-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathf1nn.py
324 lines (209 loc) · 7.9 KB
/
f1nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import argparse
import numpy as np
import data as f1
TRAIN_TEST_SPLIT = 1.0
BATCH_SIZE = 20
EPOCHS = 2000
# MAIN
print('----------')
print('-- F1NN --')
print('----------')
# INPUT
#print('\n\n-- INPUT --\n')
parser = argparse.ArgumentParser()
parser.add_argument("mode")
args = parser.parse_args()
mode = args.mode
# MODEL
framework = 'torch'
if framework == 'tf':
import model_tf as model
else:
import model_torch as model
# HELPER FUNCTIONS
def get_driver_data(session_data):
abbreviations = session_data['Abbreviation'].unique()
abbreviations.sort()
driver_data = {}
for abbr in abbreviations:
driver_sessions = session_data[session_data['Abbreviation'] == abbr]
driver_finished = driver_sessions['Finished'].sum()
driver_data[abbr] = driver_finished / len(driver_sessions)
return driver_data, abbreviations
# DATA MODE
def data_mode():
sessions = f1.get_sessions_since(2023)
session_data = f1.get_filtered_session_results(sessions)
print()
print(session_data.head())
f1.save(session_data, 'data/session_data.csv')
print()
print('Data saved')
# TRAINING MODE
def train_mode():
session_data = f1.load('data/session_data.csv')
if session_data is None:
print('No session data found. Run data mode first.')
exit(1)
numeric_feature_names = ['GridPosition', 'Recency']
binary_feature_names = ['Finished']
categorical_feature_names = ['Abbreviation']
target_names = ['Position', 'Finished']
# PREPROCESSING
print('\n\n-- PREPROCESSING --\n')
preprocessed_features = []
preprocessed_targets = []
driver_data, abbreviations = get_driver_data(session_data)
# Preprocess features
print('Feature example\n')
for index, row in session_data.iterrows():
preprocessed_row = np.zeros(32, dtype=np.float32)
preprocessed_row[0] = row['GridPosition']
# preprocessed_row[1] = row['Finished']
preprocessed_row[1] = row['Recency']
preprocessed_row[2] = driver_data[row['Abbreviation']]
if (row['Abbreviation'] in abbreviations):
abbr_index = np.where(abbreviations == row['Abbreviation'])[0][0]
preprocessed_row[3 + abbr_index] = 1
preprocessed_features.append(preprocessed_row.tolist())
print(preprocessed_features[0])
print()
# Preprocess targets
print('Target example\n')
for index, row in session_data.iterrows():
preprocessed_row = np.zeros(2, dtype=np.float32)
preprocessed_row[0] = row['Position']
preprocessed_row[1] = row['Finished']
preprocessed_targets.append(preprocessed_row.tolist())
print(preprocessed_targets[0])
print()
# Split data
train_data, test_data = model.get_data(preprocessed_features, preprocessed_targets, train_test_split=TRAIN_TEST_SPLIT, batch_size=BATCH_SIZE)
# MODEL
print('\n\n-- MODEL --\n')
feature_length = len(preprocessed_features[0])
target_length = len(preprocessed_targets[0])
nn, loss_fn, optimizer = model.get_model(feature_length, target_length)
nn.print()
print()
print('Model created')
# TRAINING
print('\n\n-- TRAINING --\n')
model.train(train_data, nn, loss_fn, optimizer, epochs=EPOCHS)
print('Training complete')
# EVALUATION
print('\n\n-- EVALUATION --\n')
model.eval(nn)
print('Evaluation complete')
# TESTING
print('\n\n-- TESTING --\n')
model.test(test_data, nn, loss_fn)
print('Testing complete')
# SAVE MODEL
print('\n\n-- SAVING --\n')
model.save(nn, optimizer, 'data/model.pth')
# PREDICTION MODE
def predict_mode():
session_data = f1.load('data/session_data.csv')
if session_data is None:
print('No session data found. Run data mode first.')
exit(1)
nn = model.load('data/model.pth')
if nn is None:
print('No model found. Run training mode first.')
exit(1)
driver_data, abbreviations = get_driver_data(session_data)
# PREDICTION
class ResultPrediction:
def __init__(self, start_pos, recency, abbr, finishing_ratio, pred=0):
self.start_pos = start_pos
self.recency = recency
self.abbr = abbr
self.finishing_ratio = finishing_ratio
self.pred = pred
self.finished = 0
self.pos = 0
def setPrediction(self, pred):
self.pred = pred
def setFinished(self, finished):
self.finished = finished
def setPosition(self, pos):
self.pos = pos
#grid_positions = sessions[0]['Abbreviation'].unique()
grid_file = open('grid.txt', 'r')
grid_positions = [line[:-1] if line[-1] == '\n' else line for line in grid_file.readlines()]
# if len(grid_positions) != 20:
# raise ValueError("Grid positions must be 20")
for i in range(0, len(grid_positions)):
if grid_positions[i] not in abbreviations:
raise ValueError(f"Grid position {grid_positions[i]} not found in abbreviations")
pred_inputs = []
pred_results = []
for i in range(0, len(grid_positions)):
preprocessed_row = np.zeros(32, dtype=np.float32)
start_pos = i + 1
recency = 1.0
abbr = grid_positions[i]
abbr_index = np.where(abbreviations == abbr)[0][0]
# finished = 1
preprocessed_row[0] = start_pos # Start position
# preprocessed_row[1] = finished
preprocessed_row[1] = recency # Recency
preprocessed_row[2] = driver_data[abbr]
preprocessed_row[3 + abbr_index] = 1 # Abbreviation
pred_inputs.append(preprocessed_row.tolist())
pred_results.append(ResultPrediction(start_pos, recency, abbr, driver_data[abbr]))
pred_outputs = model.predict(nn, pred_inputs)
for i in range(0, len(pred_outputs)):
pred_results[i].setPrediction(pred_outputs[i, 0].item())
pred_results[i].setFinished(pred_outputs[i, 1].item())
# Print predictions by position
print('\nRace predictions\n')
pred_results_sorted = sorted(pred_results, key=lambda x: x.pred)
for i in range(0, len(pred_results_sorted)):
pred_result = pred_results_sorted[i]
pred_result.setPosition(i+1)
print(f"{pred_result.abbr} {pred_result.start_pos:>2d} -> {pred_result.pos:>2d} ({pred_result.pred:>0.7f})")
#print(f"{pred_result.abbr} {pred_result.start_pos:>2d} -> {pred_result.pos:>2d} ({pred_result.pred:>0.7f}, {pred_result.finished:>0.7f})")
print()
# Print predictions by finished
# print('Finishing predictions\n')
# pred_results_finished_sorted = sorted(pred_results, key=lambda x: x.finished)
# for i in range(0, len(pred_results_finished_sorted)):
# pred_result = pred_results_finished_sorted[i]
# print(f"{pred_result.abbr} {pred_result.finished:>0.7f} ({pred_result.pos:>2d} -> {pred_result.pred:>0.7f})")
# print()
# Print finishing analysis
print('Finishing analysis\n')
driver_data_sorted = {k: v for k, v in sorted(driver_data.items(), key=lambda item: item[1])}
for abbr, ratio in driver_data_sorted.items():
pred_result = next((x for x in pred_results if x.abbr == abbr), None)
if pred_result is None:
continue
print(f"{pred_result.abbr} {ratio:>0.2f}")
# MODE
if mode == 'all':
print('\n\n-- DATA MODE --\n')
data_mode()
print('\n\n-- TRAINING MODE --\n')
train_mode()
print('\n\n-- PREDICTION MODE --\n')
predict_mode()
elif mode == 'main':
print('\n\n-- TRAINING MODE --\n')
train_mode()
print('\n\n-- PREDICTION MODE --\n')
predict_mode()
elif mode == 'data':
print('\n\n-- DATA MODE --\n')
data_mode()
elif mode == 'train':
print('\n\n-- TRAINING MODE --\n')
train_mode()
elif mode == 'predict' or mode == 'pred':
print('\n\n-- PREDICTION MODE --\n')
predict_mode()
else:
print('\nInvalid mode: ' + mode)
exit(1)
exit(0)