forked from robertdavidgraham/masscan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrypto-blackrock.c
420 lines (352 loc) · 11.6 KB
/
crypto-blackrock.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/*
BlackRock cipher
(h/t Marsh Ray @marshray for this idea)
This is a randomization/reshuffling function based on a crypto
"Feistel network" as described in the paper:
'Ciphers with Arbitrary Finite Domains'
by John Black and Phillip Rogaway
http://www.cs.ucdavis.edu/~rogaway/papers/subset.pdf
This is a crypto-like construction that encrypts an arbitrary sized
range. Given a number in the range [0..9999], it'll produce a mapping
to a distinct different number in the same range (and back again).
In other words, it randomizes the order of numbers in a sequence.
For example, it can be used to randomize the sequence [0..9]:
0 -> 6
1 -> 4
2 -> 8
3 -> 1
4 -> 9
5 -> 3
6 -> 0
7 -> 5
8 -> 2
9 -> 7
As you can see on the right hand side, the numbers are in random
order, and they don't repeat.
This is create for port scanning. We can take an index variable
and increment it during a scan, then use this function to
randomize it, yet be assured that we've probed every IP and port
within the range.
The cryptographic strength of this construction depends upon the
number of rounds, and the exact nature of the inner "READ()" function.
Because it's a Feistel network, that "READ()" function can be almost
anything.
We don't care about cryptographic strength, just speed, so we are
using a trivial READ() function.
This is a class of "format-preserving encryption". There are
probably better constructions than what I'm using.
*/
#include "crypto-blackrock.h"
#include "pixie-timer.h"
#include "util-malloc.h"
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <ctype.h>
#include <time.h>
#if defined(_MSC_VER)
#define inline _inline
#endif
/***************************************************************************
* It's an s-box. You gotta have an s-box
***************************************************************************/
const unsigned char sbox[256] = {
0x91, 0x58, 0xb3, 0x31, 0x6c, 0x33, 0xda, 0x88,
0x57, 0xdd, 0x8c, 0xf2, 0x29, 0x5a, 0x08, 0x9f,
0x49, 0x34, 0xce, 0x99, 0x9e, 0xbf, 0x0f, 0x81,
0xd4, 0x2f, 0x92, 0x3f, 0x95, 0xf5, 0x23, 0x00,
0x0d, 0x3e, 0xa8, 0x90, 0x98, 0xdd, 0x20, 0x00,
0x03, 0x69, 0x0a, 0xca, 0xba, 0x12, 0x08, 0x41,
0x6e, 0xb9, 0x86, 0xe4, 0x50, 0xf0, 0x84, 0xe2,
0xb3, 0xb3, 0xc8, 0xb5, 0xb2, 0x2d, 0x18, 0x70,
0x0a, 0xd7, 0x92, 0x90, 0x9e, 0x1e, 0x0c, 0x1f,
0x08, 0xe8, 0x06, 0xfd, 0x85, 0x2f, 0xaa, 0x5d,
0xcf, 0xf9, 0xe3, 0x55, 0xb9, 0xfe, 0xa6, 0x7f,
0x44, 0x3b, 0x4a, 0x4f, 0xc9, 0x2f, 0xd2, 0xd3,
0x8e, 0xdc, 0xae, 0xba, 0x4f, 0x02, 0xb4, 0x76,
0xba, 0x64, 0x2d, 0x07, 0x9e, 0x08, 0xec, 0xbd,
0x52, 0x29, 0x07, 0xbb, 0x9f, 0xb5, 0x58, 0x6f,
0x07, 0x55, 0xb0, 0x34, 0x74, 0x9f, 0x05, 0xb2,
0xdf, 0xa9, 0xc6, 0x2a, 0xa3, 0x5d, 0xff, 0x10,
0x40, 0xb3, 0xb7, 0xb4, 0x63, 0x6e, 0xf4, 0x3e,
0xee, 0xf6, 0x49, 0x52, 0xe3, 0x11, 0xb3, 0xf1,
0xfb, 0x60, 0x48, 0xa1, 0xa4, 0x19, 0x7a, 0x2e,
0x90, 0x28, 0x90, 0x8d, 0x5e, 0x8c, 0x8c, 0xc4,
0xf2, 0x4a, 0xf6, 0xb2, 0x19, 0x83, 0xea, 0xed,
0x6d, 0xba, 0xfe, 0xd8, 0xb6, 0xa3, 0x5a, 0xb4,
0x48, 0xfa, 0xbe, 0x5c, 0x69, 0xac, 0x3c, 0x8f,
0x63, 0xaf, 0xa4, 0x42, 0x25, 0x50, 0xab, 0x65,
0x80, 0x65, 0xb9, 0xfb, 0xc7, 0xf2, 0x2d, 0x5c,
0xe3, 0x4c, 0xa4, 0xa6, 0x8e, 0x07, 0x9c, 0xeb,
0x41, 0x93, 0x65, 0x44, 0x4a, 0x86, 0xc1, 0xf6,
0x2c, 0x97, 0xfd, 0xf4, 0x6c, 0xdc, 0xe1, 0xe0,
0x28, 0xd9, 0x89, 0x7b, 0x09, 0xe2, 0xa0, 0x38,
0x74, 0x4a, 0xa6, 0x5e, 0xd2, 0xe2, 0x4d, 0xf3,
0xf4, 0xc6, 0xbc, 0xa2, 0x51, 0x58, 0xe8, 0xae,
};
/***************************************************************************
***************************************************************************/
void
blackrock_init(struct BlackRock *br, uint64_t range, uint64_t seed, unsigned rounds)
{
double foo = sqrt(range * 1.0);
/* This algorithm gets very non-random at small numbers, so I'm going
* to try to fix some constants here to make it work. It doesn't have
* to be good, since it's kinda pointless having ranges this small */
switch (range) {
case 0:
br->a = 0;
br->b = 0;
break;
case 1:
br->a = 1;
br->b = 1;
break;
case 2:
br->a = 1;
br->b = 2;
break;
case 3:
br->a = 2;
br->b = 2;
break;
case 4:
case 5:
case 6:
br->a = 2;
br->b = 3;
break;
case 7:
case 8:
br->a = 3;
br->b = 3;
break;
default:
br->range = range;
br->a = (uint64_t)(foo - 2);
br->b = (uint64_t)(foo + 3);
break;
}
while (br->a * br->b <= range)
br->b++;
br->rounds = rounds;
br->seed = seed;
br->range = range;
}
/***************************************************************************
* The inner round/mixer function. In DES, it's a series of S-box lookups,
* which
***************************************************************************/
static inline uint64_t
READ(uint64_t r, uint64_t R, uint64_t seed)
{
uint64_t r0, r1, r2, r3;
#define GETBYTE(R,n) ((((R)>>(n*8))^seed^r)&0xFF)
R ^= (seed << r) ^ (seed >> (64 - r));
r0 = sbox[GETBYTE(R,0)]<< 0 | sbox[GETBYTE(R,1)]<< 8;
r1 = (sbox[GETBYTE(R,2)]<<16UL | sbox[GETBYTE(R,3)]<<24UL)&0x0ffffFFFFUL;
r2 = sbox[GETBYTE(R,4)]<< 0 | sbox[GETBYTE(R,5)]<< 8;
r3 = (sbox[GETBYTE(R,6)]<<16UL | sbox[GETBYTE(R,7)]<<24UL)&0x0ffffFFFFUL;
R = r0 ^ r1 ^ r2<<23UL ^ r3<<33UL;
return R;
}
/***************************************************************************
*
* NOTE:
* the names in this function are cryptic in order to match as closely
* as possible the pseudocode in the following paper:
* http://www.cs.ucdavis.edu/~rogaway/papers/subset.pdf
* Read that paper in order to understand this code.
***************************************************************************/
static inline uint64_t
ENCRYPT(unsigned r, uint64_t a, uint64_t b, uint64_t m, uint64_t seed)
{
uint64_t L, R;
unsigned j;
uint64_t tmp;
L = m % a;
R = m / a;
for (j=1; j<=r; j++) {
if (j & 1) {
tmp = (L + READ(j, R, seed)) % a;
} else {
tmp = (L + READ(j, R, seed)) % b;
}
L = R;
R = tmp;
}
if (r & 1) {
return a * L + R;
} else {
return a * R + L;
}
}
/***************************************************************************
***************************************************************************/
static inline uint64_t
UNENCRYPT(unsigned r, uint64_t a, uint64_t b, uint64_t m, uint64_t seed)
{
uint64_t L, R;
unsigned j;
uint64_t tmp;
if (r & 1) {
R = m % a;
L = m / a;
} else {
L = m % a;
R = m / a;
}
for (j=r; j>=1; j--) {
if (j & 1) {
tmp = READ(j, L, seed);
if (tmp > R) {
tmp = (tmp - R);
tmp = a - (tmp%a);
if (tmp == a)
tmp = 0;
} else {
tmp = (R - tmp);
tmp %= a;
}
} else {
tmp = READ(j, L, seed);
if (tmp > R) {
tmp = (tmp - R);
tmp = b - (tmp%b);
if (tmp == b)
tmp = 0;
} else {
tmp = (R - tmp);
tmp %= b;
}
}
R = L;
L = tmp;
}
return a * R + L;
}
/***************************************************************************
***************************************************************************/
uint64_t
blackrock_shuffle(const struct BlackRock *br, uint64_t m)
{
uint64_t c;
c = ENCRYPT(br->rounds, br->a, br->b, m, br->seed);
while (c >= br->range)
c = ENCRYPT(br->rounds, br->a, br->b, c, br->seed);
return c;
}
/***************************************************************************
***************************************************************************/
uint64_t
blackrock_unshuffle(const struct BlackRock *br, uint64_t m)
{
uint64_t c;
c = UNENCRYPT(br->rounds, br->a, br->b, m, br->seed);
while (c >= br->range)
c = UNENCRYPT(br->rounds, br->a, br->b, c, br->seed);
return c;
}
/***************************************************************************
* This function called only during selftest/regression-test.
***************************************************************************/
static unsigned
blackrock_verify(struct BlackRock *br, uint64_t max)
{
unsigned char *list;
uint64_t i;
unsigned is_success = 1;
uint64_t range = br->range;
/* Allocate a list of 1-byte counters */
list = CALLOC(1, (size_t)((range<max)?range:max));
/* For all numbers in the range, verify increment the counter for
* the output. */
for (i=0; i<range; i++) {
uint64_t x = blackrock_shuffle(br, i);
if (x < max)
list[x]++;
}
/* Now check the output to make sure that every counter is set exactly
* to the value of '1'. */
for (i=0; i<max && i<range; i++) {
if (list[i] != 1)
is_success = 0;
}
free(list);
return is_success;
}
/***************************************************************************
***************************************************************************/
void
blackrock_benchmark(unsigned rounds)
{
struct BlackRock br;
uint64_t range = 0x012356789123ULL;
uint64_t i;
uint64_t result = 0;
uint64_t start, stop;
static const uint64_t ITERATIONS = 5000000ULL;
printf("-- blackrock-1 -- \n");
printf("rounds = %u\n", rounds);
blackrock_init(&br, range, 1, rounds);
/*
* Time the algorithm
*/
start = pixie_nanotime();
for (i=0; i<ITERATIONS; i++) {
result += blackrock_shuffle(&br, i);
}
stop = pixie_nanotime();
/*
* Print the results
*/
if (result) {
double elapsed = ((double)(stop - start))/(1000000000.0);
double rate = ITERATIONS/elapsed;
rate /= 1000000.0;
printf("iterations/second = %5.3f-million\n", rate);
}
printf("\n");
}
/***************************************************************************
***************************************************************************/
int
blackrock_selftest(void)
{
uint64_t i;
uint64_t range;
/* @marshray
* Basic test of decryption. I take the index, encrypt it, then decrypt it,
* which means I should get the original index back again. Only, it's not
* working. The decryption fails. The reason it's failing is obvious -- I'm
* just not seeing it though. The error is probably in the 'UNENCRYPT()'
* function above.
*/
{
struct BlackRock br;
blackrock_init(&br, 1000, 0, 4);
for (i=0; i<10; i++) {
uint64_t result, result2;
result = blackrock_shuffle(&br, i);
result2 = blackrock_unshuffle(&br, result);
if (i != result2)
return 1; /*fail*/
}
}
range = 3015 * 3;
for (i=0; i<5; i++) {
struct BlackRock br;
int is_success;
range += 10 + i;
range *= 2;
blackrock_init(&br, range, time(0), 4);
is_success = blackrock_verify(&br, range);
if (!is_success) {
fprintf(stderr, "BLACKROCK: randomization failed\n");
return 1; /*fail*/
}
}
return 0; /*success*/
}