-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathminfokraskov_convergence_signif.m
220 lines (199 loc) · 10.3 KB
/
minfokraskov_convergence_signif.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
% minfokraskov_convergence_signif() - Compute pairwise local mutual information using Kraskov method
% with modifications to achieve convergence while
% iterating through values of 'k'. The function also allow
% the inputt of extended data in order to boost the neighbors count
% Usage:
% >> pac = minfokraskov_convergence_signif(X,Y,500);
%
% Inputs:
% Xorig - Vector of signal X (Latency x 1)
% Yorig - Vector of signal Y (Latency x 1)
% srate - Sampling rate of X and Y
%
% Optional inputs:
% 'k0' - [integer] Number of neighbors for in the Kraskov algotithm.
% If iterative method to compute local MI local is used the first
% iteration for all values of 'k' will start in 'k0'.
% 'k' - [integer] Number of neighbors for in the Kraskov algotithm.
% If no iterative method to compute local MI is used the magnitude
% will be computed using 'k'number of neighbors
% 'kraskovmethod' - [1,2] Kraskov method to use in the computtaion on local MI.
% Default: [1]
% 'xdistmethod' - {'circ', 'myeucl','seuclid'} Method to compute distances among samples X.
% Default: 'seuclid' (standardized euclidean)
% 'ydistmethod' - ('circ', 'myeucl','seuclid') Method to compute distances among samples Y.
% Default: 'seuclid' (standardized euclidean)
% 'xvarnorm_circ' - [0,1] Flag to activate circular normalization of the
% norm for X. May be nececary if circular magnitude like
% phase is used
% 'yvarnorm_circ' - [0,1] Flag to activate circular normalization of the
% norm for Y. May be nececary if circular magnitude like
% phase is used
% 'varthresh' - [0.01:0.5] Threshold of the percent decrease of variance if
% iterative method to compute MI local is used. Default: 0.5
% 'kstep' - [integer] Step to increase the number of neighbors 'k' in case
% iterative method to compute MI local is used. Default: 1
% 'saveallmi' - [0,1] Flag to output(1) or not(0) all the vectors of
% local MI correspoding to each value of 'k'. Default: [0]
% 'maxk' - Maximun value of 'k' in case iterative method to compute
% MI local is used. Default 100.
% 'normmethod' - ('norm' 'zscore', 'none ') Normalization method to
% use for X and Y. Default: 'norm'
% 'scaledistmat' - [0,1] Flag to perform (1) or not (0) scaling of
% distance matrix. Default: 0
% 'ptspercent' - [0.01:0.5] Size in percentage of data of the segments to shuffle
% when creating surrogate data. Default: [0.05]
% 'nboot' - [Integer] Number of surrogates generated for statistical significance analysis
% 'butterorder' - [Integer] Order of Butterworth filter. Default [4]
% 'alpha' - [Real] Significance threshold. Default: [0.05]
% 'filterfreq' - Lowpass filter cutoff frequency Default: []
%
% Outputs:
% Iloc_origsurr - Local Mutual Information vector [1 x length(X)]
% kconv - k value for convergence (iterative case only)
% Iloc_sigval - Binary vector indicating the significant values of
% Local MI [1xlength(X)]
% Iloc_pval - Vector of p values.[ 1xlength(X)]
% difvarvect - Decrease of variance for each value of k used in the
% iterative proccess.
% AllILocal - All vectors of Local MI for each 'k' value used in
% the interations. Empty if 'saveallmi' is 0
% surrdata - Surrogate data. NOT intended for regular use.
% See also:
%
% Author: Ramon Martinez-Cancino, SCCN, 2019
%
% Copyright (C) 2019 Ramon Martinez-Cancino,INC, SCCN
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [Iloc_origsurr, kconv0, Iloc_sigval, Iloc_pval, difvarvect, AllILocal,surrdata] = minfokraskov_convergence_signif(X,Y,srate,varargin)
if nargin < 4
help minfokraskov_convergence_signif;
return;
end
Iloc_sigval = []; surrdata= []; Iloc_pval= [];
try
options = varargin;
if ~isempty( varargin )
for i = 1:2:numel(options)
g.(options{i}) = options{i+1};
end
else, g= []; end
catch
disp('minfokraskov_convergence_signif() error: calling convention {''key'', value, ... } error'); return;
end;
try g.k0; catch, g.k0 = 1; end
try g.k; catch, g.k = []; end
try g.karskovmethod; catch, g.karskovmethod = 1; end
try g.xdistmethod; catch, g.xdistmethod = 'seuclidean'; end
try g.ydistmethod; catch, g.ydistmethod = 'seuclidean'; end
try g.yvarnorm_circ; catch, g.yvarnorm_circ = 0; end
try g.xvarnorm_circ; catch, g.xvarnorm_circ = 0; end
try g.varthresh; catch, g.varthresh = 0.05; end
try g.kstep; catch, g.kstep = 1; end
try g.saveallmi; catch, g.saveallmi = 0; end
try g.maxk; catch, g.maxk = 200; end
try g.normmethod; catch, g.normmethod = 'norm'; end
try g.scaledistmat; catch, g.scaledistmat = 0; end
try g.ptspercent; catch, g.ptspercent = 0.05; end
try g.nboot; catch, g.nboot = 200; end
try g.butterorder; catch, g.butterorder = 6; end
try g.alpha; catch, g.alpha = []; end
try g.filterfreq; catch, g.filterfreq = []; end
try g.usejidt; catch, g.usejidt = 0; end
% Input stuff
OptionNames = fieldnames(g);
arg ={};
for i =1:length(OptionNames)
if ~ismember(OptionNames{i},{'ptspercent','butterorder','alpha','filterfreq'})
arg{end+1} = OptionNames{i};
arg{end+1} = g.(OptionNames{i});
end
end
if g.usejidt
[~,Iloc_orig,kconv0, difvarvect, AllILocal] = minfokraskov_convergencewin_jidt(X,Y,arg{:});
else
[~,Iloc_orig,kconv0,difvarvect, AllILocal] = minfokraskov_convergencewin(X,Y,arg{:});
end
if ~isempty(g.filterfreq)
[b,a] = butter(g.butterorder,g.filterfreq/(srate/2),'low');
Iloc_origsurr = filtfilt(b,a,Iloc_orig');
else
Iloc_origsurr = Iloc_orig';
end
if ~isempty(g.alpha)
% surrogate analyses for significance testing
surrdata = zeros([g.nboot length(X)]); % initialize
pts_seg = ceil(length(X)*g.ptspercent);
for si = 1:g.nboot
if mod(length(X),pts_seg) == 0
nsegm = length(X)/pts_seg;
% X (Phase)
shuffledata1 = reshape(X,pts_seg,nsegm);
permarray = randperm(size(shuffledata1,2));
X_surrogate = shuffledata1(:,permarray);
X_surrogate = X_surrogate(:)';
% Y (Amp)
shuffledata2 = reshape(Y,pts_seg,nsegm);
permarray = randperm(size(shuffledata2,2));
Y_surrogate = shuffledata2(:,permarray);
Y_surrogate = Y_surrogate(:)';
else
nsegm = floor(length(X)/pts_seg);
r = rem(length(X),pts_seg);
% X (Phase)
remainder_surr = X(end-r+1:end);
rand_idx = round(rand(1)*length(X));
shuffledata1 = reshape(X(1:end-r),pts_seg,nsegm);
permarray = randperm(size(shuffledata1,2));
X_surrogate = shuffledata1(:,permarray);
if rand_idx > length(X)-r
X_surrogate = [remainder_surr(length(X)-rand_idx+1:end)' X_surrogate(1:end) remainder_surr(1:length(X)-rand_idx)'];
else
X_surrogate = [X_surrogate(1:rand_idx) remainder_surr' X_surrogate(rand_idx+1:end)];
end
X_surrogate = X_surrogate(:)';
% Y (Amp)
remainder_surr = Y(end-r+1:end);
rand_idx = round(rand(1)*length(Y));
shuffledata2 = reshape(Y(1:end-r),pts_seg,nsegm);
permarray = randperm(size(shuffledata2,2));
Y_surrogate = shuffledata2(:,permarray);
if rand_idx > length(X)-r
Y_surrogate = [remainder_surr(length(X)-rand_idx+1:end) Y_surrogate(1:end) remainder_surr(1:length(X)-rand_idx)];
else
Y_surrogate = [Y_surrogate(1:rand_idx) remainder_surr Y_surrogate(rand_idx+1:end)];
end
Y_surrogate = Y_surrogate(:)';
end
arg{find(cell2mat(cellfun(@(x) strcmp(x,'k'), arg,'UniformOutput',0)))+1} = kconv0; % Fixing value of 'k' to the one from convergence.
% [Isurrtmp,Ilocal,kconv,difvarvect] = minfokraskov_convergencewin(X_surrogate',Y_surrogate',arg{:});
if g.usejidt
[~,Ilocal] = minfokraskov_convergencewin_jidt(X_surrogate',Y_surrogate',arg{:});
else
[~,Ilocal] = minfokraskov_convergencewin(X_surrogate',Y_surrogate',arg{:});
end
if ~isempty(g.filterfreq)
[b,a] = butter(g.butterorder,g.filterfreq/(srate/2),'low');
Ilocal = filtfilt(b,a,Ilocal');
end
surrdata(si,:) = Ilocal;
end
Iloc_zscore = (Iloc_origsurr' - mean(surrdata)) ./ std(surrdata);
Iloc_pval = 1-normcdf(abs(Iloc_zscore));
Iloc_sigval = zeros(size(Iloc_pval));
Iloc_sigval(abs(Iloc_pval) < g.alpha) = 1;
end
end