forked from Varbin/xtea
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxtea.py
488 lines (388 loc) · 14.4 KB
/
xtea.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
"""
XTEA-Cipher in Python (eXtended Tiny Encryption Algorithm)
XTEA is a blockcipher with 8 bytes blocksize and 16 bytes Keysize (128-Bit).
The algorithm is secure at 2014 with the recommend 64 rounds (32 cycles). This
implementation supports following modes of operation:
ECB, CBC, CFB, OFB, CTR
Example:
>>> from xtea import *
>>> key = " "*16 # Never use this
>>> text = "This is a text. "*8
>>> x = new(key, mode=MODE_OFB, IV="12345678")
>>> c = x.encrypt(text)
>>> c.encode("hex")
'fa66ec11b82e38bc77c14be093bb8aa0d7fe0fb9e6ec015
7a22d254fee43aea9a64c8dbb2c2b899f66800f264419c8e
8796ad8f94c7758b916428019d10573943324a9dcf60f883
1f0f925cd7215e5dd4f1334d9ee242d41ac02d0a64c49663
e5897bfd2450982379267e6cd7405b477ccc19d6c0d32e2f
887b76fe01d621a8d'
>>> text == x.decrypt(c)
True
"""
from __future__ import print_function
import struct
import binascii
import sys
import warnings
MODE_ECB = 1
MODE_CBC = 2
MODE_CFB = 3
MODE_PGP = 4
MODE_OFB = 5
MODE_CTR = 6
PY_3 = sys.version_info.major >= 3
if PY_3:
def b_ord(n):
return n
def b_chr(n):
return bytes([n])
else:
def b_ord(n):
return ord(n)
def b_chr(n):
return chr(n)
PY_3 = sys.version_info.major >= 3
if PY_3:
def to_bytes(integer, length, byteorder):
return integer.to_bytes(length, byteorder)
def from_bytes(bytesarray, byteorder):
return int.from_bytes(bytesarray, byteorder)
else:
def to_bytes(integer, length, byteorder='big'):
h = '%x' % integer
s = ('0'*(len(h) % 2) + h).zfill(length*2).decode('hex')
if byteorder == 'big':
return s
elif byteorder =='little':
return s[::-1]
else:
raise ValueError("byteorder must be either 'little' or 'big'")
def from_bytes(bytesarray, byteorder):
if len(bytesarray) == 4:
size = 'L'
elif len(bytesarray) == 8:
size = 'Q'
if byteorder=='big':
return struct.unpack(">"+size, bytesarray)[0]
elif byteorder=='little':
return struct.unpack("<"+size, bytesarray)[0]
else:
raise ValueError("byteorder must be either 'little' or 'big'")
block_size = 64
key_size = 128
def new(key, **kwargs):
"""Create an "XTEACipher" object.
It fully PEP-272 comliant, default mode is ECB.
Args:
key (bytes): The key for encrytion/decryption. Must be 16 in length
Kwargs:
mode (int): Mode of operation, must be one of this::
1 = ECB
2 = CBC
3 = CFB
5 = OFB
6 = CTR
IV (bytes): Initialisation vector (needed with CBC/CFB).
Must be 8 in length.
counter (callable object): a callable counter wich returns bytestrings
.. versionchanged:: 0.5.0
Only bytestrings can be used, previously integers were allowed,
too.
endian (char / string):
how data is beeing extracted (default "!" = big endian)
..seealso:: modules :py:mod:`struct`
rounds (int / float): How many rounds are going to be used,
one round are two cycles, there are no *half* cycles.
The minimum secure rounds are 37 (default 64)
Raises:
ValueError if invalid/not all data is given.
NotImplementedError on MODE_PGP
Returns:
XTEACipher object
"""
return XTEACipher(key, **kwargs)
################ XTEACipher class
class XTEACipher(object):
"""The cipher class
Functions:
encrypt -- encrypt data
decrypt -- decrypt data
_block -- splits the data in blocks (you may need padding)
Constants:
block_size = 8
Variables:
IV -- the initialisation vector (default None or "\00"*8)
counter -- counter for CTR (default None)
"""
block_size = 8
IV = None
counter = None
def __init__(self, key, **kwargs):
"""\
Alternative constructor.
Create an cipher object.
Args:
key (bytes): The key for encrytion/decryption. Must be 16 in length
Kwargs:
mode (int): Mode of operation, must be one of this::
1 = ECB
2 = CBC
3 = CFB
5 = OFB
6 = CTR
IV (bytes): Initialisation vector (needed with CBC/CFB).
Must be 8 in length.
counter (callable object): a callable counter wich returns bytes
or int (needed with CTR)
endian (char / string):
how data is beeing extracted (default "!")
..seealso:: modules :py:mod:`struct`
Raises:
ValueError if invalid/not all required data is give.
NotImplementedError on MODE_PGP.
Creates:
XTEACipher object
"""
self.key = key
if len(key) != key_size/8: # Check key len
raise ValueError("Key must be 128 bit long")
keys = kwargs.keys() # arguments
if "mode" in keys: # check for mode
self.mode = kwargs["mode"] # read mode
else:
self.mode = MODE_ECB # if not given
warnings.warn("Using implicit ECB!")
if self.mode == MODE_PGP:
raise NotImplementedError("PGP-CFB is not implemented")
if "IV" in keys: # get iv
self.IV = kwargs["IV"]
if len(self.IV) != self.block_size: # iv len = blocksize
raise ValueError("IV must be 8 bytes long")
elif self.mode == MODE_CBC or self.mode == MODE_CFB: # cfb & cbc need iv
raise ValueError("CBC, CFB need an IV")
elif self.mode == MODE_OFB: # ofb nocne if not given = "\x00" * 16
self.IV = '\00\00\00\00\00\00\00\00'
if "counter" in keys: # ctr needs counter
self.counter = kwargs["counter"]
elif self.mode == MODE_CTR: # if ctr and counter not given
raise ValueError("CTR needs a counter")
if "rounds" in keys: # rounds to operate
self.rounds = kwargs["rounds"]
else:
self.rounds = 64
if "endian" in keys: # endian for struct str -> int -> str (byte order)
self.endian = kwargs["endian"]
else:
self.endian = "!" # default network/big endian
if self.mode == MODE_OFB:
def keygen():
while True:
self.IV = _encrypt(self.key,self.IV,self.rounds//2)
for k in self.IV:
yield b_ord(k)
self._keygen = keygen()
elif self.mode == MODE_CTR:
def keygen():
while True:
self.IV = _encrypt(self.key, self.counter(),
self.rounds//2)
for k in self.IV:
yield b_ord(k)
self._keygen = keygen()
def encrypt(self, data):
"""\
Encrypt data, it must be a multiple of 8 in length except for
CTR and OFB mode of operation. When using the OFB or CTR mode, the
function for encryption and decryption is the same.
Args:
data (bytes): The data to encrypt.
Returns:
bytestrings
Raises:
ValueError
"""
#ECB
if self.mode == MODE_ECB:
if not len(data) % (self.block_size):
out = []
blocks=self._block(data)
for block in blocks:
out.append(_encrypt(self.key, block, self.rounds//2,
self.endian))
return b"".join(out)
else:
raise ValueError("Input string must be a multiple of blocksize in length")
#CBC
elif self.mode == MODE_CBC:
if not len(data) % (self.block_size):
out = [self.IV]
blocks=self._block(data)
for i in range(0, len(blocks)):
xored = xor_strings(blocks[i], out[i])
out.append(_encrypt(self.key,xored,self.rounds//2,
self.endian))
self.IV = out[-1]
return b"".join(out[1:])
else:
raise ValueError("Input string must be a multiple of blocksize in length")
#OFB
elif self.mode == MODE_OFB:
#return _crypt_ofb(self.key, data, self.IV, self.rounds/2)
return self._stream(data)
#CFB
elif self.mode == MODE_CFB:
if not len(data) % self.block_size:
blocks = self._block(data)
out = []
for block in blocks:
tx = _encrypt(self.key, self.IV, self.rounds//2,
self.endian)
self.IV = xor_strings(block, tx)
out.append(fb)
return b"".join(out)
else:
raise ValueError("Input string must be a multiple of blocksize in length")
#CTR
elif self.mode == MODE_CTR:
return self._stream(data)
def decrypt(self, data):
"""\
Decrypt data, it must be a multiple of 8 in length except for
CTR and OFB mode of operation. When using the OFB or CTR mode, the
function for encryption and decryption is the same.
Args:
data (bytes): The data to decrypt.
Returns:
bytestrings
Raises:
ValueError
"""
#ECB
if self.mode == MODE_ECB:
if not (len(data) % self.block_size):
out = []
blocks=self._block(data)
for block in blocks:
out.append(_decrypt(self.key, block, self.rounds//2,
self.endian))
return b"".join(out)
else:
raise ValueError("Input string must be a multiple of blocksize in length")
#CBC
elif self.mode == MODE_CBC:
if not (len(data) % self.block_size):
out = []
blocks = self._block(data)
blocks = [self.IV]+blocks
for i in range(1, len(blocks)):
out.append(
xor_strings(
_decrypt(
self.key,blocks[i]
,self.rounds//2,
self.endian),
blocks[i-1])
)
self.IV = blocks[-1]
return b"".join(out)
#OFB
elif self.mode == MODE_OFB:
#return _crypt_ofb(self.key, data, self.IV, self.rounds/2)
return self._stream(data)
#CFB
elif self.mode == MODE_CFB:
if not len(data) % self.block_size:
blocks = self._block(data)
out = []
for block in blocks:
tx = _encrypt(self.key, self.IV, self.rounds//2,
self.endian)
self.IV = block[:]
out.append(xor_strings(block,tx))
return b"".join(out)
else:
raise ValueError("Input string must be a multiple of blocksize in length")
#CTR
elif self.mode == MODE_CTR:
return self._stream(data)
def _stream(self, data):
xor = [ b_chr(x^y) for (x,y) in zip(map(b_ord,data),self._keygen) ]
return b"".join(xor)
def _block(self, s):
l = []
rest_size = len(s) % self.block_size
for i in range(len(s)//self.block_size):
l.append(s[i*self.block_size:((i+1)*self.block_size)])
if rest_size:
raise ValueError()
return l
################ Util functions: basic encrypt/decrypt, OFB, xor, stringToLong
"""
This are utilities only, use them only if you know what you do.
Functions:
_encrypt -- Encrypt one single block of data.
_decrypt -- Decrypt one single block of data.
xor_strings -- xor to strings together.
stringToLong -- Convert any string to a number.
longToString --Convert some longs to string.
"""
def _encrypt(key,block,n=32,endian="!"):
"""Encrypt one single block of data.
Only use if you know what to do.
Keyword arguments:
key -- the key for encrypting (and decrypting)
block -- one block plaintext
n -- cycles, one cycle is two rounds, more cycles
-> more security and slowness (default 32)
endian -- how struct will handle data (default "!" (big endian/network))
"""
v0,v1 = struct.unpack(endian+"2L",block)
k = struct.unpack(endian+"4L",key)
sum,delta,mask = 0, 0x9e3779b9, 0xffffffff
for round in range(n):
v0 = (v0 + (((v1<<4 ^ v1>>5) + v1) ^ (sum + k[sum & 3]))) & mask
sum = (sum + delta) & mask
v1 = (v1 + (((v0<<4 ^ v0>>5) + v0) ^ (sum + k[sum>>11 & 3]))) & mask
return struct.pack(endian+"2L",v0,v1)
def _decrypt(key,block,n=32,endian="!"):
"""Decrypt one single block of data.
Only use if you know what to do.
Keyword arguments:
key -- the key for encrypting (and decrypting)
block -- one block ciphertext
n -- cycles, one cycle is two rounds, more cycles =
-> more security and slowness (default 32)
endian -- how struct will handle data (default "!" (big endian/network))
"""
v0,v1 = struct.unpack(endian+"2L",block)
k = struct.unpack(endian+"4L",key)
delta,mask = 0x9e3779b9,0xffffffff
sum = (delta * n) & mask
for round in range(n):
v1 = (v1 - (((v0<<4 ^ v0>>5) + v0) ^ (sum + k[sum>>11 & 3]))) & mask
sum = (sum - delta) & mask
v0 = (v0 - (((v1<<4 ^ v1>>5) + v1) ^ (sum + k[sum & 3]))) & mask
return struct.pack(endian+"2L",v0,v1)
if PY_3:
def xor_strings(s,t):
"""xor to strings together.
Keyword arguments:
s -- string one
t -- string two
"""
return bytes([(x^y) for x,y in zip(s,t)])
else:
def xor_strings(s,t):
"""xor to strings together.
Keyword arguments:
s -- string one
t -- string two
"""
return "".join(chr(ord(x)^ord(y)) for x,y in zip(s,t))
def stringToLong(s):
"""Convert any string to a number."""
return int(binascii.hexlify(s),16)
def longToString(n):
"""Convert some longs to string."""
return binascii.unhexlify("%x" % n)