-
-
Notifications
You must be signed in to change notification settings - Fork 368
/
priors.go
executable file
·376 lines (339 loc) · 11.1 KB
/
priors.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Copyright 2015-2016 Zack Scholl. All rights reserved.
// Use of this source code is governed by a AGPL
// license that can be found in the LICENSE file.
// priors.go contains variables for calcualting priors.
package main
import (
"log"
"math"
"path"
"github.com/boltdb/bolt"
)
// PdfType dictates the width of gaussian smoothing
var PdfType []float32
// MaxRssi is the maximum level of signal
var MaxRssi int
// MinRssi is the minimum level of signal
var MinRssi int
// RssiPartitions are the calculated number of partitions from MinRssi and MaxRssi
var RssiPartitions int
// Absentee is the base level of probability for any signal
var Absentee float32
// RssiRange is the calculated partitions in array form
var RssiRange []float32
// FoldCrossValidation is the amount of data left out during learning to be used in cross validation
var FoldCrossValidation float64
func init() {
PdfType = []float32{.1995, .1760, .1210, .0648, .027, 0.005}
Absentee = 1e-6
MinRssi = -110
MaxRssi = 5
RssiPartitions = MaxRssi - MinRssi + 1
RssiRange = make([]float32, RssiPartitions)
for i := 0; i < len(RssiRange); i++ {
RssiRange[i] = float32(MinRssi + i)
}
FoldCrossValidation = 4
}
// deprecated
func optimizePriors(group string) {
// generate the fingerprintsInMemory
fingerprintsInMemory := make(map[string]Fingerprint)
var fingerprintsOrdering []string
db, err := bolt.Open(path.Join(RuntimeArgs.SourcePath, group+".db"), 0600, nil)
if err != nil {
log.Fatal(err)
}
db.View(func(tx *bolt.Tx) error {
b := tx.Bucket([]byte("fingerprints"))
c := b.Cursor()
for k, v := c.First(); k != nil; k, v = c.Next() {
fingerprintsInMemory[string(k)] = loadFingerprint(v)
// fmt.Println(fingerprintsInMemory[string(k)].Location, string(k))
fingerprintsOrdering = append(fingerprintsOrdering, string(k))
}
return nil
})
db.Close()
var ps = *NewFullParameters()
getParameters(group, &ps, fingerprintsInMemory, fingerprintsOrdering)
calculatePriors(group, &ps, fingerprintsInMemory, fingerprintsOrdering)
// fmt.Println(string(dumpParameters(ps)))
// ps, _ = openParameters("findtest")
var results = *NewResultsParameters()
for n := range ps.Priors {
ps.Results[n] = results
}
// fmt.Println(ps.Results)
// ps.Priors["0"].Special["MixIn"] = 1.0
// fmt.Println(crossValidation(group, "0", &ps))
// fmt.Println(ps.Results)
// loop through these parameters
mixins := []float64{0.1, 0.3, 0.5, 0.7, 0.9}
cutoffs := []float64{0.005}
for n := range ps.Priors {
bestResult := float64(0)
bestMixin := float64(0)
bestCutoff := float64(0)
for _, cutoff := range cutoffs {
for _, mixin := range mixins {
ps.Priors[n].Special["MixIn"] = mixin
ps.Priors[n].Special["VarabilityCutoff"] = cutoff
avgAccuracy := crossValidation(group, n, &ps, fingerprintsInMemory, fingerprintsOrdering)
// avgAccuracy := crossValidation(group, n, &ps)
if avgAccuracy > bestResult {
bestResult = avgAccuracy
bestCutoff = cutoff
bestMixin = mixin
}
}
}
ps.Priors[n].Special["MixIn"] = bestMixin
ps.Priors[n].Special["VarabilityCutoff"] = bestCutoff
// Final validation
crossValidation(group, n, &ps, fingerprintsInMemory, fingerprintsOrdering)
// crossValidation(group, n, &ps)
}
go saveParameters(group, ps)
go setPsCache(group, ps)
}
func regenerateEverything(group string) {
// generate the fingerprintsInMemory
fingerprintsInMemory := make(map[string]Fingerprint)
var fingerprintsOrdering []string
db, err := bolt.Open(path.Join(RuntimeArgs.SourcePath, group+".db"), 0600, nil)
if err != nil {
log.Fatal(err)
}
db.View(func(tx *bolt.Tx) error {
b := tx.Bucket([]byte("fingerprints"))
c := b.Cursor()
for k, v := c.First(); k != nil; k, v = c.Next() {
fingerprintsInMemory[string(v)] = loadFingerprint(v)
fingerprintsOrdering = append(fingerprintsOrdering, string(v))
}
return nil
})
db.Close()
var ps = *NewFullParameters()
ps, _ = openParameters(group)
getParameters(group, &ps, fingerprintsInMemory, fingerprintsOrdering)
calculatePriors(group, &ps, fingerprintsInMemory, fingerprintsOrdering)
var results = *NewResultsParameters()
for n := range ps.Priors {
ps.Results[n] = results
}
for n := range ps.Priors {
crossValidation(group, n, &ps, fingerprintsInMemory, fingerprintsOrdering)
}
saveParameters(group, ps)
}
func crossValidation(group string, n string, ps *FullParameters, fingerprintsInMemory map[string]Fingerprint, fingerprintsOrdering []string) float64 {
for loc := range ps.NetworkLocs[n] {
ps.Results[n].TotalLocations[loc] = 0
ps.Results[n].CorrectLocations[loc] = 0
ps.Results[n].Accuracy[loc] = 0
ps.Results[n].Guess[loc] = make(map[string]int)
}
it := float64(-1)
for _, v1 := range fingerprintsOrdering {
v2 := fingerprintsInMemory[v1]
it++
if math.Mod(it, FoldCrossValidation) == 0 {
if len(v2.WifiFingerprint) == 0 {
continue
}
if _, ok := ps.NetworkLocs[n][v2.Location]; ok {
locationGuess, _ := calculatePosterior(v2, *ps)
ps.Results[n].TotalLocations[v2.Location]++
if locationGuess == v2.Location {
ps.Results[n].CorrectLocations[v2.Location]++
}
if _, ok := ps.Results[n].Guess[v2.Location]; !ok {
ps.Results[n].Guess[v2.Location] = make(map[string]int)
}
if _, ok := ps.Results[n].Guess[v2.Location][locationGuess]; !ok {
ps.Results[n].Guess[v2.Location][locationGuess] = 0
}
ps.Results[n].Guess[v2.Location][locationGuess]++
}
}
}
average := float64(0)
for loc := range ps.NetworkLocs[n] {
if ps.Results[n].TotalLocations[loc] > 0 {
// fmt.Println(ps.Results[n].CorrectLocations[loc], ps.Results[n].TotalLocations[loc])
ps.Results[n].Accuracy[loc] = int(100.0 * ps.Results[n].CorrectLocations[loc] / ps.Results[n].TotalLocations[loc])
average += float64(ps.Results[n].Accuracy[loc])
}
}
average = average / float64(len(ps.NetworkLocs[n]))
return average
}
// calculatePriors generates the prior data for Naive-Bayes classification. Now deprecated, use calculatePriorsThreaded instead.
func calculatePriors(group string, ps *FullParameters, fingerprintsInMemory map[string]Fingerprint, fingerprintsOrdering []string) {
// defer timeTrack(time.Now(), "calculatePriors")
ps.Priors = make(map[string]PriorParameters)
for n := range ps.NetworkLocs {
var newPrior = *NewPriorParameters()
ps.Priors[n] = newPrior
}
// Initialization
ps.MacVariability = make(map[string]float32)
for n := range ps.Priors {
ps.Priors[n].Special["MacFreqMin"] = float64(100)
ps.Priors[n].Special["NMacFreqMin"] = float64(100)
for loc := range ps.NetworkLocs[n] {
ps.Priors[n].P[loc] = make(map[string][]float32)
ps.Priors[n].NP[loc] = make(map[string][]float32)
ps.Priors[n].MacFreq[loc] = make(map[string]float32)
ps.Priors[n].NMacFreq[loc] = make(map[string]float32)
for mac := range ps.NetworkMacs[n] {
ps.Priors[n].P[loc][mac] = make([]float32, RssiPartitions)
ps.Priors[n].NP[loc][mac] = make([]float32, RssiPartitions)
}
}
}
it := float64(-1)
for _, v1 := range fingerprintsOrdering {
v2 := fingerprintsInMemory[v1]
it++
if math.Mod(it, FoldCrossValidation) != 0 { // cross-validation
macs := []string{}
for _, router := range v2.WifiFingerprint {
macs = append(macs, router.Mac)
}
networkName, inNetwork := hasNetwork(ps.NetworkMacs, macs)
if inNetwork {
for _, router := range v2.WifiFingerprint {
if router.Rssi > MinRssi {
ps.Priors[networkName].P[v2.Location][router.Mac][router.Rssi-MinRssi] += PdfType[0]
for i, val := range PdfType {
if i > 0 {
ps.Priors[networkName].P[v2.Location][router.Mac][router.Rssi-MinRssi-i] += val
ps.Priors[networkName].P[v2.Location][router.Mac][router.Rssi-MinRssi+i] += val
}
}
} else {
Warning.Println(router.Rssi)
}
}
}
}
}
// Calculate the nP
for n := range ps.Priors {
for locN := range ps.NetworkLocs[n] {
for loc := range ps.NetworkLocs[n] {
if loc != locN {
for mac := range ps.NetworkMacs[n] {
for i := range ps.Priors[n].P[locN][mac] {
if ps.Priors[n].P[loc][mac][i] > 0 {
ps.Priors[n].NP[locN][mac][i] += ps.Priors[n].P[loc][mac][i]
}
}
}
}
}
}
}
// Add in absentee, normalize P and nP and determine MacVariability
for n := range ps.Priors {
macAverages := make(map[string][]float32)
for loc := range ps.NetworkLocs[n] {
for mac := range ps.NetworkMacs[n] {
for i := range ps.Priors[n].P[loc][mac] {
ps.Priors[n].P[loc][mac][i] += Absentee
ps.Priors[n].NP[loc][mac][i] += Absentee
}
total := float32(0)
for _, val := range ps.Priors[n].P[loc][mac] {
total += val
}
averageMac := float32(0)
for i, val := range ps.Priors[n].P[loc][mac] {
if val > float32(0) {
ps.Priors[n].P[loc][mac][i] = val / total
averageMac += RssiRange[i] * ps.Priors[n].P[loc][mac][i]
}
}
if averageMac < float32(0) {
if _, ok := macAverages[mac]; !ok {
macAverages[mac] = []float32{}
}
macAverages[mac] = append(macAverages[mac], averageMac)
}
total = float32(0)
for i := range ps.Priors[n].NP[loc][mac] {
total += ps.Priors[n].NP[loc][mac][i]
}
if total > 0 {
for i := range ps.Priors[n].NP[loc][mac] {
ps.Priors[n].NP[loc][mac][i] = ps.Priors[n].NP[loc][mac][i] / total
}
}
}
}
// Determine MacVariability
for mac := range macAverages {
if len(macAverages[mac]) <= 2 {
ps.MacVariability[mac] = float32(1)
} else {
maxVal := float32(-10000)
for _, val := range macAverages[mac] {
if val > maxVal {
maxVal = val
}
}
for i, val := range macAverages[mac] {
macAverages[mac][i] = maxVal / val
}
ps.MacVariability[mac] = standardDeviation(macAverages[mac])
}
}
}
// Determine mac frequencies and normalize
for n := range ps.Priors {
for loc := range ps.NetworkLocs[n] {
maxCount := 0
for mac := range ps.MacCountByLoc[loc] {
if ps.MacCountByLoc[loc][mac] > maxCount {
maxCount = ps.MacCountByLoc[loc][mac]
}
}
for mac := range ps.MacCountByLoc[loc] {
ps.Priors[n].MacFreq[loc][mac] = float32(ps.MacCountByLoc[loc][mac]) / float32(maxCount)
if float64(ps.Priors[n].MacFreq[loc][mac]) < ps.Priors[n].Special["MacFreqMin"] {
ps.Priors[n].Special["MacFreqMin"] = float64(ps.Priors[n].MacFreq[loc][mac])
}
}
}
}
// Deteremine negative mac frequencies and normalize
for n := range ps.Priors {
for loc1 := range ps.Priors[n].MacFreq {
sum := float32(0)
for loc2 := range ps.Priors[n].MacFreq {
if loc2 != loc1 {
for mac := range ps.Priors[n].MacFreq[loc2] {
ps.Priors[n].NMacFreq[loc1][mac] += ps.Priors[n].MacFreq[loc2][mac]
sum++
}
}
}
// Normalize
if sum > 0 {
for mac := range ps.Priors[n].MacFreq[loc1] {
ps.Priors[n].NMacFreq[loc1][mac] = ps.Priors[n].NMacFreq[loc1][mac] / sum
if float64(ps.Priors[n].NMacFreq[loc1][mac]) < ps.Priors[n].Special["NMacFreqMin"] {
ps.Priors[n].Special["NMacFreqMin"] = float64(ps.Priors[n].NMacFreq[loc1][mac])
}
}
}
}
}
for n := range ps.Priors {
ps.Priors[n].Special["MixIn"] = 0.5
ps.Priors[n].Special["VarabilityCutoff"] = 0
}
}