlWS5tb2am+2QheSU2tLi2Ymqbv3jhHT99/odITIyT5wo3jYV9eteZPSQ+5z2RIH67L0//+dZ3+8dEBHciv0Ssf7Nf3H18ZMmBZtv6IJo6KV0q8U21756jtwAx5vYaaPKHb5H64MV/LN3QsXwn9fusa23TTT9+V3WrW77+1WDPHJcswfDN/br50EmEGAAAYMszQAHBK25dXreq6Fk0bm6S4KLt/2cHlnYqBvv7hAf3lrZ2SpHdW5eqJ7y1VfIzjhIz3N8+v18ebiiRJ/1592L/9400FumrRaH26q1RTchK1+3ClWts9inRYNHdymvYeCf4mvCfL1uXp6sVjlJ0Wo/qm9t5PkPTNG2bp/z3z6bB1IDkenrr3fFXUNuu+P6wOaN3ak92Hgz/bNTtKtGZHScC21MQIZadFa8123/akOIdiIqw6VFQftMxnMKwWs775uVnac6RKJZXHlo8YhqF2l0fvrD0SdM6u3CrNmZQik+ELeDr8Z80RNTS1H22pa5G7Kl2muHLZvFEaTP+f5ja3Nu8rV0PzVv3um4sHcSUAAIDuEWgAOCW98sE+vfDeXv8ykwkj4/XAN87Wht2lykqJ1hkTUvzH7sqt9P+5obldeSX1JyTQKCpv8IcZXbk9Xr3+8UFJUmF5gy5eMFIzxiVrfHa8UuIjVFPforTECJVUNslsNuR29/74/MSrW/WrOxbpqnNGa9mnRwIeuM2G1PkShiE9+soWtbQNoLBGJzGRNtU1dj/7ousD91C763cfqbXN3ecwoz8KyxtlMh2bPVNR06LKGl+L2KF8S9csHqMDhbX+MEPyhRyTcxK0sYdONc+9E7qmxcqtgT9zrqLRcrVEDclYK2t7b5ELAAAwUAQaAE45ReUNeu6d3QHb9h6pVnu7R1cuGhN0/JxJqfp0p+9b9YQY+wlrJfluiG/Wu+P1SgunZeiD9Xl6b12e9hydRZCRFKmiboqgdlV49LjstBg5HZaA9p5d8xCvVyru9ADdm45goqNVa8e2nsIMScrJiNHBwuFb9tPX2SgDlV9aH/C688fYNazJyYhRQWm92rt82LajRVq7hiC3XjlFE0cm6JUP9uuv7+wOmPURF23XqIyYHgMNGW7Ja+4yuuBlI95OYYbZJIXo3hpkVFq0UhIitGF3acB7vP48in8CAIDhQ6AB4JTjCVEsINJpVWJs6FkXFy8YpaQ4p4orGrVgWrpiIm3DPcSQutbG6Cwt0ama+ja1tLmVEOPQ2TMydN+Tq7W9SyeKkqq+hw4JMQ795Kk1mpyTqIQYh5paGgY89q48XmnupBTdft0M5RbXa8WWwk61F47JTo1SXumx+x4aojDDbvWFAsdzdczV54zWPz851O1+j9c3Q+Ubn52psdlx+subO+Wwm3WooE6tnVrKfOfG2cpJj9XPnlmr/E6fzZxJqfJ6pXW7fOGbV7732druUXFFo15bfkCzxifrcHGdqutbu95ehrNR3qbOnUl6r/nRNcyIjbKpNkQb2/PmjdTVi8eosrZZL7+/T1aLSZedlaP0pKGZ6QEAABAKgQaAU0plbbM27w38ljo53ql7b5qnqIjug4o5k1KHe2i9So5zdruvpPJYRYMbLhinB/+2IeRsg/50BjlU6Cv82OO3+oOwfneZ1u8u0+IzstTS5goZaOSVNgTMXAhsJ2to2pgkbT9YGdShpjfnzMrSsj62sR2sKaMTVFLZpNXbizV1TKJ2HKzs9ti6xja9uGyvoiNt2rKvPOQxf/rHDt1+7XS1dlreMzI9WrFRdnk8XtmsJrW1+z6P1vbAz2XzvnJlJkeFDDRMMWXyeIyjMzBChxkmQxqdGacDBTUh908alaA5k1K1dkextu6rULvbo5HpMbrsrBxJUmKsU7ddOyPkuQAAAEPN8HqHo7EcABx/f3x9q95adTho+wXzsnXnDbOO/4D66WBBjb7z8CcnRdHNmeOTFeWwaOW24t4P7kFHm1mr2QhaWtGZxWzIbDKCHtBjo2xKinXqYGHorhvdcdjMamt392uGhtViUk56jPbl1/TrXl1NH5uobQeOhRoRdrOaurRYTYixq6ouOHTo0F0R0c8sGavSqiat2ha61kp3Lpo/Qu9+mqeeZmU4bGbddu10fbypUJv2dh9yPXXv+UpL9LV0bXe5ZbWYuz0WAABgONG2FcApYcPukpBhRmZypG64YMLxH9AAjMmK0/23zte0sYmaOCr+uN03OsIatO2Ks0frG0MQAnVE5j2FGZLkcnuDwgxJqm1oCwoz4qJ6XxLU0uYLM1LinXLaAx+4IxwWzRibpJz06IAWtAunpQ86zJCkbQcqtXBamuKj7TKbjKAwQ+q9lkd3n9brHx1QeW3flxVJ0vwpaUqKj1RvS0xio+z6YH2+f+ZOd/78r+3+PxNmAACAE4lAA0DYyz9crb+8vj1oe5TToie+d55SEyJOwKgGZvmGfG0/UKk9h6tl9F7iQJJ03bljNW5EXJ8e9LsyJN16xZSQ2/vzsGoxm0IGI8Nh8RlZAa97+pgamtv9yzM6jM2M1a1XTdWM8ckBs2H2HKkesjGu3l6i6vrWbmfbtLs8ShvAz6Uhad+RmmOve3jzU0YnKCcjWm63V++s6r62R4fSqiZtO1Dhb23cnU93lmrN9v7NEAEAABgO1NAAELaq61qUf6Rabzy3SQ0eV9D+n33tLJlMfUwFThLbDxwr8tndgsDEWIeqalvklWQ2Gdqyv1wHCo59q97dcoVQvJJ+/9KWoA4cZdVNamkL/ky743J7lJoQo2uWpGvT3jJ5PV6lJUZo6/4KVQxx6873Pg3sBuP7HEJ34+jcuaVDVV2rvvPwJ0F1OUr7UVB1KFTVtWjq6ARV1LaotKpJDptZ40fEa8mcEXpnVa72d5ktEuW0qqH52MyOkWnRqqpr6Xa2x85Dvs43uUX1Iff3VWpChNrb3arqVJdj75FqLZiWMajrAgAADBaBBoCTXkVNs37xl09VVt2shdMzNGt8srYdKNfbqw5rrAzFy6SRMqlFHjVJMpmkb39+tsZmxZ3ooffbjPHJ+mhjgSTJZBhBHVuSYh0BLT3dHm9AmCH1PczojsmQZk9KlWEYmjU+WZu7KV7Z1YGCGjU0t+rzF07S0jkj/NvfXpWrJ1/fJunobAqj+7CmL5pDLOHoT62M+Fi7CsqHrqPLQLW5PNpxNHSQpJZWt645d6xmT0zVhOx4/ebvG1VV16S5U9J18ZmjlJoQoS//YplajhYLTY5z6kjJ4MIKyfd3Mm1skrYfrJDX6wvJ3B6vLGZDcdEO3fW5WYqLsus7D3+s5la3zCbjpCiiCwAAQFFQACe9e59Yqe3ddI6YLZNMnRYd3HT7Ao0cnXi8hjbk2trden9dnuqb2vT3/+wZ9PWsFlO/O4RIvvaidY1tMpsNuXupf9GVYUh/uf9CJcYe69ry17d36qNNBYpyWnW4ePAP4QNlGNJ5c0bo/fXBHVdOBmfPyNAXLp4oh82i4spG/fhPa9Tu8ig6wqof3Tpf2w9WatXWIuUW18nj8fZrNk53rj9vnL546WQVVzSqpc2l5DinahvblJ4YGTDDqbC8QdsPVGjciDiNCcOwEAAAnHoINACctFpdbXpz8zo992qJvK7Q9RnSJUXJUKwM2Z1Wff/nFx/fQQ6RnYcq9eGGfH28uUCt7W7fLJT9FXL1MPUg1AyOUBw2s/9b/aFktZhkGAqqUSFJ58/L1p3Xz9SHGwu0flexVm4dXLeUcBbptKqppV0Wc+/hUkcAZTIZSox1qLz6WLvejo4xRpcZLr11TEmOc2rOpFTZrGYtW3ckaBnORWeO1B2fnTmg9wYAAHAiEWgAOCm5PW7d++5vtevDHMnde7HLOElfvX6mXll5SAVl9YqOtGv6uCTdeNFEvb8uT/llDTp3zgjNm5w27GPvr417SvXTP68d0DIMm9UUECiYTJKnjxMyzB63PIYhrzH09aHNJkNXnjNa//joYL/Oi3RY1NTiGvSsg+FmNqS+TlwZ6CyKvsyusZgNPf3DC/TLZ9drb161rGaT2rsUEzljQop++j8L/K9XbC7QY69uVVOLSyZDuu+W+Zp7Ev7/AgAAoDcEGgBOSiX1Zbrtj3+Xq3jMoK7T9YH/2qVjdc3isYqNsg92iEPm6Td26J8f9+/Bv4PdagrZ7rQnKa2VOqNmryY05qvCFqMXMi+UxzjW0STiaKgwGImxDhlSvwqCGpLGjIjTgT62TrWYTXKFqgTai44aEd2ZMzFFXnm1cU/3tUOiI6y9tl7tyeTRCcotrFNza+Dn3Lk467gRcSooawg6RpIsJsnlkew2sy6Yl62zZ2Rq055SvfzB/pD3e+hbiwNqypRXN2vr/jKNTI/RuBHHr0UwAADAUKJtK4CTUpwzVlYNvt1q1+UQry0/oC/99F19urNk0NceKlMGUfNj4siEfp+zsGq7ZtYfkNPTqhEt5cpsDnxwH2yYYbOYVFnb0q8ww2I25JX6HGZIGlCYIUkp8U4tmJau5HhfjQ9zl0Y4Xq96DDMk6azpGUqJd/Z4TE92HarSmMxYjRsRG7Dd4/V1bHHazMovrVd8dHDwZrWY1DFxo7XNrbdW5ureJ1aqpIcuLZ4uAU5yvFPnzxtJmAEAAMIagQaAk5LDYtd5E2dI5o5vwYduMpnH49Vv/r7BP51/9bYi3fnbD3X/k6tVWtWk/NL6gNoFw6GppV1F5Q1yuz3avLdswNdx2PrfrKreEun/s0eGmiyOAd8/cCxmJcc51NbNMglL1+SgE1c/C48ORnFlk9buKFZrq0uRDotysgJDhe2HKro585hV24pUUTO4n5G9R6o0JjM4UHB7pOY2t1ra3CqqaAzY57CbQy5D8XilsqpGRTp9tWbGZsUqPTHCt/Rn0WiNzya4AAAApx6WnAA4aX3v0RXafbgqYFukwyKrxayahu6LIPa1ZsF5c0Zo+rhkPfLS5pBLEO66YabOnzcyYJvX69Wu3CpZzIYmDGB2hCQdLq7TD/+wSnWNbcpOjVZeaWDXD5NhaOH0dK3ZXtzj0oi4aLsmZMf3abaJ1WKS1+ub1WD1tGtpxUYltNdpS8w47Y7OCVjqMFzSEyNUXNn9LIITyWySpJ6XogyX/nSiibBb1BRiCUpnSbEOPfXDC2Qxm+T1emUY3QdJAAAA4YwZGgBOOl6vVx9tzNeeLmGGJDW2uILCjNuvm67oCF/hUIvZpHNnZ/XpPss35OuhFzZ1+xD74nt7g7Y9+vIWff/xlbr7kRX687+2hzyvqaVdb6/K1fINeSGv/cYnB1XX2CZJQWGGJHm8Xq3aWhRw7r03z1Vc1LHiqImxDmWnRkt9fFZNjnP4lx20m6x6N+VMvZB5oXZH58hptwxLmGGzBv6KOVnDDMk3K+JEhBmSfF1Nuvl7NHfZ0e461q0mJyNGv75zkb506SQlxh6bZVNR26L6oz9fhBkAAOBU1v+5ygAwzJ55c2e/imSWVTfr4W8v0c7cSuVkxOiNTw716bzeHl+77m93ebRsXZ7/9b8+OaSi8kbNn5qmxbOy5LD7/kn90R/XaG9etSRpV25VUEvMuC51Ec6cmqZ1O0sDWrB2vrfFbGj62GT95q7FWrGlUKVVjfrPmiOq7KFGRXy0XTX1rf7rFFWEDhOsFpOinNaQhSf7wmI2Qi4XGTciVjarRbtyK2Vo+GZ/xEXZ9cjdS1Tf1K4f/3F1v+p2nEy6+3zcHq/OmpauuGi7xmXH6/cvbvbvM5kMTRyZoIkjE9Tc6tIrRwuCThmdGPQzBgAAcCoi0ABw0lm7vbjXYwzDV7zRZDI0a3yKkuOdWhLvm5lx3twR+nhzgVrb3EqIsauusT2ggOTnL5yg+qY2vbUyt8d7XHVOYIcVq8Wk1IQIlXYqvrh+d6nW7y7V++vy9OA3FmnN9mJ/mCFJG/cE18e4/rzxqqpr0eHiOp07e4T/Pg+9sEnLN+RLkpJinYpwWtTU3K6bLpusSKdVkU6rrls6Ts++tbPXz6e6vvslOXFHww7JtwSlfBC1IFxur5LiHKqoCQwS9ufX+v/slYZkSUtclE01DW0B25pa2xXhsGrvkWqlJUacNIFGpNOsmy6Zon98clDFXepgdJWZHKXC8oZu96/aXqyxWbG66fIpWrm1SBt2l8owpEsX5viP+dKlkzU5J1GNze1aMC2dmRkAAOC0QA0NACedbz70kQ4W1IbclxTr0O2fnan4aLu2HazQpFEJITt9lFU3qbi8UeOy4+TxSg/930blldZr6Zxsff7CCfJ4vPrFs+u0rlP9iVFp0aprbFNdU5sWTsvQd784J+i6ReUN+v7jK0MGBr+87Sz98A+rAmZXLDkjS9/5wuwe3++eI1XavLdco9Kj5bCZVVnbqrmTU7ttLZtbVKvvPrJCre3uoLa0vTEM6Tv/NVsVtc169q1dfTrHYpY6rXQIec1vf/4MvbM6V7sPV3d/4CD0VBdlRGq08kMs3TmRpo5J1P9+/Wy1tLl0w71vdxvmzJ6You/eOEf3PLZCxRWNslh8dS+aW4M/8F/ctlBTRidpz+EqxUTaNCI1epjfBQAAwMmNGRoATjoLpqZ3G2i4PV7ZrWY98tIW5RbXasG0dH3vxjkymwPrNaTERygl/ljb1/tvPTNgv8lk6OvXTlduUa3Kq5sVF23Xvf89X+lJkepJRnKUfnX72fr9i5t1uLjOv1QjKyVKheX1AQ/d8dF27TlSpc/d947SEiJ0/rxsXX72aO09UqVtByo0OSdRdptZP3h8pX/ZhsVs0g9unhsQZni9Xn24sUB1ja06d/YI2axmtR1NGNraPcpIigzqhtEdm8Wk3zy/sU/HdrBaLHK5u1+S4vVKD7+0eVg7lfR05c5hRnKcUynxESosrw+azTEYUU6rGprbez/wKJvVLMnXhSYu2q6quuAAbEJ2vO6/9Uyt2V6kIyW+99Dm8mjciDgdLKgJCEFMJkPJcb6uJYNp8wsAAHAqIdAAcNK56MxR+r9394T8Vru6vlX3PbnKv2/1tmKt3VGis2Zk9Ps+ibFOPXb3uSooa1BGcpSijra87E1GcpQe/MYitbW79dbKXDW1tuuys3KCQpi6xja5630DPVhYq4P/2C63x6tn39opl9srkyFdelZOQBDgcnv017d3ad7kNP+2Z9/apdc/OiBJ+tcnB3XzZZPVeW5dXztkSFJrP2ZzdOhLfY3hDDPMZkPuPl4/MyVKkU6rduZWDukYFp+RqZr6Nq3aViTD8AUnZZ1a+5oM32yc5RsLFBtl040XT/Tvu+eLc/X9x1f6QxnDkCaNStD9t8yX2WSoqq7rcp2agNdOu0V3Xj+z17ANAADgdEOgAeCk47CbNWNcsrbsKw/5zXzXoMNs7rleQFNLu4rKG5WRHKkIR2BoEeGwanx2/IDGabOa9Zlzx/pfTxxpUlSEVQ1N3X+Tv/NQpf/h3+P1hRFdC2s6bBb977PrVFLZqEvPGq0t+8r9+ypqWvSb5zcp0mFRY4tLNqtJlXXBNTCyUqJUUNZRl8Ej36KNwddV6K4IaH+ZPS7Z3W1qNtvlNZl7PLavYYYkbdlXLqtl6Bt45RbV6YE7Fulv7+zSyx/sDwgzJMlht+iOz87U1LFJslrMGp0R69+XnhQZ8HOcmhChB+5Y5H+9eFaWnn1rV8hg6qIzR+qWK6YE/dwCAACAQAPASej1Dw9oc6eH+O6YDOm8udkBsxm6Kqtq0vceW6HK2hYlxzv1628sUmKsU5JUUtmoB55br7LqZl29eIw+e974kNdwuz06WFir+GiHkuOd3d4rKsKmB+9YpMdf3aKdh6qC2oAmxzt14fyRWrezRG6PV4ak7QcqFB9tV2pipEoqm5QQY1dzq0urjxZGfeyVLVowNV2HigJnfzS2+GZNpCVGyuVy+7uYWMyGRqRGKzHOqRsvnqgXt/xbJbZN8tQlqW3fGRpsqDEkMzG8Xn2m5CONaSpSq2HRfyZdpUPe6IDZI2aT0Wsb1e7Clb7MWIl0WtXYjyUkXq+0fleJ1u4oCbm/qcWlB/++wb//k00F+tGXfcuc3l4VWHx28azAtsIWsylgzB3vfXx2HGEGAABADwg0AJx06pv6VvvA4/UVVXzunV2aMylVU8ckBR3z4cZ8f3vT8upmfbK5UNcs8c2q+MubO3Xg6DKR597ZrTOnpgcUWnR7vJLXq5/8ea227CuXyWTozutn6ry52SqpbNTz7+6RIekLF09SaoKvXseI1GjZbYH/tN5701zFRNk1Kj1GkU6rfvo/C/R/7+5RblGdv/ZFbWO7XvjZJbJZzbr2njcDzo+PsXX7GeSVBBbDdLm9yi2qU25RnXYeKZYxZZMMeWWOK5d11E61H57al492eBmGXk9bopsK3pEhqamuXq2OwOUUCTGOXruvzBiXHLKLTF8kxtplNhmqa+z5Z81mMclmM2v34Sr9v6c/VXfNQ+ZMStWG3aX+1+t3l2rtjmKdOTU9oMOOJGWnBRbzjHRaNTYr1v+zeM6sTH3tM9MJMgAAAHpBoAHgpHPlojFa9umRPtV7+NVzGyRJ//z4oH5z1zkamxUXsD8pzhny9ROvbvXPgujQ8S15u8utXz67Xhv3lGpESrTyjhad9Hi8euyVLZo5Plk/e+ZTf5iQW1SnR+8+13+dGWOTtenog3Z8tF1TxyYpOuJYKLF8Q7525VZ1ubdbLrdHNqtZ08Ym+R/UzSZDcyen653VR3r9LLpqbvYoyjDJ7fUVEI1JalHl4X5fZli4TRZtixmrTTET5Amx5KQvrWSLK7pvdSqpxw4weSU9n9sh0mkN6GhjyJD36AKS+Gi77r5xtppbXJozKVV3/e4jf3FPSfq/d/do7uQ0XbV4jDbuKdPh4jrNm5ymhdOD67387Gtn6b21R+S0m3XB/JGymId+2QwAAMCphkADwEmlpr5Vj728uU9hhsk4Vk/D7fFq35HqoEBj6ZwRKq1q0ua9ZZo6JlH782v00P9tVHuXpQpXLBqt0Zm+ugcfbyrwf9ueVxo8A+K7j6zwz/qQFNRh5DPnjlVyvFOlVU1aNDMzIMyQpLySuqD3cuPFk/zfyN93y3y98ckBFVc06ZpzxyojKUop8c6gug2dhVp+YZZVX5p2g17f95YirU4ZebM0tKUy+y45zhkYUni9KrfGhgwz+qpjmU132to9/e5O0lV1fatMJkOeoz9ocyenavfhKrW0uTQhO17js+PlODoj59v/NVvffOgjf8HW3KI6/eG1rbrjszP16N3nqt3l6ba+R5TTGlCPBQAAAL0j0ABwUvn7f3Zr28G+PXZ3LrFgSHry9W16Y8VBXblojC49K8e33TDU2NyuPUeqtedIdcjrWMyGzpmVqR/+YZUiHRbNmpDS4327zh64dOGooGMWzczs9vzz52brQMF2SdLkHF+3i6hOoYfFbNJnzg2s59FTPYmkOIeuWzpOT76+PWD7T/9ngWaMS9Ylkxbpg/V5+v0HmwP2dw6E+irCblFTH7qedJaTER3QWjUmwqrz54/U2yvNUi/BVVyUbVDtV/sbZoSq3eHxeHXenBHKyYzV7IkpuuPXH8rt8WrtzhL97Z3d+srV0yRJozNj9d0b5+jBv23wn7t577ElMcNRrBQAAOB0RqAB4KTS2uYe0Hkdj6CF5Y36w+vbtPtwlb7zhdmqrG3WGysO9Xhux6yLDgcLa7t0CQnttmuna0xmrCaMTOjXWC87e7TGj4xXbUObZozzdcXozZWLxugvb+30vzYkTR6dqIvOHKlzZ4/Qv9ccDjg+Kc6pGeOS/a8bWwIf7BNiHHr8u+fK6bDqyz9/TxW1ga1Du2N080weF2XXefOy9f66I6rtFEBkp0YrtyhwlktdU7uinFbNnZymlVuLgq7ltJvV0ubWnEmpysmI1bJPjwQs++iOyfB1G2lq6V/g0tnlZ+foX58E/rzERtn0launKdJp1bYD5QGBx4othWpudenGSyYpIcahs6ZnaFR6jA4X+2bhhKrrAgAAgKFBoAHgpLJ0dpY+2lQw6Ous2lqk73xhtkoqm/rdarSsulmXLBgZEGjERdvV2uZSW7tHbo9XZ0xM0UXzR8o8wFoH40b0r1XsZ84dq9kTU/T+hjzV1rdqwbQMLZiW7t8/fWySHDZfEGAY0m2fmRZw/tI52QGtQVvaXIpwWGUyGZo9KVXvrvXV6DAZkt1mVnNr6GCpsTl0WBAXbdfNl03WzZdNVllVk2oaWtTu8spkkr736Mqg400mQ2fPzNSqrUVBrXlvv26mqupa9MybO7V+V6mS4xz60/eXqr7ZpSdf36b9+TUhx+Dx+rqN9NY6tydNrS6lJ0Wq+Ogyopz0GH33i3MU6fQtB+oauFXXt2rZujwVVzbqf79+tkwmQ7+47Sy9u/awIuwWXbRg1IDGAQAAgN4RaAA4aZRUNurpN3f2fmAfuD0ePfDcev8MALvVrEinVVV1vc9EiIu264YLJmhnbpXyS+u1cHqGvnvjHJlNhhqa21XX0Kq0xEiZTINrgdpfI9NjdOsVobuUZCZH6aFvLda2AxUaNyIuKDCJcloVHWHzv/+WVpfcHo9MJrO+es10jUiNVn1jmy5eMEofrM/T3/+zx39uR/2OrJQolVU3hSy0ecG87GPHJ0QoJSFCBwtq9P3Hg8MMSZo5LlljsuJ08cKR+nengqcjU6O1+Iws3f/kav+28poW1Ta2K9Jp7TbM6KypZeA1M5Z9midbp6Uh0VG2gKUi3f2dF5UfC79iIm3dtgAGAADA0CHQAHDSeOqfOwK6RAyGx6uA5Qyt7W61u7pfzhIbadOknARZzSbdfMUUJcY69fh3l8rt9gTMwohyWhXlPDnbaWalRCsrJbrb/TddNkmPvLRFbo9XX7h4kn+pi9Vi0lXnjPEfd+U5Y7Q/v0Z7j1Rr/tQ0fe2a6apvblNMpF07D1XoHx8dVEyETTdfPkm5xfWKibBp7Ii4oPut2VGslhBLiMZkxSo7LUYrNhcGhBmSrwiry+3RxFEJ2rK/XJJvyUdmSpQ297FFq81iDnnfvnDaA2enbNtfofv/uFp/+sH5MgxDZ0xI0dI5I/TRpgI57RY1Hq3RcfGCnAHdDwAAAANHoAHgpFHUSxvOwTKbTfK4gmcXxEfb9cAdi5SeFBnynFPF0jnZmjclXW63R7FR9m6Pc9otuu+W+QHb4qMdkqTpY5M1feyx2hzxMYFtcTsblR4T8PrLV05VQoxDcyanymox6dOdJUHnxETZ1NjcrlVbCyX5wowf33qmoiNs/la2vbli0WjVNrTpvU/73uo2wmFRSnyE8kN0oCmpbFJrm1sOu0WGYehbnz9D3/zcLEnSrtwq2a3mkIEOAAAAhheBBoCTQmu7O6j96UAZUkBdBkPSleeMVmpChP70zx1Bx9c2tiktMWJI7n2yO56zS86ekamWG1zacahSsyekatGswM4vE0bG6+PNvnophiGNzYzV16+bqfc+PaL8o/VLahvatDO3UpFOq5ZvzA8432aR2kKU9Fi/q1S/uO0srdxa2OcCoWdOTde2/eUKVWpl5vhkOeyBvy4Nw7f0ZMroxD5dHwAAAEOPQAPASWOwFSkSYuz62mdmaOXWQn2y+eg3/JE2/ene8xXh8D3Iz52cpoKyBv17da7W7SqVJM2emOJ/QMXQOn/eSJ0/b2TIfVcsGi2n3aK80nqdPSNDY7Li9OxbO7Vme3HAcVFOm2zW4E4wX7t2pnYeqlRtfas27S0LaEEbE2nTH+45T4+9vEXrd5d2O77keKfGZMbqlium6J7HVgTtt1vN+sHN8/r4bgEAAHA8GV6vt++l/wFgGC379Iie+td2WS1m1TW29X7CUSaToftvmac5k9IkSW63R2+vzlVVbYsunD9SGclRQee0uzz6eFO+3B5p6ZysPrVOxfD69+pcPfHaNv/rhBiHFk5L11euniaTydBDL2zS8g2+WRo2q0mPf3ep0hJ9y4T+s+awnn5jhyIcVn3vi3P8Mydcbo9efn+fdhws1768GrV2KWj6laum6sqj9UP2HKnSIy9tUWubS5nJUYqLtuvGSyYpJf70mL0DAAAQbgg0AJyUPt5UoN88v9H/+ubLJ+v8udkqrWrShxvzNTknUYeL69Tu8uiaxWMUH+M4gaPFUHj+P3v04rK9/tdfvWaaLj97dMAxK7cW6nBxnRZOy9DozNh+Xb+lzaWt+8v15OvbVVHTrBGpUfrV7YsUE2kbkvEDAADg+CLQAHDSen9dnlZtK9KYzFh9/qKJMh/nNqk4vsqqmnTPYytUUduizORIPXDHoh6Llw5UW7tbFbXNSo6LCGjJCgAAgPBCoAEAOGm0tLpUWt2k9MTIkHUzAAAAgA4EGgAAAAAAIOww1xYAAAAAAIQdAg0AAAAAABB2CDQAAAAAAEDYIdAAAAAAAABhh0ADAAAAAACEHQINAAAAAAAQdgg0AAAAAABA2CHQAAAAAAAAYYdAAwAAAAAAhB0CDQAAAAAAEHYINAAAAAAAQNgh0AAAAAAAAGGHQAMAAAAAAIQdAg0AAAAAABB2CDQAAAAAAEDYIdAAAAAAAABhh0ADAAAAAACEHQINAAAAAAAQdgg0AAAAAABA2CHQAAAAAAAAYYdAAwAAAAAAhB0CDQAAAAAAEHYINAAAAAAAQNgh0AAAAAAAAGGHQAMAAAAAAIQdAg0AAAAAABB2CDQAAAAAAEDYIdAAAAAAAABhh0ADAAAAAACEHQINAAAAAAAQdgg0AAAAAABA2CHQAAAAAAAAYYdAAwAAAAAAhB0CDQAAAAAAEHYINAAAAAAAQNgh0AAAAAAAAGGHQAMAAAAAAIQdAg0AAAAAABB2CDQAAAAAAEDYIdAAAAAAAABhh0ADAAAAAACEHQINAAAAAAAQdgg0AAAAAABA2CHQAAAAAAAAYef/AweGBCmg/8xMAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 819, + "width": 538 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# celltype is the original CellAssign prediction\n", + "sc.pl.umap(\n", + " follicular_bdata,\n", + " color=[\"celltype\", \"cellassign_predictions\"],\n", + " frameon=False,\n", + " ncols=1,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BIgqSmAZrera" + }, + "source": [ + "### Model reproducibility" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7xIb0z44sxLv" + }, + "source": [ + "We see that the scvi-tools implementation highly reproduces the original implementation's predictions." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 368 }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 393/400: 98%|█████████▊| 393/400 [00:14<00:00, 27.52it/s, v_num=1, train_loss_step=41.9, train_loss_epoch=40.8]" - ] + "execution": { + "iopub.execute_input": "2024-09-30T15:43:24.393462Z", + "iopub.status.busy": "2024-09-30T15:43:24.393373Z", + "iopub.status.idle": "2024-09-30T15:43:24.498580Z", + "shell.execute_reply": "2024-09-30T15:43:24.498266Z" }, + "id": "HjEobt_Grbim", + "outputId": "40a88822-aef8-429f-86ee-05ccb6d0025e" + }, + "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\r\n", - "Epoch 394/400: 98%|█████████▊| 393/400 [00:14<00:00, 27.52it/s, v_num=1, train_loss_step=41.9, train_loss_epoch=40.8]" + "/tmp/ipykernel_153/116468542.py:8: FutureWarning: Series.ravel is deprecated. The underlying array is already 1D, so ravel is not necessary. Use `to_numpy()` for conversion to a numpy array instead.\n", + " confusion_matrix /= confusion_matrix.sum(1).ravel().reshape(-1, 1)\n" ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 394/400: 98%|█████████▊| 394/400 [00:14<00:00, 27.52it/s, v_num=1, train_loss_step=42.1, train_loss_epoch=40.8]" - ] + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 395/400: 98%|█████████▊| 394/400 [00:14<00:00, 27.52it/s, v_num=1, train_loss_step=42.1, train_loss_epoch=40.8]" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3IAAAMGCAYAAAC3ZLY2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABibAAAYmwFJdYOUAACmgUlEQVR4nOzdd3gU5f7+8XvSSUJCCYTeu3QBC3JQoiJIRxBEQERFBFFUULCiUjwoFopHuqCCgBBBEKSIdEIJvfcaWkJ6z/7+yC/7JSZAQjK72eT9OtdeB2aemfksYTF3nmZYLBaLAAAAAAAOw8neBQAAAAAAsocgBwAAAAAOhiAHAAAAAA6GIAcAAAAADoYgBwAAAAAOhiAHAAAAAA6GIAcAAAAADoYgBwAAAAAOhiAHAAAAAA6GIAcAAAAADoYgBwAAAAAOhiAHAAAAAA6GIAcAAAAADoYgBwAAAAAOxsXeBQBwXMufmWPvEiBpZk3+KQcApPpt9HP2LgE2Qo8cAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghyQR/Tu3Vs1a9bUxIkTM5yrWbOmatasqe3bt9uhMgAAAOQ1LvYuALgX7733npYsWZLhuGEY8vLyUoUKFfTII4+od+/eKlmypB0qBAAAAMxDjxwcmqurq/z8/KwvX19fRUVF6dChQ5o6daratm2rPXv22LtMAAAAIFfRIweH1qhRI82dOzfdsfj4eK1du1ajRo3SzZs3NXz4cK1atUqGYdipSgAAACB30SOHfMfd3V1t27bVyJEjJUlnz57VyZMn7VwVAAAAkHvokUO+Vbt2beuvY2Ji7ukeycnJWrZsmZYvX65Dhw4pPDxcRYoUUbly5fToo4+qU6dOKlWqVIbrzpw5o1mzZmnbtm0KCQmRk5OTKlSooCeeeEJ9+/ZV4cKF7/l9/dulS5c0Y8YMbdmyRZcuXVJKSoqKFSumUqVK6cEHH1SXLl1UsWLFXHseAAAA7I8gh3zryJEjkiQnJyeVL18+29dfv35dgwYNss6xMwxDPj4+ioyMVHBwsIKDg5WYmKjXX3893XULFy7UqFGjlJiYKEkqVKiQEhMTdeTIER05ckRLlizRrFmzVKFChZy9QUmHDx9W7969FRkZKUlycXGRp6enQkJCFBISoj179sjHx0f9+/fP8bMAAACQdxDkkO8kJCRo3bp1Gjt2rCSpY8eOKlq0aLbvMXDgQO3bt0+enp5655131L59e/n4+EhKHa65atUq+fr6prvun3/+0Ycffih3d3e9+uqr6t69u0qWLKmkpCTt27dPo0eP1oEDBzR48GAFBgbKySlno5vHjRunyMhI1a9fXx999JHq1q0rwzAUHx+vs2fPauXKlZn2GAIAAMCxEeTg0IKDg9W8eXPr75OSknTz5k1JUpkyZfTaa6/ptddey/Z9Fy9erH379snZ2VnTpk1TkyZN0p2vWLGiXnnllXTHkpOT9dlnn8lisWjcuHFq06aN9ZyLi4saN26sGTNmqF27djp69KjWrFmjJ598Mtu13Sqtt/D9999XvXr1rMfd3d1Vo0YN1ahRI0f3BwAAQN7EYidwaImJibp+/br1lRbiJCkqKkqRkZFKSEjI9n3T9qhr06ZNhhB3O0FBQTp//rzKli2bLsTdqkiRIvrPf/4jSdq0aVO26/q3tLl2V69ezfG9AAAA4DjokYNDa9asWbrtBywWiyIjI7V7925NmDBBc+fO1e7du/XTTz/J09MzS/dMTEzUgQMHJEktW7bMci3BwcGSUkPVrb2E/5a28Mrly5ezfO/badmypRYtWqR3331XwcHBCggIUP369eXm5pbjewMAACDvIsghX0lbkOTRRx9V7dq19fTTT+vgwYOaO3euBgwYkKV7hIeHKykpSVLq8MysunbtmqT/6yW8m7i4uCzf+3aGDx+us2fPaseOHZo5c6ZmzpwpV1dX1atXT61atVK3bt1UpEiRHD8HAAAAeQtBDvmWv7+/WrRooRUrVmj58uVZDnL3Kjk5WZL00EMPafbs2aY+K42vr69++uknBQUFad26ddq1a5cOHTqk3bt3a/fu3Zo+fbp++OEHNWzY0Cb1AAAAwDYIcsjXSpcuLUk6f/58lq8pUqSIXF1dlZiYqEuXLmX5Oj8/P0m5M2Qyu5o1a6ZmzZpJkqKjo/X333/rq6++0qVLlzRs2DCtXr3a5jUBAADAPCx2gnztypUrklJXjcwqFxcX1a1bV5K0fv36LF/XqFEjSambgZ8+fTrrReYyLy8vtWvXTqNHj5YknTt3zi7hEgAAAOYhyCHfCgsL05YtWyRJ9913X7au7dKliyRp5cqV2rlzZ5auefDBB1W2bFlJ0pgxY6xDLTOTmJio6OjobNX0b0lJSUpJSbnteXd3d+uv4+Pjc/QsAAAA5C0EOeQ7FotFBw8e1ODBgxUaGipJ6tOnT7bu0blzZzVo0EDJycl65ZVX9PPPPysyMtJ6/syZM/rmm280b9486zFXV1d9/PHHcnJy0oYNG/Tiiy8qODjYGrZSUlJ04sQJTZ06Va1bt9bhw4dz9D5DQkLUunVr/fDDDzp69Kg1OFosFu3du1ejRo2SJFWqVEkVK1bM0bMAAACQtzBHDg7t3xuCS6n7x6WtCOnk5KQhQ4aoVatW2bqvq6urpkyZooEDB2rfvn369NNP9dlnn8nX11fx8fGKjY2VJA0ePDjddS1bttT48eP1/vvva9u2berRo4fc3Nzk6emp6OhoJSYmWtsahnEvbzmdc+fOacKECZowYYJcXFzk7e2d7jm+vr4aP358rjwLAAAAeQdBDg4ts6X+CxUqpEqVKqlJkybq2bOndb5bdvn5+WnevHkKDAzU8uXLdfjwYUVFRalo0aKqVauWWrVqpY4dO2a4rl27dmratKl++uknbdy4UefPn1dkZKQKFy6sihUrqnHjxnriiSd0//3331Ndafz9/TVlyhRt27ZNe/bsUUhIiMLCwuTq6qpq1arpkUceUd++fVWiRIkcPQcAAAB5j2GxWCz2LgKAY1r+zBx7lwBJM2vyMzkAQKrfRj9n7xJgI8yRAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAHQ5ADAAAAAAdDkAMAAAAAB0OQAwAAAAAH42LvAgA4rpk1+SckL3jlrL0rwPRK9q4ALi7O9i6hwEtITLZ3CUCBQo8cAAAAADgYghwAAAAAOBiCHAAAAAA4GLsFuZs3b2rv3r06e5bJHQAAAACQHaasVHD58mWtXLlSbm5u6tWrV7pzFotFY8aM0S+//KKUlBRJ0n333aevvvpKFStWNKMcAAAAAMhXTOmRW758uf773/8qODg4w7nZs2dr7ty5Sk5OlsVikcVi0YEDB/TSSy8pLi7OjHIAAAAAIF8xJcht2bJFktSqVat0x5OTkzV9+nQZhqGGDRvqm2++0VtvvSVXV1dduHBBv/76qxnlAAAAAEC+YsrQygsXLkiS6tSpk+74zp07dePGDRUqVEg//PCDfH19JUmJiYmaOHGi1qxZo759+5pREgAAAADkG6b0yIWGhkqSihcvnu54UFCQJKlFixbWECdJTz75pCTp5MmTZpQDAAAAAPmKKUEuba5bbGxsuuM7d+6UYRh64IEH0h0vUaKEJCkiIsKMcgAAAAAgXzElyBUpUkSSdP78eeux2NhY7dmzR5LUsGHDdO2TkpIkSV5eXmaUAwAAAAD5iilBLm1u3Lx586zHFi1apPj4ePn4+GSYO5c2p65kyZJmlAMAAAAA+Yopi5106NBBGzZs0PLly3X69GmVKFFCGzdulGEYat++vQzDSNc+bZuCSpUqmVEOAAAAAOQrpvTItWvXTq1atZLFYtHBgwe1fv16JScnq1SpUnrttdcytF+5cqUMw9CDDz5oRjkAAAAAkK+Y0iMnSZMmTdJvv/2mjRs3KikpSbVr19YLL7ygwoULp2t36tQpXbt2TaVLl1bz5s3NKgcAAAAA8g3TgpyTk5O6deumbt263bFdlSpVtG7dOrPKAAAAAIB8x5ShlQAAAAAA8xDkAAAAAMDBmDa0Mk10dLSOHDmi69evZ9ggPDOdOnUyuyQAAAAAcGimBbmrV6/qv//9r/766y8lJiZm6RrDMAhyAAAAAHAXpgS5GzduqEePHrp8+bIsFkuWr8tOWwAAAAAoqEwJct9//70uXbokwzD0/PPPq2vXrqpcubI8PDzMeBwAAAAAFCimBLm///5bhmHotdde0+uvv27GIwAAAACgwDJl1cqrV69Kkrp06WLG7QEAAACgQDMlyPn6+kqSvL29zbg9AAAAABRopgS5+vXrS5JOnTplxu0BAAAAoEAzJci9+OKLMgxDs2bNMuP2AAAAAFCgmRLkmjRpouHDh2v16tX6+OOPFRUVZcZjAAAAAKBAMmXVyhEjRkiSypYtqwULFmjp0qVq2LChSpYsKSen22dHwzA0ZswYM0oCAAAAgHzDlCC3ZMkSGYYhKXWT79jYWG3dutV6LDMWi4UgBwAAAABZYEqQa9q0qRm3BQAAAADIpCA3d+5cM24LAAAAAJBJi50AAAAAAMxDkAMAAAAAB2PK0MrMHDt2TBcvXlR0dLS8vLxUtmxZ1ahRw1aPBwAAAIB8w9QgFxUVpSlTpui3335TREREhvM+Pj7q1q2bXn31VXl7e5tZCgAAAADkG6YNrTx16pQ6dOigWbNmKTw8XBaLJcMrPDxcM2bMUIcOHXTmzBmzSgEcQs2aNVWzZk1t37493fHt27dbzwEAAACSST1ycXFxevnll3Xp0iVJUosWLdS2bVtVq1ZNXl5eiomJ0fHjx7Vy5Ur9888/unTpkl5++WX98ccfcnd3N6OkAikhIUF//PGH1q9frwMHDigsLExJSUkqUqSIatasqUceeUTt27dX8eLF0103ceJETZo0Kd0xJycneXl5qXDhwqpQoYLq1KmjgIAANWnS5J5qe+WVV/TPP/9Ikjp37qxx48Zl+dr33ntPS5YsuafnDh48WK+//vo9XQsAAADkFaYEuV9++UUXL16Um5ubvvrqKz3xxBMZ2tStW1edO3fWmjVr9NZbb+nChQv65Zdf1K9fPzNKKnC2bt2qkSNHWsO0JHl4eMjd3V1Xr17V1atXtXHjRn3zzTcaOnSo+vbtm+EeTk5OKlasmPX3MTExunTpki5duqRt27Zp5syZql69uj777DM1atQoy7X98ccf1hB3L7y9veXn55fheGJiosLDwyVJRYsWlbOzc4Y2np6e9/xcAAAAIK8wJcj99ddfMgxDAwYMyDTE3erxxx/XgAEDNHHiRP31118EuVywYsUKDRs2TElJSSpXrpwGDBigRx99VCVLlpQkxcfHa+fOnQoMDNQff/yhNWvWZBrkSpcurXXr1qU7lpCQoEOHDmnNmjX69ddfdfz4cfXq1Uvjx4/X008/fdfabt68qTFjxqhw4cIqWbKkTp48me3398EHH+iDDz7IcHz79u3q06ePJGnRokUqV65ctu8NAACA/Ck2NlZBQUE6ePCgDh06pIMHD1o7PYYPH67+/fvn+BmBgYFatGiRjh07pvj4eJUuXVoBAQF6+eWXVaRIkRzf/1amzJE7ffq0JKldu3ZZap/W7tSpU2aUU6CcPHlSI0eOVFJSkh5++GEtXbpU3bt3t4Y4SXJ3d1fz5s01fvx4/fbbb6pYsWKW7+/m5qaGDRvqnXfe0bJly1S7dm0lJyfrvffe0/Hjx+96/bhx43Tjxg299dZbGYZ0AgAAAGbZt2+fXnnlFX377bdavXp1upFrOZWcnKwhQ4bo3Xff1Y4dOxQdHS0nJyedPn1a06dPV7t27awZKbeY0iMXExMjSVlOnWnt0q7Dvfv6668VGxurEiVK6JtvvpGXl9cd29epU0effvrpPT2rVKlSmjx5stq1a6eYmBhNnjxZ33zzzW3bb9myRUuWLFGDBg3Uo0cP/fnnn/f0XFuKjIzUL7/8onXr1un06dPWP9sqVaqodevWevrppzMdrrl161bNnz9fwcHBCg0Nlaenp2rWrKlOnTqpU6dOmQ77vFe7d+/W3LlzFRwcrOvXr8vV1VXFihVTxYoV1aJFC3Xr1o1VYQEAACT5+vqqTp06qlOnju677z6NHTtW165dy/F9J0+erFWrVsnV1VUjRoxQt27d5Obmpv3792v48OE6deqUBg4cqGXLlsnV1TUX3olJQa5o0aK6du2aTp48qcaNG9+1fdrwulvnYyH7rl69qjVr1kiSevfuLV9f3yxd5+R07x2zZcuWVZcuXfTTTz9pzZo1io2NVaFChTK0i4uL00cffSQXFxd9+umnOXqmrezdu1eDBg2yfrhdXFzk7e2tq1ev6uLFi9q4caMqVKigBx54wHpNUlKSRo0apQULFliPeXt7KyIiQkFBQQoKCtKKFSs0ZcqUXFnY57ffftP7778vi8UiKXUepGEYunDhgi5cuKDNmzerSZMmqlevXo6fBQAA4MiaNGmioKCgdMe++uqrHN83NDRUM2fOlCQNGTJEvXr1sp6rV6+epk6dau2RW7RokXr27JnjZ0omDa1s2LChLBaLpk6dmqX2U6dOlWEYatCggRnlFBjbt2+3fkMfEBBgs+e2bNlSUupiI3v27Mm0zbfffqvz58+rT58+qlWrls1qu1cXLlzQyy+/rGvXrqlixYr6/vvvFRwcrO3bt2vPnj1auHChevfuLQ8Pj3TXff3111qwYIFKly6tL774Qrt27dKuXbsUHBysCRMmqESJEtq0aZO++OKLHNcYGxur0aNHy2KxqEuXLlq3bp327t2r3bt3a9euXfr555/17LPPZhqsAQAACprcHBF1q1WrVik2Nlaenp56/vnnM5wvX7682rZtK0launRprj3XlCDXtWtXSdI///yjN998U9evX8+0XWhoqN566y2tX79ektStWzczyikwTpw4ISl1HluVKlVs9txb9zc7f/58hvMHDx7Ujz/+qDJlyjjM0v8TJkxQeHi4/P39NX/+fLVq1Upubm6SUnvm6tevrw8++CDdDx/OnTunmTNnqnDhwpo9e7Y6depkHdJYqFAhPf3005o4caIMw9CCBQtu+7nIquPHjys6Olqenp76/PPPVbZsWes5b29vNWnSRJ9++qmqVauWo+cAAADg9rZt2yZJatq06W1XSG/RooUkac+ePYqNjc2V55oytLJly5Z6+umntXz5cq1atUpr1qxRkyZNrPvIRUdH68SJE9q1a5eSkpIkpS54kvYGcW9u3rwpSfLx8bHp0MVb50Km1ZAmOTlZH374ofX/HWH5/5iYGK1atUqSNGjQoCwP+V2yZIlSUlL0+OOPq1KlSpm2adSokcqVK6fz589r+/btWVrp83bSQmJiYqLCwsIy3ZIBAAAA5kqbJla9evXbtqlRo4YkKSUlRSdPnlTdunVz/FxTgpyUujqht7e3fv31VyUlJWn79u3avn17ujZpwwB79Oih999/36xSYEezZs3SwYMH9cQTT6hVq1b2LidL9u/fb/0Bw6OPPprl64KDgyWldq9v3Ljxtu3S9rrL6UpJFStWVKVKlXTmzBl1795dzz33nFq0aKHq1as7xBxEAACAW82aNUuzZs3K1jX9+vWz+/ZlV69elST5+/vfts2t53JjcRXJxCDn6uqqUaNGqWfPnlq0aJF27typS5cuKTo6Wl5eXipbtqzuv/9+PfPMMw4xZ8oRpPWMRUREyGKxyDAMmzz31l64W3vnzp8/r0mTJsnLyyvTfd/yqhs3bkhKHUJ5pw/kv6V9KGNiYrK0AmtcXNy9Ffj/OTs7a8KECRo8eLAuXryo8ePHa/z48fL29lbTpk3Vpk0btW3bNtdWRgIAALiT5c/MydH1US2jdOXKlexdExWVo2fmhrTv++60LsGt6ypER0fnynNNC3JpatWq5VDfxDuytLlQCQkJOnnypM3mRh05csT66/Lly1t/PXbsWMXGxmro0KEqXLhwhr+0ycnJklJXekw7V6hQIYftTUp7P2+88YZee+01mzzzvvvusw5f3rx5s3bt2qXTp0/r77//1t9//63p06dr7ty5ub4BJQAAwL/ltA/B29s7Wz9ET7umoDI9yMF2HnjgARmGIYvForVr19osyP3zzz+SUnthGzZsaD1+8eJFSakrOX799de3vX7ZsmVatmyZJCkwMFC1a9c2r9gsSJtrlpSUpCtXrmT5HxQ/Pz+dPn1aly9fNrO8DNzc3NS2bVvrakhXr17V0qVL9d133+nYsWMaP368Ro8ebdOaAABAwWM45SzJ5YVhkvfC09NT4eHhd1zE5NaRWHfb5zmrHLPrA5kqWbKkdduBuXPnWudi3U1KSso9P/PixYtasmSJJOmJJ57IF0vd161b1zoc8e+//87ydY0aNZIkbdy40do7Zw8lS5bUSy+9ZP2H8N9zUwEAAEzhZOTs5aBKliwpSXccFnrruRIlSuTKcwly+cybb74pDw8PXbt2TW+++eZdx+AeOnRIH3300T09KyQkRIMGDVJMTIzc3Nw0aNCgdOd///13HT169LavZs2aSZI6d+5sPWbv3jgp9acqrVu3liRNmTJFoaGhWbquc+fOcnJy0uXLlzV9+vQ7ts1qyL6ThISEO55PG4sdHx+f42cBAADcjWEYOXo5qqpVq0pK3Rrqdo4dOyZJcnJysrbPqRwPrUz7xtswDB06dCjdsey69R64N9WrV9fo0aM1fPhwbdmyRR07dtSAAQP06KOPWtN/fHy8du3apSVLluiPP/5QkyZNsnz/hIQEHTlyRKtXr9avv/6q8PBwOTs7a9y4cflqv7K33npLGzdu1JUrV9SzZ0+9++67euSRR+Tm5qakpCQdOHBACxYs0LPPPmvdS65KlSrq37+/pk2bpgkTJujy5cvq16+fKlasKCn1z/3gwYNauXKlAgMDFRQUlKMaly9frkWLFqlTp056+OGHrfvIJSQkaN26dZo5c6Yk6T//+U+OngMAAJAVOR1a6ageeughrVy5Ujt37lRsbGymI9TSVjRv2LBhro1gy3GQS9tC4G7HYDvt2rVT0aJFNXLkSJ0/f9662IyHh4fc3NwUERFhbevl5aWnnnoq0/tcvnxZzZs3t/4+NjZWMTEx6b6+1atX12effWYdVphflC1bVlOnTtVrr72mM2fOaODAgXJxcZG3t7eio6OVmJgoSerYsWO669566y0lJiZq9uzZmjdvnubNmydPT0+5uroqMjLSOozVxSXn01MtFot27typnTt3SpLc3d1VqFAhhYeHW79GNWvW1Ntvv53jZwEAANxVAQ1yTz75pMaNG6fo6Gj99NNPevnll9Odv3DhglasWCEp4/eOOZHj7ybHjh2bpWOwrebNm2v16tVaunSp/vnnHx08eFChoaGKjY1VyZIlVbNmTbVs2VLt27e/7YqGKSkpun79uqTU3lJPT0/5+/urYsWKuu+++xQQEJCt3jxH07BhQ61cuVJz5szRunXrdPbsWcXGxsrf319Vq1bVk08+qfr166e7xsnJSSNGjFD79u31yy+/aOfOnbpy5YpiYmJUvHhxVatWTQ888IB1YZKcaNWqlb744gtt3bpVhw4d0rVr1xQRESFfX19Vr15dTz75pHr06CE3N7ccPwsAAOBuHGF0ZHh4eLq1DNJ+yB4bG5tuOo23t3e676F69+6toKAgNWvWTHPnzk13z2LFiunFF1/U5MmT9e2338rLy0vPPPOM3NzcdODAAb377ruKi4tT5cqV1bVr11x7L4aF7jMA96jr+7/YuwRIeuWsvSvA9Er2rgAuLs72LqHAS0i030Jf+D+/jX7Obs/+64X5Obr+ydk9cqmS22vVqpV1ZfU7GTt2rLp06WL9/Z2CnJS6DdXQoUO1atUqSamrubu5uVnXqyhRooTmzp2rypUr59I7YfsBAAAAALmgoM6RkyRnZ2d99913CgwM1KJFi3T06FHFx8ercuXKCggI0Msvv5zr+/qaEuQmTZokSXr11VezNBfIYrFo8uTJkqTBgwebURIAAAAAEzlCkFu3bt09XZdZL1xmOnXqpE6dOt3TM7LLtCBnGIb69++fpSCXkpJivYYgBwAAADigvJ/j8hWGVgIAAADIMcOJLaptKU8EubSNjXNjSXYAAAAAtmeQ42wqTySn/fv3S5L8/PzsXAkAAACAe+II+w/kI7kS5NIWN/m3//3vf3J1db3tdSkpKbp69arWrFkjwzDy3abSAAAAQEHhCIud5Ce5FuSMfyVwi8WiqVOnZul6i8Uid3f3DLugAwAAAHAQBDmbypUgV6ZMmXS/v3TpkgzDUOnSpe94naurq4oWLaq6deuqZ8+eqlq1am6UAwAAAMDG/t2xA3PlSpD7934MtWrVkiQtX75chQoVyo1HAAAAAMjDGFppW6YsdtKpUycZhsEqlAAAAEBBwaqVNmVK0ho3bpwZtwUAAACQRzG00rboMgMAAACQYwyttC1TOkB37typ2rVrKyAgQCkpKXdsm5ycrICAANWpU0fBwcFmlAMAAADAbE5Gzl7IFlOC3J9//imLxaLOnTvLyenOj3B2dlbXrl2VkpKiFStWmFEOAAAAAJMZhpGjF7LHlCC3a9cuGYah5s2bZ6l9Wrtdu3aZUQ4AAAAAkxlORo5eyB5T5siFhIRIkipWrJil9uXLl5ckXblyxYxyAAAAAJiNMGZTpgS5mJgYSVlfuSatXUREhBnlAAAAADAZoyNty5ShlUWLFpUknT17Nkvt09r5+vqaUQ4AAAAAsxlGzl7IFlOCXL169SRJv//+e5bap7W77777zCgHAAAAgMmYI2dbpgS5p556ShaLRQsWLNCqVavu2Hb16tVasGCBDMNQmzZtzCgHAAAAgMkIcrZlSpB7+umnVadOHSUnJ+vNN9/U8OHDtXXrVoWFhSkhIUFhYWHaunWrhg8frjfeeEPJycmqXbu2OnbsaEY5AAAAAMxm5PCFbDFlsRPDMDRlyhT17t1b58+f17Jly7Rs2bJM21osFlWoUEFTpkxh/wgAAADAQRl32T8aucu0P+1SpUpp8eLF6tGjh1xdXWWxWDK83Nzc1KtXLy1evFilSpUyqxQAAAAAJjOccvZC9pjSI5emcOHC+uSTT/TOO+9o165dOn/+vKKiouTt7a0KFSro/vvvl5eXl5klAAAAALAFRtfZlKlBLo23t7datmxpi0cBAAAAsAMWLLEtmwQ5AAAAAPkbQc62CHIAAAAAco4cZ1M5DnKTJk2y/nrw4MEZjmVX2j0AAAAAOA5WrbStXAlyadsG3Brk7nUrAYIcAAAA4HhYedK2chzkypQpk6VjAAAAAPIxVq20qRwHuXXr1mXpGAAAAID8i8VObIvFTgAAAADkHEHOpghyAAAAAHLsXtfIwL0hyAEAAADIMYZW2laOg9yOHTtyow6rpk2b5ur9AAAAANgAq1baVI6DXO/evXOtG9UwDB06dChX7gUAAADAdhhaaVu5MrTSYrHkxm1y7T4AAAAAbIwgZ1M5DnJr167N9PjFixc1cuRIXbx4UU888YSefPJJVatWTZ6enoqJidGJEyf0119/afXq1SpXrpxGjx6tsmXL5rQcAAAAAHbAHDnbynGQyyx8hYeH67333tPNmzc1c+ZMPfTQQxna1KpVS+3atdOWLVs0ePBgvffee1q8eHFOywEAAABgBwQ52zJl1crp06fr0qVLeu+99zINcbd6+OGH9frrr+uLL77QtGnTNGzYMDNKAoB8a3ole1eA/qeYGmBvs6vzNQDsjSBnW6asLbN69WoZhqEnnngiS+1bt24t6fbDNAEAAADkbYaTkaMXsseUHrmQkBBJkqenZ5baFypUKN11AAAAABwMWcymTOmRc3d3lyQdPHgwS+3379+f7joAAAAAjoUeOdsyJcjVr19fFotFEyZMUExMzB3bxsbG6uuvv5ZhGKpfv74Z5QAAAAAwGUHOtkwJcr1795YkHT58WM8++6zWr1+v5OTkdG2Sk5P1999/q3v37jp8+LAkqW/fvmaUAwAAAMBshpGzF7LFlDly//nPf/TSSy9p+vTpOnHihAYOHCh3d3dVqFDBuo/cuXPnFB8fb90E/KWXXtIjjzxiRjkAAAAAzEavmk2ZEuQk6Z133lHlypX15ZdfKiwsTHFxcTp27FiGdkWLFtWwYcPUpUsXs0oBAAAAYDKGR9qWaUFOkrp27ar27dvr77//1q5du3Tx4kXFxMTI09NTZcuW1f3336/HHntMbm5uZpYBAAAAwGQGwyNtytQgJ0lubm5q3bq1da84AAAAAPkQOc6mTA9yAAAAAPI/w9mUdRRxGzYJclFRUTpw4IBCQ0OVkJCgTp062eKxAAAAAGyEkZW2ZWqQO3nypL788ktt2LBBKSkp1uO3BrlTp07pjTfekJubm37++Wd5eHiYWRIAAAAAM5DkbMq0/s8NGzbomWeese4hZ7FYrFsN3KpKlSpydXXVoUOHtHbtWrPKAQAAAGAiw9nI0QvZY0qQu3Llit58803FxsaqcePGmjt3rrZs2XLb9m3atJHFYtGmTZvMKAcAAACAyQzDyNEL2WPK0MpZs2YpJiZGDRs21I8//igXFxfFxMTctn2jRo0kSQcPHjSjHAAAAABmI4vZlClBbuPGjTIMQ4MGDZKLy90fUb58eUnS5cuXzSgHAAAAgMnYENy2TAlyly5dkiTVrVs3S+09PT0lSbGxsWaUAwAAAMBkBDnbyhP7yEVEREiSvLy87FwJAAAAgHvCPDebMmWxk5IlS0pK3X4gK/bu3StJKleunBnlAAAAADCZ4WTk6IXsMSXINWvWTJL022+/3bWtxWLRnDlzZBiGHnroITPKAQAAAGAygpxtmRLkevXqJUn6/ffftWjRotu2S0pK0qeffqo9e/bI2dlZPXv2NKMcAAAAAGYzcvhCtpgyR65WrVp68cUXNWPGDH344YcKDAxM19v2888/69y5c1q9erUuX74swzD0+uuvq2zZsmaUAwAAAMBk9KrZlmmLnQwbNkyGYWjGjBnauXOndu3aZd3o7/PPP5eUOqxSkl599VUNGDDArFIAAAAAmIwgZ1umrlr5zjvvqG3btpozZ462bt2qK1euWM8VKVJEzZs3V79+/bK8TQEAAACAPIpVK23K9O0H6tSpo3HjxkmSYmJiFBkZKS8vL3l7e5v9aAAAAAA2Qo+cbZmy2ElAQIAef/xxrV+/Pt1xT09P+fv7E+IAAACAfIZVK23LlB65K1euKDk5WbVr1zbj9gAAAADyGoZW2pQpPXIlSpSQJLm6uppxewAAAAB5jGHk7IXsMSXINW7cWJJ0+PBhM24PAAAAII8xnI0cvZA9pgS5Pn36yMnJSZMnT1ZSUpIZjwAAAACQl9AlZ1OmBLkGDRroo48+0r59+9SvXz/t37/fjMcAAAAAyCsIcjZlymInffr0kZS6V9zOnTvVvXt3FSlSROXLl5eHh8dtrzMMQz/++KMZJQEAAAAwEcMjbcuUIBcUFCTDMGSxWKzHwsLCFBYWdsfrDJI4AAAA4JD4Xt62TAlynTp14gsJAAAAFCR8+29TpgS5cePGmXFbAAAAAHkUm3rblilBDgAAAEDBQpCzLVNWrUTBdOHCBdWsWVM1a9bUhQsX7F2Ow+ndu7dq1qypiRMnZjiX9ue6fft2O1QGAACQBaxaaVM26ZG7fv269uzZowsXLig6OlpeXl4qV66cGjZsKD8/P1OfnZCQoD/++EPr16/XgQMHFBYWpqSkJBUpUkQ1a9bUI488ovbt26t48eK58ryIiAjrypt9+/aVj49Prtz3Vtu3b1dQUJDKli2rLl265Pr987rFixdrxIgR93Rts2bNNHfu3FyuCAAAAAZdRDZlapA7efKkxo8fr40bNyolJSXDeScnJ7Vo0ULDhg1T1apVc/35W7du1ciRI3Xp0iXrMQ8PD7m7u+vq1au6evWqNm7cqG+++UZDhw5V3759c/zMiIgITZo0SZLUuXNnU4JcUFCQJk2apGbNmuWpIOfq6qrKlStbf20WDw+P2/4A4Pr165Ikb2/vTLe68PX1Na0uAACAgsxwIsnZkmlBbvXq1Xr77beVmJiYbhuCWyUnJ+uff/7Rli1bNGHCBD3++OO59vwVK1Zo2LBhSkpKUrly5TRgwAA9+uijKlmypCQpPj5eO3fuVGBgoP744w+tWbMmV4JcQebv76+VK1ea/py2bduqbdu2mZ6rWbOmJOn999/PUyEXAAAg32N0pE2ZEuROnjypt956S4mJiXJ3d9dzzz2nJ598UtWqVZOnp6diYmJ04sQJrVq1SvPmzVN8fLzeeustBQYGqkqVKrny/JEjRyopKUkPP/ywJk2aJC8vr3Rt3N3d1bx5czVv3lz9+vXTL7/8kuPnAgAAAAWVoyx2EhYWpunTp2vt2rW6fPmy3N3dVaNGDT3zzDPq1KnTPd0zrTPhToYPH67+/fvf0/0zY0qQmzp1qhITE1W8eHH9+OOPqlatWrrzhQsXVqNGjdSoUSN17dpVffv2VVhYmKZOnZorWxd8/fXXio2NVYkSJfTNN99kCHH/VqdOHX366aeSJIvFooCAAF28eFEjRozQCy+8cNvrPv/8c82dO1dNmzbVTz/9pN69eysoKMh6PiAgIF37zp07Z3h/J0+e1IwZM7Rt2zZdu3ZN7u7uqlatmtq0aaOePXvKzc3N2vbChQvp7hkUFJThL82cOXP0wAMPWH9vsVi0fPlyLV68WAcPHlR0dLSKFCmixo0bq3fv3mratGm66wMDA/Xuu+/KyclJc+fOVZMmTTK874ULF+qDDz6Qs7Oz5syZY21za31r165VuXLlMlwbHx+vhQsXatWqVTp+/LiioqJUvHhxVahQQY8//rg6dOigokWLZv4HbgfJyclatmyZli9frkOHDik8PFxFihRRuXLl9Oijj6pTp04qVapUhuvOnDmjWbNmadu2bQoJCZGTk5MqVKigJ554Qn379lXhwoVzrcZLly5pxowZ2rJliy5duqSUlBQVK1ZMpUqV0oMPPqguXbqoYsWKufY8AACAzDhCkDt58qT69u2ra9euSZI8PT0VHR2tHTt2aMeOHVq/fr0mTJggp3scJurr63vbKUaFChW657ozY0qQ27p1qwzD0NChQzOEuH+rXr26hg4dqg8//FBbtmzJ8bOvXr2qNWvWSEpdBTCrc6LSvliGYahbt2765ptvtGjRotsGuYSEBC1btkyS9Mwzz0hK/cIVLVpUYWFhkqSiRYvK2dnZeo23t3e6ewQGBur9999XUlKSpNSAGxcXp+DgYAUHByswMFDTp0+3LsTi7OwsPz8/xcTEKCYmRq6urhne361/ceLj4zV06FCtXbvWer23t7euX7+uVatWadWqVXr11Vc1dOhQ6zWdOnXShg0btHz5cg0fPly///57utBx5swZjRkzRpI0YMCATIPe7Zw5c0YDBgzQmTNnJKX+mfv4+Cg0NFQhISEKCgpS4cKF88yQyOvXr2vQoEHas2ePpNS/Gz4+PoqMjLR+jRITE/X666+nu27hwoUaNWqUEhMTJaV+aBMTE3XkyBEdOXJES5Ys0axZs1ShQoUc13j48GH17t1bkZGRkiQXFxd5enoqJCREISEh2rNnj3x8fHL1pz8AAACZyuMrTyYkJGjgwIG6du2aqlSpov/+97+qV6+eEhIStHDhQo0dO1Z//vmnqlevrkGDBt3TMyZOnJiuU8VMpgS5tCDTokWLLLX/z3/+I0m6efNmjp+9fft265y8f/eIZVXXrl01adIkHT9+XHv27FHDhg0ztPnrr7908+ZN+fj46KmnnpIkTZo0KV2v1KJFizLtlZKkffv2WUPcww8/rA8//FBVqlRRYmKiVq5cqU8++USHDh3S0KFD9eOPP8owDJUuXVqbN2/WxIkTNWnSJDVq1OiOKzCOHz9ea9eulZOTk4YOHarnnnvOGuS+++47/frrr/rf//6nSpUqqXPnztbrRo0apeDgYF28eFGffPKJvvrqK0lSYmKi3nnnHcXExKhhw4bZ+gseERGh/v3768KFC/Lz89Pw4cP1xBNPyNPTUykpKTpx4oSWL19uyuIw9yLtg75v3z55enrqnXfeUfv27a31nT17VqtWrcoQpP/55x99+OGHcnd316uvvqru3burZMmSSkpK0r59+zR69GgdOHBAgwcPVmBg4D3/tCfNuHHjFBkZqfr16+ujjz5S3bp1ZRiG4uPjdfbsWa1cuTLTHkMAAIDcltd75BYuXKizZ8/Kw8NDU6dOVfny5SVJbm5u6tWrl6KiojRhwgRNnz5dzz33XJ4aJZYZU5aWSetByurKhS4uqXmyWLFiOX72iRMnJKV+Qe51vl3JkiX12GOPSUoNY5lJO96uXbtMV0e8m2+++UZJSUmqUaOGfvjhB2utrq6uat++vSZMmCApNZhu2LAh2/e/fPmydd7fG2+8oVdeecXaI+jn56dPP/1Ubdq0kZQ6FDWtV1BK7RkcP368nJyc9McffygwMFBS6k8Y9u/fLy8vL40fP976dcuKadOm6cKFC/L09NRPP/2kjh07ytPTU1Jqz1yNGjU0dOjQXF3wJicWL16sffv2ydnZWdOmTVOvXr3ShcyKFSvqlVde0bPPPms9lpycrM8++0wWi0Xjxo3T4MGDrYvruLi4qHHjxpoxY4ZKlCiho0ePWnuOcyKtt/D9999XvXr1ZPz/n4SljfUeMmSInn766Rw/BwAA4G4MJyNHL7P9/vvvklIXzksLcbd6/vnnret55Mb3aWYzJcildSfu3LkzS+3T2jVr1izHz07r1fPx8clRb0f37t0lpa5+GRMTk+7c+fPntW3bNklSt27dsn3v8PBw6zDSV155Jd08uDQtW7ZUgwYNJEnLly/P9jNWrVql5ORkeXt7q1+/fpm2SRsSeOXKFe3YsSPduSZNmuiVV16RJH322WdasmSJpk2bJkn64IMPsj0scMmSJZJSh7umbVGQl6XV26ZNmywPHw0KCtL58+dVtmxZa0j+tyJFilh7oDdt2pTjOtOGvV69ejXH9wIAAMgRI4cvE0VHR2vfvn2S/m804L95eXlZv+/LjSlfZjNlaGX//v21cuVKffnll2rSpMkde9pu3Lihr776Sh4eHnrppZfMKOeePPLIIypbtqwuXryoFStWWOfBSdJvv/0mi8Wi++67T3Xq1Mn2vQ8dOmQd/vnwww/ftt1DDz2kvXv36uDBg9l+Rto1jRs3lru7e6ZtqlatKn9/f125ckUHDx7UQw89lO7866+/ri1btmjfvn167733JElPPfVUtuewXbhwwTqhtGXLltl9KzaXmJioAwcOSMpevcHBwZJSQ1Xz5s1v2y7tBwOXL1/OQZWpWrZsqUWLFundd99VcHCwAgICVL9+/Ux/OAAAAGAmI4dz5GbNmqVZs2Zl65p+/frdttPiVqdOnbJ+/12jRo3btqtevbo2bNhgHeWXXWPHjlVISIiioqLk6+urOnXqqEOHDmrbtm26tTNygyk9cjVq1NB3332n8PBwderUSfPnz9eNGzfStblx44bmzZunzp07Kzw8XN9+++0d/1CzqkiRIpJS52Tdbv+6rHBycrL2tt06vDI5OdnaW3NruMuO0NBQSanDKNOGoWYmbW7Tv//ssvMMf3//O7a70zNcXFysC5tIqUNm01b3zI5b7122bNlsX29r4eHh1qGmZcqUyfJ1aWE1MTFR169fv+0rLcjFxcXluNbhw4eradOmiomJ0cyZM9WrVy81btxYPXv21LRp03Jl3ikAAEBWWJyMHL2ioqJ05cqVbL2ioqKyVNuto5fu9P1x2rl7He10+PBhxcfHy9XVVdevX9eGDRv0zjvv6IUXXlBERMQ93fN2TOmRu3WRkatXr2rUqFEaNWqUfHx8rONOb30jPj4+dwwIhmFkeZxq2iqZCQkJOnny5F1XzbyTtEVPgoODdfLkSVWtWlWbNm1SSEiIChUqpPbt29/zvR3FwoULrb++efOmTpw4ofvvv9+OFeVdycnJklJ7UmfPnm2TZ/r6+uqnn35SUFCQ1q1bp127dunQoUPavXu3du/erenTp+uHH37IdMEeAACA3JRy730oklJXeL9bJ0Rm12TFrVOl7rS+RdoWAdHR0dmqo3Pnzmrbtq0aNmxoXVfh/Pnzmjt3rubOnaugoCC9+eabmjlzZrbueyemBLmLFy+m+31az1h4eLjCw8MztL/d8TTZ6aZ94IEHZBiGLBaL1q5dm6Mgl7boyerVq63D19J651q3bn3Pe4GlDTVNTEzUjRs3btsrFxISIkl37LW72zOuXLlyx3Z3esamTZs0Z84cSam9rMeOHdOwYcO0dOnSLH9opNTFVdJcvHgxz6+iWKRIEbm6uioxMVGXLl3K8nVp7zM3hkxmV7NmzaxzTKOjo/X333/rq6++0qVLlzRs2DCtXr3a5jUBAICCJSej4aSsD5PMizLbC7t8+fIaOXKkypcvr88//1ybN2/Wpk2b9Mgjj+TKM00JcoMHDzbjtllSsmRJBQQEaM2aNZo7d6569OiRpb3kUlJSMl0cpXv37lq9erUCAwPVt29f/f3335Juv8jJrfe43V/mOnXqWMPm1q1b1a5du0zbbd26VZJUt27ddMfTgu2dPix169bV0qVLFRwcrPj4+EznyZ08edIa9P79jLCwML333nuyWCzq0qWL3n33XXXo0EEXL17UqFGjNH78+Ns++9/Kli2rkiVL6urVq1q/fn2e79FzcXFR3bp1FRwcrPXr16tDhw5Zuq5Ro0aSUvfLO336tN0WdfHy8lK7du1UrFgx9evXT+fOndPly5dVunRpu9QDAAAKhpScdsmZKG21dCl1esvtOiViY2MlpX4/lVt69eqlWbNm6eLFi/r7778Jcnfy5ptvatOmTbp27ZrefPNNTZo06Y5fjEOHDumXX37R559/nuHcrYuevPXWW0pMTFTlypVvu5LhrX8p0jZp/jdfX181b95cmzZt0rRp0/Tkk09mWJzin3/+0d69eyUpw/Lxac+40zjbJ598Ul988YUiIyP1448/WlegvNXEiRMlpc6T+/f7+eCDD3Tt2jVVrFhRH3zwgby8vPTFF1+oX79+Wrp0qR599NFsLWvfpUsX/e9//9NPP/2kLl265PmVK7t06aLg4GCtXLlSzz33XJZWrnzwwQetf1fGjBmj//3vf7ed1JqYmKiEhIQc/SORlJQkJyen267Oemt4j4+Pv+fnAAAAZEVKDnvkzJS2JZSUOmLtdkEurZPj1vY55eTkpLp16+rixYs6f/587t031+5kguTkZAUGBlr3Mcuq6tWra/To0XJ2dtaWLVvUsWNHLVy40LoYhZT6je2WLVs0bNgwde3aVWfPns30XrcuerJr1y5Jd17kxMfHxzq2NzAw0Dpv6t/eeOMNubi46MiRIxo4cKDOnDkjKfUb/D/++ENvvfWWpNShov/eWD1tUZiTJ09aw96/lS5dWs8995yk1D3rpk+fbh3re+PGDX300Uf6888/JaUG31v3hPv111+1Zs0aubi46Msvv7SGjYceesja3f3JJ59ka9hh//79Va5cOcXExKh3795aunSp9SceKSkpOnLkiEaPHp1nhgB27txZDRo0UHJysl555RX9/PPP6YL5mTNn9M0332jevHnWY66urvr444/l5OSkDRs26MUXX1RwcLBSUlIkybrx+dSpU9W6dWsdPnw4RzWGhISodevW+uGHH3T06FHr3zWLxaK9e/dq1KhRkqRKlSqpYsWKOXoWAADA3Vhy+DJT1apVraPajh07dtt2x48fl6QcTc+yFVN65HJLfHy83nvvPTk5OalTp07ZurZdu3YqWrSoRo4cqfPnz+uDDz6QlDq50c3NLV1vlpeXl5566qnb3itt0ZOkpCS5urqqc+fOd3x29+7dNXHiRP3444+aP3++ihcvLsMw1Lp1a7377ruSpPr162v06NF6//33tWnTJuucu7i4OCUmJkqSateura+//jrDHMFmzZqpUqVKOnPmjLp3764iRYpYw9aECROsC1sMGzZMFy9e1Lp16zR+/HhNmDBB3t7e6Vb0fPXVV9O9n9OnT2vs2LGSpEGDBql+/frpnj106FBt27ZNhw4d0rvvvqsff/wxS/v1+fj4aPr06RowYIDOnj2rYcOGydnZWYULF1ZMTIwSEhKs7zkvcHV11ZQpUzRw4EDt27dPn376qT777DP5+voqPj7eGkL/3fvcsmVLjR8/Xu+//762bdumHj16yM3NTZ6enoqOjrZ+baWcL9ErSefOndOECRM0YcIEubi4yNvbO91zfH19NX78+Fx5FgAAwJ3kdI6cmTw9PdWgQQPt2bNHGzduzHTP35iYGOv+1nfaIiy7UlJSrFtblStXLtfum6eDXJp7/UvRvHlzrV69WkuXLtU///yjgwcPKjQ0VLGxsSpZsqRq1qypli1bqn379tZtCzJTsmRJNWzYUDt37tRjjz1218VHXnvtNXl5eWnp0qU6c+aMtecqLCwsXbtOnTqpbt26mjFjhrZv366rV6/K3d1d9913n9q2bauePXtmuh+Yi4uLZs+ere+++07btm3TtWvXrMvM3zqEzt3dXVOmTNEff/yhxYsX69ChQ4qOjpafn58aN26s559/Pt0m7ImJiXr77bcVGxur+++/XwMGDMjwbDc3N3355Zfq0qWLgoKCNG3atEzbZaZy5cpaunSp5s+fr1WrVunkyZPWeipUqKAnnnhCrVq1ytK9bMHPz0/z5s1TYGCgli9frsOHDysqKkpFixZVrVq11KpVK3Xs2DHDde3atVPTpk31008/aePGjTp//rwiIyNVuHBhVaxYUY0bN9YTTzyR47mC/v7+mjJlirZt26Y9e/YoJCREYWFhcnV1VbVq1fTII4+ob9++KlGiRI6eAwAAkBXJeXiOnCR16NBBe/bs0YoVK/Taa69lCFU///yzYmJi5OnpqccffzzL97VYLHf8ofm8efOsi0E+9thj91Z8JgxLHo7OMTExaty4sQzDyPEwtJyIiIhQixYtFBcXp6lTpzrEptaALXR9/xd7lwBJTnS42l3/U3n2P6UFxuzqubvRLrIvMSnF3iVA0m+jn7Pbsy9eyf7ex7cq65/9ldqzIyEhQe3atdPZs2dVrVo1ffHFF6pbt64SEhK0aNEijRkzRomJiRoyZIgGDRqU7trevXsrKChIzZo109y5c9OdGzJkiCpVqqTHH39ctWrVsnbEXLhwQT///LNmz56tlJQUNW/ePO9vP5DfLF68WHFxcSpbtmyG+WoAAAAApLzbPZTKzc1N33//vfr27asTJ06oa9eu8vLyUkJCgnVaSps2bTRw4MBs3TcsLEyrVq3SDz/8YJ06lJiYmG4vuocffljffvttrr4fgtxdnDx5Uv/73/8kSX369MnSfDAAAACgoElOyfu9slWrVtWyZcs0bdo0rV27VpcvX1ahQoXUsGFDPfPMM9lel0OSBgwYoJo1a2rv3r0KCQnRzZs3ZRiGypYtq7p166pDhw4KCAjI9TULGFp5Gz179tSFCxd07do1WSwWVatWTUuWLMl0zhpQUDG0Mm9gaKX9MbTS/hhaaX8Mrcwb7Dm08szFa3dvdAeVyjKvPzvokbuNK1eu6OrVqypatKgefvhhvfvuu4Q4AAAA4DbycP9QvkSQu41169bZuwQAAADAYeT1VSvzG4IcAAAAgByjR862CHIAAAAAcowcZ1sEOQAAAAA55girVuYnBDkAAAAAOUaHnG0R5AAAAADkGHPkbCtPBzlXV1cNHjzY3mUAAAAAuAtWrbQtghwAAACAHKNHzrZMD3KnT5/W/v37df36dcXGxt71C0xwAwAAABwPOc62TAtyx48f10cffaQ9e/Zk6zqCHAAAAOB4UhhaaVOmBLnz58/r+eefV0REhLUHrlixYvLw8DDjcQAAAADsLIUuOZsyJchNmTJF4eHhcnd319ChQ9W5c2f5+vqa8SgAAAAAeQBz5GzLlCC3efNmGYahd955R7179zbjEQAAAADyEHKcbZkS5MLCwiRJTz75pBm3BwAAAJDHsP2AbTmZcdNixYpJktzc3My4PQAAAIA8xmKx5OiF7DElyDVt2lSSdOTIETNuDwAAACCPIcjZlilB7qWXXpKrq6u+//57paSkmPEIAAAAAHlIssWSoxeyx5QgV6tWLY0bN0579uzRwIEDde7cOTMeAwAAACCPsFhy9kL2mLLYSZ8+fSRJRYsW1YYNG7RhwwaVL19eJUuWlJPT7bOjYRj68ccfzSgJAAAAgIkYHmlbpgS5oKAgGYaR7ot57ty5u/bMGYZhRjkAAAAATMaqlbZlSpDr1KkToQwAAAAoQOiRsy1Tgty4cePMuC0AAACAPIogZ1umBDkAAAAABQtDK22LIAcAAAAgx+iQsy2CHAAAAIAcY2ilbZkS5EaMGJHta1xcXOTt7S1/f3/VrVtX999/PwumAAAAAA6CoZW2ZUqQW7JkSY5DmL+/v4YMGaIuXbrkUlUAAAAAzEKPnG2ZEuSaNm0qSTp//rxCQkIkSYUKFVKlSpXk6empmJgYnT17VjExMZKk0qVLq1y5coqOjtb58+cVGRmpkJAQvf/++zp9+rTefvttM8oEAAAAkEuIcbZlSpCbO3eufvvtN40aNUp16tTR22+/rYcffjhdL53FYtGWLVv01Vdf6cSJExo8eLC6du0qSdq+fbu++OILHTp0SNOnT9fjjz+uBg0amFEqAAAAgFyQnJJi7xIKFCczbrpv3z59/PHHql27tubNm6fmzZtnGGppGIaaN2+u+fPnq3bt2vr444+1d+9eSdIDDzygn376SVWrVpUkzZ8/34wyAQAAAOQSiyVnL2SPKUFuxowZSk5O1ptvvil3d/c7tnVzc9Mbb7yhpKQkzZw503rc09NTr7zyiiwWi3bu3GlGmQAAAAByicViydEL2WPK0Mrdu3dLkmrVqpWl9rVr1053XZomTZpIkq5fv56L1QEAAADIbWQx2zIlyN28eVOSFBsbq6JFi961fVxcnCQpPDw83XEfH59crw0AAABA7mOOnG2ZMrSyRIkSkqS1a9dmqf2aNWskSX5+fumOh4WFSZKKFCmSe8UBAAAAyHXMkbMtU4JcixYtZLFY9O2332rXrl13bBscHKxvv/1WhmGoRYsW6c6lLX5SqlQpM8oEAAAAkEuYI2dbpgytHDhwoJYvX67o6Gj16dNHTz31lFq1aqXKlSvL09NTsbGxOn36tNauXauVK1cqOTlZXl5eGjhwYLr7BAYGSpIefvhhM8oEAAAAkEuSUwhjtmRKkCtVqpR++OEHvfbaawoPD9eKFSu0YsWKTNtaLBb5+vpq8uTJ6XrewsPDVblyZVWqVElt27Y1o0wAyBecnEwZXIFsmFaZeSH29tKxJHuXUOBNr8K/RQUdvWq2ZUqQk6T7779fK1as0OTJk7Vs2TJFRkZmaOPt7a327dtr0KBBGebH+fr66oMPPjCrPAAAAAC5KIUgZ1OmBTlJKl68uD766CO9//77On78uC5cuKCYmBh5enqqbNmyqlGjhpydnc0sAQAAAIANpDC00qZMDXJpnJ2dVatWrSzvKwcAAADAsZDjbMsmQQ4AAABA/sYcOdsiyAEAAADIMYZW2laOg9yIESMkSYZhaMyYMemOZdet9wAAAADgOOiRs60cB7klS5bIMAxJsoawW49llcViIcgBAAAADooOOdvKcZBr2rRplo4BAAAAyL9SLOypaUs5DnJz587N0jEAAAAA+RcjK22LxU4AAAAA5BgbgtsWQQ4AAABAjrFqpW3ZJcilpKRo3bp1OnXqlIoWLarHHntMfn5+9igFAAAAQC5g1UrbMiXI7d+/X5MnT1bRokU1duzYdOeioqLUp08fHT582HqsUKFC+vLLL9WqVSszygEAAABgMjrkbMvJjJv+9ddf+ueff+Tj45Ph3Pjx43Xo0CFZLBbrKyYmRm+//bZCQkLMKAcAAACAyW79/v5eXsgeU4Lcjh07JEmPPPJIuuNRUVEKDAyUYRjq1auXtmzZovnz58vf319xcXH6+eefzSgHAAAAgMlSUiw5eiF7TAlyV69elSRVq1Yt3fGtW7cqPj5exYsX18iRI1WsWDE1bNhQr7/+uiwWizZv3mxGOQAAAABMlmKx5OiF7DFljlxoaKgkqXDhwumOBwUFSZIee+wxOTs7W483a9ZMknTu3DkzygEAAABgMrKYbZkS5NLGuEZERMjb29t6fNeuXTIMQ02aNEnXvkiRIpKkuLg4M8oBAAAAYLKUlBR7l1CgmDK0skSJEpKko0ePWo9dvXrVulJlo0aN0rWPiYmR9H+BDgAAAIBjSbHk7IXsMSXINWrUSBaLRd9//70iIyMlSd9++60sFovKlSunChUqpGt/6tQpSVLJkiXNKAcAAACAySw5/B+yx5Shlc8995yWLVum/fv366GHHlKhQoUUFRUlwzDUo0ePDO23bdsmSapVq5YZ5QAAAAAwGStP2pZpPXLDhg2Tk5OTkpKSFBkZKYvFokcffVR9+/ZN19ZisWj58uUyDEMPPfSQGeUAAAAAMBmrVtqWKT1yktS/f38FBARo06ZNSkpKUu3atfXAAw9kaHfu3DnrqpXNmzc3qxwAAAAAJiKL2ZZpQU6SKlWqpEqVKt2xTcWKFTV27FgzywAAAABgMoZW2papQQ4AAABAwcDwSNuyS5CLiorSb7/9plOnTqlIkSJq06YNC50AAAAADsxCkLMpU4Lc1q1bNWbMGJUuXVpTp05Nd+7KlSvq2bOnLl++bD02ffp0ffjhh5muaAkAAAAg72NopW2ZsmrlunXrdPz4cdWpUyfDuS+++EKXLl2SxWJRoUKFJEnJycn6/PPPdfLkSTPKAQAAAGAyiyVnL2SPKUFu9+7dmW4nEBoaqr/++kuGYejtt9/W7t27tX79elWtWlXJycmaN2+eGeUAAAAAMBnbD9iWKUHu+vXrkqTKlSunO75lyxYlJSWpTJkyevnllyVJ/v7+GjRokCwWi7Zv325GOQAAAABMlpJiydEL2WPKHLmwsDBJkqenZ7rjO3bskGEYeuyxx9Idr1+/viTp4sWLZpQDAAAAwGQWEcZsyZQeOWdnZ0n/F+jS7Nq1S5LUpEmTdMd9fX0lSYmJiWaUAwAAAMBkKZacvZA9pgS5UqVKSZL2799vPXbu3DmdOHFCktSoUaN07SMiIiRJxYoVM6McAAAAACazWCw5eiF7TAlyTZs2lcVi0bfffqvjx4/r5s2bGjNmjCSpWrVq8vf3T9c+LeCVLFnSjHIAAAAAmIw5crZlyhy53r17a/HixTp37pw6dOhgPW4Yhvr06ZOh/aZNm2QYhurWrWtGOQAAAABMxsqTtmVKj1z16tX1xRdfqFChQum6Snv16qVu3bqla5uYmKg///xTkjJsVwAAAADAMbCPnG2Z0iMnSU8//bT+85//aOfOnUpOTlbNmjVVvnz5DO2uXLmiHj16SJIefvhhs8oBHEpiYqJmzpypZcuW6dy5c4qPj5ckrV27VpIUEBBg/X25cuXsVicAAECalJQUe5dQoJgW5CSpcOHCGbYa+Ldy5cpp8ODBZpYB2EzNmjXv+dpbQ9lnn32mX3/9VZLk7u4uPz8/SakrwiYnJ+e8UAAAgFzGNDfbMjXIAQVNWuD6t8jISMXHx8vV1dW63ca/pW3bERUVpd9++02SNGLECPXt21eGYVjbXbhwIZerBgAAyDlWnrQtghyQizZv3pzp8ffee09LlixRo0aNNHfu3Dve49SpU0pKSpIkdevWLV2IAwAAyKtYedK2TA9yFy5c0NatW3Xq1ClFRUVZv0HNjGEY1m0KgIIqLi7O+msvLy87VgIAAJB1jrJqZVhYmKZPn661a9fq8uXLcnd3V40aNfTMM8+oU6dOObp3YGCgFi1apGPHjik+Pl6lS5dWQECAXn75ZRUpUiRX6k9jWpCLiorSxx9/rD///DNL3awWi4UghwJt8eLFGjFiRLpjt86569y5s8aNG5fhuitXrmjy5MnasGGDrl+/ruLFi+vRRx/VkCFDVLx4cdPrBgAAkBxj5cmTJ0+qb9++unbtmiTJ09NT0dHR2rFjh3bs2KH169drwoQJcnLK3uL+ycnJGjp0qFatWiVJcnFxkZubm06fPq3p06fr999/19y5c1W5cuVcey+mbD+QmJiol156SStWrLDuD5cW5ho1aqQaNWrIzc3NeqxMmTJq2rSpmjRpYkY5gEPw8PCQn59fujl0fn5+1pe3t3eGa44dO6aOHTvq119/VUREhCwWi0JCQjR//nz16NFDERERtnwLAACgAEuxpOToZbaEhAQNHDhQ165dU5UqVbRo0SIFBwcrODhYH330kVxdXfXnn3/q+++/z/a9J0+erFWrVsnV1VUfffSR9b6LFi1SlSpVdO3aNQ0cOFCJiYm59n5MCXKBgYHas2ePfHx8FBgYqIULF1rPzZgxQ7///rt27typ//73vypZsqRCQ0PVp0+fu84dAvKztm3bavPmzZo4caL12ObNm62vDz74IMM17733nmrWrKlly5Zp9+7dCg4O1ujRo+Xm5qZz585p6tSptnwLAACgAEux5OxltoULF+rs2bPy8PDQ1KlTVa9ePUmSm5ubevXqpddff12SNH36dIWFhWX5vqGhoZo5c6YkaciQIerVq5fc3NwkSfXq1dPUqVPl4eGh06dPa9GiRbn2fkwJcmk9cb1791b16tUzbePq6qoOHTpowYIF8vX11fDhw3Xy5EkzygHyrZIlS2ratGmqUaOGpNR/iJ555hl1795dkvTnn3/aszwAAFCAWCyWHL3M9vvvv0tK/eF5ZvtbP//88/L09FRMTIzWrFmT5fuuWrVKsbGx8vT01PPPP5/hfPny5dW2bVtJ0tKlS++x+oxMCXJHjx6V9H+bFt/q33tg+fv7a8iQIYqNjdXs2bPNKAfIt1544QXrT3xu9fjjj0tKXWwoJibG1mUBAIACKCXFkqOXmaKjo7Vv3z5J0n/+859M23h5eVmnem3ZsiXL9962bZskqWnTpvL09My0TYsWLSRJe/bsUWxsbJbvfSemBLm0eTn+/v7WYy4uqeuqZFZ48+bNJUlbt241oxwg30obEvBvJUuWtP46MjLSVuUAAIACLC/3yJ06dcr6jLSRTJlJG0144sSJLN87bVTh7UYi3vrMlJSUXBuFaMqqle7u7oqJiUk3mc/X11ehoaG6fPmySpQoka592qowaavHAMia221P4O7ubv11bk6qBQAAuJ2cdqrNmjVLs2bNytY1/fr1U79+/e7a7urVq9Zf39rZ9G9p525tn9V7Z+W+Uu5lHlOCXNmyZXX8+HFdv37dWnSVKlUUGhqqoKAg1a9fP137vXv3SlKmQ8QAAAAA5H2/jX4uR9dPnDhRV65cydY1UVFRWWp361QTDw+P27YrVKiQpNShmFmVdu+0azNz6zOzc+87MSXINWrUSMePH9e5c+d03333SUodF7pjxw7NmjVLjz32mKpWrSpJOnv2rMaPH2/dpgAAAABAwePt7X3HXq3bXVNQmRLkWrVqpV9//VVbtmxRmzZtJEnPPvusZs2apdDQUHXo0EE1a9ZUcnKyTp48aV0A5YUXXjCjHAAAAAB5XFaHSd6LWxchiYuLu20ATFvP43bTV2537/Dw8DsuYhIXF2f9dXbufSemLHby0EMPqW/fvukSta+vr77//nsVK1ZMycnJOnTokI4ePaqkpCQ5OTnpnXfeUcuWLc0oBwAAAEABdutCcHcavpl27tb2Wb13Vu4rKcN6IffKlB45Nzc3jRgxIsPxhg0batWqVVq1apUOHz6shIQElS9fXq1bt1aFChXMKAUAAABAAVe1alUZhiGLxaJjx45Zp3n92/HjxyVJ1apVy9a9jx8/br02M8eOHZOUusjj7Z6dXaYEuTvx9vZW165dbf1YAAAAAAWUp6enGjRooD179mjjxo3W6V+3iomJ0c6dOyVJDz/8cJbv/dBDD2nlypXauXOnYmNjM130ZOPGjZJSO7butChKdpgytBIAAAAA8pIOHTpIklasWKELFy5kOP/zzz8rJiZGnp6eevzxx7N83yeffFKFChVSdHS0fvrppwznL1y4oBUrVkiSOnbseI/VZ0SQA2xg3LhxOnr0qObOnXvXtg888ICOHj2qo0ePZnq+XLly1vPlypW75zYAAAAFSbdu3VSxYkXFxsZqwIABOnDggCQpISFBv/zyi7799ltJ0ksvvaSiRYumu7Z3796qWbOmevfuneG+xYoV04svvihJ+vbbb/XLL78oISFBknTgwAENGDBAcXFxqly5cq6OTMzx0ModO3bkRh1WTZs2zdX7AQAAAICbm5u+//579e3bVydOnFDXrl3l5eWlhIQEJSYmSpLatGmjgQMHZvvegwYN0okTJ7Rq1SqNGjVKY8aMkZubm3XPuBIlSuj777+Xq6trrr2fHAe53r17yzCM3KhFhmHo0KFDuXIvAAAAALhV1apVtWzZMk2bNk1r167V5cuXVahQITVs2FDPPPOMOnXqdE/3dXZ21nfffafAwEAtWrRIR48eVXx8vCpXrqyAgAC9/PLLKlKkSK6+F8NisVhycoNatWrlVi0yDEOHDx/OtfsBMFfX93+xdwmQ5OLMKHl7S0pOsXcJBd5Lp/ga2Nv0KvxblBf8Nvo5e5cAG8lxj9zatWtzow4AAAAAQBblOMiVLVs2N+oAAAAAAGQRfeAAAAAA4GAIcgAAAADgYAhyAAAAAOBgcjxHLiAgIDfqkJS6auWaNWty7X4AAAAAkB/lOMhdvHgxN+qQpFzbjw4AAAAA8rMcB7nBgwfnRh0AAAAAgCwiyAEAAACAg2GxEwAAAABwMAQ5AAAAAHAwOR5aeTcJCQnavHmz9u/fr9DQUCUkJGjMmDHW84mJiYqOjpazs7MKFy5sdjkAAAAA4PBMDXJLlizRV199pRs3bkiSLBaLDMNIF+SuXLmi1q1byzAMrV+/Xn5+fmaWBAAAAAAOz7Shld9//71Gjhyp69evy8PDQ3Xq1Mm0Xbly5dS8eXMlJydr1apVZpUDAAAAAPmGKUFu3759+vbbbyVJL730krZu3ao5c+bctv3jjz8ui8WirVu3mlEOAAAAAOQrpgS5uXPnSpI6dOigd955Rx4eHnfc7Ltu3bqSpOPHj5tRDgAAAADkK6YEuZ07d8owDPXu3TtL7UuVKiVJunr1qhnlAAAAAEC+YkqQu379uiSpQoUKWWrv4pK65kpiYqIZ5QAAAABAvmJKkCtUqJAkKTY2Nkvtr127Jkny9fU1oxwAAAAAyFdMCXLlypWTJB04cCBL7dMWOalevboZ5QAAAABAvmJKkGvRooUsFotmz55917ZRUVGaOXOmDMNQy5YtzSgHAAAAAPIVU4Jc7969VahQIe3cuVPvvvuuoqOjM2138uRJvfjii7p06ZJ8fX3VrVs3M8oBAAAAgHzFxYyb+vn5acyYMXrrrbe0dOlS/fXXX2rUqJH1/JAhQ3T+/HkdPXpUKSkpcnZ21hdffCFvb28zygEAAACAfMWUICdJbdq0kaenp0aOHKkbN25oy5Yt1nOrV6+WxWKRlBr6xo4dqxYtWphVCgAAAADkK6YFOUlq2bKl/v77by1fvlxbtmzRqVOnFBUVJU9PT5UvX16PPPKIOnToIA8PDzPLAAAAAIB8xdQgJ0lubm7q3LmzOnfubPajAAAAAKBAMGWxEwAAAACAeUwJcjt37lTt2rUVEBCglJSUO7ZNTk5WQECA6tSpo+DgYDPKAQAAAIB8xZQg9+eff8pisahz585ycrrzI5ydndW1a1elpKRoxYoVZpQDAAAAAPmKKUFu165dMgxDzZs3z1L7tHa7du0yoxwAAAAAyFdMCXIhISGSpIoVK2apffny5SVJV65cMaMcAAAAAMhXTAlyMTExkiTDMLLUPq1dRESEGeUAAAAAQL5iSpArWrSoJOns2bNZap/WztfX14xyAAAAACBfMSXI1atXT5L0+++/Z6l9Wrv77rvPjHIAAAAAIF8xJcg99dRTslgsWrBggVatWnXHtqtXr9aCBQtkGIbatGljRjkAAAAAkK+YEuSefvpp1alTR8nJyXrzzTc1fPhwbd26VWFhYUpISFBYWJi2bt2q4cOH64033lBycrJq166tjh07mlEOAAAAAOQrLmbc1DAMTZkyRb1799b58+e1bNkyLVu2LNO2FotFFSpU0JQpU7K8OAoAAAAAFGSmBDlJKlWqlBYvXqyvvvpKixcvVkJCQoY27u7ueuaZZzR06FB5e3ubVQoA5GtJySn2LgGwu+lVTBlkhGx48WiSvUsAChTDYrFYzH5IVFSUdu3apfPnzysqKkre3t6qUKGC7r//fnl5eZn9eAAm6fr+L/YuAQCQRxDk8oanF/WxdwmwEdN65G7l7e2tli1b2uJRAAAAAJDvMQ4BAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDgAAAAAcDEEOAAAAABwMQQ4AAAAAHAxBDsglFy5cUM2aNVWzZk1duHDB3uUAAAAgH3OxdwGAI1i8eLEuXryoZs2a6YEHHrB3OQAAACjg6JEDsmDJkiWaNGmSgoKC7F0KAAAAQJADAAAAAEdDkAMAAAAAB8McORRIGzZs0Pz587V3716Fh4fLx8dH9erVU7du3fT4449b2y1evFgjRoyw/n7SpEmaNGlSunsdPXo002dcuXJFkydP1oYNG3T9+nUVL15cjz76qIYMGaLixYvftraIiAjNmTNH69at09mzZ5WQkCB/f389/PDD6t+/vypWrJjhmokTJ2rSpElq1qyZ5s6dq6VLl2rBggU6fvy4bt68qcmTJ6d7XwAAAHBsBDkUKBaLRZ988onmz58vSTIMQz4+PgoLC9P69eu1fv16de7cWaNHj5azs7M8PDzk5+en8PBwJSYmytPTU56ennd9zrFjxzRy5EiFhYXJy8tLFotFISEhmj9/vrZs2aLffvtNPj4+Ga7bt2+fBg4cqOvXr0uSXF1d5eLiovPnz+vXX3/V0qVL9fXXX+uxxx677bM///xzzZ07V05OTipcuLCcnOh4BwAAyG/4Dg8FyuzZs60h7oUXXtCWLVsUFBSkoKAgDRo0SFLqwibff/+9JKlt27bavHmzGjVqJEl68cUXtXnz5nSvzLz33nuqWbOmli1bpt27dys4OFijR4+Wm5ubzp07p6lTp2a4JiQkRC+//LKuX7+uzp07a/ny5dq3b5/27Nmj1atXq127doqNjdVbb7112+0NDhw4oJ9++kmvv/66tm/frqCgIO3YscNaPwAAAPIHghwKjNjYWE2ZMkWS1L17d40YMULFihWTJBUuXFhDhgxR//79JUnTpk3TzZs37/lZJUuW1LRp01SjRg1Jkpubm5555hl1795dkvTnn39muOabb77RzZs39dxzz2ncuHGqVq2atTetQoUK+uqrr9SiRQvFxMRo9uzZmT43JiZGr7zyigYPHmzt8fP29r7jUE4AAAA4HoIcCozNmzcrIiJCTk5O1t63f3v11Vfl5uamuLg4rVmz5p6f9cILL8jNzS3D8bR5ahcuXFBMTIz1eFxcnJYvXy5J1jCZmXbt2kmSNm3alOl5Z2dnvfDCC/daNgAAABwEc+RQYBw4cECSVLlyZZUqVSrTNj4+Pqpbt652796tgwcP6plnnrmnZ9WrVy/T4yVLlrT+OjIy0jrf7sCBA0pISJAkPfvss7e9b2JioiTp8uXLmZ6vUKGCtZcRAAAA+RdBDgVGaGioJMnf3/+O7dJC3o0bN+75WV5eXpked3d3t/46LZRJ0rVr16y/Tlvo5E7i4uIyPU6IAwAAKBgIckAekJKSIklycXHRwYMH7/k+zs7OuVUSAAAA8jDmyKHASOutunLlyh3bhYSESJJNFwhJe1ZSUtJd6wMAAAAIcigw6tatK0k6ffr0bcNSRESEtUcsrb2Uut+clLoPnRnq1asnV1dXSdL69etNeQYAAADyD4IcCozmzZvL19dXKSkp1m0I/u1///uf4uPj5eHhoYCAAOtxb29vSalBzwxeXl5q3bq1JGnKlCnW+Xy3Ex4ebkodAAAAcAwEORQYhQoV0muvvSZJmj9/vr744gvrXnGRkZH67rvvNGPGDEnSyy+/rCJFilivrV69uiRp48aNunr1qin1vfPOOypWrJhCQkLUvXt3rVq1Kt2iJpcvX9Zvv/2mHj166OeffzalBgAAADgGFjtBgdK3b1+dPn1a8+fP18yZMzV79mwVLlxYkZGR1gVHOnXqpIEDB6a7rmPHjpo5c6bOnDmjli1bqnjx4tZ94tatW5crtZUuXVozZ87UoEGDdP78eQ0ZMkTOzs4qXLiw4uLi0oW6li1b5sozAQAA4JgIcihQDMPQqFGj1KpVK82bN0/79u1TRESEfH19Va9ePT377LPWTbtvVaVKFc2ePVtTp07Vvn37FBoaquTk5Fyvr3bt2lq+fLkWLFigNWvW6NixY4qKipK7u7tq1KihunXr6rHHHtOjjz6a688GAACA4zAsZq3eACDf6/r+L/YuAQCQR7x4NMneJUDS04v62LsE2Ahz5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRgWi8Vi7yIAAAAAAFlHjxwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHAAAAAA4GIIcAAAAADgYghwAAAAAOBiCHIAC78qVKzp37py9ywDsjs8CADgOF3sXAABmOnfunNauXSt/f3+1bds23bl9+/Zp2LBh1m9cK1WqpPHjx6tu3br2KDXfio6O1pkzZ+Th4aGqVaumOxcREaHx48dr+/btio+PV8uWLfXWW2+pSJEi9ik2H+OzkPfExcUpIiJCSUlJd2xXpkwZG1VUcKxdu1aS1KhRIxUrVszO1QD3xrBYLBZ7FwEAZvnmm2/0ww8/aNCgQRo8eLD1eHh4uJ588kmFh4ena1+kSBEtX75cxYsXt3Wp+dbs2bP1xRdf6Nlnn9Unn3xiPZ6UlKTOnTvrxIkTSvtPkWEYqlWrlhYsWCBXV1c7VZw/8VnIG6KiojR16lT9+eefunDhwl3bG4ahQ4cO2aCygqVWrVpycXHR9u3b5eXlZe9ygHvC0EoA+dq2bdskSU899VS64wsXLlR4eLjKlCmjWbNm6ZdfflHNmjUVHh6uOXPm2KPUfGvjxo2SpPbt26c7vmLFCh0/flzu7u569dVX9eabb6pw4cI6cuSIFixYYI9S8zU+C/YXGhqqrl27atq0aTp//rwsFstdXykpKfYuO1/y9fWVl5cXIQ4OjaGVAPK1kJAQSVKFChXSHV+3bp0Mw9A777yjhx56SJL06aef6tlnn9XGjRs1dOhQm9eaX509e1ZS6k/Ab7VixQoZhqEhQ4boxRdflJQ6pO/NN9/UypUr1atXL5vXmp/xWbC/7777TmfPnpWbm5u6d++ugIAA+fv7y93d3d6lFTjVq1dXcHCwoqKi5O3tbe9ygHtCkAOQr4WGhsrHx0dubm7WYwkJCdq3b5+cnZ312GOPWY83aNBALi4u1uCB3BEaGprhJ98Wi0U7d+6UJHXo0MF6PCAgQIZh6Pjx4zavM7/js2B/69evl2EY+uSTT9SlSxd7l1Ogde/eXTt37tTcuXM1cOBAe5cD3BOCHIB8zcnJSdHR0emO7d+/X0lJSWrQoIEKFSqU7py3t3eG9siZxMREubik/8/N8ePHFRUVpSpVqsjPz8963NXVVT4+PoqKirJ1mfkenwX7u3HjhpydnTMMM4btdejQQfv27dPEiRMVHx+vF154gUWW4HAIcgDytTJlyuj06dM6dOiQ6tSpI0las2aNDMNQ48aN07VNSUlRVFQUizvkMj8/P4WEhOjy5csqXbq0pP+bN3f//fdnaB8XFycfHx+b1lgQ8FmwPz8/P0VGRrKQTx7Qp08fSZKHh4d++OEHTZ8+XRUqVFCxYsXk5JT5EhKGYejHH3+0ZZnAHRHkAORrDz30kE6dOqVPP/1UI0eO1NWrV/Xrr79KSh3Gd6sTJ04oKSlJpUqVskep+VbDhg21cuVKTZo0SZ9//rnCwsL0yy+/yDAMNW/ePF3bS5cuKT4+XpUqVbJPsfkYnwX7a9GihRYuXKiTJ09m2IoDthUUFJTu90lJSTp16pROnTp122sMwzC7LCBbCHIA8rWXXnpJS5cu1d69e/Xss89KSp2f1bRpUzVp0iRd27T5Kw0bNrRDpflX7969tXLlSi1evFh//vmnEhMTlZiYqDJlymQIEJs3b5Yka48Rcg+fBfsbNGiQ/vrrL40ePVo//PADPXN2dOsWHICjIsgByNdKly6tOXPmaNy4cdq7d6+8vb316KOPavjw4enaWSwWLVq0SBaLRQ8++KCdqs2fGjdurM8//1xjxoyxzrmqVKmSJkyYkOEb2d9//12S+BqYgM+CbV26dCnT42PHjtV7772nrl27ql+/fqpbt+5dl8BnQ/DcR5BDfsCG4AAgKTk52bo8u7+/f4bFOZBzcXFxOnbsmAoXLqyKFStmmIeSmJio5cuXy2KxKCAggHlydsJnIXfUrl07V+7DhuAAbocgBwAAkMv+vW9iThw5ciTX7gUg/yDIAQAA5LKLFy/m2r3Kli2ba/dCepcuXdKsWbO0efNmXb58WfHx8el6QCMiIqyLM/Xv358eauQp/G0EkG/s2LEj1+7VtGnTXLsXYGt8FuzPMAw5OzvL39/f3qXgNtavX6+3335bMTExSuvX+PfKlD4+Plq/fr327t2rqlWr6vHHH7dHqUCmCHIA8o3evXvnyvLQzEm5d8wLyhv4LNhfq1atVKJECeueiZI0YsQI+fj4aMSIEXasDJJ07tw5DR06VLGxsWrRooXatWunMWPGKCIiIkPbbt26ac+ePfr7778JcshTMt/xEAAclMViyfErJSXF3m/DYeXGn3/aCznDZ8H+/v33eMmSJVq+fLmdqsGtZsyYodjYWLVv317Tpk1Tx44db7sdRNp+l/v377dlicBd0SMHIN9gQQD7mzNnjr1LgPgs5AXu7u6Kioqydxm4jS1btsgwDA0ZMuSubUuVKiUPD4/bbikB2AtBDgCQa5o1a2bvEoA8oUKFCjpx4oTmzJmjbt26qVChQvYuCbe4cuWKPDw8VL58+Sy19/DwIJgjzyHIAQAA5LJ27drp66+/1tixYzV27Fjr8Rs3bmRrLinzFM3h5uam+Pj4LLWNj49XZGQke1siz2GOHAAAQC7r37+/unfvLmdn53TzPpkvmjdUqFBBSUlJOnny5F3b/vPPP0pOTlaNGjVsUBmQdfTIAcg3Jk2alGv3Gjx4cK7dqyBh2fu8gc+C/bm4uOjTTz/V8OHDderUKcXFxalPnz7y9fXVxIkT7V1egdeqVSsdOnRIM2bM0JgxY27bLiwsTOPHj5dhGKxYiTyHDcEB5Bu1atXKlSXXJenw4cO5cp+CJre+Bgwnyxk+C3lTrVq15Ofnp02bNtm7lAIvMjJSTz31lEJDQ9WrVy+9+OKL6t69u27cuKHDhw/r2rVrWr9+vaZMmaLLly+rbNmyWrFihdzd3e1dOmBFjxyAfIMenLwhN34+yM8Yc4bPQt5w6dKldJuCjx07liCQRxQuXFjff/+9Xn75Zf3888/6+eefrefq1q2r5ORkSan/FhUrVkyTJ0/ma4c8hx45AAAAE9SqVSvDpuDIW65cuaKvv/5aK1asUEJCQrpzLi4ueuqpp/TOO++oVKlSdqoQuD2CHAAAgAkYSuk44uPjdeDAAV27dk0pKSkqXry46tWrJ09PT3uXBtwWQysBAABQoLm7u+v++++3dxlAthDkABQYa9as0aZNm3T58mXFxcXpxx9/tJ6LiYnRkSNHZBiGGjVqZMcq87fQ0FBt27ZNly9fVmxsLCsi2gmfBQBwfAQ5APne+fPn9frrr+vo0aOSUiev/3tFPzc3Nw0bNkyXLl3SL7/8wjewuSwhIUH//e9/9euvvyopKcl6/NYgFxERoSeeeEIxMTFasWKFypcvb49S8zU+C0Dm4uLiFBERke7fp8yUKVPGRhUBd8eG4ADytaioKPXr109HjhyRn5+funTpokKFCmVo5+LiomeffVYWi0V//fWXHSrNv1JSUvTaa6/p559/VlJSksqVKydnZ+cM7Xx8fNSxY0clJibqzz//tEOl+RufBSC9qKgoTZgwQU888YQaNWqkli1bKiAg4LYv9pFDXkOPHIB8bfbs2bpw4YLq1aunGTNmyMfHR//884/i4uIytA0ICNCECRMUHBxsh0rzr8DAQG3atEklSpTQpEmT1KBBAz3yyCO6ceNGhrZt2rTRnDlztG3bNr3yyit2qDb/4rNgH+Hh4erTp889X28YRrqhr8gdoaGh6tmzp86dO5fl7U5YHxB5DUEOQL62Zs0aGYah999/Xz4+PndsW6VKFbm4uOjMmTO2Ka6AWLJkiQzD0IgRI9SgQYM7tr3vvvvk5OSkEydO2Ki6goPPgn0kJSUpKCjonq/PrY3dkd53332ns2fPys3NTd27d1dAQID8/f3ZKw4OhSAHIF87d+6cXFxcVL9+/bu2NQxD3t7eioqKskFlBcexY8dkGIYCAgLu2tbNzU2FCxdWWFiYDSorWPgs2Ie7u7vatGlj7zLwL+vXr5dhGPrkk0/UpUsXe5cD3BOCHIB8LSUlRS4uLnJyuvuUYIvFopiYmEznDeHexcTEyMvLK8s/6U5MTJSLC/95ym18FuzD29tbY8eOtXcZ+JcbN27I2dlZ7du3t3cpwD1jsRMA+Zq/v7/i4uJ0/fr1u7bdu3evEhISWC0xlxUrVkxRUVGKiYm5a9tz584pJiZGJUuWtEFlBQufBeD/+Pn5ycPDQ66urvYuBbhnBDkA+dqDDz4oSVq4cOEd26WkpOibb76RYRhq0aKFLUorMBo2bCgpdY7W3cyaNUuGYahp06YmV1Xw8FkA/k+LFi0UHR2tkydP2rsU4J4R5ADkay+++KKcnZ01derU2y6lfvbsWQ0cOFDbtm2Th4eHevXqZeMq87cePXrIYrHom2++0fnz5zNtY7FYNHXqVM2bN0+S9Nxzz9myxAKBzwLwfwYNGiRfX1+NHj1aiYmJ9i4HuCeGhbVUAeRzCxcu1EcffSQpdTPXq1evKikpSQ899JAuXbqks2fPSkpd4OHLL79U27Zt7VluvvThhx9q4cKF8vHxUUBAgFatWqXY2Fi98cYbunTpkjZt2qTLly/LYrGoX79+evfdd+1dcr7EZ8G2atWqJT8/P23atMnepRRoly5dyvT40aNH9d5778nf31/9+vVT3bp15eXldcd7sSE48hKCHIAC4Z9//tFnn32mCxcuZHq+TJky+vjjj9WyZUsbV1YwJCcna8KECZo1a5ZSUlIkpV9W3WKxyMnJSS+99JKGDh3Kkusm4rNgOwS5vKF27dq5ch/DMHTo0KFcuReQGwhyAAqMlJQUBQUFKTg4WNeuXVNycrL8/PzUqFEjPfjgg6yUaAPnz5/X4sWLtWfPngxfg86dO6ty5cr2LrFA4LOAgqRWrVq5dq8jR47k2r2AnCLIAQAAIN+6ePFirt2rbNmyuXYvIKcIcgAAAADgYBg7ASBfu3LlihYuXCh/f39169btjm3nz5+v69evq3v37uxjlovi4uK0f/9+ubu7q379+ndsu2/fPsXHx6t+/fpZ3kAcWcNnAQDyF7YfAJCvBQYGavLkyQoPD79r2ytXrmjy5MlaunSpDSorOJYtW6Y+ffpo2bJld23766+/qk+fPlqxYoUNKitY+CwA/6dWrVrZ2iexVatWqlOnjokVAdlHkAOQr/3999+SpNatW9+1badOnWSxWLRu3TqzyypQ0vYs69ix413bduvWTRaLRatWrTK7rAKHzwKQXnZnFzEbCXkNQQ5AvnbhwgV5eHiofPnyd21bsWJFFSpUKFcnxkM6efKkXFxcsvTT7Hr16snFxUUnT560QWUFC58F4N4lJCTI2dnZ3mUA6RDkAORr4eHhcnNzy3J7Nzc3hYaGmlhRwXP9+nV5e3vLyenu/8lxdnaWt7e3rl27ZoPKChY+C8C9uXbtmkJDQ+Xr62vvUoB0WOwEQL7m6+ur0NBQRUVFydvb+45to6KiFBERoaJFi9qouoKhUKFCioyMVFJS0l33J0tMTFRUVJQKFSpko+oKDj4LKMh27Nih7du3pzsWExOjSZMm3fG6iIgIbdy4URaLRfXq1TOzRCDbCHIA8rU6depo48aNWrZsmXr27HnHtkuXLpXFYlHt2rVtVF3BULlyZe3du1ebN29Wy5Yt79h206ZNSkpKUsWKFW1UXcHBZwEF2fbt2zVp0iQZhmE9Fhsbq8mTJ9/1WovFIjc3Nw0YMMDMEoFsI8gByNfatm2rDRs26Msvv1TNmjXVuHHjTNvt2rVLX331lQzD0NNPP23jKvO3xx57THv27NHYsWPVoEEDFSlSJNN2YWFhGjdunAzDUKtWrWxbZAHAZwEFWdmyZdW0aVPr73fs2CEXFxc1bNjwttc4OTnJ29tb1atXV8eOHVW5cmUbVApkHRuCA8jXUlJS1LNnT+3du1cuLi5q06aNWrZsqTJlykiSLl26pL///lurVq1SUlKSGjRooHnz5mVpPheyJioqSk899ZRu3Lghf39/DRo0SC1btrTuT3b16lWtX79eU6ZMUUhIiPz8/LRy5cq7Dv9D9vBZAP5PrVq15Ofnp02bNtm7FOCeEeQA5Hs3btzQq6++qv3796cbVnMri8WiBg0aaMqUKSpevLiNK8z/9u7dq1deeUXh4eHWr0HaCnDJycmSUr8Gvr6+mjZt2l03Dse94bMApFqyZInc3d3Vtm1be5cC3DOCHIACITExUb/99psCAwN14MABJSUlSZJcXFxUr149denSRZ07d77rYhy4dxcvXtRXX32lv/76y/rnn8bFxUVPPfWU3nrrLWsPEczBZwFILyIiQmvWrNHBgwd148YNSVLx4sVVt25dBQQEyMfHx84VApkjyAEocJKSkhQeHi5JKlKkCHsD2VhsbKz279+v69evS5JKlCihunXrslKlHfBZQEFmsVg0ZcoUTZ8+XXFxcdZjkqw91h4eHnr55Zc1cODA2/ZiA/ZCkAMAAECBM2LECAUGBlpXpaxbt65KlSolSQoJCdHBgwcVHx8vwzDUqVMnjR071s4VA+kR5AAAAFCgrF27VoMGDZIk9e/fX6+++qoKFy6crk1kZKS+//57zZw5U4ZhaPLkyayoizyFpagAAABQoCxcuFCGYWjw4MEaNmxYhhAnSYULF9bw4cP12muvyWKxaMGCBXaoFLg9euQAAABQoDRv3lw3b97U9u3b77rVSVRUlJo1a6YiRYpoy5YtNqoQuDt65AAAAFCghIeHy9vbO0v7VXp7e6tw4cKKjIy0QWVA1hHkAAAAUKAUKVJEkZGRunnz5l3bhoeHKzIyUr6+vuYXBmQDQQ4AAAAFSv369WWxWPTDDz/cte0PP/yglJQU1a9f3waVAVlHkAMAAECB0qNHD1ksFs2ePVsff/yxrly5kqHN1atXNWrUKOuqlT179rRDpcDtsdgJACBXTZo0SV5eXurXr5+9SynQ+vTpoyJFiui7776zdylAnvTxxx/r119/lWEYcnJyUuXKleXv7y9JunLlik6fPq2UlBRZLBb17NlTH3/8sZ0rBtIjyAEAclWtWrXk5+enTZs22buUAo2vA3B3s2bN0vfff6+IiIhMz/v6+mrgwIF64YUXbFsYkAUu9i4AAMxy8uRJxcbGqnz58ukmqcfFxWnOnDlasWKFzp07J1dXV913333q27evWrZsaceKAQC21K9fP/Xs2VObNm3SwYMHFRoaKkkqVqyY6tatq+bNm8vDw8POVQKZo0cOQL6zb98+DRs2TOfOnZMkOTk5qWPHjvrss88UHx+v3r1769ChQ7r1nz/DMCRJQ4cO1SuvvGKXuvMLeoLyBr4OAJC/0SMHIF+5du2a+vfvr6ioKGtQS05O1pIlS1S6dGlFRETo4MGDKly4sFq0aKHSpUsrJCREW7duVWhoqL799ls98sgjqlOnjp3fCQAAwO0R5ADkK3PnzlVkZKSKFi2qESNGqHbt2jp8+LDGjRunJUuWKDo6WrVq1dIPP/xgndQuSTdv3tSgQYO0e/duzZ8/X59++qkd3wUAAMCdEeQA5CubNm2SYRj66KOP1KZNG0lS9erV5ebmpjfffFOGYei///1vuhAnpW4OO3LkSHXt2lU7duywR+n5SkpKii5fvqycjN4vU6ZMLlZUMMXHxyswMDBH9+jUqVOu1AIAyF3MkQOQrzRp0kTR0dHau3ev3NzcrMcTEhJUv359GYahHTt2yNvbO9PrGzZsKMMwFBwcbKuS851atWpZ5xzeK8MwdOjQoVyqqGDi6wAA+Rs9cgDylejoaPn6+qYLcZLk5uYmX19fRURE3DbESZK3t7du3LhhdpkFAj8nzBty8nXgawgAeRdBDkC+YrFY5OKS+T9trq6uNq6m4PLx8dHEiRPtXUaBV7x4cVatBIB8iiAHAMh1rq6uatasmb3LAAAg33KydwEAAAAAgOyhRw5AvhMeHq4+ffpkOH7z5k1JyvTcv9sAAADkZQQ5APlOYmKigoKCbnv+Tuck5XilPwAAALMR5ADkK507d7Z3CQAAAKYjyAHIV8aOHWvvEgq8Tp06qXDhwvYuo8AbO3as3N3d7V0GAMAkbAgOAAAAAA6GVSsBAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMEQ5AAAAADAwRDkAAAAAMDBEOQAAAAAwMGwITgAwG4sFouOHj0qSapVq5adq8nfbt68qfXr18vHx0etWrW6Y9s1a9YoKipKrVq1ko+Pj40qBABkBz1yAAC7iY2NVadOndSlSxd7l5LvLV26VCNGjND+/fvv2jYoKEgjRozQsmXLbFAZAOBeEOQAAHZnsVjsXUK+t2bNGknS008/fde2Xbp0kcVi0erVq80uCwBwjxhaCQDIVSNGjMhy2+Tk5EyvMwxDY8aMydW6Crpz587Jzc1N1apVu2vbmjVrys3NTefOnbNBZQCAe2FY+DEoACAX1apVS4ZhZLl92n+G0q6xWCwyDEOHDx82pb6Cql69evLy8tK2bduy1P7BBx9UTEyM9u3bZ3JlAIB7QY8cAMAUVatWVdGiRe/YJiUlRbt27ZJhGGrSpImNKiuYvL29FRERobi4OHl4eNyxbVxcnCIjI+Xt7W2j6gAA2UWQAwDkqv/85z/asGGDrl69queff149evS4bdvo6Gjdf//9kqS5c+faqsQCqXr16tqxY4fWrFmjdu3a3bHt6tWrlZycnKVhmAAA+2CxEwBArpo6daq+/PJLubq6atSoUerRo4eOHTuWadvsDMFEzjz55JOyWCwaN27cHee+nT17Vl988YUMw1Dr1q1tWCEAIDuYIwcAMEV4eLjGjh2rwMBAubi46IUXXtDgwYPTDeuLiYlR48aNmRNnAwkJCWrfvr3Onj0rLy8v9e7dWy1btlSZMmUkSZcuXdL69ev1008/KTo6WhUrVtSyZcvk5uZm58oBAJkhyAEATPX/2rvzuCrL/P/j75uDhAiKKKKRVmKCS2rims6YWKbinlubzpQ21WS2TLmbmubSpFZa7hU2lYWKG2M54J7iWuYumCaoJAKKgCJwfn/443xBWY8HjsDr+XjM48Gc+7ru+3OW6rzPdV/X9fPPP2vChAmKjo6Wt7e3JkyYoA4dOkgiyJW006dP68UXX1RMTEyeo6Fms1n33XefFi9erAceeKBkCwQAFBpBDgBQ7K5fv645c+YoKChImZmZeuKJJzRu3Di5uroS5EpYUlKSFi5cqJCQEF28eDHHsRo1aqhPnz4aOnSo3Nzc7FQhAKAwCHIAgBJz+PBhjR8/XkeOHJGbm5uGDRumWbNmEeTsJCYmRpcuXZIkVa9e3XKbJQDg7keQAwCUqMzMTC1dulTz5s3TtWvX2DcOAAArEOQAAHZx9uxZTZs2TefOnZMkhYSE2LcgAABKEYIcAABlTFY4dnR0VI0aNXI8VlTcbgkAdyeCHAAAZUyDBg0kSXXr1tX69etzPFYUhmHoyJEjNq0NAGAbjvYuAABQ9l2/fl0HDhzQ2bNndfnyZUlSlSpVVLt2bT3yyCO655577Fxh2ZL1G23232qt+d2W33oB4O7FiBwAoNhERUVp3rx52rhxo9LT03Nt4+joqM6dO+vVV1+Vj49PCVdYNsXExEi6+dp6eXnleKyovL29bVYXAMB2CHIAgGIRGhqq0aNHKy0trcCRHcMw5OTkpOnTp6tr164lVCEAAKUXQQ4AYHO//PKLnn32WWVkZMjFxUV9+/ZVhw4d5OvrK3d3d0lSYmKijh07pi1btmjlypVKTU2Vo6OjvvnmGzVp0sS+TwAAgLscQQ4AYHM9evTQyZMn1bBhQ82dO7fAlQ9jYmL0z3/+U8eOHVP9+vW1Zs2aEqq0/Ni/f7+aN29epD4LFy7USy+9VEwVAQDuhIO9CwAAlC179+7VyZMnVaVKFX3++eeFWr7e29tb8+fPV5UqVXTy5Ent27evBCotXwYPHqy5c+cqMzOzwLYXLlzQ888/r9mzZ5dAZQAAaxDkAAA2FR4eLkkaOHCgZaGNwqhZs6YGDBggs9lsOQdsJz09XfPmzdOzzz6r6OjoPNuFhoaqV69e2rNnj5ydnUuwQgBAURDkAAA2deTIERmGoccff7zIfZ944glJ0uHDh21dVrn3/vvvy9nZWQcOHFDv3r0VEhKS43hycrJGjhypt99+W5cvX1bDhg21YsUK+xQLACgQQQ4AYFN//PGHJOs2oPbz85NhGDpz5oytyyr3+vfvr1WrVqlx48a6evWqRo8erbfeektJSUk6cOCAevXqZZmb+MILL2j58uWqW7eunasGAOSFxU4AADbVsmVLZWRkaP/+/Vb19/f3l2EY2rt3r40rg3TzFstPPvlEixcvltlsVrVq1ZSYmKj09HR5eXlp+vTpatu2rb3LBAAUgBE5AIBNJScny8XFxer+FStWVEpKig0rQnaOjo5666239MEHH8hsNuvSpUtKT09X/fr1tXbtWkIcAJQSBDkAgE0VZlXEgnCzSPFas2aNpk6dKsMwLK/1yZMnNXPmTKWmptq5OgBAYRDkAAAoJ65evap//etfGjlypJKSkvTwww9r3bp1Gjx4sCRpxYoV6tOnjw4dOmTnSgEABWGOHADApvz8/GQymVSzZk2r+p8/f15ms1lHjx61cWXl2759+/Tuu+/q3LlzMgxDL730koYPHy6TySRJ2r59u0aNGqW4uDg5Ojpq+PDheumll2QYhp0rBwDkhiAHALApPz+/Oz6HYRgEORtr2LChMjMzde+992rmzJlq0aLFbW0SExM1duxYhYWFyTAMtWjRQsuWLbNDtQCAgjjauwAAQNny2muv2bsE5CIzM1OBgYGaNGmSXF1dc23j7u6uefPmafny5Zo2bRorhwLAXYwROQAAyoHVq1erV69ehW7/+++/61//+hebggPAXYogBwAAcpWeni5HR27eAYC7EUEOAIByJjMzU3v27NHhw4d16dIlSVK1atXUuHFjtWjRQg4OLGoNAHc7fmYDANjcsmXLtHHjRj3wwAOaPHlyge3NZrMmTJigM2fOqFu3bho0aFAJVFk+hYSEaM6cOYqNjc31eM2aNfXGG28U6TZMAEDJY0QOAGBT8fHx6tSpk9LS0rRixYpCr2J55MgR9evXTy4uLgoPD1flypWLudLyZ86cOVqwYIFlE3AvLy/LNhEXLlywhDvDMPTyyy9rxIgRdqsVAJA/7p0AANjUmjVrlJqaqu7duxdpK4KGDRsqMDBQycnJWrt2bTFWWD7t3btX8+fPl9lsVteuXRUaGqotW7Zo+fLlWr58ubZs2aLQ0FB16dJFZrNZ8+fPZ9VKALiLEeQAADa1Y8cOGYah3r17F7lv3759ZTabtWXLFtsXVs5l7Qc3cOBAzZ49W3Xr1r2tTd26dTVnzhwNGDBAZrNZX3/9dUmXCQAoJIIcAMCmjh8/Lkny9/cvct+sPlnngO3s379fDg4Ohbpd8o033pBhGNq3b18JVAYAsAZBDgBgU4mJiXJzc5OTk1OR+zo5Oaly5cpKSEgohsrKt4SEBLm5ucnDw6PAth4eHqpcubISExOLvzAAgFUIcgAAmzKZTLpx44bV/dPS0mQymWxYESTJ1dVVycnJSklJKbBtSkqKrl69qkqVKpVAZQAAaxDkAAA25eHhoWvXrikuLq7IfePi4nTt2rVCjRqhaBo1aqSMjAx98803Bbb99ttvlZGRoUaNGpVAZQAAaxDkAAA21bhxY0nS5s2bi9x306ZNkkSAKAZ9+vSR2WzW7NmztXDhQqWlpd3WJi0tTYsXL9asWbNkGIb69u1rh0oBAIXBPnIAAJtatWqVRo8erTp16mj16tWqWLFiofqlpKSoV69eio6O1tSpUwkRxeDVV19VeHi4DMOQq6urmjdvLi8vL0lSbGysDhw4oKSkJJnNZnXq1Enz5s2zc8UAgLwQ5AAANnXjxg117txZFy5c0KOPPqo5c+bIzc0t3z5JSUl64403tGPHDtWqVUs//fSTKlSoUEIVlx9paWmaOXOm5dZJ6ebm35Ism4SbTCY988wzeuedd6xasAYAUDIIcgAAm9u5c6eGDRumjIwMVa9eXYMHD1ZAQIB8fHxytIuKilJYWJi+/vprXbx4USaTSYsWLVLbtm3tVHn5cOHCBf344486fPiw4uPjJd2c29i4cWN17txZNWvWtHOFAICCEOQAAMUiNDRUY8eOVWpqqmXUx8nJyTI6l5SUZJmnZTab5ezsrKlTpyowMNBuNQMAUFoQ5AAAxSYqKkqzZ89WWFiY8vrPjWEY6tSpk9544w3Vq1evhCssP/bs2aMKFSqoWbNmhWp/8OBBXb9+XS1btizewgAAViHIAQCK3cWLFxUREaHIyEjLJtPu7u6qV6+eWrduLU9PT/sWWA74+fnJ09NT27ZtK1T7gIAAXbhwQUeOHCnmygAA1nC0dwEAgLLP09NT3bt3t3cZ5V5Rf7vlt14AuHuxjxwAALhNcnKyHB35vRcA7lYEOQAAkMPBgwd1+fJlbnkFgLsYP7UBAFAGrVq1SqtWrcrx2OXLlzV48OA8+5jNZiUlJSkyMlKGYahNmzbFXSYAwEoEOQAAyqCYmBjt3r07x2M3bty47bG83H///RoxYkRxlAYAsAFWrQQAoAzavXt3jtA2d+5cubi46IUXXsizj2EYcnV1Vf369dWqVSuZTKaSKBUAYAWCHAAA5YCfn5+qV6+u7du327sUAIANEOQAACgHYmJiZDKZVLNmTXuXAgCwAYIcAAAAAJQyLHYCAEA5s23bNq1fv16HDx/WpUuXJEnVqlVT48aNFRgYqPbt29u5QgBAQRiRAwCgnIiPj9dbb72liIgISTe3G8jOMAxJUps2bfTRRx/Jw8OjxGsEABQOQQ4AgHLgxo0bGjhwoI4ePSqz2aymTZuqbdu2ljlzFy5c0M6dO/Xrr7/KMAw1aNBAy5cvV4UKFexcOQAgNwQ5AADKgaCgIH3wwQdyc3PTv//9b3Xo0CHXdlu2bNHbb7+t5ORkjR07Vs8991wJVwoAKAwHexcAAACKX2hoqAzD0MSJE/MMcZLUoUMHTZw4UWazWevWrSvBCgEARUGQAwCgHIiKilKFChXUpUuXAtt26dJFFSpUUFRUVAlUBgCwBkEOAIBy4Pr163J2dpbJZCqwraOjo5ydnXX9+vUSqAwAYA2CHAAA5YCnp6eSkpJ05syZAtueOXNGSUlJ8vT0LIHKAADWIMgBAFAOtG7dWmazWZMnT9aNGzfybJeenq73339fhmGoTZs2JVghAKAoWLUSAIByICoqSr169VJGRoZ8fX310ksvqU2bNpa94uLj47Vr1y4tWrRIR48elaOjo1avXi0fHx87Vw4AyA1BDgCAciIkJETjxo1Tenq6ZfNvR0dHSTdH4qSbm4Q7OjpqypQp6t27t71KBQAUgCAHAEA5cvDgQc2ZM0c7d+7UrV8BDMPQo48+qhEjRqhJkyZ2qhAAUBgEOQAAyqErV67o8OHDSkhIkCRVrVpVjRo1UuXKle1cGQCgMAhyAAAAAFDKsGolAADlwOjRozVt2rRCt585c6bGjBlTjBUBAO4EI3IAAJQDfn5+ql69urZv316o9gEBATp//ryOHj1azJUBAKzBiBwAAAAAlDIEOQAAkENmZqYuXbqkihUr2rsUAEAeHO1dAAAAsL2rV6/qypUrOR7LzMzU+fPnb9t2IIvZbFZSUpJCQkJ0/fp1NWzYsCRKBQBYgSAHAEAZ9OWXX2revHk5HktISFBAQECh+huGoZ49exZHaQAAGyDIAQBQRmUfeTMMI8+RuFt5eXmpf//++tvf/lZMlQEA7hSrVgIAUAYlJSVZbq00m816/PHH5eHhoR9++CHPPg4ODnJ1dZWbm1tJlQkAsBIjcgAAlEFubm45AlnLli3l7u4ub29vO1YFALAVRuQAAAAAoJRh+wEAAMqB559/XmvXrlVaWpq9SwEA2AAjcgAAlAN+fn4yDEOVK1dWjx491K9fP/n5+dm7LACAlQhyAACUA1OmTNHatWt1+fJlGYYhSWrUqJH69++vwMBAubq62rlCAEBREOQAACgn0tLS9NNPPyk4OFgREREym80yDEPOzs7q0qWL+vXrJ39/f3uXCQAoBIIcAADlUHR0tIKDgxUSEqILFy5YRukefPBB9e/fX7169ZKHh4edqwQA5IUgBwBAOZaZmalt27YpODhYmzZtUnp6ugzDkKOjowICAtSvXz/95S9/sXeZAIBbEOQAAIAkKTY2Vm+99Zb27dsnSZZROm9vbw0ZMkSDBg1ShQoV7FkiAOD/I8gBAFDOnTp1SsHBwVq9erXi4+NlNpvl6OioZs2a6dChQ7p27ZoMw1C9evW0ZMkS1ahRw94lA0C5R5ADAKAcunbtmkJDQ/XDDz/ol19+kSSZzWZ5e3urf//+euqpp+Tp6amkpCStWLFCCxYsUGJiogIDA/Xvf//bvsUDAAhyAACUJwcPHlRwcLBCQ0OVnJxsGX3r2LGjBgwYoPbt21tuqcwuKipK3bt3V9WqVfXzzz/boXIAQHaO9i4AAAAUv6+++krBwcGKjIyUlPvoW358fHzk6empixcvlkS5AIACEOQAACgHpk2bJkmFGn3Li7e3txwd+eoAAHcDbq0EAKAcCAgI0IABAwo1+gYAuPsR5AAAAACglHGwdwEAAAAAgKIhyAEAUEYtW7ZMgwcP1oQJEwrV3mw2a/z48Ro8eLC+++67Yq4OAHAnuLUSAIAyKD4+Xp06dVJaWppWrFghPz+/QvU7cuSI+vXrJxcXF4WHh6ty5crFXCkAwBqMyAEAUAatWbNGqamp6t69e6FDnCQ1bNhQgYGBSk5O1tq1a4uxQgDAnSDIAQBQBu3YsUOGYah3795F7tu3b1+ZzWZt2bLF9oUBAGyCIAcAQBl0/PhxSZK/v3+R+2b1yToHAODuQ5ADAKAMSkxMlJubm5ycnIrc18nJSZUrV1ZCQkIxVAYAsAWCHAAAZZDJZNKNGzes7p+WliaTyWTDigAAtkSQAwCgDPLw8NC1a9cUFxdX5L5xcXG6du2aPDw8iqEyAIAtEOQAACiDGjduLEnavHlzkftu2rRJktSoUSNblgQAsCGCHAAAZdBjjz0ms9mshQsXKjU1tdD9UlJStHDhQhmGoccee6z4CgQA3BGCHAAAZVD37t1Vq1YtnT17Vq+99pqSkpIK7JOUlKThw4fr7Nmzqlmzpnr06FEClQIArGGYzWazvYsAAAC2t3PnTg0bNkwZGRmqXr26Bg8erICAAPn4+ORoFxUVpbCwMH399de6ePGiTCaTFi1apLZt29qpcgBAQQhyAACUYaGhoRo7dqxSU1NlGIakm9sLuLm5Sbo5CpeWliZJMpvNcnZ21tSpUxUYGGi3mgEABSPIAQBQxkVFRWn27NkKCwtTXv/ZNwxDnTp10htvvKF69eqVcIUAgKIiyAEAUE5cvHhRERERioyMVGJioiTJ3d1d9erVU+vWreXp6WnfAgEAhUaQAwAAAIBShlUrAQAAAKCUIcgBAAAAQClDkAMAAACAUoYgBwAAAAClDEEOAAAAAEoZghwAAAAAlDIEOQAAAAAoZQhyAAAAAFDKEOQAALk6deqUZs+erX79+qldu3Zq3LixHn30UT311FOaPXu2oqKibHq9Tz/9VL6+vgoICLDpebNERETI19dXvr6+io6OLpZr3KmAgAD5+vrq008/tXcpd43nn39evr6+GjVq1G3HivszUxhZn6mVK1farQYA5ZOjvQsAANxd0tLSNGPGDH333XdKT0/PcezSpUu6dOmSDh06pEWLFmnQoEEaNWqUnJyc7FQtYHuffvqp5s6dK29vb4WHh9u7HADIFUEOAGCRkpKil19+WREREZKkhx56SM8//7xatmwpDw8PJSQkaO/evQoKCtKJEyf0n//8R5GRkVqwYIEqVqxo5+oBACg/CHIAAIv333/fEuKeeuopTZo0SRUqVLAcd3d314MPPqjevXtr4sSJCg4OVkREhKZMmaKpU6fe0bWHDx+u4cOH39E58tO6dWsdP3682M6Pklfcn5nC4DMFwF6YIwcAkHRzDlnWPJ+2bdtq6tSpOUJcdhUqVNCUKVPUpk0bSVJwcLB2795dYrUCAFDeMSIHAJAkLV261PL3+PHjZRhGvu0Nw9CECRPUrVs3S/9WrVrlaDNq1CitWrVKrVq10rJly/Trr78qKChI+/btU1xcnGrUqGGZg1SYeUnXrl3T0qVL9d///ld//PGHnJ2dVb9+fQ0aNEiBgYH5niMiIkKDBw+WJIWFhem+++7LcdzX11eSNG3aNPXt21erVq3S999/r8jISKWlpen+++9Xjx49NGTIkDznBMbGxmrTpk3asmWLjh07pri4ODk4OKh69ery9/fXs88+q6ZNm+b7ulorOjpanTp1kiQFBQWpadOm+uKLLxQaGqro6GiZTCb5+vpq4MCB6tmzZ67nuPU1qly5spYuXaqwsDDFxMQoOTlZQUFBat26taVPUlKSvvnmG23atEm///67kpOT5e7urmbNmmnQoEFq3759vnXHxsbq888/19atW3Xx4kVVqVJFjzzyiP72t7/J398/376Fnct2/Phxffvtt9qzZ48uXLig9PR0eXl5ycfHR507d9YTTzwhV1fXHM9fkmJiYiyfiyy3XuvWz01uzp07py+//FI7duzQuXPnlJmZKS8vL7Vp00ZDhgyRj49Prv1Wrlyp0aNHW55DfHy8Fi1apLCwMJ0/f14uLi56+OGHNXToUMuPKrk5ceKEli1bZnn+GRkZqlq1qqpXr67mzZurU6dOatu2bZ79AdydCHIAAKWkpGj79u2SpBYtWuT5xfJWPj4+8vf31759+7Rt2zalpKTIxcUl17bfffedJk+erIyMDKtqjIuL05AhQxQZGWl57Nq1a9q9e7d2796tHTt2qFatWladO7uMjAy9/vrr+vHHH3M8fvz4cR0/fly7du3SokWL5OBw+00t3bt315UrV257PDo6WtHR0VqzZo3efPNN/eMf/7jjOvOTlJSkAQMG3Hbb3969e7V3715t3rxZH374oUwmU57nOHv2rMaMGaNz587l2WbPnj0aPny4EhIScjx+8eJFbdy4URs3btTAgQP13nvv5XqtX375RUOHDlVSUlKOvj/99JPCwsI0ceLEQj7j3GVmZuqjjz7SkiVLZDabcxw7c+aMzpw5o/DwcJnN5jxD2J3asGGD3n33XV2/fj3X6wcHB2vs2LF69tln8z1PZGSkXnjhBcXGxloeS0tL07Zt27R9+3ZNnz5dvXv3vq3f+vXr9e677962cFFsbKxiY2N1+PBh7dq1S+vWrbP+SQKwC4IcAEC//vqr5Ytey5Yti9S3ZcuW2rdvn9LT0/Xrr7/m+sv+qVOn9P7776tJkyZ69dVX1ahRI6Wlpeno0aOFuobZbNaIESMUGRkpwzD03HPPqX///vLy8lJ0dLS++uorrVixQnXq1ClS7blZsGCBzp07p2HDhqlnz57y8vLS+fPnNXfuXG3cuFHbt2/XDz/8oIEDB97W18fHR+3bt1ezZs3k5eWlatWqKSUlRadPn9b333+vH3/8UbNmzVKDBg3017/+9Y5rzcu0adMUGxurV155RT179lTVqlUVGRmpuXPnateuXVq/fr1q166tN998M89zjBo1SqmpqRozZowCAgJUqVIlRUVFydvbW5J09OhRvfjii7p+/brq16+vYcOGqXnz5nJzc9P58+e1cuVKBQUFafny5apevbpef/31HOePj4/Xyy+/rKSkJLm4uOi1115T586dValSJf3222+aPXu2Jk+eLA8PD6tfh5kzZ+qLL76QJDVq1EhDhw7VI488IhcXF8XFxenAgQNav369ZfS5RYsW2r9/vxYsWKAFCxbo3nvvvS3g5Bbg87J//3699dZbysjIUI0aNfTmm2+qXbt2MplM2rdvn2bNmqXTp09r8uTJ8vT0VOfOnfM818svvyxHR0fNmDFDbdq0kZOTk/bv368pU6bo/PnzmjRpkjp06KCqVata+ly5ckXjxo1Tenq67r//fg0fPlxNmzaVu7u7UlNTderUKe3atUuHDx8uyssK4C5BkAMA6OzZs5a/H3rooSL1zd4+r/3Z4uLi5O/vry+//DLHbYmFHUH78ccftXfvXknSiBEj9Morr1iOubu768MPP1TFihW1fPnyItWem7Nnz+rDDz/McfthlSpV9Mknn6hv3746evSoVqxYkWuQ++677257zMPDQ/fdd5/at2+vDz/8UIsXL9bChQuLNchFR0dr+vTp6tOnj+Wxli1basmSJXrhhRcUERGhJUuW6JlnnpGXl1eu57h06ZJ++OEHNWjQIMdzyTJ69Ghdv35drVu31uLFi3O8r1WqVNGYMWP0wAMPaNKkSVq4cKEGDRqkGjVqWNp89tlnSkhIkGEYmjdvnh599FHLsQ4dOsjf318DBw7MMQJbFAcPHrSEuE6dOunjjz/OMeezSpUq8vHxUb9+/Sw/YphMJlWqVMnSzjAMVapUyarrSzcXD8rIyFCVKlX07bff5rid98knn1SrVq3Ur18/RUdHa/LkyerYsWOe81LT0tK0atUqVatWzfLY448/rlq1aqlv375KSUnRhg0b9PTTT1uO7927VykpKZKkTz75RH5+fpZjlStXlpeXF7dUAqUYi50AAJSYmGj5u3LlykXqm7199vPcauTIkVbvN5e1CEuNGjU0bNiwXNu88847cnZ2tur82T3yyCO5ziFzcHCw3Lp25MiR225VK4ysYHXgwAGlpqbeUZ35efjhh3OEuCyOjo4aO3asJOnGjRtavXp1nud46qmncoS47CIiInT06FEZhqHJkyfn+b4+/fTTql27tm7cuKENGzZYHs/IyFBISIikm2Eke4jL4urqqrfffjvP+gry1VdfSZJcXFw0bdq0PAOSdPN1sbVDhw7pyJEjkqR//OMft83JlKSqVatanuPFixe1efPmPM/3z3/+M0eIy9KoUSPLPL3ffvstx7HstzFnD9EAygaCHADgjhS0KIp0c9TM2kU+zGazDhw4IEl67LHH8vzS7ebmVuTbQnPzl7/8Jc9jDz74oKSbISi3uXDSzS/TEyZMUI8ePeTv768GDRrI19dXvr6+CgwMlCSlp6frjz/+uONa85LfLXq+vr564IEHJN289S8vjz32WJ7Hfv75Z0lSnTp15OnpqeTk5Fz/l5KSYhkFyh4yTpw4YZkX98QTT+R5nb/+9a9Wh/OdO3dKkgICAlSlShWrznEnskaQJalr1655tnv88cctITN7n1vlN4Kb9bmMi4vL8bivr6/ln88xY8bozJkzBRcOoNTg1koAQI4vutkXniiM7IHG3d091za1a9e2qq6serKukfWFNS9169bVtm3brL6WlP/IRfZQkduI2uzZs7VgwYLbFtbITVFf56KoW7duvsd9fHx0+vRpxcTE5Nkmv/fs999/l3RzwY7mzZsXqqb4+HjL39mvm9/COo6OjnrggQd07NixQl0jy9WrV3Xp0iVJynNUsbhlLRLj4uKie++9N892Tk5Ouv/++xUZGZnv+5Hf57JixYqSbv9M1qlTR88++6y+/vprbdq0SZs2bVK9evXk7++vli1bql27dnc0BxGAfRHkAAA5bvsq6pyk7O1zu31M+r8vmtbImuMjKc8VMQt7vDDyW8kxu1vDWmhoqObPny/p5qIZgwYNUoMGDeTh4SEnJycZhqGYmBj16NFDkqxevbMwCprXlfU6JScn59kmv5Ewa0JoWlqa5e/s1y2O9zT7+e9kjtudyKqhMNfPapPf+1HYz+Wtxo0bJ19fXwUFBenkyZOKjIxUZGSkli9fLkdHR3Xu3FmjRo3Kc64kgLsXQQ4AoKZNm8pkMikjI6PIG3tntXd0dCyWPdKyf5EvaF5Z9tBX0v7zn/9IujnHbtmyZbmubmjNvDpr5BcIpP97nawNOVnvSaNGjSzzF4si+3ULes+seU+zn7+g16K4FCacZbnT9yM/hmFowIABGjBggM6fP68DBw5o37592rRpk2JiYhQaGqpffvlFq1evLvL8WAD2xRw5AIBcXV3Vrl07STfn6Zw6dapQ/U6dOqV9+/ZJktq3b2+TEbFbubm5Wb5gZt3Sl5eCjhenrK0UunbtmucS9SdOnCiRWgp6/6KioiTJspVAUWXddhkdHa3MzMwi989+3axacpOenm7VvC5XV1fLwiCF3eLC1rKeY0pKSr578aWlpen06dM5+hSXWrVqqVu3bho/frz+97//WRZaOXfunFWBHIB9EeQAAJKkF154QdLNWwanTJlS4DyvW9tl9bc1wzDUrFkzSdLmzZvzHNW6evVqkUcTbSnr1sH8gk1+q0Ta0saNG/M8dvz4cUtwKOz8tlu1b99eknT58mXLRvJFUb9+fbm5uUnKv9atW7davbpn1kqY4eHheS5Mk5esBXXu5PbXFi1aWP6+dXP57MLCwnTjxo3b+hQ3BwcHDRs2zPLjS2F/vAFw9yDIAQAkSW3btrUsr79jxw699957eYam9PR0vffee9qxY4ekm0vVt27duthqy1pKPzY2VkuXLs21zUcffaRr164VWw0FyRqlCg8PzzUEr1y50rLaY3E7ePCgZXn/7NLT0zV16lRJUoUKFdSrVy+rzt+uXTvLkveTJk1SbGxsvu3j4uJ0+fJly/83mUyWz9r//vc/ywqT2SUnJ+ujjz6yqj5JGjx4sKSbI2Jjx47N97bWW49lbaodHx9v9e2wjRo1UsOGDSVJ8+fPz3VULjExUbNmzZIkeXp65rtSqDXOnj2bY27irf78809LUM5roSIAdy+CHADAYsKECZYl/JcvX64+ffrohx9+0OnTp5WYmKjTp08rODhYffv2tWy+3bp1a40fP75Y6+rSpYseeeQRSdKsWbM0depUnTx5UpcvX9bhw4c1cuRIffPNN6pTp06x1pGfbt26Sbo5Z/Dtt9/WoUOHlJCQoGPHjmnatGkaN26c6tWrVyK13HfffRo3bpw+/vhj/f7770pISNCePXv04osvKiIiQpL04osvWr3AhWEYmjFjhipWrKjo6Gj16tVLCxYs0LFjx5SYmKj4+HidOHFCISEhGjFihDp27HjbdguvvvqqqlatKrPZrFdffVVLly5VdHS04uPjtXXrVj333HM6c+aM1TU2adLEMkr8008/adCgQdqwYYMuXLigK1eu6NSpUwoJCdGLL76otWvX5ujbuHFjSTdHWT///HNdunRJ6enpSk9PL9Io3fjx42UymZSYmKinn35aISEhio2NVVxcnKWmrNdlwoQJ+e51Z42QkBB17NhRU6ZM0ebNmxUdHa0rV67o7NmzCg0N1d///neZzWY5ODjku0UCgLsTi50AACwqVaqkpUuX6oMPPtD333+vEydOaNy4cbm2NZlMGjhwoEaPHm31Rt+F5eDgoE8++URDhgzRqVOnFBQUpKCgoBxt+vbtq1q1amnevHlWr/B3J4YOHaotW7bot99+0/r167V+/focxx966CF98MEH6t+/f7HXMnr0aH388cf67LPP9Nlnn912vFu3bnr99dfv6BoNGjRQUFCQRowYoXPnzmnWrFmW0aXc3BpSPDw8NH/+fA0dOlRJSUmaMWOGZsyYYTnu4OCgiRMnat26dQWO+OXlnXfekSR98cUX+u233zRixIhc22Xt75elcePGatWqlXbv3q25c+dq7ty5lmPe3t4KDw8v1PWbN2+ujz76SCNHjtSFCxc0cuTI29qYTCaNGTMm373/7kRcXJyWLVumZcuW5XrcZDJp7NixdtumAYD1CHIAgBycnJw0ceJEPf/881q9erV27Nihc+fOKSkpSa6urrr33nvVrl079e7dO989wGytRo0aWrlypZYsWaL//ve/Onv2rJydnfXQQw9pwIAB6tWrl6ZPny7p5mIXJa1ixYpatmyZFi9erNDQUEVHR+uee+5R7dq19eSTT2rIkCGWvc2Km5ubm77//nstWbJEGzZsUExMjBwcHOTr66uBAwdafUvlrZo0aaINGzZo1apVCgsL09GjR5WYmCgHBwdVq1ZN9erVU6tWrfTkk0/mOlrarFkzrV+/Xp9//rm2bt2qP//807J5/N///ne1aNFC69ats7o+BwcHjRw5Uj169NA333yj3bt3688//5RhGKpRo4Z8fHz05JNP6vHHH7+t7+eff65FixYpPDxc0dHRSk1NLdT+gLfq2rWrmjZtqi+//FLbt2/X+fPnlZmZKS8vL7Vp00ZDhgwptn+OhgwZooceekg7d+7UoUOH9OeffyohIUEVKlSQt7e3WrVqpWeeeabERooB2JZhtubfSgAA3IVeeeUVhYeHq2PHjpY93cqL6OhoderUSZIUFBRUrHMWAQD2xxw5AECZcPXqVe3atUvS/81xAgCgrCLIAQBKhStXruS7tP/MmTMtGyuzcAMAoKxjjhwAoFT4+eef9emnn2rAgAFq3bq1atasqRs3bujYsWMKCgrS1q1bJUk9e/Ys0bl7AADYA0EOAFBqREZG6oMPPsjzeNu2bfXee++VYEUAANgHQQ4AUCq0atVKo0eP1vbt2y17o6Wlpcnd3V2NGzdW9+7d1a1bNzk4MGsAAFD2sWolAAAAAJQy/GwJAAAAAKUMQQ4AAAAAShmCHAAAAACUMgQ5AAAAAChlCHIAAAAAUMoQ5AAAAACglCHIAQAAAEApQ5ADAAAAgFKGIAcAAAAApQxBDgAAAABKGYIcAAAAAJQyBDkAAAAAKGUIcgAAAABQyhDkAAAAAKCU+X9ePC/aCrG+XQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 387, + "width": 441 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "df = follicular_bdata.obs\n", + "confusion_matrix = pd.crosstab(\n", + " df[\"cellassign_predictions\"],\n", + " df[\"celltype\"],\n", + " rownames=[\"cellassign_predictions\"],\n", + " colnames=[\"Original predictions\"],\n", + ")\n", + "confusion_matrix /= confusion_matrix.sum(1).ravel().reshape(-1, 1)\n", + "fig, ax = plt.subplots(figsize=(5, 4))\n", + "sns.heatmap(\n", + " confusion_matrix,\n", + " cmap=sns.diverging_palette(245, 320, s=60, as_cmap=True),\n", + " ax=ax,\n", + " square=True,\n", + " cbar_kws={\"shrink\": 0.4, \"aspect\": 12},\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VMNNWSfJ3mLv" + }, + "source": [ + "## HGSC Data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "L45KGyyi4ErD" + }, + "source": [ + "We can repeat the same process for HGSC data." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 395/400: 99%|█████████▉| 395/400 [00:14<00:00, 27.52it/s, v_num=1, train_loss_step=41.8, train_loss_epoch=40.8]" - ] + "execution": { + "iopub.execute_input": "2024-09-30T15:43:24.499600Z", + "iopub.status.busy": "2024-09-30T15:43:24.499507Z", + "iopub.status.idle": "2024-09-30T15:43:25.413565Z", + "shell.execute_reply": "2024-09-30T15:43:25.413258Z" }, + "id": "5BoG-lDty1mR", + "outputId": "4ef93990-ed41-420e-87ba-5b2beaf8e015" + }, + "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\r\n", - "Epoch 396/400: 99%|█████████▉| 395/400 [00:14<00:00, 27.52it/s, v_num=1, train_loss_step=41.8, train_loss_epoch=40.8]" + "/usr/local/lib/python3.12/site-packages/anndata/_core/anndata.py:1754: UserWarning: Observation names are not unique. To make them unique, call `.obs_names_make_unique`.\n", + " utils.warn_names_duplicates(\"obs\")\n", + "/usr/local/lib/python3.12/site-packages/anndata/_core/anndata.py:1756: UserWarning: Variable names are not unique. To make them unique, call `.var_names_make_unique`.\n", + " utils.warn_names_duplicates(\"var\")\n" ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 396/400: 99%|█████████▉| 396/400 [00:14<00:00, 27.51it/s, v_num=1, train_loss_step=41.8, train_loss_epoch=40.8]" - ] + "data": { + "text/plain": [ + "AnnData object with n_obs × n_vars = 4848 × 33694\n", + " obs: 'Sample', 'dataset', 'patient', 'timepoint', 'site', 'sample_barcode', 'is_cell_control', 'total_features_by_counts', 'log10_total_features_by_counts', 'total_counts', 'log10_total_counts', 'pct_counts_in_top_50_features', 'pct_counts_in_top_100_features', 'pct_counts_in_top_200_features', 'pct_counts_in_top_500_features', 'total_features_by_counts_endogenous', 'log10_total_features_by_counts_endogenous', 'total_counts_endogenous', 'log10_total_counts_endogenous', 'pct_counts_endogenous', 'pct_counts_in_top_50_features_endogenous', 'pct_counts_in_top_100_features_endogenous', 'pct_counts_in_top_200_features_endogenous', 'pct_counts_in_top_500_features_endogenous', 'total_features_by_counts_feature_control', 'log10_total_features_by_counts_feature_control', 'total_counts_feature_control', 'log10_total_counts_feature_control', 'pct_counts_feature_control', 'pct_counts_in_top_50_features_feature_control', 'pct_counts_in_top_100_features_feature_control', 'pct_counts_in_top_200_features_feature_control', 'pct_counts_in_top_500_features_feature_control', 'total_features_by_counts_mitochondrial', 'log10_total_features_by_counts_mitochondrial', 'total_counts_mitochondrial', 'log10_total_counts_mitochondrial', 'pct_counts_mitochondrial', 'pct_counts_in_top_50_features_mitochondrial', 'pct_counts_in_top_100_features_mitochondrial', 'pct_counts_in_top_200_features_mitochondrial', 'pct_counts_in_top_500_features_mitochondrial', 'total_features_by_counts_ribosomal', 'log10_total_features_by_counts_ribosomal', 'total_counts_ribosomal', 'log10_total_counts_ribosomal', 'pct_counts_ribosomal', 'pct_counts_in_top_50_features_ribosomal', 'pct_counts_in_top_100_features_ribosomal', 'pct_counts_in_top_200_features_ribosomal', 'pct_counts_in_top_500_features_ribosomal', 'size_factor', 'cellassign_cluster_broad', 'cellassign_cluster_specific', 'B.cells..broad.', 'T.cells..broad.', 'Monocyte.Macrophage..broad.', 'Epithelial.cells..broad.', 'Ovarian.stromal.cells..broad.', 'Ovarian.myofibroblast..broad.', 'Vascular.smooth.muscle.cells..broad.', 'Endothelial.cells..broad.', 'other..broad.', 'B.cells', 'CD4.T.cells', 'Cytotoxic.T.cells', 'Monocyte.Macrophage', 'Epithelial.cells', 'Ovarian.stromal.cells', 'Ovarian.myofibroblast', 'Vascular.smooth.muscle.cells', 'Endothelial.cells', 'other', 'celltype', 'G1', 'S', 'G2M', 'Cell_Cycle', 'epithelial_seurat_cluster', 'epithelial_seurat_0.2_cluster', 'epithelial_phenograph_cluster', 'epithelial_sc3_cluster', 'epithelial_SC3_cluster', 'epithelial_cluster', 'all_seurat_cluster', 'all_seurat_0.8_cluster', 'all_seurat_1.2_cluster', 'all_sc3_cluster', 'all_SC3_cluster', 'all_cluster', 'all_subset_seurat_cluster', 'all_subset_seurat_0.8_cluster', 'all_subset_seurat_1.2_cluster', 'all_subset_cluster'\n", + " var: 'ID', 'is_feature_control', 'is_feature_control_mitochondrial', 'is_feature_control_ribosomal', 'mean_counts', 'log10_mean_counts', 'n_cells_by_counts', 'pct_dropout_by_counts', 'total_counts', 'log10_total_counts'\n", + " uns: 'log.exprs.offset'\n", + " obsm: 'X_pca', 'X_tsne', 'X_umap'\n", + " layers: 'logcounts'" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hgsc_adata = scvi.data.read_h5ad(sce_hgsc_path)\n", + "hgsc_celltype_markers = pd.read_csv(hgsc_celltype_path, index_col=0)\n", + "\n", + "hgsc_adata.var_names_make_unique()\n", + "hgsc_adata.obs_names_make_unique()\n", + "\n", + "hgsc_adata" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-sB9YD1l4v2M" + }, + "source": [ + "### Create and fit CellAssign model" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-30T15:43:25.414571Z", + "iopub.status.busy": "2024-09-30T15:43:25.414479Z", + "iopub.status.idle": "2024-09-30T15:43:25.478612Z", + "shell.execute_reply": "2024-09-30T15:43:25.478100Z" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 396/400: 99%|█████████▉| 396/400 [00:14<00:00, 27.51it/s, v_num=1, train_loss_step=40.9, train_loss_epoch=40.8]" - ] + "id": "Ur_hisP3CR3f" + }, + "outputs": [], + "source": [ + "hgsc_bdata = hgsc_adata[:, hgsc_celltype_markers.index].copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 397/400: 99%|█████████▉| 396/400 [00:14<00:00, 27.51it/s, v_num=1, train_loss_step=40.9, train_loss_epoch=40.8]" - ] + "execution": { + "iopub.execute_input": "2024-09-30T15:43:25.480317Z", + "iopub.status.busy": "2024-09-30T15:43:25.480210Z", + "iopub.status.idle": "2024-09-30T15:43:25.483132Z", + "shell.execute_reply": "2024-09-30T15:43:25.482863Z" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 397/400: 99%|█████████▉| 397/400 [00:14<00:00, 27.51it/s, v_num=1, train_loss_step=40, train_loss_epoch=40.8] " - ] + "id": "SIvlQxoqZZNl", + "outputId": "a4551fce-1c5a-4628-97bd-c287fd1762ea" + }, + "outputs": [], + "source": [ + "scvi.external.CellAssign.setup_anndata(hgsc_bdata, \"size_factor\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 398/400: 99%|█████████▉| 397/400 [00:14<00:00, 27.51it/s, v_num=1, train_loss_step=40, train_loss_epoch=40.8]" - ] + "execution": { + "iopub.execute_input": "2024-09-30T15:43:25.484081Z", + "iopub.status.busy": "2024-09-30T15:43:25.483933Z", + "iopub.status.idle": "2024-09-30T15:43:37.189915Z", + "shell.execute_reply": "2024-09-30T15:43:37.189365Z" }, + "id": "pTqyMyiIZkTp", + "outputId": "7633dd58-792c-4516-f7bc-0250bf225e39" + }, + "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\r\n", - "Epoch 398/400: 100%|█████████▉| 398/400 [00:14<00:00, 27.51it/s, v_num=1, train_loss_step=41.2, train_loss_epoch=40.8]" + "GPU available: True (cuda), used: True\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\r\n", - "Epoch 399/400: 100%|█████████▉| 398/400 [00:14<00:00, 27.51it/s, v_num=1, train_loss_step=41.2, train_loss_epoch=40.8]" + "TPU available: False, using: 0 TPU cores\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\r\n", - "Epoch 399/400: 100%|█████████▉| 399/400 [00:14<00:00, 27.53it/s, v_num=1, train_loss_step=41.2, train_loss_epoch=40.8]" + "HPU available: False, using: 0 HPUs\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\r\n", - "Epoch 399/400: 100%|█████████▉| 399/400 [00:14<00:00, 27.53it/s, v_num=1, train_loss_step=41.3, train_loss_epoch=40.8]" + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "\r\n", - "Epoch 400/400: 100%|█████████▉| 399/400 [00:14<00:00, 27.53it/s, v_num=1, train_loss_step=41.3, train_loss_epoch=40.8]" + "/usr/local/lib/python3.12/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=63` in the `DataLoader` to improve performance.\n", + "/usr/local/lib/python3.12/site-packages/lightning/pytorch/loops/fit_loop.py:298: The number of training batches (5) is smaller than the logging interval Trainer(log_every_n_steps=10). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n", + "/usr/local/lib/python3.12/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=63` in the `DataLoader` to improve performance.\n" ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "Epoch 400/400: 100%|██████████| 400/400 [00:14<00:00, 27.53it/s, v_num=1, train_loss_step=41.5, train_loss_epoch=40.8]" - ] + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c42440c999244063a94841df8d5f6ebc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Training: 0%| | 0/400 [00:00" + "" ] }, - "execution_count": 23, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" }, @@ -16410,8 +1348,14 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": { + "execution": { + "iopub.execute_input": "2024-09-30T15:43:38.017489Z", + "iopub.status.busy": "2024-09-30T15:43:38.017397Z", + "iopub.status.idle": "2024-09-30T15:43:38.019977Z", + "shell.execute_reply": "2024-09-30T15:43:38.019735Z" + }, "id": "FziKQsWo5Hk0" }, "outputs": [], @@ -16421,12 +1365,18 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 536 }, + "execution": { + "iopub.execute_input": "2024-09-30T15:43:38.020939Z", + "iopub.status.busy": "2024-09-30T15:43:38.020856Z", + "iopub.status.idle": "2024-09-30T15:43:38.219242Z", + "shell.execute_reply": "2024-09-30T15:43:38.218936Z" + }, "id": "qt-XWSW55KZ8", "outputId": "36d97ea6-66e8-4f4b-a490-abead1c83ee5" }, @@ -16470,12 +1420,18 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 27, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 434 }, + "execution": { + "iopub.execute_input": "2024-09-30T15:43:38.221023Z", + "iopub.status.busy": "2024-09-30T15:43:38.220929Z", + "iopub.status.idle": "2024-09-30T15:43:38.353235Z", + "shell.execute_reply": "2024-09-30T15:43:38.352984Z" + }, "id": "OE8OXOA-BGTK", "outputId": "7d395685-a8c8-478f-b123-308e6d6b6afd" }, @@ -16484,7 +1440,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_2716663/2305008793.py:8: FutureWarning: Series.ravel is deprecated. The underlying array is already 1D, so ravel is not necessary. Use `to_numpy()` for conversion to a numpy array instead.\n", + "/tmp/ipykernel_153/2305008793.py:8: FutureWarning: Series.ravel is deprecated. The underlying array is already 1D, so ravel is not necessary. Use `to_numpy()` for conversion to a numpy array instead.\n", " confusion_matrix /= confusion_matrix.sum(1).ravel().reshape(-1, 1)\n" ] }, @@ -16494,7 +1450,7 @@ "" ] }, - "execution_count": 26, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, @@ -16557,12 +1513,740 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.12.6" }, "vscode": { "interpreter": { "hash": "b5142939ddaa1787bd1bfcf4c0ad4d35be0fa2237c553f986d37efcb39f03f79" } + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "0780e652f06f42bb92c45d91ff05d6a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0d5be427d27e49d49746226dcd0de780": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "10c976a861bc47cca5fa88ffc5d4825d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14046e2ba42643e49abeb4415e63f80a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_35127a347b5f45438b8faf72b32dbdbb", + "max": 400.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_14aa4c112afc4b9db08a39ee9fa29dce", + "tabbable": null, + "tooltip": null, + "value": 400.0 + } + }, + "14aa4c112afc4b9db08a39ee9fa29dce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "18f97bea03e4440e83072e32507df04e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d5b938bfb2d248d3a745d8b69b6b3ced", + "IPY_MODEL_9a967e8044ea486ea095337c4e00396c", + "IPY_MODEL_82b7bb34a0894ce2b56b6797c70e3b19" + ], + "layout": "IPY_MODEL_0d5be427d27e49d49746226dcd0de780", + "tabbable": null, + "tooltip": null + } + }, + "2039277bde4f4db88d2a2576492d0231": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "35127a347b5f45438b8faf72b32dbdbb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d97f0cc875e45f3903ce4064c73cc33": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52f56252f5774952bd846e2ed1e5ea5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_10c976a861bc47cca5fa88ffc5d4825d", + "placeholder": "​", + "style": "IPY_MODEL_8d55815f303449219970fba63d92574d", + "tabbable": null, + "tooltip": null, + "value": "Epoch 400/400: 100%" + } + }, + "5cd1054a07304a3c9eff7576b7efae2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "82b7bb34a0894ce2b56b6797c70e3b19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fae47f58723f433cb5453341add801b0", + "placeholder": "​", + "style": "IPY_MODEL_0780e652f06f42bb92c45d91ff05d6a9", + "tabbable": null, + "tooltip": null, + "value": " 400/400 [00:18<00:00, 22.88it/s, v_num=1, train_loss_step=18.9, train_loss_epoch=19.7]" + } + }, + "8d55815f303449219970fba63d92574d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9a967e8044ea486ea095337c4e00396c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4d97f0cc875e45f3903ce4064c73cc33", + "max": 400.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2039277bde4f4db88d2a2576492d0231", + "tabbable": null, + "tooltip": null, + "value": 400.0 + } + }, + "ab413bf7f2ad43abb085da46906f562b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c2d92c7eb6364779b663fd38abb7d767": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c42440c999244063a94841df8d5f6ebc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_52f56252f5774952bd846e2ed1e5ea5c", + "IPY_MODEL_14046e2ba42643e49abeb4415e63f80a", + "IPY_MODEL_f6fe20bc407646d9a8f526b61fe48877" + ], + "layout": "IPY_MODEL_ab413bf7f2ad43abb085da46906f562b", + "tabbable": null, + "tooltip": null + } + }, + "d5b938bfb2d248d3a745d8b69b6b3ced": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c2d92c7eb6364779b663fd38abb7d767", + "placeholder": "​", + "style": "IPY_MODEL_5cd1054a07304a3c9eff7576b7efae2f", + "tabbable": null, + "tooltip": null, + "value": "Epoch 400/400: 100%" + } + }, + "e5df4c1af0fe4e1884e8c6ce35f2de4c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f6fe20bc407646d9a8f526b61fe48877": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fec8ab1f4523465daa91e2423686dab2", + "placeholder": "​", + "style": "IPY_MODEL_e5df4c1af0fe4e1884e8c6ce35f2de4c", + "tabbable": null, + "tooltip": null, + "value": " 400/400 [00:11<00:00, 34.22it/s, v_num=1, train_loss_step=41.5, train_loss_epoch=40.8]" + } + }, + "fae47f58723f433cb5453341add801b0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fec8ab1f4523465daa91e2423686dab2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } } }, "nbformat": 4,