-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest.py
executable file
·121 lines (96 loc) · 4.31 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
import logging
import os
# This prevents numpy from using multiple threads
os.environ['OMP_NUM_THREADS'] = '1' # NOQA
import chainer
import yaml
from chainerrl import experiments, misc
from chainerrl.optimizers.nonbias_weight_decay import NonbiasWeightDecay
from chainer_spiral.agents import SPIRAL, SpiralStepHook
from chainer_spiral.dataset import PhotoEnhancementDataset
from chainer_spiral.environments import PhotoEnhancementEnvTest
from chainer_spiral.models import (SpiralDiscriminator, SpiralModel)
from chainer_spiral.utils.arg_utils import print_args
def main():
parser = argparse.ArgumentParser()
parser.add_argument('config', help='YAML config file')
parser.add_argument('outdir', type=str, help='directory to put training log')
parser.add_argument('--profile', action='store_true')
parser.add_argument('--load', type=str, default='')
parser.add_argument('--logger_level', type=int, default=logging.INFO)
parser.add_argument('--result_dir', type=str)
args = parser.parse_args()
print_args(args)
# init a logger
logging.basicConfig(level=args.logger_level)
# load yaml config file
with open(args.config) as f:
config = yaml.load(f)
# set random seed
misc.set_random_seed(config['seed'])
# define func to create env, target data sampler, and models
if config['problem'] == 'photo_enhancement':
def make_env(process_idx, test):
assert test, "error: test should be True"
env = PhotoEnhancementEnvTest(batch_size=config['rollout_n'],
max_episode_steps=config['max_episode_steps'],
imsize=config['imsize'])
env.set_result_dir(args.result_dir)
return env
sample_env = make_env(0, True)
gen = SpiralModel(config['imsize'], sample_env.num_parameters, config['L_stages'], config['conditional'])
dis = SpiralDiscriminator(config['imsize'], config['conditional'])
dataset = PhotoEnhancementDataset()
else:
raise NotImplementedError()
# initialize optimizers
gen_opt = chainer.optimizers.Adam(alpha=config['lr'], beta1=0.5)
dis_opt = chainer.optimizers.Adam(alpha=config['lr'], beta1=0.5)
gen_opt.setup(gen)
dis_opt.setup(dis)
gen_opt.add_hook(chainer.optimizer.GradientClipping(40))
dis_opt.add_hook(chainer.optimizer.GradientClipping(40))
if config['weight_decay'] > 0:
gen_opt.add_hook(NonbiasWeightDecay(config['weight_decay']))
dis_opt.add_hook(NonbiasWeightDecay(config['weight_decay']))
# init an spiral agent
agent = SPIRAL(generator=gen,
discriminator=dis,
gen_optimizer=gen_opt,
dis_optimizer=dis_opt,
dataset=dataset,
conditional=config['conditional'],
reward_mode=config['reward_mode'],
imsize=config['imsize'],
max_episode_steps=config['max_episode_steps'],
rollout_n=config['rollout_n'],
gamma=config['gamma'],
alpha=config['alpha'],
beta=config['beta'],
L_stages=config['L_stages'],
U_update=config['U_update'],
gp_lambda=config['gp_lambda'],
n_save_final_obs_interval=config['n_save_final_obs_interval'],
outdir=args.outdir,
act_deterministically=True)
# load from a snapshot
assert args.load, "error: specify the weight of the model"
if args.load:
agent.load(args.load)
# training mode
max_episode_len = config['max_episode_steps'] * config['rollout_n']
steps = config['processes'] * config['n_update'] * max_episode_len
save_interval = config['processes'] * config['n_save_interval'] * max_episode_len
eval_interval = config['processes'] * config['n_eval_interval'] * max_episode_len
step_hook = SpiralStepHook(config['max_episode_steps'], save_interval, args.outdir)
env = make_env(0, True)
with chainer.using_config('train', False):
eval_stats = experiments.evaluator.run_evaluation_episodes(
env=env,
agent=agent,
n_steps=None,
n_episodes=25,
max_episode_len=1)
if __name__ == '__main__':
main()