-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathget_features.m
50 lines (42 loc) · 1.63 KB
/
get_features.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
function x = get_features(im, features, cell_size, cos_window)
%GET_FEATURES
% Extracts dense features from image.
%
% X = GET_FEATURES(IM, FEATURES, CELL_SIZE)
% Extracts features specified in struct FEATURES, from image IM. The
% features should be densely sampled, in cells or intervals of CELL_SIZE.
% The output has size [height in cells, width in cells, features].
%
% To specify HOG features, set field 'hog' to true, and
% 'hog_orientations' to the number of bins.
%
% To experiment with other features simply add them to this function
% and include any needed parameters in the FEATURES struct. To allow
% combinations of features, stack them with x = cat(3, x, new_feat).
%
% Joao F. Henriques, 2014
% http://www.isr.uc.pt/~henriques/
if features.hog,
%HOG features, from Piotr's Toolbox
x = double(fhog(single(im) / 255, cell_size, features.hog_orientations));
x(:,:,end) = []; %remove all-zeros channel ("truncation feature")
end
if features.gray,
%gray-level (scalar feature)
x = double(im) / 255;
x = x - mean(x(:));
end
%process with cosine window if needed
if isfield(features, 'deep') && features.deep
x = impreprocess(single(im));
% caffe('reshape_input', 'solver', [0, 1, size(x, 3), size(x, 2), size(x, 1)]);
% x = caffe('forward', {x});
caffe('set_input_dim', 'DNNL', [0, 1, size(x, 3), size(x, 2), size(x, 1)]);
x = caffe('forward', 'DNNL', {x});
x = permute(x{1}, [2, 1, 3]);
x = x / 1e3;
end
if ~isempty(cos_window),
x = bsxfun(@times, x, cos_window);
end
end