-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun.py
68 lines (62 loc) · 5.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from keras.layers import Conv2D, MaxPool2D, AveragePooling2D, BatchNormalization, Add, Concatenate, Lambda, Activation
from keras.applications.mobilenet import DepthwiseConv2D
from cgp.cgp import CgpConfig, CGP
from evaluator.keras_evaluator import Evaluator
from trainer.cifar_trainer import Cifar10Trainer
from trainer.voc2012_trainer import Voc2012Trainer
from trainer.cityscapes_trainer import CityscapesTrainer
from layers.shuffle import ShuffleBlock
import math
import os
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.FATAL)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '5'
# pylint: disable=line-too-long
function_mapping = {
'pw_32': {'cls': Conv2D, 'args': {'filters': 32, 'kernel_size': 1, 'strides': 1, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
'pw_64': {'cls': Conv2D, 'args': {'filters': 64, 'kernel_size': 1, 'strides': 1, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
'pw_128': {'cls': Conv2D, 'args': {'filters': 128, 'kernel_size': 1, 'strides': 1, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
'pw_256': {'cls': Conv2D, 'args': {'filters': 256, 'kernel_size': 1, 'strides': 1, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
'pw_512': {'cls': Conv2D, 'args': {'filters': 512, 'kernel_size': 1, 'strides': 1, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
'pw_1024': {'cls': Conv2D, 'args': {'filters': 1024, 'kernel_size': 1, 'strides': 1, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
'conv_3x3_32_stride_1': {'cls': Conv2D, 'args': {'filters': 32, 'kernel_size': 3, 'strides': 1, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
'conv_3x3_64_stride_1': {'cls': Conv2D, 'args': {'filters': 64, 'kernel_size': 3, 'strides': 1, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
'conv_3x3_32_stride_2': {'cls': Conv2D, 'args': {'filters': 32, 'kernel_size': 3, 'strides': 2, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
'conv_3x3_64_stride_2': {'cls': Conv2D, 'args': {'filters': 64, 'kernel_size': 3, 'strides': 2, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
#'conv_3x3_32_stride_3': {'cls': Conv2D, 'args': {'filters': 32, 'kernel_size': 3, 'strides': 3, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
#'conv_3x3_64_stride_3': {'cls': Conv2D, 'args': {'filters': 64, 'kernel_size': 3, 'strides': 3, 'kernel_initializer': 'he_uniform', 'padding': 'same'}, 'inputs': 1},
'dw_3x3_stride_1': {'cls': DepthwiseConv2D, 'args': {'kernel_size': 3, 'kernel_initializer': 'he_uniform', 'padding': 'same', 'strides': 1}, 'inputs': 1},
'dw_5x5_stride_1': {'cls': DepthwiseConv2D, 'args': {'kernel_size': 5, 'kernel_initializer': 'he_uniform', 'padding': 'same', 'strides': 1}, 'inputs': 1},
'dw_7x7_stride_1': {'cls': DepthwiseConv2D, 'args': {'kernel_size': 7, 'kernel_initializer': 'he_uniform', 'padding': 'same', 'strides': 1}, 'inputs': 1},
'dw_3x3_stride_2': {'cls': DepthwiseConv2D, 'args': {'kernel_size': 3, 'kernel_initializer': 'he_uniform', 'padding': 'same', 'strides': 2}, 'inputs': 1},
'dw_5x5_stride_2': {'cls': DepthwiseConv2D, 'args': {'kernel_size': 5, 'kernel_initializer': 'he_uniform', 'padding': 'same', 'strides': 2}, 'inputs': 1},
'dw_7x7_stride_2': {'cls': DepthwiseConv2D, 'args': {'kernel_size': 7, 'kernel_initializer': 'he_uniform', 'padding': 'same', 'strides': 2}, 'inputs': 1},
'max_pooling_2x2': {'cls': MaxPool2D, 'args': {'pool_size': 2, 'padding': 'same'}, 'inputs': 1},
#'max_pooling_3x3': {'cls': MaxPool2D, 'args': {'pool_size': 3, 'padding': 'same'}, 'inputs': 1},
'avg_pooling_2x2': {'cls': AveragePooling2D, 'args': {'pool_size': 2, 'padding': 'same'}, 'inputs': 1},
#'avg_pooling_3x3': {'cls': AveragePooling2D, 'args': {'pool_size': 3, 'padding': 'same'}, 'inputs': 1},
'shuffle_block_g4_32': {'cls': ShuffleBlock, 'args': {'groups': 4, 'filters': 32}, 'inputs': 1},
'shuffle_block_g4_64': {'cls': ShuffleBlock, 'args': {'groups': 4, 'filters': 64}, 'inputs': 1},
'shuffle_block_g4_128': {'cls': ShuffleBlock, 'args': {'groups': 4, 'filters': 128}, 'inputs': 1},
'shuffle_block_g4_256': {'cls': ShuffleBlock, 'args': {'groups': 4, 'filters': 256}, 'inputs': 1},
'shuffle_block_g4_512': {'cls': ShuffleBlock, 'args': {'groups': 4, 'filters': 512}, 'inputs': 1},
'shuffle_block_g4_1024': {'cls': ShuffleBlock, 'args': {'groups': 4, 'filters': 1024}, 'inputs': 1},
'shuffle_block_g8_32': {'cls': ShuffleBlock, 'args': {'groups': 8, 'filters': 32}, 'inputs': 1},
'shuffle_block_g8_64': {'cls': ShuffleBlock, 'args': {'groups': 8, 'filters': 64}, 'inputs': 1},
'shuffle_block_g8_128': {'cls': ShuffleBlock, 'args': {'groups': 8, 'filters': 128}, 'inputs': 1},
'shuffle_block_g8_256': {'cls': ShuffleBlock, 'args': {'groups': 8, 'filters': 256}, 'inputs': 1},
'shuffle_block_g8_512': {'cls': ShuffleBlock, 'args': {'groups': 8, 'filters': 512}, 'inputs': 1},
'shuffle_block_g8_1024': {'cls': ShuffleBlock, 'args': {'groups': 8, 'filters': 1024}, 'inputs': 1},
'add': {'cls': Add, 'args': {}, 'inputs': 2},
'concat': {'cls': Concatenate, 'args': {}, 'inputs': 2}
}
if __name__ == '__main__':
# trainer = Cifar10Trainer(batch_size=256, epochs=60, verbose=1, lr=[0.001, 0.0005])
#trainer = Voc2012Trainer(voc_root='/mnt/daten/Development/VOCdevkit/VOC2012/',
# verbose=1, lr=[0.0005])
trainer = CityscapesTrainer(cs_root='/mnt/daten/Development/Cityscapes_256', verbose=1, lr=[0.01])
e = Evaluator(function_mapping, trainer, input_shape=trainer.input_shape, can_growth=True)
functions, inputs = e.get_function_input_list()
cfg = CgpConfig(rows=10, cols=30, level_back=10, functions=functions, function_inputs=inputs, mutation_rate=0.2)
cgp = CGP(cfg, children=1)
cgp.run(e, max_epochs=200000, save_best='tmp/parent.pkl')