forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpatialConvolutionMap.lua
125 lines (111 loc) · 3.53 KB
/
SpatialConvolutionMap.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
local SpatialConvolutionMap, parent = torch.class('nn.SpatialConvolutionMap', 'nn.Module')
nn.tables = nn.tables or {}
function nn.tables.full(nin, nout)
local ft = torch.Tensor(nin*nout,2)
local p = 1
for j=1,nout do
for i=1,nin do
ft[p][1] = i
ft[p][2] = j
p = p + 1
end
end
return ft
end
function nn.tables.oneToOne(nfeat)
local ft = torch.Tensor(nfeat,2)
for i=1,nfeat do
ft[i][1] = i
ft[i][2] = i
end
return ft
end
function nn.tables.random(nin, nout, nto)
local nker = nto * nout
local tbl = torch.Tensor(nker, 2)
local fi = torch.randperm(nin)
local frcntr = 1
local nfi = math.floor(nin/nto) -- number of distinct nto chunks
local totbl = tbl:select(2,2)
local frtbl = tbl:select(2,1)
local fitbl = fi:narrow(1, 1, (nfi * nto)) -- part of fi that covers distinct chunks
local ufrtbl= frtbl:unfold(1, nto, nto)
local utotbl= totbl:unfold(1, nto, nto)
local ufitbl= fitbl:unfold(1, nto, nto)
-- start filling frtbl
for i=1,nout do -- fro each unit in target map
ufrtbl:select(1,i):copy(ufitbl:select(1,frcntr))
frcntr = frcntr + 1
if frcntr-1 == nfi then -- reset fi
fi:copy(torch.randperm(nin))
frcntr = 1
end
end
for tocntr=1,utotbl:size(1) do
utotbl:select(1,tocntr):fill(tocntr)
end
return tbl
end
function SpatialConvolutionMap:__init(conMatrix, kW, kH, dW, dH)
parent.__init(self)
dW = dW or 1
dH = dH or 1
self.kW = kW
self.kH = kH
self.dW = dW
self.dH = dH
self.connTable = conMatrix
self.nInputPlane = self.connTable:select(2,1):max()
self.nOutputPlane = self.connTable:select(2,2):max()
self.weight = torch.Tensor(self.connTable:size(1), kH, kW)
self.bias = torch.Tensor(self.nOutputPlane)
self.gradWeight = torch.Tensor(self.connTable:size(1), kH, kW)
self.gradBias = torch.Tensor(self.nOutputPlane)
self:reset()
end
function SpatialConvolutionMap:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
if nn.oldSeed then
self.weight:apply(function()
return torch.uniform(-stdv, stdv)
end)
self.bias:apply(function()
return torch.uniform(-stdv, stdv)
end)
else
self.weight:uniform(-stdv, stdv)
self.bias:uniform(-stdv, stdv)
end
else
local ninp = torch.Tensor(self.nOutputPlane):zero()
for i=1,self.connTable:size(1) do ninp[self.connTable[i][2]] = ninp[self.connTable[i][2]]+1 end
for k=1,self.connTable:size(1) do
stdv = 1/math.sqrt(self.kW*self.kH*ninp[self.connTable[k][2]])
if nn.oldSeed then
self.weight:select(1,k):apply(function() return torch.uniform(-stdv,stdv) end)
else
self.weight:select(1,k):uniform(-stdv,stdv)
end
end
for k=1,self.bias:size(1) do
stdv = 1/math.sqrt(self.kW*self.kH*ninp[k])
self.bias[k] = torch.uniform(-stdv,stdv)
end
end
end
function SpatialConvolutionMap:updateOutput(input)
input.nn.SpatialConvolutionMap_updateOutput(self, input)
return self.output
end
function SpatialConvolutionMap:updateGradInput(input, gradOutput)
input.nn.SpatialConvolutionMap_updateGradInput(self, input, gradOutput)
return self.gradInput
end
function SpatialConvolutionMap:accGradParameters(input, gradOutput, scale)
return input.nn.SpatialConvolutionMap_accGradParameters(self, input, gradOutput, scale)
end
function SpatialConvolutionMap:decayParameters(decay)
self.weight:add(-decay, self.weight)
self.bias:add(-decay, self.bias)
end