Skip to content
Saulo edited this page May 27, 2015 · 13 revisions

Introgression Browser

Introduction

up

See Paper

Get Data

up

iBrowser can be downloaded as an self contained (Virtual Box) virtual machine using BitTorrent Sync and this read-only key: key (860Mb). A manual can be found here

The data used in the iBrowser paper can be downloaded using BitTorrent Sync using the following read-only key: key.

The data consists of:

total 39G
9.1G arabidopsis_50k.sqlite
1.5K arabidopsis_50k.sqlite.nfo
6.4G RIL_10k.sqlite
1.5K RIL_10k.sqlite.nfo
1.5K RIL_50k_mode_ril_delete_greedy.sqlite.nfo
1.6G RIL_50k_mode_ril_delete.sqlite
1.5K RIL_50k_mode_ril_delete.sqlite.nfo
995M RIL_50k_mode_ril_greedy.sqlite
1.5K RIL_50k_mode_ril_greedy.sqlite.nfo
1.6G RIL_50k_mode_ril.sqlite
1.5K RIL_50k_mode_ril.sqlite.nfo
1.6G RIL_50k.sqlite
1.5K RIL_50k.sqlite.nfo
1.5K RIL.customorder
 67M tom84_10k_introgression.sqlite
1.5K tom84_10k_introgression.sqlite.nfo
 11G tom84_10k.sqlite
1.5K tom84_10k.sqlite.nfo
 27M tom84_50k_introgression.sqlite
1.5K tom84_50k_introgression.sqlite.nfo
3.1G tom84_50k.sqlite
1.5K tom84_50k.sqlite.nfo
3.0K tom84.customorder
3.9G tom84_genes.sqlite
1.5K tom84_genes.sqlite.nfo

Interface

up

The Web User Interface (Web UI) works in Chrome 37+ and Firefox 33+. The UI behaviour in iExplorer is erratic and therefore we discourage the use of this web browser. We haven't tested Opera and Safari web browsers, feedback is welcome.

click to enlarge

Installation

up

Docker

up

for standalone:

docker run -it --rm \
-v $PWD/data:/var/www/ibrowser/data \
-v $PWD/access.log:/var/log/apache2/access.log \
-v $PWD/error.log:/var/log/apache2/error.log \
-p 127.0.0.1:10000:10000 \
--name ibrowser \
sauloal/introgressionbrowser

for local copy,run:

git clone [email protected]:sauloal/introgressionbrowser.git

cd introgressionbrowser

docker run -it --rm \
-v $PWD:/var/www/ibrowser \
-v $PWD/data:/var/www/ibrowser/data \
-v $PWD/access.log:/var/log/apache2/access.log \
-v $PWD/error.log:/var/log/apache2/error.log \
-p 127.0.0.1:10000:10000 \
--name ibrowser \
sauloal/introgressionbrowser_local

Open your browser at 127.0.0.1:10000

replace 127.0.0.1 for 0.0.0.0 in the command line if you want others in your network to be able to access your iBrowser instance.

replace the -it for -d to run in the background

Virtual Machine

up

VirtualBox

up

The virtual machine should run automatically. The only procedure is to share your data folder (in your host computer) as "DATA". A step-by-step manual can be found here. In case you want/need to do it manually, please find bellow instructions:

wget http://download.virtualbox.org/virtualbox/4.3.6/VBoxGuestAdditions_4.3.6.iso
mkdir vbox
mount VBoxGuestAdditions_4.3.6.iso vbox
cd vbox
./VBoxLinuxAdditions.run
cd ..
umount vbox
edit /etc/fstab adding
  data /media/data vboxsf re 0 0
mount -a
ls /media/data

VMWare

up

currently there's a bug in vmware which doesn't allows for the mounting of shared folders. For this reason vmware is not currently supported

mkdir /mnt/cdrom
mount /dev/cdrom /mnt/cdrom
mkdir ~/vm
cd ~/vm
tar xvf /dev/cdrom/VMwareTools-9.6.1-1378637.tar.gz
cd vmware-tools-distrib
./vmware-install.pl -d
cd ../..
rm -rf vm
ls /mnt/hgfs/data

Manually

up

Getting the code

up

Clone or download Introgression Browser.

git clone https://github.com/sauloal/introgressionbrowser

Global dependencies

up

Install Linux dependencies:

apt-get install -y -f libapache2-mod-wsgi apache2 nano build-essential                          \
                      checkinstall openssl sqlite3 libsqlite3-dev                               \
                      libfreetype6 libfreetype6-dev zlib1g-dev libjpeg62 libjpeg62-dev          \
                      pkg-config libblas-dev liblapack-dev gfortran zlib1g-dev

apt-get install -y -f python-setuptools python-dev python-numpy python-scipy                    \
                      python-matplotlib python-pandas python-sympy python-pip python-imaging    \
                      python-numpy pylint

Install python dependencies:

pip install --requirement requirements.txt

OR

easy_install --user flask
easy_install --user ete2
easy_install --user sqlalchemy
easy_install --user Flask-SQLAlchemy
easy_install --user pysha3
easy_install --user pycrypto

If not possible to install python libraries system wide with apt-get, install also:

easy_install --user Pillow
easy_install --user Image
easy_install --user numpy
easy_install --user scipy
easy_install --user matplotlib
easy_install --user MySQL-python

Install pypy (Optional, but speeds up analysis)

Running Server

up

Copy config.template to your data directory:

cp config.template [PATH TO DATA FOLDER]/config.py

Edit config.py to configure:

  • whether user control is enables or not (Default: False)
  • the server's port (Default: 10000)
  • pages which can be seen without login (to disable, comment line with #)
  • enable/disable debug of server
#decide whether to have user control or not
HAS_LOGIN    = False

#define port to server webpage
SERVER_PORT               = 10000

# pages which can be seen without login
librepaths = [
    '/api',
    '/favicon.ico'
]

DEBUG                     = False

Initialize iBrowser by running:

./ibrowser.py [PATH TO DATA FOLDER] init

This will

  • Create session secret
  • Create RSA key
  • create SSL certificate
  • Create default user (admin:admin)

ONLY IN CASE YOU WANT ACCESS CONTROL

  • Edit config.py and Set hasLogin to "True"
  • (ADVISED) Change admin password (otherwise default admin:admin will be created) by running:
./ibrowser.py [PATH TO DATA FOLDER] deluser admin
./ibrowser.py [PATH TO DATA FOLDER] adduser admin [DESIRED PASSWORD]
  • Optional

  • (Default: 2048) Change RSA key size by editing [PATH TO DATA FOLDER]/config.keylen

echo 2048 > [PATH TO DATA FOLDER]/config.keylen
  • Clean all config by running:
./ibrowser.py [PATH TO DATA FOLDER] clean
  • Create users manually by running (can be perfomed in the UI):
./ibrowser.py [PATH TO DATA FOLDER] adduser [USER] [DESIRED PASSWORD]
  • Delete users manually by running (can be perfomed in the UI):
./ibrowser.py [PATH TO DATA FOLDER] deluser [USER]
  • List users by running (can be perfomed in the UI):
./ibrowser.py [PATH TO DATA FOLDER] listusers

Run ibrowser.py

./ibrowser.py [PATH TO DATA FOLDER]

Running Calculations

up

General

up

This set of scripts takes as input a series of Variant Call Files (VCF) of species mapped against a single reference. After a series of conversions, all homozigous Single Nucleotide Polymorphisms (SNP) are extracted while ignoring heterozigous SNPS (hetSNP), Multiple Nucleotide Polymorphisms (MNP) and Insertion/Deletion events (InDel). For each individual, the reference's nucleotide will be assigned unless a SNP is presented. If any individual has a MNP, hetSNP or InDel at a given position, this position is skipped entirely. A General Feature Format (GFF) describing coordinates is used to split the genome into segments. Those segments can be genes, even sized fragments (10kb, 50kb, etc) or particular segments of interest as long as the coordinates are the same as the VCF files. A auxiliary script is provided to generate evenly sized segments. For each selected segment a fasta file will be generated and FastTree will create a distance matrix and a Newick Tree. After all data has been processed, the three files (fasta, matrix and newick) will be read and converted to a database. The webserver scripts will read and serve the data to a web browser. There are three scripts, a main script serves the data and two auxiliary servers to perform on-the-fly clustering and image conversion (from SVG to PNG).

Input Data

up

Enter the introgression browser folder

cd ~/introgressionbrowser/

If in a VM, check if your files were correctly shared by virtual box.

ls data

if you don't see your files, there's a mistake in the VM configuration. If you see you data, you can proceed. Enter the data folder. The folder structure should be as follows:

~/introgressionbrowser/
~/introgressionbrowser/data/
~/introgressionbrowser/data/analysis/
~/introgressionbrowser/​data/analysis/input/

Inside the data/analysis folder, create a symlink to the executables:

cd data/analysis
ln -s ../../vcfmerger .

add all your VCF files inside input folder. add your reference fasta file in the base folder. create a TAB delimited file containing the name of your input files (\t stands for TAB):

1\tinput/file1.vcf.gz\tspecies 1
1\tinput/file2.vcf.gz\tspecies 2
1\tinput/file2.vcf.gz\tspecies 2

the folder structure should resemble:

~/introgressionbrowser/data/analysis/reference.fasta
~/introgressionbrowser/data/analysis/input/file1.vcf.gz
~/introgressionbrowser/data/analysis/input/file2.vcf.gz
~/introgressionbrowser/data/analysis/input/file2.vcf.gz
~/introgressionbrowser/data/analysis/analysis.csv

Now you can run:

vcfmerger/aux/gen_makefile.py

This will generate a makefile for you project (follow one of the examples in the manual) To run the analysis:

make

It will generate a database output:

~/introgressionbrowser/data/analysis/analysis.sqlite

Now create a link to the data folder:

cd ~/introgressionbrowser/data
ln -s analysis/analysis.sqlite .

restart ibrowser: If inside a VM, you can restart ibrowser:

~/introgressionbrowser/restart.sh

Or restart the VM:

sudo shutdown -r now

If not inside a VM, you can restart ibrowser:

cd ~/introgressionbrowser/
pgrep -f ibrowser.py | xargs kill
pythob ibrowser.py data/

Run

up

Automatically

up

    Run vcfmerger/aux/gen_makefile.py to create a makefile for your project
      vcfmerger/aux/gen_makefile.py -h
        usage: gen_makefile.py [-h] [-i [INLIST]] [-f [INFASTA]] [-s [SIZE]]
                               [-p [PROJECT]] [-o [OUTFILE]] [-ec EXCLUDED_CHROMS]
                               [-ic INCLUDED_CHROMS] [-n] [-m] [-np]
                               [-t [SUB_THREADS]] [-St [SMART_THREADS]] [-SH] [-SI]
                               [-SS] [-So [SIMPLIFY_OUTPUT]]
                               [-Coc [CONCAT_CHROMOSOME]]
                               [-CoI [CONCAT_IGNORE [CONCAT_IGNORE ...]]]
                               [-Cos [CONCAT_START]] [-Coe [CONCAT_END]]
                               [-Cot [CONCAT_THREADS]] [-Cor] [-CoR]
                               [-CoRm [CONCAT_RILMADS]] [-CoRs [CONCAT_RILMINSIM]]
                               [-CoRg] [-CoRd] [-Ftt [FASTTREE_THREADS]]
                               [-Ftb [FASTTREE_BOOTSTRAP]] [-Cle [CLUSTER_EXTENSION]]
                               [-Clt [CLUSTER_THREADS]] [-Clp] [-Cls] [-Cln] [-Clr]
                               [-Clc] [-Fic [FILTER_CHROMOSOME]] [-Fig [FILTER_GFF]]
                               [-FiI [FILTER_IGNORE [FILTER_IGNORE ...]]]
                               [-Fis [FILTER_START]] [-Fie [FILTER_END]] [-Fik] [-Fin]
                               [-Fiv] [-Fip FILTER_PROTEIN] [-Dbt DB_READ_THREADS]

        Create makefile to convert files.

        optional arguments:
          -h, --help            show this help message and exit
          -i [INLIST], --input [INLIST], --inlist [INLIST]
                                input tab separated file
          -f [INFASTA], --fasta [INFASTA], --infasta [INFASTA]
                                input reference fasta. requires split size
          -s [SIZE], --size [SIZE]
                                split size
          -p [PROJECT], --proj [PROJECT], --project [PROJECT]
                                project name
          -o [OUTFILE], --out [OUTFILE], --outfile [OUTFILE]
                                output name [default: makefile]
          -ec EXCLUDED_CHROMS, --excluded-chrom EXCLUDED_CHROMS
                                Do not use the following chromosomes
          -ic INCLUDED_CHROMS, --included-chrom INCLUDED_CHROMS
                                Use EXCLUSIVELY these chromosomes
          -n, --dry, --dry-run  dry-run
          -m, --merge, --cluster_merge
                                do merged clustering (resource intensive) [default:
                                no]
          -np, --no-pickle      do not generate pickle database [default: no]
          -t [SUB_THREADS], --sub_threads [SUB_THREADS]
                                threads of submake to tree building [default: 5]
          -St [SMART_THREADS], --smart_threads [SMART_THREADS]
                                threads of submake to tree building [default: 5]
          -SH, --simplify-include-hetero
                                Do not simplify heterozygous SNPS
          -SI, --simplify-include-indel
                                Do not simplify indel SNPS
          -SS, --simplify-include-singleton
                                Do not simplify single SNPS
          -So [SIMPLIFY_OUTPUT], --simplify-output [SIMPLIFY_OUTPUT]
                                Simplify output file
          -Coc [CONCAT_CHROMOSOME], --concat-chrom [CONCAT_CHROMOSOME], --concat-chromosome [CONCAT_CHROMOSOME]
                                Concat - Chromosome to filter [all]
          -CoI [CONCAT_IGNORE [CONCAT_IGNORE ...]], --concat-ignore [CONCAT_IGNORE [CONCAT_IGNORE ...]], --concat-skip [CONCAT_IGNORE [CONCAT_IGNORE ...]]
                                Concat - Chromosomes to skip
          -Cos [CONCAT_START], --concat-start [CONCAT_START]
                                Concat - Chromosome start position to filter [0]
          -Coe [CONCAT_END], --concat-end [CONCAT_END]
                                Concat - Chromosome end position to filter [-1]
          -Cot [CONCAT_THREADS], --concat-threads [CONCAT_THREADS]
                                Concat - Number of threads [num chromosomes]
          -Cor, --concat-noref  Concat - Do not print reference [default: true]
          -CoR, --concat-RIL    Concat - RIL mode: false]
          -CoRm [CONCAT_RILMADS], --concat-RIL-mads [CONCAT_RILMADS]
                                Concat - RIL percentage of Median Absolute Deviation
                                to use (smaller = more restrictive): 0.25]
          -CoRs [CONCAT_RILMINSIM], --concat-RIL-minsim [CONCAT_RILMINSIM]
                                Concat - RIL percentage of nucleotides identical to
                                reference to classify as reference: 0.75]
          -CoRg, --concat-RIL-greedy
                                Concat - RIL greedy convert nucleotides to either the
                                reference sequence or the alternative sequence: false]
          -CoRd, --concat-RIL-delete
                                Concat - RIL delete invalid sequences: false]
          -Ftt [FASTTREE_THREADS], --fasttree_threads [FASTTREE_THREADS]
                                FastTree - number of threads for fasttree
          -Ftb [FASTTREE_BOOTSTRAP], --fasttree_bootstrap [FASTTREE_BOOTSTRAP]
                                FastTree - fasttree bootstrap
          -Cle [CLUSTER_EXTENSION], --cluster-ext [CLUSTER_EXTENSION], --cluster-extension [CLUSTER_EXTENSION]
                                Cluster - [optional] extension to search. [default:
                                .matrix]
          -Clt [CLUSTER_THREADS], --cluster-threads [CLUSTER_THREADS]
                                Cluster - threads for clustering [default: 5]
          -Clp, --cluster-no-png
                                Cluster - do not export cluster png
          -Cls, --cluster-no-svg
                                Cluster - do not export cluster svg
          -Cln, --cluster-no-tree
                                Cluster - do not export cluster tree. precludes no png
                                and no svg
          -Clr, --cluster-no-rows
                                Cluster - no rows clustering
          -Clc, --cluster-no-cols
                                Cluster - no column clustering
          -Fic [FILTER_CHROMOSOME], --filter-chrom [FILTER_CHROMOSOME], --filter-chromosome [FILTER_CHROMOSOME]
                                Filter - Chromosome to filter [all]
          -Fig [FILTER_GFF], --filter-gff [FILTER_GFF]
                                Filter - Gff Coordinate file
          -FiI [FILTER_IGNORE [FILTER_IGNORE ...]], --filter-ignore [FILTER_IGNORE [FILTER_IGNORE ...]], --filter-skip [FILTER_IGNORE [FILTER_IGNORE ...]]
                                Filter - Chromosomes to skip
          -Fis [FILTER_START], --filter-start [FILTER_START]
                                Filter - Chromosome start position to filter [0]
          -Fie [FILTER_END], --filter-end [FILTER_END]
                                Filter - Chromosome end position to filter [-1]
          -Fik, --filter-knife  Filter - Export to separate files
          -Fin, --filter-negative
                                Filter - Invert gff
          -Fiv, --filter-verbose
                                Filter - Verbose
          -Fip FILTER_PROTEIN, --filter-prot FILTER_PROTEIN, --filter-protein FILTER_PROTEIN
                                Filter - Input Fasta File to convert to Protein
          -Dbt DB_READ_THREADS, --db-threads DB_READ_THREADS
                                Db - Number of threads to read raw files

    Run MAKE:
      makefile -f makefile_[project name]

    Copy [project name].sqlite to iBrowser/data folder
      cp [project name].sqlite ..

    Create [project name].sqlite.nfo with the information about the database:
      #title as shall be shown in the UI
      title=Tomato 60 RIL - 50k
      #custom orders are optional.
      #more than one can be given in separate lines
      custom_order=RIL.customorder

    (OPTIONAL) create custom order files:
      #NAME=RIL Single
      ##NAME is the name of this particular ordering as it will appear in the UI
      ##
      #ROWNUM=1
      ##ROWNUM is the column to read 1 in the "row order" section
      ##
      ##CHROMOSOME=
      ##CHROMOSOME can either be __global__/empty for ordering all chromosomes, chomosome name for ordering a particular chromosome
      ##
      ##row order
      ref
      S lycopersicum cv MoneyMaker LYC1365
      615
      634
      667
      688
      710
      618
      694
      678
      693
      685
      651
      669
      674
      676

    Reload iBrowser

examples of how to run gen_makefile.py can be found at vcfmerger/aux/gen_makefile.py.examples

up

Arabidopsis 50Kbp

up

./vcfmerger/aux/gen_makefile.py --input arabidopsis.csv         --infasta TAIR10.fasta                                     --size 50000 --project arabidopsis_50k              --no-pickle --cluster-no-svg --smart_threads 25 --cluster-threads 5 --excluded-chrom chloroplast --excluded-chrom mitochondria --cluster-no-cols
make -f makefile_arabidopsis_50k
Tomato 10Kbp

up

./vcfmerger/aux/gen_makefile.py --input short2.lst --infasta S_lycopersicum_chromosomes.2.40.fa --size 10000               --project tom84_10k               --no-pickle --cluster-no-svg --smart_threads 25 --cluster-threads 5 --cluster-no-cols
make -f makefile_tom84_10k
Tomato 50Kbp

up

./vcfmerger/aux/gen_makefile.py --input short2.lst --infasta S_lycopersicum_chromosomes.2.40.fa --size 50000               --project tom84_50k               --no-pickle --cluster-no-svg --smart_threads 25 --cluster-threads 5 --cluster-no-cols
make -f makefile_tom84_50k
Tomato Genes given a gff file containing only gene coordinates

up

./vcfmerger/aux/gen_makefile.py --input short2.lst --filter-gff ITAG2.3_gene_models.gff3.gene.gff3                         --project tom84_genes             --no-pickle --cluster-no-svg --smart_threads 25 --cluster-threads 5 --cluster-no-cols
make -f makefile_tom84_genes
Tomato 10Kbp - Introgressed fragment giving a gff containing only the desired coordinated

up

./vcfmerger/aux/gen_makefile.py --input short2.lst --filter-gff S_lycopersicum_chromosomes.2.40.fa_10000_introgression.gff --project tom84_10k_introgression --no-pickle --cluster-no-svg --smart_threads 25 --cluster-threads 5 --cluster-no-cols
make -f makefile_tom84_10k_introgression
RIL 50kbp

up

./vcfmerger/aux/gen_makefile.py --input RIL.lst --filter-gff S_lycopersicum_chromosomes.2.40.fa_50000.gff   --project RIL_50k                        --no-pickle --cluster-no-svg --smart_threads 25 --cluster-threads 5 --cluster-no-cols
make -f makefile_RIL_50k
RIL 50kbp with RIL mode activated

up

./vcfmerger/aux/gen_makefile.py --input RIL.lst --filter-gff S_lycopersicum_chromosomes.2.40.fa_50000.gff   --project RIL_50k_mode_ril               --no-pickle --cluster-no-svg --smart_threads 25 --cluster-threads 5 --concat-RIL --cluster-no-cols
make -f makefile_RIL_50k_mode_ril
RIL 50kbp with RIL mode activated and greedy correction

up

./vcfmerger/aux/gen_makefile.py --input RIL.lst --filter-gff S_lycopersicum_chromosomes.2.40.fa_50000.gff   --project RIL_50k_mode_ril_greedy        --no-pickle --cluster-no-svg --smart_threads 25 --cluster-threads 5 --concat-RIL --concat-RIL-greedy --cluster-no-cols
make -f makefile_RIL_50k_mode_ril_greedy
RIL 50kbp with RIL mode activated and deletion of bad regions

up

./vcfmerger/aux/gen_makefile.py --input RIL.lst --filter-gff S_lycopersicum_chromosomes.2.40.fa_50000.gff   --project RIL_50k_mode_ril_delete        --no-pickle --cluster-no-svg --smart_threads 25 --cluster-threads 5 --concat-RIL --concat-RIL-delete --cluster-no-cols
make -f makefile_RIL_50k_mode_ril_delete
RIL 50kbp with RIL mode activated, greedy correction and deletion of bad regions

up

./vcfmerger/aux/gen_makefile.py --input RIL.lst --filter-gff S_lycopersicum_chromosomes.2.40.fa_50000.gff   --project RIL_50k_mode_ril_delete_greedy --no-pickle --cluster-no-svg --smart_threads 25 --cluster-threads 5 --concat-RIL --concat-RIL-greedy --concat-RIL-delete --cluster-no-cols
make -f makefile_RIL_50k_mode_ril_delete_greedy

Manually

up

    Merge VCF files:
        vcfmerger/vcfmerger.py short.lst
            OUTPUT: short.lst.vcf.gz
                #CHROM  POS     ID      REF     ALT     QUAL    FILTER  INFO    FORMAT  FILENAMES
                SL2.40ch00      280     .       A       C       .       PASS    NV=1;NW=1;NS=1;NT=1;NU=1        FI      S cheesemaniae (055)
                SL2.40ch00      284     .       A       G       .       PASS    NV=1;NW=1;NS=1;NT=1;NU=1        FI      S cheesemaniae (054)
                SL2.40ch00      316     .       C       T       .       PASS    NV=1;NW=1;NS=1;NT=1;NU=1        FI      S arcanum (059)
                SL2.40ch00      323     .       C       T       .       PASS    NV=1;NW=1;NS=1;NT=1;NU=1        FI      S arcanum (059)
                SL2.40ch00      332     .       A       T       .       PASS    NV=1;NW=1;NS=1;NT=1;NU=1        FI      S pimpinellifolium (047)
                SL2.40ch00      362     .       G       T       .       PASS    NV=1;NW=1;NS=1;NT=1;NU=1        FI      S galapagense (104)
                SL2.40ch00      385     .       A       C       .       PASS    NV=1;NW=1;NS=1;NT=1;NU=1        FI      S neorickii (056)
                SL2.40ch00      391     .       C       T       .       PASS    NV=1;NW=1;NS=6;NT=6;NU=6        FI      S chiemliewskii (052),S neorickii (056),S arcanum (059),S habrochaites glabratum (066),S habrochaites glabratum (067),S habrochaites (072)

    Simplify merged VCF deleting hetSNP, MNP and InDels:
        vcfmerger/vcfsimplify.py short.lst.vcf.gz
            OUTPUT: short.lst.vcf.gz.filtered.vcf.gz
                SL2.40ch00      391     .       C       T       .       PASS    NV=1;NW=1;NS=6;NT=6;NU=6        FI      S arcanum (059),S chiemliewskii (052),S habrochaites (072),S habrochaites glabratum (066),S habrochaites glabratum (067),S neorickii (056)
                SL2.40ch00      416     .       T       A       .       PASS    NV=1;NW=1;NS=6;NT=6;NU=6        FI      S arcanum (059),S chiemliewskii (052),S habrochaites (072),S habrochaites glabratum (066),S habrochaites glabratum (067),S neorickii (056)
                SL2.40ch00      424     .       C       T       .       PASS    NV=1;NW=1;NS=5;NT=5;NU=5        FI      LA0113 (039),S cheesemaniae (054),S pimpinellifolium (044),S pimpinellifolium unc (045),S pimpinellifolium (047)

    Generate even sized fragments (if needed):
        vcfmerger/aux/fasta_spacer.py GENOME.fa 50000
            OUTPUT: GENOME.fa.50000.gff
                SL2.40ch00      .       fragment_10000  1       10000   .       .       .       Alias=Frag_SL2.40ch00g10000_1;ID=fragment:Frag_SL2.40ch00g10000_1;Name=Frag_SL2.40ch00g10000_1;length=10000;csize=21805821
                SL2.40ch00      .       fragment_10000  10001   20000   .       .       .       Alias=Frag_SL2.40ch00g10000_2;ID=fragment:Frag_SL2.40ch00g10000_2;Name=Frag_SL2.40ch00g10000_2;length=10000;csize=21805821

    Filter with gff:
        vcfmerger/vcffiltergff.py -k -f PROJNAME -g GENOME.fa_50000.gff -i short2.lst.vcf.gz.simplified.vcf.gz 2>&1 | tee short2.lst.vcf.gz.simplified.vcf.gz.log
            OUTPUT:
                #CHROM  POS     ID      REF     ALT     QUAL    FILTER  INFO    FORMAT  FILENAMES
                SL2.40ch00      391     .       C       T       .       PASS    NV=1;NW=1;NS=6;NT=6;NU=6        FI      S arcanum (059),S chiemliewskii (052),S habrochaites (072),S habrochaites glabratum (066),S habrochaites glabratum (067),S neorickii (056)

    Concatenate the SNPs of each fragment into FASTA:
        find PROJNAME -name '*.vcf.gz' | xargs -I{} -P50 bash -c 'vcfmerger/vcfconcat.py -f -i {} 2>&1 | tee {}.concat.log'
            OUTPUT: PROJNAME/CHROMOSOME/short2.lst.vcf.gz.simplified.vcf.gz.filtered.vcf.gz.SL2.40ch01.000090300001-000090310000.Frag_SL2.40ch01g10000_9031.vcf.gz.SL2.40ch01.fasta
                >Moneymaker_001
                ATAATCTAGCTGGAACCCTTGTTTTTCTCGCGATTGGGGTTCAAGTGCACACCACATGTC
                AGGGA
                >Alisa_Craig_002
                ATAATCTAGCTGGAACCCTTGTTTTTCTTGCGATTGGGGTTCAAGTGCGCGCTGCGTGAC
                AGGAA

    Run FastTree in each of the FASTA files:
        export OMP_NUM_THREADS=3
        find PROJNAME -name '*.fasta' | sort | xargs -I{} -P30 bash -c 'vcfmerger/aux/FastTreeMP -fastest -gamma -nt -bionj -boot 100 -log {}.tree.log -out {}.tree {}'
            OUTPUT: PROJNAME/CHROMOSOME/short2.lst.vcf.gz.simplified.vcf.gz.filtered.vcf.gz.SL2.40ch01.000090300001-000090310000.Frag_SL2.40ch01g10000_9031.vcf.gz.SL2.40ch01.fasta.tree
                ((((Dana_018:0.0,Belmonte_033:0.0):0.00054,((TR00026_102:0.01587,(PI272654_023:0.03426,(((S_huaylasense_063:0.00054,((Lycopersicon_sp_025:0.0,S_chilense_065:0.0):0.00054,S_chilense_064:0.01555)0.780:0.01548)0.860:0.01547,((S_peruvianum_new_049:0.0,S_chiemliewskii_051:0.0,S_chiemliewskii_052:0.0,S_cheesemaniae_053:0.0,S_cheesemaniae_054:0.0,S_neorickii_056:0.0,S_neorickii_057:0.0,S_peruvianum_060:0.0,S_habrochaites_glabratum_066:0.0,S_habrochaites_glabratum_068:0.0,S_habrochaites_070:0.0,S_habrochaites_071:0.0,S_habrochaites_072:0.0,S_pennellii_073:0.0,S_pennellii_074:0.0,TR00028_LA1479_105:0.0,ref:0.0):0.00054,((S_arcanum_058:0.01482,(S_huaylasense_062:0.08258,S._arcanum_new_075:0.00054)0.880:0.03260)0.960:0.04917,(((Gardeners_Delight_003:0.00054,(Katinka_Cherry_007:0.0,Trote_Beere_016:0.0,Winter_Tipe_031:0.0):0.01559)0.900:0.03206,(PI129097_022:0.00054,(S_galapagense_104:0.04782,(LA0113_039:0.01223,((S_pimpinellifolium_047:0.01628,(S_arcanum_059:0.00055,(S_habrochaites_glabratum_067:0.01562,S_habrochaites_glabratum_069:0.01562)1.000:0.08287)0.920:0.04857)0.670:0.01186,S_habrochaites_042:0.03551)0.990:0.12956)0.960:0.06961)0.710:0.00054)0.800:0.01578)0.760:0.01558,(T1039_017:0.08246,S_pimpinellifolium_044:0.00054)0.980:0.08153)0.230:0.00053)0.910:0.00055)0.910:0.00054)0.830:0.01549,S_pimpinellifolium_046:0.00054)0.980:0.08610)0.660:0.01369)0.530:0.04644,(TR00027_103:0.00054,(PI365925_037:0.04936,S_cheesemaniae_055:0.03179)0.650:0.08462)1.000:0.41706)0.650:0.00296)0.940:0.01555,(The_Dutchman_028:0.00053,(((Polish_Joe_026:0.0,Brandywine_089:0.0):0.00054,((((Porter_078:0.01608,Kentucky_Beefsteak_093:0.01542)0.880:0.03271,(Thessaloniki_096:0.08543,Bloodt_Butcher_088:0.03267)0.700:0.01564)0.800:0.01585,(Giant_Belgium_091:0.01562,(Moneymaker_001:0.00054,(Dixy_Golden_Giant_090:0.01579,(Large_Red_Cherry_077:0.03276,Momatero_015:0.04969)0.720:0.01528)0.870:0.01570)0.850:0.01556)0.480:0.00055)0.930:0.03157,Marmande_VFA_094:0.03158)0.970:0.00053)0.880:0.00053,Watermelon_Beefsteak_097:0.01555)0.890:0.01559)0.970:0.03159)0.950:0.00054,PI169588_041:0.00054,((Sonato_012:0.11798,(((All_Round_011:0.01555,Chih-Mu-Tao-Se_038:0.00054)0.180:0.00054,(((Jersey_Devil_024:0.0,Chag_Li_Lycopersicon_esculentum_032:0.0,S_pimpinellifolium_unc_043:0.0):0.00054,(((PI311117_036:0.04839,((Taxi_006:0.0,Tiffen_Mennonite_034:0.0):0.00054,(Cal_J_TM_VF_027:0.00053,(Lycopersicon_esculentum_828_021:0.00054,(Black_Cherry_029:0.03245,(Galina_005:0.00054,S_pimpinellifolium_unc_045:0.01559)0.880:0.03248)0.770:0.01547)0.950:0.03179)0.160:0.01560)0.840:0.01563)0.420:0.00054,Lycopersicon_esculentum_825_020:0.00054)0.860:0.01556,((Cross_Country_013:0.0,ES_58_Heinz_040:0.0):0.00054,(Rutgers_004:0.01554,Lidi_014:0.04758)0.900:0.00054)0.880:0.00054)0.860:0.01558)0.080:0.01560,(Alisa_Craig_002:0.01560,John_s_big_orange_008:0.00054)1.000:0.00054)0.840:0.01558)0.800:0.01566,(Large_Pink_019:0.01555,Anto_030:0.00054)0.140:0.00054)0.920:0.01555)0.680:0.00054,Wheatley_s_Frost_Resistant_035:0.03155)0.950:0.00054);

        find PROJNAME -name '*.fasta' | sort | xargs -I{} -P30 bash -c 'vcfmerger/aux/FastTreeMP -nt -makematrix {} > {}.matrix'
            OUTPUT: PROJNAME/CHROMOSOME/short2.lst.vcf.gz.simplified.vcf.gz.filtered.vcf.gz.SL2.40ch01.000090300001-000090310000.Frag_SL2.40ch01g10000_9031.vcf.gz.SL2.40ch01.fasta.matrix
                Moneymaker_001 0.000000 0.134437 0.345611 0.134437  0.321609
                Alisa_Craig_002 0.134437 0.000000 0.211925 0.064210
                Gardeners_Delight_003 0.345611 0.211925 0.000000 0.211925

    Process the data into memory dump database (pyckle):
        vcf_walk_ram.py --pickle PROJNAME
            OUTPUT:
                walk_out_10k.db
                walk_out_10k_SL2.40ch00.db
                walk_out_10k_SL2.40ch01.db
                walk_out_10k_SL2.40ch02.db
                walk_out_10k_SL2.40ch03.db
                walk_out_10k_SL2.40ch04.db
                walk_out_10k_SL2.40ch05.db
                walk_out_10k_SL2.40ch06.db
                walk_out_10k_SL2.40ch07.db
                walk_out_10k_SL2.40ch08.db
                walk_out_10k_SL2.40ch09.db
                walk_out_10k_SL2.40ch10.db
                walk_out_10k_SL2.40ch11.db
                walk_out_10k_SL2.40ch12.db

    Convert (pickle) database to SQLite (if dependencies installed):
        vcf_walk_sql.py PROJNAME
            OUTPUT:
                walk_out_10k.sqlite

Merging

up

Splitting

up

Cleaning

up

Phylogeny

up

Extraction

up

Database creation

This project is maintained by Saulo Aflitos ( GitHub and LinkedIn ) with support from Applied Bioinformatics and WageningenUR

Hosted on GitHub Pages — Theme by orderedlist

<script type="text/javascript">var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));</script> <script type="text/javascript">try { var pageTracker = _gat._getTracker("UA-5291039-9"); pageTracker._trackPageview(); } catch(err) {}</script>

-Installation

--Get Data

--Interface

---Installation

----Docker

-----Virtual Machine

------VirtualBox

------VMWare

-----Manually

------Getting the code

------Global dependencies

-------Visualization

-------Standalone

--------Install Linux dependencies

--------Install Python dependencies

-------Apache

--------Install Apache dependencies

-------Calculations

-Running

--Running Visualization Server

--Running Calculations

---General

---Input Data

---Run

----Automatically

-----Examples

----Manually

-----Merging

-----Splitting

-----Cleaning

-----Phylogeny

-----Extraction

-----Database creation

Clone this wiki locally