forked from luigifreda/pyslam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
camera.py
124 lines (109 loc) · 5.25 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
import cv2
#import g2o
from utils_geom import add_ones
class Camera:
def __init__(self, width, height, fx, fy, cx, cy, D, fps = 1): # D = [k1, k2, p1, p2, k3]
self.width = width
self.height = height
self.fx = fx
self.fy = fy
self.cx = cx
self.cy = cy
self.D = np.array(D,dtype=np.float32) # np.array([k1, k2, p1, p2, k3]) distortion coefficients
self.fps = fps
self.is_distorted = np.linalg.norm(self.D) > 1e-10
self.initialized = False
class PinholeCamera(Camera):
def __init__(self, width, height, fx, fy, cx, cy, D, fps = 1):
super().__init__(width, height, fx, fy, cx, cy, D, fps)
self.K = np.array([[fx, 0,cx],
[ 0,fy,cy],
[ 0, 0, 1]])
self.Kinv = np.array([[1/fx, 0,-cx/fx],
[ 0, 1/fy,-cy/fy],
[ 0, 0, 1]])
self.u_min, self.u_max = 0, self.width
self.v_min, self.v_max = 0, self.height
self.init()
def init(self):
if not self.initialized:
self.initialized = True
self.undistort_image_bounds()
# project a 3D point or an array of 3D points (w.r.t. camera frame), of shape [Nx3]
# out: Nx2 image points, [Nx1] array of map point depths
def project(self, xcs):
#u = self.fx * xc[0]/xc[2] + self.cx
#v = self.fy * xc[1]/xc[2] + self.cy
projs = self.K @ xcs.T
zs = projs[-1]
projs = projs[:2]/ zs
return projs.T, zs
# unproject 2D point uv (pixels on image plane) on
def unproject(self, uv):
x = (uv[0] - self.cx)/self.fx
y = (uv[1] - self.cy)/self.fy
return x,y
# in: uvs [Nx2]
# out: xcs array [Nx3] of normalized coordinates
def unproject_points(self, uvs):
return np.dot(self.Kinv, add_ones(uvs).T).T[:, 0:2]
# in: uvs [Nx2]
# out: uvs_undistorted array [Nx2] of undistorted coordinates
def undistort_points(self, uvs):
if self.is_distorted:
#uvs_undistorted = cv2.undistortPoints(np.expand_dims(uvs, axis=1), self.K, self.D, None, self.K) # => Error: while undistorting the points error: (-215:Assertion failed) src.isContinuous()
uvs_contiguous = np.ascontiguousarray(uvs[:, :2]).reshape((uvs.shape[0], 1, 2))
uvs_undistorted = cv2.undistortPoints(uvs_contiguous, self.K, self.D, None, self.K)
return uvs_undistorted.ravel().reshape(uvs_undistorted.shape[0], 2)
else:
return uvs
# update image bounds
def undistort_image_bounds(self):
uv_bounds = np.array([[self.u_min, self.v_min],
[self.u_min, self.v_max],
[self.u_max, self.v_min],
[self.u_max, self.v_max]], dtype=np.float32).reshape(4,2)
#print('uv_bounds: ', uv_bounds)
if self.is_distorted:
uv_bounds_undistorted = cv2.undistortPoints(np.expand_dims(uv_bounds, axis=1), self.K, self.D, None, self.K)
uv_bounds_undistorted = uv_bounds_undistorted.ravel().reshape(uv_bounds_undistorted.shape[0], 2)
else:
uv_bounds_undistorted = uv_bounds
#print('uv_bounds_undistorted: ', uv_bounds_undistorted)
self.u_min = min(uv_bounds_undistorted[0][0],uv_bounds_undistorted[1][0])
self.u_max = max(uv_bounds_undistorted[2][0],uv_bounds_undistorted[3][0])
self.v_min = min(uv_bounds_undistorted[0][1],uv_bounds_undistorted[2][1])
self.v_max = max(uv_bounds_undistorted[1][1],uv_bounds_undistorted[3][1])
# print('camera u_min: ', self.u_min)
# print('camera u_max: ', self.u_max)
# print('camera v_min: ', self.v_min)
# print('camera v_max: ', self.v_max)
def is_in_image(self, uv, z):
return (uv[0] > self.u_min) & (uv[0] < self.u_max) & \
(uv[1] > self.v_min) & (uv[1] < self.v_max) & \
(z > 0)
# input: [Nx2] array of uvs, [Nx1] of zs
# output: [Nx1] array of visibility flags
def are_in_image(self, uvs, zs):
return (uvs[:, 0] > self.u_min) & (uvs[:, 0] < self.u_max) & \
(uvs[:, 1] > self.v_min) & (uvs[:, 1] < self.v_max) & \
(zs > 0 )