-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenre_platform_statistics.py
45 lines (38 loc) · 1.75 KB
/
genre_platform_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas as pd
import numpy as np
import datetime
import math
cube = pd.read_json('cube_ln.json')
nested_genres = []
list_genres = []
for r in cube['genre'].to_list():
nested_genres.append(r)
for x in r:
list_genres.append(x)
genres = pd.Series( (x for x in list_genres) ).drop_duplicates()
print(genres)
df_results = pd.DataFrame(columns=['platform', 'genre', 'mean', 'std', 'skewness', 'n'])
list_platform = cube['baseplatform'].drop_duplicates()
for platform in list_platform:
for genre in genres:
genre_include = [genre in r for r in nested_genres] #Creates a boolean list of rows to include based on presence of genre
#Seems to work but test this!
df_source = cube[genre_include]
df_source = df_source[platform == df_source['baseplatform']]
df_source = df_source[False == df_source['duplicates']] #Some of the data is duplicated in the source; this line excludes them
#df_results = pd.DataFrame(columns=[GROUP_BY, 'genre', 'PMCC', 'Spearman\'s', 'n'])
d = df_source[['ln_global_sales', 'score']]
# d = df_source[not math.isnan(df_source['ln_global_sales'])]
n = d.count()['ln_global_sales']
mu = d.mean()['ln_global_sales']
sigma = d.std()['ln_global_sales']
skew = d.skew()['ln_global_sales']
x = {'platform': platform, 'genre' : genre, 'mean' : mu, 'std' : sigma, 'skewness': skew, 'n' : n}
#print(x)
df_results = df_results.append(x, ignore_index=True)
# print('\n' + genre)
# print(df_results[25 < df_results['n']].sort_values(by=['PMCC']))
now = datetime.datetime.now()
filename = "genre_platform_statistics-" + now.strftime("%Y%m%d-%H_%M_%S")
df_results.to_json(filename + '.json')
df_results.to_csv(filename + '.csv')