-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday17.py
111 lines (78 loc) · 3.99 KB
/
day17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from __future__ import annotations
import re
from math import copysign
from typing import Iterable, Sized
from aocutils.aoc import Exercise
from aocutils.file import get_input_data_filepath
Position = tuple[int, int]
class Probe:
def __init__(self, horizontal_velocity: int, vertical_velocity: int) -> None:
super().__init__()
self.horizontal_velocity = abs(horizontal_velocity)
self.vertical_velocity = vertical_velocity
self.position: Position = (0, 0)
def move(self) -> Position:
self.position = (self.position[0] + self.horizontal_velocity, self.position[1] + self.vertical_velocity)
self.vertical_velocity -= 1
if self.horizontal_velocity != 0:
self.horizontal_velocity -= int(copysign(1, self.horizontal_velocity))
return self.position
class TargetArea:
def __init__(self, x_range: str, y_range: str):
self.x_boundaries = sorted(int(bound) for bound in x_range.split('..'))
self.y_boundaries = sorted(int(bound) for bound in y_range.split('..'))
def __contains__(self, item) -> bool:
if isinstance(item, Probe):
return min(self.x_boundaries) <= item.position[0] <= max(self.x_boundaries) \
and min(self.y_boundaries) <= item.position[1] <= max(self.y_boundaries)
return False
def __repr__(self) -> str:
return f'({min(self.x_boundaries)}, {max(self.y_boundaries)}) to ({max(self.x_boundaries)}, {min(self.y_boundaries)})'
class LaunchAttempt:
def __init__(self, starting_velocities: tuple[int, int], target: TargetArea) -> None:
self.target = target
self.probe = Probe(starting_velocities[0], starting_velocities[1])
self.moves: list[tuple[int, int]] = []
while not self.is_complete():
self.moves.append(self.probe.move())
def is_successfull(self) -> bool:
return self.probe in self.target
def is_missed(self) -> bool:
probe_x, probe_y = self.probe.position
return probe_y < min(self.target.y_boundaries) or probe_x > max(self.target.x_boundaries)
def is_complete(self) -> bool:
return self.is_successfull() or self.is_missed()
def max_height(self) -> int:
return max(height for _, height in self.moves)
def read_target_area(input_data: str) -> TargetArea:
pattern = re.compile(r'target area: x=(?P<x_boundaries>[\d.-]+), y=(?P<y_boundaries>[\d.-]+)')
matches = pattern.match(input_data)
return TargetArea(matches.group('x_boundaries'), matches.group('y_boundaries'))
class Day17(Exercise):
def __init__(self, input_data: Iterable | Sized | list[str]) -> None:
super().__init__(input_data)
self.attempts = []
self.successes = []
target = read_target_area(self.input_data.pop().strip())
self.log.info('Target area: %s', target)
max_x = max(target.x_boundaries)
min_y = min(target.y_boundaries)
for x_velocity in range(max_x+1):
for y_velocity in range(min_y-1, abs(min_y) + 1):
self.log.debug('Trying velocity (x: %d, y: %d)', x_velocity, y_velocity)
attempt = LaunchAttempt((x_velocity, y_velocity), target)
self.attempts.append(attempt)
if attempt.is_successfull():
self.successes.append(attempt)
self.log.info('(x: %d, y: %d)\t ⇒ Success in %d steps!', x_velocity, y_velocity, len(attempt.moves))
print(f'Found {len(self.successes)} velocity configs in {len(self.attempts)} launch simulations.')
print(f'Longuest Trick shot : {max(len(attempt.moves) for attempt in self.successes)} steps')
def part_one(self) -> int:
return max(success.max_height() for success in self.successes)
def part_two(self) -> int:
return len(self.successes)
if __name__ == '__main__':
inputfile_path = get_input_data_filepath(__file__)
with open(inputfile_path) as input_file:
exercise = Day17(input_file.readlines())
exercise.solve_all()