-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathclass_7.tex
347 lines (308 loc) · 12 KB
/
class_7.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
{{ % Localize command definitions
\newcommand{\Rationals}{\mathbb{Q}}
\newcommand{\Booleans}{\mathbb{B}}
\chapter{Class 7}
For this chapter, we replace the word \emph{formula} in rules and
proofs of a formal system by the word \emph{judgement}.
\section{Natural Deduction for Propositional Logic}
Judgements in Natural Deduction have the form $\Gamma \vdash \phi$,
where $\Gamma$ is a set of formulas and $\phi$ is a formula.
Semantically, for all interpretations $v$, if all formulas in
$\Gamma$ are true in $v$, then $\phi$ is true in $v$.
Formal system for natural deduction defines a meta-symbol
$\vdash_\text{meta}$ such that $\vdash_\text{meta} (\Gamma \vdash
\phi)$.
\subsection{Judgements in Natural Deduction}
We use the notation $\Gamma, \phi$ to show $\Gamma \cup \{\phi\}$.
\begin{enumerate}
\item Axioms
\[ \infer* [right=ax]
{ }{\Gamma, \phi \vdash \phi}
\qquad\qquad \infer* [right=$\top$-intro]
{ }{\Gamma \vdash \top}
\]
\item False-elimination: if $\bot$ can be derived, then anything
can be derived.
\[ \infer* [right=$\bot$-elim]
{\Gamma \vdash \bot}{\Gamma \vdash \phi}
\]
\item Conjunction elimination and introduction
\[ \infer* [right=$\land$-elim]
{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi}
\qquad\qquad \infer* [right=$\land$-elim]
{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi}
\qquad\qquad \infer* [right=$\land$-intro]
{\Gamma \vdash \phi \\ \Gamma \vdash \psi}
{\Gamma \vdash \phi \land \psi}
\]
\item Disjunction elimination and introduction
\[ \infer* [right=$\lor$-elim]
{\Gamma \vdash \phi \lor \psi
\\ \Gamma, \phi \vdash \chi
\\ \Gamma, \psi \vdash \chi}{\Gamma \vdash \chi}
\qquad\qquad \infer* [right=$\lor$-intro]
{\Gamma \vdash \phi}{\Gamma \vdash \phi \land \psi}
\qquad \infer* [right=$\land$-intro]
{\Gamma \vdash \phi}{\Gamma \vdash \psi \land \phi}
\]
\item Negation elimination and introduction
\[ \infer* [right=$\neg$-elim]
{\Gamma \vdash \phi \\ \Gamma \vdash \neg \phi}
{\Gamma \vdash \bot}
\qquad\qquad \infer* [right=$\neg$-intro]
{\Gamma, \phi \vdash \bot}{\Gamma \vdash \neg \phi}
\]
\item Implication elimination and introduction
\[ \infer* [right=$\rightarrow$-elim]
{\Gamma \vdash \phi \\ \Gamma \vdash \phi \rightarrow \psi}
{\Gamma \vdash \psi}
\qquad\qquad \infer* [right=$\rightarrow$-intro]
{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \rightarrow \psi}
\]
Observe how $\rightarrow$-elim is similar to modus ponens.
\end{enumerate}
\begin{homework}
Prove implication transitivity using Natural Deduction.
\end{homework}
\begin{example}\label{lecture_7:contrapositive}
Show $(\phi \rightarrow \psi) \rightarrow
(\neg \psi \rightarrow \neg \phi)$.
\end{example}
\begin{proof}
\[ \infer* [right=$\rightarrow$-intro]
{ \infer* [right=$\rightarrow$-intro]
{ \infer* [right=$\neg$-intro]
{ \infer* [right=$\neg$-elim]
{ \phi \rightarrow \psi, \neg \psi, \phi \vdash \psi \\
\phi \rightarrow \psi, \neg \psi, \phi \vdash \neg \psi
}{\phi \rightarrow \psi, \neg \psi, \phi \vdash \bot}
}{\phi \rightarrow \psi, \neg \psi \vdash \neg \phi}
}{(\phi \rightarrow \psi)
\vdash (\neg \psi \rightarrow \neg \phi)}
}{\vdash (\phi \rightarrow \psi)
\rightarrow (\neg \psi \rightarrow \neg \phi)}
\]
Now we have two goals to prove.
\[ \infer* [right=$\rightarrow$-elim]
{ \infer* [right=ax]
{ }{\phi \rightarrow \psi, \neg \psi, \phi \vdash \phi} \\
\infer* [right=ax]
{ }{\phi \rightarrow \psi, \neg \psi, \phi
\vdash \phi \rightarrow \psi}
}{\phi \rightarrow \psi, \neg \psi, \phi \vdash \psi}
\qquad \infer* [right=ax]
{ }{\phi \rightarrow \psi, \neg \psi, \phi \vdash \neg \psi}
\qquad
\]
\end{proof}
Observe how this method of writing proofs in Natural Deduction
requires us to rewrite the context for every step. We can use a
slightly different notation to avoid this repetition.
We can draw boxes to introduce \emph{contexts} in a proof. Every
formula written inside a box is assumed to hold only within that box.
The following ``proofs'' are examples of using this notation.
\[ \infer {
\begin{tikzpicture}
\node [draw, rectangle, dashed, line cap=round]
{\begin{tabular}{c} $\phi$ \\ \vdots \\ $\psi$ \end{tabular}};
\end{tikzpicture}
}{\phi \rightarrow \psi}
\qquad \infer {
\begin{tikzpicture}
\node [draw, rectangle, dashed, line cap=round]
{\begin{tabular}{c} $\phi$ \\ \vdots \\ $\bot$ \end{tabular}};
\end{tikzpicture}
}{\neg \phi}
\qquad \infer {
\begin{tikzpicture}
\node {$\phi \lor \psi$};
\end{tikzpicture} \\
\begin{tikzpicture}
\node [draw, rectangle, dashed, line cap=round]
{\begin{tabular}{c} $\phi$ \\ \vdots \\ $\chi$ \end{tabular}};
\end{tikzpicture} \\
\begin{tikzpicture}
\node [draw, rectangle, dashed, line cap=round]
{\begin{tabular}{c} $\phi$ \\ \vdots \\ $\chi$ \end{tabular}};
\end{tikzpicture}
}{\chi}
\]
Using this notation, we can rewrite the proof for example
\ref{lecture_7:contrapositive}:
\[ \infer {
\begin{tikzpicture}
\node [draw, rectangle, dashed, line cap=round] {$
\infer {
\text{1. } \phi \rightarrow \psi \\\\
\begin{tikzpicture}
\node [draw, rectangle, dashed, line cap=round] {$
\infer {
\text{2. } \neg \psi \\\\
\begin{tikzpicture}
\node [draw, rectangle, dashed, line cap=round] {
\begin{tabular}{c}
3. $\phi$ \\
4. $\psi$ ($\rightarrow$-elim, 1, 3) \\
5. $\bot$ ($\neg$-elim, 2, 4)
\end{tabular}
};
\end{tikzpicture}
}{\neg \phi}
$};
\end{tikzpicture}
}{\neg \psi \rightarrow \neg \phi}
$};
\end{tikzpicture}
}{(\phi \rightarrow \psi)
\rightarrow (\neg \psi \rightarrow \neg \phi)}
\]
The system defined above is in fact the NJ (Intuitionistic Natural
Deduction) system. The following rule, namely the law of excluded
middle, cannot be derived in NJ:
\[ \infer* [right=ex-middle]
{ }{\Gamma \vdash \phi \lor \neg \phi}
\]
The NK system (Classical Natural Deduction) is NJ with the addition
of the law of excluded middle. The NK system is sound and complete
for propositional logic.
Assumption of the law of excluded middle is in fact an important
distinction between Intuitionistic and classical logic. In the
following is an example which uses excluded middle in its proof.
\begin{example}
Show that there exist $a, b \not \in \Rationals$ such that
$a ^ b \in \Rationals$.
\end{example}
\begin{proof}
Let $a = \sqrt{2} ^ {\sqrt{2}}$ and $b = \sqrt{2}$. We know that
$\sqrt{2} \not \in \Rationals$. We do a ``classical''
case-splitting on $a \in \Rationals$:
\begin{enumerate}
\item $a \not \in \Rationals$. We have
\[ a ^ b
= \left( \sqrt{2} ^ {\sqrt{2}} \right) ^ {\sqrt{2}}
= \sqrt{2} ^ 2
= 2 \in \Rationals \]
\item $a \in \Rationals$. We are already done with the proof; let
$a_1 = b_1 = \sqrt{2}$. We know $a_1, b_1 \not \in \Rationals$ and,
by assumption, ${a_1} ^ {b_1} \in \Rationals$.
\end{enumerate}
Observe how this classical-style proof utilizes the law of excluded
middle in the case-splitting: $\sqrt{2} ^ {\sqrt{2}}$ is either in
$\Rationals$ or not in $\Rationals$; there is no \emph{middle}.
\end{proof}
\section{Kripke Semantics}
Classically, an interpretation $v: P \to \Booleans$ is defined as a
mapping from a set of propositions to boolean values $\top$ and
$\bot$. For intuitionistic reasoning, we define a new semantics.
\begin{definition}
A Kripke model $m$ is defined as a tuple $(W, \leq, w_0,
v: W \times P \to \Booleans)$, where $W$ is a set of classical
worlds, $\leq$ is a pre-order relation on $W$, $w_0$ is the initial
world, and $v$ is a function from pairs of world and proposition
to boolean values such that for any $w, w' \in W$ and any
$p \in P$, if $w \leq w'$, then $v(w, p) \leq v(w', p)$.
\end{definition}
Informally, a Kripke model is an interpretation model for
intuitionistic proof systems. The following facts hold for any Kripke
model $m$:
\begin{enumerate}
\item $m \models \phi$ iff $m \vdash_{w_0} \phi$.
\item $m \not \models_w \bot$ for any world $w$.
\item $m \models_w p$ iff $v(w, p) = \top$.
\item $m \models_w \phi \rightarrow \psi$ iff for any $w'$, if
$w \leq w'$ and $m \models_{w'} \phi$, then $m \models_{w'} \psi$.
\end{enumerate}
In NJ, whenever you show $\phi \lor \psi$, you need to show either
$\phi$, or $\psi$. As previously stated, the law of excluded middle
cannot be derived in NJ. To show this, we need to show that there
exists a Kripke model $m$ such that excluded middle is false in a
world $w$ of $m$.
Let us define a Kripke model with only one proposition $p$ and only
two worlds $w_0$ and $w_1$, where $w_0 \leq w_1$, and $p$ is false in
$w_0$ and true in $w_1$.
\begin{center}
\begin{tikzpicture}
\node (w0) at (0, 0) [draw, circle] {$\neg p$};
\node (w1) at (2, 0) [draw, circle] {$p$};
\node at (0, .75) {$w_0$};
\node at (2, .75) {$w_1$};
\draw[->] (w0) -- (w1);
\end{tikzpicture}
\end{center}
Let us examine what formulas are true (or false) in each world. By
definition, $p$ is false in $w_0$. Let us examine the value of
$\neg p$ in $w_0$. We can safely substitute $\neg p$ with $p
\rightarrow \bot$. By definition, $p \rightarrow \bot$ holds in
$w_0$ iff for any world $w$, if $w_0 \leq w$ and $p$ is true in $w$,
then $\bot$ is true in $w$. We know $p$ is true in $w_1$. We also
know that $\bot$ is not true in $w_1$, as it is not true in any world.
So, by definition, $p \rightarrow \bot$ is false in $w_0$. So, both
$p$ and $\neg p$ are false in $w_0$, from which we obtain that $p
\lor \neg p$ is also false in $w_0$.
\section{Sequent (Gentzen) Calculus and LK}
Judgements in the LK proof system have the form $\Gamma \vdash
\Delta$, where both $\Gamma$ and $\Delta$ are sets of formulas.
Judgement $\Gamma \vdash \Delta$ should be read as ``the
\emph{conjunction} of the formulas in $\Gamma$ implies the
\emph{disjunction} of the formulas in $\Delta$''. Semantically, for
a classical interpretation $v$, $v \models (\Gamma \vdash \Delta)$
if and only if, if all formulas in $\Gamma$ are true under $v$, then
some fomula in $\Delta$ is true under $v$.
\subsection{Judgements in LK}
Observe how every non-axiom judgement increases the number of logical
connectives in the set of formulas.
\begin{enumerate}
\item Axioms
\[ \infer* [right=ax]
{ }{\Gamma, \phi \vdash \phi, \Delta}
\qquad\qquad \infer* [right=$\bot$-elim]
{ }{\Gamma, \bot \vdash \Delta}
\qquad\qquad \infer* [right=$\top$-intro]
{ }{\Gamma \vdash \top, \Delta}
\]
\item Conjunction
\[ \infer
{\Gamma, \phi, \psi \vdash \Delta}
{\Gamma, \phi \land \psi \vdash \Delta}
\qquad\qquad \infer
{\Gamma \vdash \phi, \Delta
\\ \Gamma \vdash \psi, \Delta}
{\Gamma \vdash \phi \land \psi, \Delta}
\]
\item Disjunction
\[ \infer
{\Gamma, \phi \vdash \Delta
\\ \Gamma, \psi \vdash \Delta}
{\Gamma, \phi \lor \psi \vdash \Delta}
\qquad\qquad \infer
{\Gamma \vdash \phi, \psi, \Delta}
{\Gamma \vdash \phi \lor \psi, \Delta}
\]
\item Negation
\[ \infer
{\Gamma, \phi \vdash \Delta}
{\Gamma \vdash \neg \phi, \Delta}
\qquad\qquad \infer
{\Gamma \vdash \phi, \Delta}
{\Gamma, \neg \phi \vdash \Delta}
\]
\item Implication
\[ \infer
{\Gamma, \phi \vdash \psi, \Delta}
{\Gamma \vdash \phi \rightarrow \psi, \Delta}
\qquad\qquad \infer
{\Gamma \vdash \phi, \Delta
\\ \Gamma, \psi \vdash \Delta}
{\Gamma, \phi \rightarrow \psi \vdash \Delta}
\]
\end{enumerate}
The LK proof system is sound and complete for propositional logic.
This actually means that excluded middle can be derived in LK.
\begin{homework}
Prove the following in LK:
\begin{enumerate}
\item The law of excluded middle: $ \vdash p \lor \neg p$,
\item Implication transitivity.
\end{enumerate}
\end{homework}
}} % End localization of command definitions