forked from fangchangma/self-supervised-depth-completion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinverse_warp.py
134 lines (102 loc) · 5.1 KB
/
inverse_warp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn.functional as F
class Intrinsics:
def __init__(self, width, height, fu, fv, cu=0, cv=0):
self.height, self.width = height, width
self.fu, self.fv = fu, fv # fu, fv: focal length along the horizontal and vertical axes
# cu, cv: optical center along the horizontal and vertical axes
self.cu = cu if cu > 0 else (width - 1) / 2.0
self.cv = cv if cv > 0 else (height - 1) / 2.0
# U, V represent the homogeneous horizontal and vertical coordinates in the pixel space
self.U = torch.arange(start=0, end=width).expand(height, width).float()
self.V = torch.arange(start=0, end=height).expand(width,
height).t().float()
# X_cam, Y_cam represent the homogeneous x, y coordinates (assuming depth z=1) in the camera coordinate system
self.X_cam = (self.U - self.cu) / self.fu
self.Y_cam = (self.V - self.cv) / self.fv
self.is_cuda = False
def cuda(self):
self.X_cam.data = self.X_cam.data.cuda()
self.Y_cam.data = self.Y_cam.data.cuda()
self.is_cuda = True
return self
def scale(self, height, width):
# return a new set of corresponding intrinsic parameters for the scaled image
ratio_u = float(width) / self.width
ratio_v = float(height) / self.height
fu = ratio_u * self.fu
fv = ratio_v * self.fv
cu = ratio_u * self.cu
cv = ratio_v * self.cv
new_intrinsics = Intrinsics(width, height, fu, fv, cu, cv)
if self.is_cuda:
new_intrinsics.cuda()
return new_intrinsics
def __print__(self):
print('size=({},{})\nfocal length=({},{})\noptical center=({},{})'.
format(self.height, self.width, self.fv, self.fu, self.cv,
self.cu))
def image_to_pointcloud(depth, intrinsics):
assert depth.dim() == 4
assert depth.size(1) == 1
X = depth * intrinsics.X_cam
Y = depth * intrinsics.Y_cam
return torch.cat((X, Y, depth), dim=1)
def pointcloud_to_image(pointcloud, intrinsics):
assert pointcloud.dim() == 4
batch_size = pointcloud.size(0)
X = pointcloud[:, 0, :, :] #.view(batch_size, -1)
Y = pointcloud[:, 1, :, :] #.view(batch_size, -1)
Z = pointcloud[:, 2, :, :].clamp(min=1e-3) #.view(batch_size, -1)
# compute pixel coordinates
U_proj = intrinsics.fu * X / Z + intrinsics.cu # horizontal pixel coordinate
V_proj = intrinsics.fv * Y / Z + intrinsics.cv # vertical pixel coordinate
# normalization to [-1, 1], required by torch.nn.functional.grid_sample
U_proj_normalized = (2 * U_proj / (intrinsics.width - 1) - 1).view(
batch_size, -1)
V_proj_normalized = (2 * V_proj / (intrinsics.height - 1) - 1).view(
batch_size, -1)
# This was important since PyTorch didn't do as it claimed for points out of boundary
# See https://github.com/ClementPinard/SfmLearner-Pytorch/blob/master/inverse_warp.py
# Might not be necessary any more
U_proj_mask = ((U_proj_normalized > 1) + (U_proj_normalized < -1)).detach()
U_proj_normalized[U_proj_mask] = 2
V_proj_mask = ((V_proj_normalized > 1) + (V_proj_normalized < -1)).detach()
V_proj_normalized[V_proj_mask] = 2
pixel_coords = torch.stack([U_proj_normalized, V_proj_normalized],
dim=2) # [B, H*W, 2]
return pixel_coords.view(batch_size, intrinsics.height, intrinsics.width,
2)
def batch_multiply(batch_scalar, batch_matrix):
# input: batch_scalar of size b, batch_matrix of size b * 3 * 3
# output: batch_matrix of size b * 3 * 3
batch_size = batch_scalar.size(0)
output = batch_matrix.clone()
for i in range(batch_size):
output[i] = batch_scalar[i] * batch_matrix[i]
return output
def transform_curr_to_near(pointcloud_curr, r_mat, t_vec, intrinsics):
# translation and rotmat represent the transformation from tgt pose to src pose
batch_size = pointcloud_curr.size(0)
XYZ_ = torch.bmm(r_mat, pointcloud_curr.view(batch_size, 3, -1))
X = (XYZ_[:, 0, :] + t_vec[:, 0].unsqueeze(1)).view(
-1, 1, intrinsics.height, intrinsics.width)
Y = (XYZ_[:, 1, :] + t_vec[:, 1].unsqueeze(1)).view(
-1, 1, intrinsics.height, intrinsics.width)
Z = (XYZ_[:, 2, :] + t_vec[:, 2].unsqueeze(1)).view(
-1, 1, intrinsics.height, intrinsics.width)
pointcloud_near = torch.cat((X, Y, Z), dim=1)
return pointcloud_near
def homography_from(rgb_near, depth_curr, r_mat, t_vec, intrinsics):
# inverse warp the RGB image from the nearby frame to the current frame
# to ensure dimension consistency
r_mat = r_mat.view(-1, 3, 3)
t_vec = t_vec.view(-1, 3)
# compute source pixel coordinate
pointcloud_curr = image_to_pointcloud(depth_curr, intrinsics)
pointcloud_near = transform_curr_to_near(pointcloud_curr, r_mat, t_vec,
intrinsics)
pixel_coords_near = pointcloud_to_image(pointcloud_near, intrinsics)
# the warping
warped = F.grid_sample(rgb_near, pixel_coords_near)
return warped