-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
139 lines (112 loc) · 5.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import logging
import os
# This prevents numpy from using multiple threads
os.environ['OMP_NUM_THREADS'] = '1' # NOQA
import chainer
import yaml
from chainerrl import experiments, misc
from chainerrl.optimizers.nonbias_weight_decay import NonbiasWeightDecay
from chainer_spiral.agents import SPIRAL, SpiralStepHook
from chainer_spiral.dataset import PhotoEnhancementDataset
from chainer_spiral.environments import PhotoEnhancementEnv
from chainer_spiral.models import (SpiralDiscriminator, SpiralModel)
from chainer_spiral.utils.arg_utils import print_args
def main():
parser = argparse.ArgumentParser()
parser.add_argument('config', help='YAML config file')
parser.add_argument('outdir', type=str, help='directory to put training log')
parser.add_argument('--profile', action='store_true')
parser.add_argument('--load', type=str, default='')
parser.add_argument('--logger_level', type=int, default=logging.INFO)
args = parser.parse_args()
print_args(args)
# init a logger
logging.basicConfig(level=args.logger_level)
# load yaml config file
with open(args.config) as f:
config = yaml.load(f)
# set random seed
misc.set_random_seed(config['seed'])
# create directory to put the results
args.outdir = experiments.prepare_output_dir(args, args.outdir)
# save config file to outdir
with open(os.path.join(args.outdir, 'config.yaml'), 'w') as f:
yaml.dump(config, f, indent=4, default_flow_style=False)
# define func to create env, target data sampler, and models
if config['problem'] == 'photo_enhancement':
def make_env(process_idx, test):
env = PhotoEnhancementEnv(batch_size=config['rollout_n'], max_episode_steps=config['max_episode_steps'],
imsize=config['imsize'])
return env
sample_env = make_env(0, False)
gen = SpiralModel(config['imsize'], sample_env.num_parameters, config['L_stages'], config['conditional'])
dis = SpiralDiscriminator(config['imsize'], config['conditional'])
dataset = PhotoEnhancementDataset()
else:
raise NotImplementedError()
# initialize optimizers
gen_opt = chainer.optimizers.Adam(alpha=config['lr'], beta1=0.5)
dis_opt = chainer.optimizers.Adam(alpha=config['lr'], beta1=0.5)
gen_opt.setup(gen)
dis_opt.setup(dis)
gen_opt.add_hook(chainer.optimizer.GradientClipping(40))
dis_opt.add_hook(chainer.optimizer.GradientClipping(40))
if config['weight_decay'] > 0:
gen_opt.add_hook(NonbiasWeightDecay(config['weight_decay']))
dis_opt.add_hook(NonbiasWeightDecay(config['weight_decay']))
# init an spiral agent
agent = SPIRAL(generator=gen,
discriminator=dis,
gen_optimizer=gen_opt,
dis_optimizer=dis_opt,
dataset=dataset,
conditional=config['conditional'],
reward_mode=config['reward_mode'],
imsize=config['imsize'],
max_episode_steps=config['max_episode_steps'],
rollout_n=config['rollout_n'],
gamma=config['gamma'],
alpha=config['alpha'],
beta=config['beta'],
L_stages=config['L_stages'],
U_update=config['U_update'],
gp_lambda=config['gp_lambda'],
n_save_final_obs_interval=config['n_save_final_obs_interval'],
outdir=args.outdir)
# load from a snapshot
if args.load:
agent.load(args.load)
# training mode
max_episode_len = config['max_episode_steps'] # * config['rollout_n']
steps = config['processes'] * config['n_update'] * max_episode_len
save_interval = config['processes'] * config['n_save_interval'] * max_episode_len
eval_interval = config['processes'] * config['n_eval_interval'] * max_episode_len
step_hook = SpiralStepHook(config['max_episode_steps'], save_interval, args.outdir)
if config['processes'] == 1:
# single process for easy to debug
agent.process_idx = 0
env = make_env(0, False)
experiments.train_agent_with_evaluation(agent=agent,
outdir=args.outdir,
env=env,
steps=steps,
eval_n_runs=config['eval_n_runs'],
eval_interval=eval_interval,
max_episode_len=max_episode_len,
step_hooks=[step_hook],
save_best_so_far_agent=False)
else:
experiments.train_agent_async(agent=agent,
outdir=args.outdir,
processes=config['processes'],
make_env=make_env,
profile=args.profile,
steps=steps,
eval_n_runs=config['eval_n_runs'],
eval_interval=eval_interval,
max_episode_len=max_episode_len,
global_step_hooks=[step_hook],
save_best_so_far_agent=False)
if __name__ == '__main__':
main()