-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_satellite.py
executable file
·78 lines (62 loc) · 2.76 KB
/
train_satellite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import sys
from collections import OrderedDict
from options.train_options import TrainOptions
import data
from util.iter_counter import IterationCounter
from util.visualizer import Visualizer
from trainers.pix2pix_satellite_trainer import Pix2PixSatelliteTrainer
# parse options
opt = TrainOptions().parse()
# print options to help debugging
print(' '.join(sys.argv))
#import pdb; pdb.set_trace()
# load the dataset
dataloader = data.create_dataloader(opt)
# create trainer for our model
trainer = Pix2PixSatelliteTrainer(opt)
# create tool for counting iterations
iter_counter = IterationCounter(opt, len(dataloader))
# create tool for visualization
visualizer = Visualizer(opt)
for epoch in iter_counter.training_epochs():
#import pdb; pdb.set_trace()
iter_counter.record_epoch_start(epoch)
for i, data_i in enumerate(dataloader, start=iter_counter.epoch_iter):
iter_counter.record_one_iteration()
# Training
# train generator
if i % opt.D_steps_per_G == 0:
trainer.run_generator_one_step(data_i)
# train discriminator
trainer.run_discriminator_one_step(data_i)
# Visualizations
#if iter_counter.total_steps_so_far > 250: import pdb;pdb.set_trace()
if iter_counter.needs_printing():
#import pdb; pdb.set_trace()
losses = trainer.get_latest_losses()
visualizer.print_current_errors(epoch, iter_counter.epoch_iter,
losses, iter_counter.time_per_iter)
visualizer.plot_current_errors(losses, iter_counter.total_steps_so_far)
if iter_counter.needs_displaying():
visuals = OrderedDict([('input_label', data_i['label']),
('synthesized_image', trainer.get_latest_generated()),
('real_image', data_i['image'])])
visualizer.display_current_results(visuals, epoch, iter_counter.total_steps_so_far)
if iter_counter.needs_saving():
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, iter_counter.total_steps_so_far))
trainer.save('latest')
iter_counter.record_current_iter()
trainer.update_learning_rate(epoch)
iter_counter.record_epoch_end()
if epoch % opt.save_epoch_freq == 0 or \
epoch == iter_counter.total_epochs:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, iter_counter.total_steps_so_far))
trainer.save('latest')
trainer.save(epoch)
print('Training was successfully finished.')