-
Notifications
You must be signed in to change notification settings - Fork 85
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Allow toys to fail #1427
Comments
@annmwang Can you provide some sort of reproducible example? |
Hi @matthewfeickert , Here's an example workspace. I'm using version 0.6.1. The code snippet I'm running is :
my backend / optimizer combo is
Thanks! |
Hm. Seems that this is MINUIT related problem as import json
from pathlib import Path
import pyhf
if __name__ == "__main__":
with open(Path("/tmp").joinpath("sample_449312.json")) as serialized:
spec = json.load(serialized)
workspace = pyhf.Workspace(spec)
model = workspace.model()
data = workspace.data(model)
test_poi = 0.3
pyhf.set_backend("numpy")
cls_obs, cls_exp_band = pyhf.infer.hypotest(
test_poi,
data,
model,
model.config.suggested_init(),
model.config.suggested_bounds(),
calctype="toybased",
ntoys=10,
return_expected_set=True,
)
print(f"CLs obs: {cls_obs}")
print(f"CLs,exp band: {cls_exp_band}") works fine
but changing the optimizer to import json
from pathlib import Path
import pyhf
if __name__ == "__main__":
with open(Path("/tmp").joinpath("sample_449312.json")) as serialized:
spec = json.load(serialized)
workspace = pyhf.Workspace(spec)
model = workspace.model()
data = workspace.data(model)
test_poi = 0.3
pyhf.set_backend("numpy", "minuit")
cls_obs, cls_exp_band = pyhf.infer.hypotest(
test_poi,
data,
model,
model.config.suggested_init(),
model.config.suggested_bounds(),
calctype="toybased",
ntoys=10,
return_expected_set=True,
)
print(f"CLs obs: {cls_obs}")
print(f"CLs,exp band: {cls_exp_band}") gives
/home/feickert/Code/GitHub/pyhf/src/pyhf/tensor/numpy_backend.py:352: RuntimeWarning: invalid value encountered in log
return n * np.log(lam) - lam - gammaln(n + 1.0)
/home/feickert/Code/GitHub/pyhf/src/pyhf/interpolators/code4p.py:60: RuntimeWarning: invalid value encountered in greater
alphasets > 1, self.mask_on, self.mask_off
/home/feickert/Code/GitHub/pyhf/src/pyhf/interpolators/code4p.py:64: RuntimeWarning: invalid value encountered in less
alphasets < -1, self.mask_on, self.mask_off
/home/feickert/Code/GitHub/pyhf/src/pyhf/interpolators/code4.py:174: RuntimeWarning: invalid value encountered in greater_equal
alphasets >= self.__alpha0, self.mask_on, self.mask_off
/home/feickert/Code/GitHub/pyhf/src/pyhf/interpolators/code4.py:185: RuntimeWarning: invalid value encountered in greater
alphasets > -self.__alpha0, self.mask_on, self.mask_off
/home/feickert/Code/GitHub/pyhf/src/pyhf/interpolators/code4.py:204: RuntimeWarning: invalid value encountered in greater_equal
exponents >= self.__alpha0, exponents, self.ones
Signal-like: 0%| | 0/10 [00:00<?, ?toy/s] corr: None
fun: 105.51081895812985
hess_inv: None
message: 'Optimization failed. Estimated distance to minimum too large.'
minuit: <FMin edm=32.25506407014024 edm_goal=0.0002 errordef=1.0 fval=105.51081895812985 has_accurate_covar=True has_covariance=True has_made_posdef_covar=False has_parameters_at_limit=False has_posdef_covar=True has_reached_call_limit=False has_valid_parameters=True hesse_failed=False is_above_max_edm=True is_valid=False nfcn=736 ngrad=0>
(Param(number=0, name='x0', value=0.3, error=0.0, merror=None, is_const=False, is_fixed=True, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=0.0, upper_limit=10.0), Param(number=1, name='x1', value=0.0, error=0.9931107289828836, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=2, name='x2', value=0.0, error=0.9932910149895315, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=3, name='x3', value=0.0, error=0.9933393318734485, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=4, name='x4', value=0.0, error=0.9940175809982357, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=5, name='x5', value=0.0, error=0.9933518811119759, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=6, name='x6', value=0.0, error=1.000870060883898, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=7, name='x7', value=0.0, error=0.9933481611110668, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=8, name='x8', value=1.0, error=0.01711493433614214, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=1e-10, upper_limit=10.0), Param(number=9, name='x9', value=0.0, error=0.9933273809227003, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=10, name='x10', value=0.0, error=0.9936867160093494, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=11, name='x11', value=1.0, error=0.041452196141164965, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=1e-10, upper_limit=10.0), Param(number=12, name='x12', value=1.0, error=0.045856471293794165, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=1e-10, upper_limit=10.0), Param(number=13, name='x13', value=0.0, error=0.9932442678595423, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=14, name='x14', value=0.0, error=0.99283362423918, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=15, name='x15', value=0.0, error=0.37922418126761137, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=16, name='x16', value=0.0, error=0.9863023032766534, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=17, name='x17', value=1.0, error=0.020016524824436055, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=1e-10, upper_limit=10.0), Param(number=18, name='x18', value=0.0, error=0.9931322407671437, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=-5.0, upper_limit=5.0), Param(number=19, name='x19', value=1.0, error=0.018213408912382767, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=1e-10, upper_limit=10.0), Param(number=20, name='x20', value=1.0, error=0.04148819634376388, merror=None, is_const=False, is_fixed=False, has_limits=True, has_lower_limit=True, has_upper_limit=True, lower_limit=1e-10, upper_limit=10.0))
[[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00]
[ 0.00000000e+00 9.99518613e-01 9.09768186e-05 7.99537944e-05
-6.68575247e-06 -2.24288478e-08 -2.13207323e-05 -4.16009176e-07
-2.48760551e-08 1.21483159e-04 1.33328944e-04 4.62564162e-06
2.90903899e-05 -4.88509475e-04 2.76114330e-04 1.61096965e-02
1.79646910e-03 -9.35630056e-07 1.51547041e-04 2.34244091e-06
1.70872644e-07]
[ 0.00000000e+00 9.09768186e-05 9.99886462e-01 -2.17774659e-06
-2.78045351e-04 -9.34580240e-07 6.90122761e-06 1.17469428e-07
-1.03416651e-06 -1.05879521e-05 -1.59629609e-07 -3.27773704e-08
6.40660292e-10 6.09712305e-04 -3.44904652e-04 4.15185938e-04
8.40764779e-05 1.16775643e-06 -2.06456060e-05 -3.23705904e-07
1.03724400e-09]
[ 0.00000000e+00 7.99537944e-05 -2.17774659e-06 9.99985058e-01
-1.15926391e-04 -3.79565605e-07 -8.50752964e-05 -1.17064151e-06
-4.31230663e-07 -2.05157750e-05 1.35800983e-04 2.95523515e-05
-1.14872247e-06 1.19606362e-05 -6.71977937e-06 -3.43569121e-03
-4.09986146e-04 2.29482632e-08 -2.77849392e-05 -4.31715116e-07
-1.99966508e-08]
[ 0.00000000e+00 -6.68575247e-06 -2.78045351e-04 -1.15926391e-04
1.00136963e+00 3.18929854e-03 -2.37665549e-02 -3.55284604e-04
-1.31213754e-06 -3.58435642e-06 5.80744480e-04 1.15553978e-04
8.50443122e-06 -1.74841496e-07 9.49440162e-08 1.85642481e-07
2.08172141e-08 -3.50779699e-10 8.10993923e-09 1.02652085e-10
1.23429462e-12]
[ 0.00000000e+00 -2.24288478e-08 -9.34580240e-07 -3.79565605e-07
3.18929854e-03 1.00001067e+00 -7.92768414e-05 -1.17799911e-06
1.18627899e-05 -1.90255619e-08 1.92294901e-06 3.85331531e-07
2.83680937e-08 -7.67241110e-09 2.95237629e-10 3.71426765e-10
-6.17689707e-09 -2.95868083e-11 7.72213533e-11 -2.24429767e-11
-6.50798362e-16]
[ 0.00000000e+00 -2.13207323e-05 6.90122761e-06 -8.50752964e-05
-2.37665549e-02 -7.92768414e-05 1.01541419e+00 2.15801883e-04
-8.84009057e-05 1.52993476e-04 -2.48071736e-02 -4.93613036e-03
-3.63147587e-04 1.52828007e-08 -1.26211333e-08 -5.49723182e-07
-3.99728181e-08 7.24204445e-11 -6.10283000e-09 -6.77486319e-11
-1.72810926e-11]
[ 0.00000000e+00 -4.16009176e-07 1.17469428e-07 -1.17064151e-06
-3.55284604e-04 -1.17799911e-06 2.15801883e-04 1.00000308e+00
-1.32150272e-06 2.33806080e-06 -3.76871502e-04 -6.81355123e-05
-1.40103501e-05 4.09878843e-10 6.87475999e-09 -1.03351199e-08
-9.23723940e-10 8.01170642e-13 6.99186703e-09 -1.67818369e-12
5.82189059e-11]
[ 0.00000000e+00 -2.48760551e-08 -1.03416651e-06 -4.31230663e-07
-1.31213754e-06 1.18627899e-05 -8.84009057e-05 -1.32150272e-06
2.92924155e-04 -1.32849261e-08 2.16010850e-06 4.29808876e-07
3.16331423e-08 -6.44634665e-10 3.53138411e-10 6.96195531e-10
3.02041115e-11 -1.28200871e-12 3.01635187e-11 4.00577804e-13
4.56216035e-15]
[ 0.00000000e+00 1.21483159e-04 -1.05879521e-05 -2.05157750e-05
-3.58435642e-06 -1.90255619e-08 1.52993476e-04 2.33806080e-06
-1.32849261e-08 9.99960670e-01 -4.12161533e-04 -4.68360102e-05
-4.96092878e-05 5.68842035e-05 -3.21439585e-05 -3.27738064e-03
-2.80314737e-04 1.08948666e-07 -3.29123953e-05 -4.96443941e-07
-1.00394150e-07]
[ 0.00000000e+00 1.33328944e-04 -1.59629609e-07 1.35800983e-04
5.80744480e-04 1.92294901e-06 -2.48071736e-02 -3.76871502e-04
2.16010850e-06 -4.12161533e-04 1.00069408e+00 1.02624958e-04
5.15930077e-06 -9.40336769e-08 4.92171858e-08 3.03211308e-06
3.07189201e-07 -1.95990833e-10 3.00561654e-08 4.35080613e-10
6.14460857e-11]
[ 0.00000000e+00 4.62564162e-06 -3.27773704e-08 2.95523515e-05
1.15553978e-04 3.85331531e-07 -4.93613036e-03 -6.81355123e-05
4.29808876e-07 -4.68360102e-05 1.02624958e-04 1.71839393e-03
1.76871520e-06 -4.50129161e-09 2.59688910e-09 1.26552255e-07
9.36564692e-09 -8.70830181e-12 1.42311251e-09 2.14366093e-11
4.89862715e-12]
[ 0.00000000e+00 2.90903899e-05 6.40660292e-10 -1.14872247e-06
8.50443122e-06 2.83680937e-08 -3.63147587e-04 -1.40103501e-05
3.16331423e-08 -4.96092878e-05 5.15930077e-06 1.76871520e-06
2.10297975e-03 -1.71203179e-08 9.64094715e-09 6.35523090e-07
6.66171297e-08 -3.29405691e-11 6.07699371e-09 9.31030719e-11
9.97739302e-12]
[ 0.00000000e+00 -4.88509475e-04 6.09712305e-04 1.19606362e-05
-1.74841496e-07 -7.67241110e-09 1.52828007e-08 4.09878843e-10
-6.44634665e-10 5.68842035e-05 -9.40336769e-08 -4.50129161e-09
-1.71203179e-08 9.99791074e-01 1.85024388e-03 -2.23067035e-03
-4.49217466e-04 -3.34886402e-06 1.10876779e-04 1.73894192e-06
-5.31522957e-09]
[ 0.00000000e+00 2.76114330e-04 -3.44904652e-04 -6.71977937e-06
9.49440162e-08 2.95237629e-10 -1.26211333e-08 6.87475999e-09
3.53138411e-10 -3.21439585e-05 4.92171858e-08 2.59688910e-09
9.64094715e-09 1.85024388e-03 9.98953357e-01 1.26006198e-03
2.55148298e-04 3.54373672e-06 -6.26363662e-05 -9.82447660e-07
2.97041167e-09]
[ 0.00000000e+00 1.61096965e-02 4.15185938e-04 -3.43569121e-03
1.85642481e-07 3.71426765e-10 -5.49723182e-07 -1.03351199e-08
6.96195531e-10 -3.27738064e-03 3.03211308e-06 1.26552255e-07
6.35523090e-07 -2.23067035e-03 1.26006198e-03 1.44087583e-01
-1.06488475e-01 -4.27233108e-06 -6.35722816e-03 -9.96972470e-05
2.33683893e-07]
[ 0.00000000e+00 1.79646910e-03 8.40764779e-05 -4.09986146e-04
2.08172141e-08 -6.17689707e-09 -3.99728181e-08 -9.23723940e-10
3.02041115e-11 -2.80314737e-04 3.07189201e-07 9.36564692e-09
6.66171297e-08 -4.49217466e-04 2.55148298e-04 -1.06488475e-01
9.85678487e-01 -8.60432038e-07 -7.65749920e-04 -1.21045380e-05
5.24115454e-07]
[ 0.00000000e+00 -9.35630056e-07 1.16775643e-06 2.29482632e-08
-3.50779699e-10 -2.95868083e-11 7.24204445e-11 8.01170642e-13
-1.28200871e-12 1.08948666e-07 -1.95990833e-10 -8.70830181e-12
-3.29405691e-11 -3.34886402e-06 3.54373672e-06 -4.27233108e-06
-8.60432038e-07 4.00667212e-04 2.12373905e-07 3.33054489e-09
-1.03023117e-11]
[ 0.00000000e+00 1.51547041e-04 -2.06456060e-05 -2.77849392e-05
8.10993923e-09 7.72213533e-11 -6.10283000e-09 6.99186703e-09
3.01635187e-11 -3.29123953e-05 3.00561654e-08 1.42311251e-09
6.07699371e-09 1.10876779e-04 -6.26363662e-05 -6.35722816e-03
-7.65749920e-04 2.12373905e-07 9.99562502e-01 -2.50263029e-06
4.58498441e-08]
[ 0.00000000e+00 2.34244091e-06 -3.23705904e-07 -4.31715116e-07
1.02652085e-10 -2.24429767e-11 -6.77486319e-11 -1.67818369e-12
4.00577804e-13 -4.96443941e-07 4.35080613e-10 2.14366093e-11
9.31030719e-11 1.73894192e-06 -9.82447660e-07 -9.96972470e-05
-1.21045380e-05 3.33054489e-09 -2.50263029e-06 3.31732340e-04
-2.25932163e-10]
[ 0.00000000e+00 1.70872644e-07 1.03724400e-09 -1.99966508e-08
1.23429462e-12 -6.50798362e-16 -1.72810926e-11 5.82189059e-11
4.56216035e-15 -1.00394150e-07 6.14460857e-11 4.89862715e-12
9.97739302e-12 -5.31522957e-09 2.97041167e-09 2.33683893e-07
5.24115454e-07 -1.03023117e-11 4.58498441e-08 -2.25932163e-10
1.72138018e-03]]
nfev: 736
njev: 0
success: False
unc: None
x: <ValueView x0=0.3 x1=0.0 x2=0.0 x3=0.0 x4=0.0 x5=0.0 x6=0.0 x7=0.0 x8=1.0 x9=0.0 x10=0.0 x11=1.0 x12=1.0 x13=0.0 x14=0.0 x15=0.0 x16=0.0 x17=1.0 x18=0.0 x19=1.0 x20=1.0>
Traceback (most recent call last):
File "/home/feickert/Code/GitHub/pyhf/src/pyhf/optimize/mixins.py", line 49, in _internal_minimize
assert result.success
AssertionError
Traceback (most recent call last):
File "/home/feickert/Code/GitHub/pyhf/src/pyhf/optimize/mixins.py", line 49, in _internal_minimize
assert result.success
AssertionError
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/tmp/debug.py", line 18, in <module>
cls_obs, cls_exp_band = pyhf.infer.hypotest(
File "/home/feickert/Code/GitHub/pyhf/src/pyhf/infer/__init__.py", line 160, in hypotest
sig_plus_bkg_distribution, bkg_only_distribution = calc.distributions(poi_test)
File "/home/feickert/Code/GitHub/pyhf/src/pyhf/infer/calculators.py", line 726, in distributions
teststat_func(
File "/home/feickert/Code/GitHub/pyhf/src/pyhf/infer/test_statistics.py", line 189, in qmu_tilde
return _qmu_like(mu, data, pdf, init_pars, par_bounds, fixed_params)
File "/home/feickert/Code/GitHub/pyhf/src/pyhf/infer/test_statistics.py", line 25, in _qmu_like
tmu_like_stat, (_, muhatbhat) = _tmu_like(
File "/home/feickert/Code/GitHub/pyhf/src/pyhf/infer/test_statistics.py", line 44, in _tmu_like
mubhathat, fixed_poi_fit_lhood_val = fixed_poi_fit(
File "/home/feickert/Code/GitHub/pyhf/src/pyhf/infer/mle.py", line 202, in fixed_poi_fit
return fit(data, pdf, init_pars, par_bounds, fixed_params, **kwargs)
File "/home/feickert/Code/GitHub/pyhf/src/pyhf/infer/mle.py", line 131, in fit
return opt.minimize(
File "/home/feickert/Code/GitHub/pyhf/src/pyhf/optimize/mixins.py", line 160, in minimize
result = self._internal_minimize(**minimizer_kwargs, options=kwargs)
File "/home/feickert/Code/GitHub/pyhf/src/pyhf/optimize/mixins.py", line 52, in _internal_minimize
raise exceptions.FailedMinimization(result)
pyhf.exceptions.FailedMinimization: Optimization failed. Estimated distance to minimum too large. |
Hi @matthewfeickert , Yes- that's also what I see. My thinking is that the feature request would make it a bit easier for the user to debug and to quantify the fraction of toys which fail. For example for some fits that I'm running 99.5% of the toys are fine if I put in some patchy error handling, which shouldn't bias my result much and a few failed fits is no problem. Sometimes it's more like 50% of the toys which is more of a problem. And in my experience a few failed minuit fits isn't unexpected...? But let me know if you have any other suggestions about how to debug this and/or configure pyhf. |
Hi @matthewfeickert, @annmwang, I have the same issues. Are there any updates / proposed solutions related to the topic? Thanks a lot! |
Edit: I see similar issues with the scipy optimizer
|
I found a solution that works for me: I've added a allowed_failures = self.allowed_failures # fraction of toys that are allowed to fail
failures = 0
signal_teststat = []
for sample in tqdm.tqdm(signal_sample, **tqdm_options, desc='Signal-like'):
try:
signal_teststat.append(
teststat_func(
poi_test,
sample,
self.pdf,
self.init_pars,
self.par_bounds,
self.fixed_params,
)
)
except KeyboardInterrupt:
raise KeyboardInterrupt
except:
failures = failures + 1
if failures / self.ntoys > allowed_failures:
raise AssertionError(f'more than {allowed_failures * 100} % of the toys failed')
continue
if failures > 0: print(f'\n{failures} / {self.ntoys} failed (signal-like)\n')
failures = 0
bkg_teststat = []
for sample in tqdm.tqdm(bkg_sample, **tqdm_options, desc='Background-like'):
try:
bkg_teststat.append(
teststat_func(
poi_test,
sample,
self.pdf,
self.init_pars,
self.par_bounds,
self.fixed_params,
)
)
except KeyboardInterrupt:
raise KeyboardInterrupt
except:
failures = failures + 1
if failures / self.ntoys > allowed_failures:
raise AssertionError(f'more than {allowed_failures * 100} % of the toys failed')
continue
if failures > 0: print(f'\n{failures} / {self.ntoys} failed (background-like)\n') I.e., This can be used like:
I'm not sure if this is the best way to do it. I can do an MR if people are interested. The default (allowed_failures=0.0) behaves like before, which means that the code crashes when a minimization error occurs. |
Description
I am also running into some trouble while running toys with minuit. Sometimes one of the fits fails, and the whole script will exit. For me it's not problematic to have a few toys fail, as long as there's some log information that counts the number of failures.
Describe the solution you'd like
It'd be great for pyhf to allow some fraction of the toys to fail without completely exiting.
Thanks!
The text was updated successfully, but these errors were encountered: