-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathemsoft.ml
452 lines (379 loc) · 23.2 KB
/
emsoft.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
open Ustring.Op
open List
open Fmi
open Components
(*Find all edges and create graph *)
let find_fmu_of_port fmulist portvar =
List.find (fun b -> List.exists (fun a -> a = portvar) (List.append b.fmuinputs b.fmuoutputs)) fmulist
let find_mapping (prt: port) (pmap: (port * port) list) =
try Some (List.assoc prt pmap)
with Not_found -> None
let find_state_of_port portvar smap fmulist =
let fmuofport = find_fmu_of_port fmulist portvar in
List.find (fun a -> fmuofport.debugname = (fst a)) smap
let all_fmus_with_preditable_step_size allfmus =
let (cp, cr, cl) = allfmus in
cp
let all_fmus_with_rollback allfmus =
let (cp, cr, cl) = allfmus in
cr
let all_legacy_fmus allfmus =
let (cp, cr, cl) = allfmus in
cl
let rec save_state cr smap =
match cr with
|ht :: rst -> let st = List.assoc ht.debugname smap in
(ht.debugname, st) :: (save_state rst smap)
|[] -> []
let rec restore_state cr rmap =
match cr with
| ht :: rst -> let st = List.assoc ht.debugname rmap in
(ht.debugname, st) :: restore_state rst rmap
| [] -> []
let rec add_other_fmu_with_no_rollback cp smap =
match cp with
| ht :: rst -> let st = List.assoc ht.debugname smap in
(ht.debugname, st) :: restore_state rst smap
| [] -> []
let rec find_all_edges (pmap :(port * port) list) (ivar : port list) =
match ivar with
| [] -> []
| h :: rst -> match (find_mapping h pmap) with
|Some a -> (a, h) :: find_all_edges pmap rst
|None -> find_all_edges pmap rst
let create_graph (dep : (port * port) list) (pmap: (port * port) list) (ivar : port list) (ovar:port list) =
let g = {nodes = List.append ivar ovar ;
edges = List.append dep (find_all_edges pmap ivar)} in
g
(*Print functions *)
let print_edge (a, b) =
(uprint_string ( us "(")); (uprint_string a); (uprint_string ( us ", ")); (uprint_string b); (uprint_string ( us ")")); uprint_newline ()
let print_all_nodes nlist =
List.iter (fun a -> uprint_string a;uprint_newline () ) nlist; uprint_newline ()
let print_all_edges elist =
List.iter print_edge elist; uprint_newline ()
let print_graph (g : graph) =
uprint_string (us "NODES: "); uprint_newline (); print_all_nodes g.nodes; uprint_string (us "EDGES: ");uprint_newline (); print_all_edges g.edges
(*topological search *)
let rec nodes_with_no_incoming_edge nodelist edgelist =
match nodelist with
| h :: rst -> (match (List.exists (fun a -> (snd a = h) ) edgelist) with
| true -> nodes_with_no_incoming_edge rst edgelist
| false -> h :: nodes_with_no_incoming_edge rst edgelist)
| [] -> []
let rec topological_sort noincominglist sortedlist edgelist g =
match noincominglist with
| h :: rst -> let auxsortedlist = h :: sortedlist in
let (nodeswithoutedges, nodeswithedges) = List.split (List.filter (fun a -> (fst a = h)) edgelist) in
let auxedgelist = List.filter (fun a -> (snd a <> h)) edgelist in
let auxnoincominglist = nodes_with_no_incoming_edge nodeswithedges auxedgelist in
let auxauxnoincominglist = (match auxnoincominglist with
| [] -> List.append nodeswithedges rst
| _ -> rst) in
topological_sort auxauxnoincominglist auxsortedlist auxedgelist g
| [] -> (sortedlist, edgelist)
let result_topological_sort g =
let noincominglist = nodes_with_no_incoming_edge g.nodes g.edges in
let (sortlist, edgelist) = topological_sort noincominglist [] g.edges g in
(match edgelist with
| [] -> sortlist
| _ -> raise Not_found)
(*let get m y =
let (nme, ste) = m in
let (var, value) = List.find (fun a -> (fst a) = y) ste.portvalue in
value
*)
let get m y =
let (nme, s) = m in
let _ = uprint_string ((us "get: ") ^. nme ^. (us ":")) in
(match s.addvar with
|SCounter(count) -> get_counter s y
|SAdder(sum) -> get_adder s y
|SDiscrete(t, p) -> get_periodic_clock s y
|SConst(a) -> get_const s y
|SGain(_, _) -> get_gain s y
|SDisreteTimeDelay(_,_)-> get_discrete_time_delay s y
|SMicrostepDelay(_) -> get_microstep_delay s y
|SIntegrator(_, _, _) -> get_integrator s y
|SSine(_, _, _, _) -> get_sinewave s y )
let set m u v =
let _ = fmu_debug_print "set" in
let (name, ste) = m in
let _ = uprint_string ((us "set ") ^. name ^. (us ":")) in
let portupdated = List.map (fun a -> if (u = (fst a)) then ((fst a), v) else a) ste.portvalue in
let _ = print_port (List.find (fun a -> u = (fst a)) portupdated); uprint_newline() in
let mupdated = (name, {ste with portvalue = portupdated}) in
mupdated
let do_step s h =
let _ = fmu_debug_print "do_step" in
match s.addvar with
|SCounter(a) -> do_step_counter s h
|SAdder(a) -> do_step_adder s h
|SDiscrete(t, p) -> do_step_periodic_clock s h
|SConst(a) -> do_step_const s h
|SGain(_, _) -> do_step_gain s h
|SDisreteTimeDelay(_,_) -> do_step_discrete_time_delay s h
|SMicrostepDelay(_) -> do_step_microstep_delay s h
|SIntegrator(_, _, _) -> do_step_integrator s h
|SSine(_, _, _, _) -> do_step_sinewave s h
let get_max_step_size s =
let _ = fmu_debug_print "get_max_step_size" in
match s.addvar with
|SCounter(a) -> get_max_step_size_counter s
|SAdder(a) -> get_max_step_size_adder s
|SDiscrete(t, p) -> get_max_step_size_periodic_clock s
|SConst(a) -> get_max_step_size_const s
|SDisreteTimeDelay(_,_) -> get_max_step_size_discrete_time_delay s
|SMicrostepDelay(_) -> get_max_step_size_microstep_delay s
|SIntegrator(_, _, _) -> get_max_step_size_integrator s
|SSine(_, _, _, _) -> get_max_step_size_sinewave s
|_ -> uprint_string (us "fmu does not support predictable step size"); raise Not_found
let rec min_step_size_of_fmu clist hp smap =
match clist with
| ht :: rst -> let s = List.assoc ht.debugname smap in
let h = get_max_step_size s in
if (h < hp) then (min_step_size_of_fmu rst h smap) else (min_step_size_of_fmu rst hp smap)
| [] -> hp
let rec do_step_list cr smap h =
match cr with
| ht :: rst -> (*let _ = uprint_string ht.debugname in*)
let s = List.assoc ht.debugname smap in
let (sprime, hprime) = do_step s h in
let hmin = min h hprime in
let smp = List.map (fun a -> if (ht.debugname = (fst a)) then (ht.debugname, sprime) else a) smap in
do_step_list rst smp hmin
| [] -> (smap, h)
let rec step_one orderedinputs smap pmap fmulist =
match orderedinputs with
| u :: rst -> let yopt = find_mapping u pmap in
(match yopt with
|Some(y) -> let my = find_state_of_port y smap fmulist in
let v = get my y in
let mu = find_state_of_port u smap fmulist in
let muupdated = set mu u v in
let smapupdated = List.map (fun a -> if (fst a = (fst muupdated)) then (muupdated) else a) smap in
step_one rst smapupdated pmap fmulist
|None -> step_one rst smap pmap fmulist)
|[] -> smap
let step_two allfmus smap hmax =
let cp = all_fmus_with_preditable_step_size allfmus in
let h = min_step_size_of_fmu cp hmax smap in
h
let step_three allfmus smap =
let cr = all_fmus_with_rollback allfmus in
let r = save_state cr smap in
r
let step_four allfmus r smap =
let cr = all_fmus_with_rollback allfmus in
let smapprime = restore_state cr r in
let cp = all_fmus_with_preditable_step_size allfmus in
let smapprimeprime = add_other_fmu_with_no_rollback cp smap in
List.append smapprime smapprimeprime
let step_five allfmus smap hmin =
let cr = all_fmus_with_rollback allfmus in
let (smapprime, h) = do_step_list cr smap hmin in
(smapprime, h)
let rec rollback_on_accepted_step allfmus smap r h =
let (smapprime, hprime) = step_five allfmus smap h in
let hmin = min hprime h in
if (hmin < h) then (let smaprestored = step_four allfmus r smap in rollback_on_accepted_step allfmus smaprestored r hmin) else (smapprime, hprime)
let rec step_eight allfmus smap h =
let cp = all_fmus_with_preditable_step_size allfmus in
let (smapprime, hprime) = do_step_list cp smap h in
(smapprime, hprime)
let output_of_model modelname smap =
let _ = fmu_debug_print "output_of_model" in
if (modelname = us "simplestcounter") then
(let my = List.find (fun a -> (fst a) = (us "counter")) smap in
let y = us "c" in
let (name, ste) = my in
let _ = get my y in ());
if (modelname = us "simplecounterplusadder") then
(let my = List.find (fun a -> (fst a) = (us "adder0")) smap in
let y = us "f" in
let (name, ste) = my in
let _ = get my y in () );
if (modelname = us "gainplusperiodic") then
(let my = List.find (fun a -> (fst a) = (us "counter")) smap in
let y = us "e" in
let (name, ste) = my in
let _ = get my y in () );
if (modelname = us "discretedelay") then
(let my = List.find (fun a -> (fst a) = (us "counter")) smap in
let y = us "c" in
let (name, ste) = my in
let _ = get my y in
let my = List.find (fun a -> (fst a) = (us "discretedelay")) smap in
let y = us "e" in
let (name, ste) = my in
let _ = get my y in () );
if (modelname = us "microstepdelay") then
(let my = List.find (fun a -> (fst a) = (us "periodic_clock0")) smap in
let y = us "a" in
let (name, ste) = my in
let _ = get my y in
let my = List.find (fun a -> (fst a) = (us "microstepdelay")) smap in
let y = us "c" in
let (name, ste) = my in
let _ = get my y in () );
if (modelname = us "integrator") then
(*let my = List.find (fun a -> (fst a) = (us "integrator")) smap in
let y = us "a" in
let (name, ste) = my in
let _ = get my y in *) (
let my = List.find (fun a -> (fst a) = (us "integrator")) smap in
let y = us "b" in
let (name, ste) = my in
let _ = get my y in () );
if (modelname = us "sinewave") then
(*let my = List.find (fun a -> (fst a) = (us "integrator")) smap in
let y = us "a" in
let (name, ste) = my in
let _ = get my y in *) (
let my = List.find (fun a -> (fst a) = (us "sinewave")) smap in
let y = us "a" in
let (name, ste) = my in
let _ = get my y in () ); ()
let masterStepSuperdenseTime fmiset allfmus orderedlist pmap hmax smap =
(*step one and check*)
(*check : List.iter (fun a -> print_state (fst a) (snd a)) smap ; *)
let orderedinputs = List.filter (fun a -> List.exists (fun b -> b = a) fmiset.allinputvar) orderedlist in
let smap = step_one orderedinputs smap pmap fmiset.fmuinstances in
let _ = output_of_model fmiset.fminame smap in
(*check : let _ = List.iter (fun a -> print_state (fst a) (snd a)) smap in *)
let h = step_two allfmus smap hmax in
let r = step_three allfmus smap in
let (m, h) = rollback_on_accepted_step allfmus smap r h in (*step 4 to step 6*)
let (mprime, hprime) = step_eight allfmus m h in (* skipping step 7 since no legacy supported in this implementation *)
if h <> hprime then (uprint_string (us "communication step size error");raise Not_found )else (mprime, hprime)
let rec runSimulation fmiinstance allfmus orderedlist pmap m startime endtime timenow h =
let _ = print_time timenow in
let _ = uprint_string (us "h = "); uprint_float h; uprint_newline() in
let (mprime, hprime) = masterStepSuperdenseTime fmiinstance allfmus orderedlist pmap h m in
let _ = assert(hprime>=0.0) in
let _ = uprint_string (us "accepted h = "); uprint_float hprime; uprint_newline() in
let timenow = if (hprime = 0.0) then {timenow with index = (timenow.index + 1)} else {timenow with model_time = (timenow.model_time +. hprime); index = 0} in
let _ = print_time timenow in
let _ = uprint_newline() in
if (timenow.model_time <= endtime.model_time) then (runSimulation fmiinstance allfmus orderedlist pmap mprime startime endtime timenow 0.1 ) else ()
let testSimplestCounter =
let _ = uprint_string (us "periodic_clock -- counter");uprint_newline() in
let fmu1 = {fmuinputs = []; fmuoutputs = [us "a"]; fmudependecies =[]; fmustate = initialize_state_periodic_clock (us "a") 3.0; debugname = (us "periodic_clock0")} in
let fmu2 = {fmuinputs = [us "b"]; fmuoutputs = [us "c"]; fmudependecies =[(us "b", us "c")]; fmustate = initialize_state_counter (us "b") (us "c") 0.0; debugname = (us "counter")} in
let ivar = List.append fmu1.fmuinputs fmu2.fmuinputs in
let ovar = List.append fmu1.fmuoutputs fmu2.fmuoutputs in
let pmap = [((us "b"), (us "a"))] in
let dep = List.append fmu1.fmudependecies fmu2.fmudependecies in
let fmisimplecounter = {fmuinstances = [fmu1; fmu2]; allinputvar = ivar; alloutputvar = ovar; globaldependencies = dep; portmapping = pmap; fminame = us "simplestcounter"} in
let allfmus = ([fmu1;fmu2], [], []) in
let smap = [(fmu1.debugname, fmu1.fmustate); (fmu2.debugname, fmu2.fmustate)] in
let g = create_graph (dep) (pmap) (ivar) (ovar) in
let start_time = {model_time = 0.0; index = 0} in
let end_time = {model_time = 21.0; index = 0} in
let topo = List.rev (result_topological_sort g) in
print_graph g; uprint_string (us "TOPOLOGICAL ORDER: ");uprint_newline (); print_all_nodes topo;
runSimulation (fmisimplecounter) allfmus (topo) pmap smap start_time end_time start_time 2.0; ()
(*let testCounterAdder =
let _ = uprint_string (us "periodic_clock -- counter -- const -- adder"); uprint_newline() in
let fmu1 = {fmuinputs = []; fmuoutputs = [us "a"]; fmudependecies =[]; fmustate = initialize_state_periodic_clock (us "a") 3.0; debugname = (us "periodic_clock0")} in
let fmu2 = {fmuinputs = [us "b"]; fmuoutputs = [us "c"]; fmudependecies =[(us "b", us "c")]; fmustate = initialize_state_counter (us "b") (us "c") 0.0; debugname = (us "counter0")} in
let fmu3 = {fmuinputs = [us "d"; us "e"]; fmuoutputs = [us "f"]; fmudependecies =[(us "d", us "f"); (us "e", us "f")]; fmustate = initialize_state_adder [(us "d"); (us "e"); (us "f")] 0.0; debugname = (us "adder0")} in
let fmu4 = {fmuinputs = []; fmuoutputs = [us "g"]; fmudependecies =[]; fmustate = initialize_state_const [(us "g")] 3.0; debugname = (us "const0")} in
let ivar = List.append fmu1.fmuinputs (List.append fmu2.fmuinputs (List.append fmu3.fmuinputs fmu4.fmuinputs)) in
let ovar = List.append fmu1.fmuoutputs (List.append fmu2.fmuoutputs (List.append fmu3.fmuoutputs fmu4.fmuoutputs)) in
let pmap = [((us "b"), (us "a")); ((us "d"), (us "c")); ((us "e"), (us "g"))] in
let dep = List.append fmu1.fmudependecies (List.append fmu2.fmudependecies (List.append fmu3.fmudependecies fmu4.fmudependecies)) in
let fmicounteradder = {fmuinstances = [fmu1; fmu2; fmu3; fmu4]; allinputvar = ivar; alloutputvar = ovar; globaldependencies = dep; portmapping = pmap; fminame = us "simplecounterplusadder"} in
let allfmus = ([fmu1;fmu2; fmu3], [fmu4], []) in
let smap = [(fmu1.debugname, fmu1.fmustate); (fmu2.debugname, fmu2.fmustate); (fmu3.debugname, fmu3.fmustate); (fmu4.debugname, fmu4.fmustate)] in
let g = create_graph (dep) (pmap) (ivar) (ovar) in
let start_time = {model_time = 0.0; index = 0} in
let end_time = {model_time = 0.0; index = 0} in
let topo = List.rev (result_topological_sort g) in
print_graph g; uprint_string (us "TOPOLOGICAL ORDER: ");uprint_newline (); print_all_nodes topo;
runSimulation (fmicounteradder) allfmus (topo) pmap smap start_time end_time start_time 2.0; () *)
let testCounterGain =
let _ = uprint_string (us "periodic_clock -- gain"); uprint_newline() in
let fmu1 = {fmuinputs = []; fmuoutputs = [us "a"]; fmudependecies =[]; fmustate = initialize_state_periodic_clock (us "a") 3.0; debugname = (us "periodic_clock0")} in
let fmu2 = {fmuinputs = [us "b"]; fmuoutputs = [us "c"]; fmudependecies =[(us "b", us "c")]; fmustate = initialize_state_gain [(us "b"); (us "c")] 0.0; debugname = (us "gain0")} in
let fmu3 = {fmuinputs = [us "d"]; fmuoutputs = [us "e"]; fmudependecies =[(us "d", us "e")]; fmustate = initialize_state_counter (us "d") (us "e") 3.0; debugname = (us "counter")} in
let ivar = List.append fmu1.fmuinputs (List.append fmu2.fmuinputs fmu3.fmuinputs) in
let ovar = List.append fmu1.fmuoutputs (List.append fmu2.fmuoutputs fmu3.fmuoutputs) in
let pmap = [((us "b"), (us "a")); ((us "d"), (us "c"))] in
let dep = List.append fmu1.fmudependecies (List.append fmu2.fmudependecies fmu3.fmudependecies)in
let fmicounteradder = {fmuinstances = [fmu1; fmu2; fmu3]; allinputvar = ivar; alloutputvar = ovar; globaldependencies = dep; portmapping = pmap; fminame = us "gainplusperiodic"} in
let allfmus = ([fmu1;fmu3], [fmu2], []) in
let smap = [(fmu1.debugname, fmu1.fmustate); (fmu2.debugname, fmu2.fmustate); (fmu3.debugname, fmu3.fmustate)] in
let g = create_graph (dep) (pmap) (ivar) (ovar) in
let start_time = {model_time = 0.0; index = 0} in
let end_time = {model_time = 0.0; index = 0} in
let topo = List.rev (result_topological_sort g) in
print_graph g; uprint_string (us "TOPOLOGICAL ORDER: ");uprint_newline (); print_all_nodes topo;
runSimulation (fmicounteradder) allfmus (topo) pmap smap start_time end_time start_time 2.0; ()
let testdiscretedelay =
let _ = uprint_string (us "periodic_clock -- counter -- discrete delay");uprint_newline() in
let fmu1 = {fmuinputs = []; fmuoutputs = [us "a"]; fmudependecies =[]; fmustate = initialize_state_periodic_clock (us "a") 2.0; debugname = (us "periodic_clock0")} in
let fmu2 = {fmuinputs = [us "b"]; fmuoutputs = [us "c"]; fmudependecies =[(us "b", us "c")]; fmustate = initialize_state_counter (us "b") (us "c") 0.0; debugname = (us "counter")} in
let fmu3 = {fmuinputs = [us "d"]; fmuoutputs = [us "e"]; fmudependecies =[(us "d", us "e")]; fmustate = initialize_state_discrete_time_delay [(us "d"); (us "e")] 2.0; debugname = (us "discretedelay")} in
let ivar = List.append fmu1.fmuinputs (List.append fmu2.fmuinputs fmu3.fmuinputs) in
let ovar = List.append fmu1.fmuoutputs (List.append fmu2.fmuoutputs fmu3.fmuinputs) in
let pmap = [((us "b"), (us "a")); ((us "d"), (us "c"))] in
let dep = List.append fmu1.fmudependecies (List.append fmu2.fmudependecies fmu3.fmudependecies) in
let fmisimplecounter = {fmuinstances = [fmu1; fmu2; fmu3]; allinputvar = ivar; alloutputvar = ovar; globaldependencies = dep; portmapping = pmap; fminame = us "discretedelay"} in
let allfmus = ([fmu1;fmu2;fmu3], [], []) in
let smap = [(fmu1.debugname, fmu1.fmustate); (fmu2.debugname, fmu2.fmustate); (fmu3.debugname, fmu3.fmustate)] in
let g = create_graph (dep) (pmap) (ivar) (ovar) in
let start_time = {model_time = 0.0; index = 0} in
let end_time = {model_time = 21.0; index = 0} in
let topo = List.rev (result_topological_sort g) in
print_graph g; uprint_string (us "TOPOLOGICAL ORDER: ");uprint_newline (); print_all_nodes topo;
runSimulation (fmisimplecounter) allfmus (topo) pmap smap start_time end_time start_time 2.0; ()
let testmicrostepdelay =
let _ = uprint_string (us "periodic_clock -- discrete delay");uprint_newline() in
let fmu1 = {fmuinputs = []; fmuoutputs = [us "a"]; fmudependecies =[]; fmustate = initialize_state_periodic_clock (us "a") 2.0; debugname = (us "periodic_clock0")} in
let fmu2 = {fmuinputs = [us "b"]; fmuoutputs = [us "c"]; fmudependecies =[(us "b", us "c")]; fmustate = initialize_state_microstep_delay [(us "b"); (us "c")]; debugname = (us "microstepdelay")} in
let ivar = List.append fmu1.fmuinputs fmu2.fmuinputs in
let ovar = List.append fmu1.fmuoutputs fmu2.fmuoutputs in
let pmap = [((us "b"), (us "a"))] in
let dep = List.append fmu1.fmudependecies fmu2.fmudependecies in
let fmisimplecounter = {fmuinstances = [fmu1; fmu2]; allinputvar = ivar; alloutputvar = ovar; globaldependencies = dep; portmapping = pmap; fminame = us "microstepdelay"} in
let allfmus = ([fmu1;fmu2], [], []) in
let smap = [(fmu1.debugname, fmu1.fmustate); (fmu2.debugname, fmu2.fmustate)] in
let g = create_graph (dep) (pmap) (ivar) (ovar) in
let start_time = {model_time = 0.0; index = 0} in
let end_time = {model_time = 21.0; index = 0} in
let topo = List.rev (result_topological_sort g) in
print_graph g; uprint_string (us "TOPOLOGICAL ORDER: ");uprint_newline (); print_all_nodes topo;
runSimulation (fmisimplecounter) allfmus (topo) pmap smap start_time end_time start_time 2.0; ()
let testintegrator =
let _ = uprint_string (us "integrator"); uprint_newline() in
let fmu1 = {fmuinputs = [us "a"]; fmuoutputs = [us "b"]; fmudependecies =[(us "a", us "b")]; fmustate = initialize_state_integator [(us "a"); (us "b")] [1.0; 0.0; 1.0]; debugname = (us "integrator")} in
let ivar = fmu1.fmuinputs in
let ovar = fmu1.fmuoutputs in
let dep = fmu1.fmudependecies in
let pmap = [] in
let fmisimpleintegrator = {fmuinstances = [fmu1]; allinputvar = ivar; alloutputvar = ovar; globaldependencies = dep; portmapping = pmap; fminame = us "integrator"} in
let allfmus = ([fmu1], [], []) in
let smap = [(fmu1.debugname, fmu1.fmustate)] in
let g = create_graph (dep) (pmap) (ivar) (ovar) in
let start_time = {model_time = 0.0; index = 0} in
let end_time = {model_time = 1.0; index = 0} in
let topo = List.rev (result_topological_sort g) in
print_graph g; uprint_string (us "TOPOLOGICAL ORDER: ");uprint_newline (); print_all_nodes topo;
runSimulation (fmisimpleintegrator) allfmus (topo) pmap smap start_time end_time start_time 0.1; ()
let testintegrator =
let _ = uprint_string (us "sinewave"); uprint_newline() in
let fmu1 = {fmuinputs = []; fmuoutputs = [us "a"]; fmudependecies =[]; fmustate = initialize_state_sinewave (us "a") 8000.0 440.0 0.0; debugname = (us "sinewave")} in
let ivar = fmu1.fmuinputs in
let ovar = fmu1.fmuoutputs in
let dep = fmu1.fmudependecies in
let pmap = [] in
let fmisimpleintegrator = {fmuinstances = [fmu1]; allinputvar = ivar; alloutputvar = ovar; globaldependencies = dep; portmapping = pmap; fminame = us "sinewave"} in
let allfmus = ([fmu1], [], []) in
let smap = [(fmu1.debugname, fmu1.fmustate)] in
let g = create_graph (dep) (pmap) (ivar) (ovar) in
let start_time = {model_time = 0.0; index = 0} in
let end_time = {model_time = 5.0; index = 0} in
let topo = List.rev (result_topological_sort g) in
print_graph g; uprint_string (us "TOPOLOGICAL ORDER: ");uprint_newline (); print_all_nodes topo;
runSimulation (fmisimpleintegrator) allfmus (topo) pmap smap start_time end_time start_time 0.1; ()