forked from ruricolist/serapeum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
op.lisp
258 lines (220 loc) · 8.74 KB
/
op.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
(defpackage :serapeum/op
(:use :cl :alexandria :serapeum)
(:import-from :trivia :match)
#+sb-package-locks (:implement :serapeum :serapeum/op))
(in-package :serapeum/op)
;;; NB We are forced to use SBCL's code walker because it is the only
;;; way to "see inside" SBCL's implementation of quasiquotation, which
;;; uses structures.
(define-symbol-macro underscore '_)
(define-symbol-macro rest-arg '_*)
(defun sym-underscore? (x)
(string= x underscore))
(defun sym-rest-arg? (x)
(string= x rest-arg))
(defun sym-numbered-placeholder? (x)
(let ((x (string x)))
#+sbcl (declare (notinline every))
(and (>= (length x) 2)
(string= '_ x :end2 1)
(every #'digit-char-p (subseq x 1)))))
(defclass op-env ()
((body :type list :initarg :body :initarg :body)
(vars :type list :initform nil :initarg :vars)
(rest-op? :type symbol :initform nil :initarg :rest-op?)))
(defun make-op-env (&rest args &key &allow-other-keys)
(apply #'make-instance 'op-env args))
(defmethod op-env-lambda ((op-env op-env))
(with-slots (body vars rest-op?) op-env
(let ((rest (and rest-op? `(&rest ,rest-op?))))
`(lambda (,@(reverse vars) ,@rest)
(declare (ignorable ,@vars))
,body))))
(defun var-lexical? (x env)
(declare (ignorable x env))
;; #+sbcl (sb-walker:var-lexical-p x env)
;; #-sbcl nil
;; TODO Figure out how to ignore bindings in the initial
;; environment.
nil)
(defun free? (x env) (not (var-lexical? x env)))
(defun rest-placeholder? (x env)
(declare (ignorable env))
(and (symbolp x)
(free? x env)
(string= x "_*")))
(defun placeholder? (x env)
(declare (ignorable env))
(and (symbolp x)
(free? x env)
(string= x "_")))
(defun numbered-placeholder? (x env)
(declare (ignorable env))
(and (symbolp x)
(free? x env)
(sym-numbered-placeholder? x)))
(defun quotation? (x env)
(match (expand-macro-recursively x env)
((list 'quote _) t)
((list 'function _) t)
(otherwise nil)))
(defun rest-op? (x env)
#+sbcl
(block nil
(sb-walker:walk-form
x env
(lambda (f c e)
(cond ((and (eql c :eval) (rest-placeholder? f e))
(return f))
(t f))))
nil)
#-sbcl
(cond ((rest-placeholder? x env) x)
((listp x)
(some (lambda (x)
(rest-op? x env))
x))
(t nil)))
(defun extract-op-env (body env)
(let ((rest-op? (rest-op? `(progn ,@body) env)))
(multiple-value-bind (body vars) (body+vars body env)
(make-op-env :body body
:rest-op? rest-op?
:vars vars))))
(defun body+vars (body env)
(let ((counter 0)
(vars '()))
(labels ((make-var ()
(let ((var (intern (format nil "_~d" (incf counter)))))
(push var vars)
var))
(make-var/numbered (x)
(let ((n (parse-integer (subseq (string x) 1))))
(when (> n counter)
(loop repeat (- n counter) do (make-var))))
x)
(splice (y env)
(mapcar (lambda (x)
(if (rest-placeholder? x env)
`(values-list ,x)
`(values ,x)))
y))
(make-spliced-call (f env)
(match f
((list* 'progn body)
(make-spliced-call
`((lambda (&rest xs)
xs)
,@body)
env))
((list* fn _)
(let ((splice (splice (cdr f) env)))
`(multiple-value-call (function ,fn)
,@splice)))))
(walk-op (x env)
(declare (ignorable env))
#+sbcl
(sb-walker:walk-form
x env
(lambda (f c e)
(cond ((not (eql c :eval)) f)
((placeholder? f e)
(values (make-var) t))
((numbered-placeholder? f e)
(values (make-var/numbered f) t))
((and (listp f)
(some (lambda (x) (rest-placeholder? x e)) f))
(let ((f (cons (car f)
(mapcar (lambda (x) (walk-op x e))
(cdr f)))))
(values
(make-spliced-call f e)
t)))
((and (listp f)
(placeholder? (car f) e))
`(funcall ,(car f) ,@(cdr f)))
(t f))))
#-sbcl
(cond ((quotation? x env) x)
((placeholder? x env) (make-var))
((numbered-placeholder? x env)
(make-var/numbered x))
((and (listp x)
(some (rcurry #'rest-placeholder? env) x))
(let ((y (mapcar (rcurry #'walk-op env) x)))
(make-spliced-call y env)))
((and (listp x)
(placeholder? (car x) env))
(walk-op `(funcall ,(car x) ,@(cdr x)) env))
((listp x)
(loop for y in x collect (walk-op y env)))
(t x))))
(let ((body (walk-op `(progn ,@body) env)))
(values body vars)))))
;; TODO Handle dotted lists.
(defmacro op (&body body &environment env)
"GOO's simple macro for positional lambdas.
An OP is like a lambda without an argument list. Within the body of the OP
form, an underscore introduces a new argument.
(reduce (op (set-intersection _ _ :test #'equal))
sets)
You can refer back to each argument by number, starting with _1.
(funcall (op (+ _ _1)) 2) => 4
You can also use positional arguments directly:
(reduce (op (funcall _2 _1)) ...)
Argument lists can be sparse:
(apply (op (+ _1 _3 _5)) '(1 2 3 4 5)) => 9
Note that OP with a single argument is equivalent to CONSTANTLY:
(funcall (op 1)) => 1
and that OP with a single placeholder is equivalent to IDENTITY:
(funcall (op _) 1) => 1
OP can also be used to define variadic functions by using _* as the
placeholder. It is not necessary to use APPLY.
(apply (op (+ _*)) '(1 2 3 4)) => 10
OP is intended for simple functions -- one-liners. Parameters are
extracted according to a depth-first walk of BODY. Macro expansion
may, or may not, be done depending on the implementation; it should
not be relied on. Lexical bindings may, or may not, shadow
placeholders -- again, it depends on the implementation. (This means,
among other things, that nested use of `op' is not a good idea.)
Because of the impossibility of a truly portable code walker, `op'
will never be a true replacement for `lambda'. But even if it were
possible to do better, `op' would still only be suited for one-liners.
If you need more than a one-liner, then you should be giving your
arguments names.
\{One thing you *can* count on the ability to use `op' with
quasiquotes. If using placeholders inside quasiquotes does not work on
your Lisp implementation, that's a bug, not a limitation.)"
(let ((env (extract-op-env body env)))
(op-env-lambda env)))
(defmacro opf (place expr)
"Like `(callf PLACE (op EXPR))'.
From GOO."
`(callf (op ,expr) ,place))
;;; `op/no-walker' is not actually meant to be used. It is a reference
;;; for how `op' would work in an ideal world ("ideal world" = "world
;;; with a portable code walker").
(defmacro op/no-walker (&body body)
(with-unique-names (counter args vec next-arg len arg-ref)
`(let ((,counter -1)
(,len 0))
(declare (ignorable ,counter))
(lambda (&rest ,args)
(let ((,vec (coerce ,args '(simple-array * (*)))))
(declare (ignorable ,vec))
(flet ((,next-arg ()
(prog1 (svref ,vec (incf ,counter))
(maxf ,len (1+ ,counter))))
(,arg-ref (i)
(maxf ,len (1+ i))
(svref ,vec i)))
(symbol-macrolet ((,underscore (,next-arg))
(,rest-arg
(prog1 (nthcdr ,args (1+ ,counter))
(setf ,len (length ,vec))))
,@(loop for i from 0 below 50
for sym = (intern (format nil "_~a" (1+ i)))
collect `(,sym (arg-ref ,i))))
(multiple-value-prog1 (progn ,@body)
(when (< ,len (length ,vec))
(error "Too many arguments."))))))))))