-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
356 lines (304 loc) · 13.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
import torch
import torch.nn.functional as F
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Set
from torch.utils.data import Dataset, DataLoader
from transformers import PreTrainedModel, PreTrainedTokenizer
from collections import defaultdict
import networkx as nx
from scipy.stats import wasserstein_distance
import json
from datetime import datetime
@dataclass
class EditInstance:
"""Represents a knowledge edit with comprehensive metadata"""
id: str
subject: str
relation: str
original_object: str
target_object: str
domain: str
topic: str
edit_time: datetime
context_window: List[str]
verification_queries: List[str]
semantic_neighbors: List[Tuple[str, float]]
confidence_threshold: float = 0.8
class KnowledgeGraph:
"""Maintains knowledge relationships and semantic consistency"""
def __init__(self):
self.graph = nx.DiGraph()
self.relation_types = set()
self.entity_embeddings = {}
def add_edit(self, edit: EditInstance):
"""Add edit to knowledge graph and update relationships"""
self.graph.add_edge(edit.subject, edit.target_object,
relation=edit.relation,
confidence=edit.confidence_threshold,
edit_time=edit.edit_time)
# Track original relationship for consistency checking
self.graph.add_edge(edit.subject, edit.original_object,
relation=edit.relation,
original=True,
deprecated_time=edit.edit_time)
self.relation_types.add(edit.relation)
def check_consistency(self, entity: str) -> Dict[str, List[str]]:
"""Verify temporal and relational consistency for an entity"""
inconsistencies = defaultdict(list)
# Check temporal consistency
edges = self.graph.out_edges(entity, data=True)
for _, target, data in edges:
if data.get('original'):
# Find any conflicting current edges
current_edges = [e for e in edges
if e[2]['relation'] == data['relation'] and
not e[2].get('original')]
if current_edges:
inconsistencies['temporal'].append(
f"Conflict: {entity} -> {target} vs {current_edges[0][1]}"
)
# Check relational consistency
relations = [d['relation'] for _, _, d in edges]
for r1, r2 in zip(relations, relations[1:]):
if self._are_mutually_exclusive(r1, r2):
inconsistencies['relational'].append(f"Mutually exclusive: {r1}, {r2}")
return inconsistencies
def _are_mutually_exclusive(self, rel1: str, rel2: str) -> bool:
"""Check if relations are mutually exclusive"""
exclusivity_rules = {
'birthPlace': {'deathPlace'},
'employer': {'founder'},
'parent': {'child'}
}
return rel2 in exclusivity_rules.get(rel1, set())
class SemanticDriftTracker:
"""Tracks semantic changes in edited knowledge"""
def __init__(self, model: PreTrainedModel, tokenizer: PreTrainedTokenizer):
self.model = model
self.tokenizer = tokenizer
self.baseline_embeddings = {}
self.drift_threshold = 0.15
def compute_semantic_embedding(self, text: str) -> torch.Tensor:
"""Generate semantic embedding for text"""
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = self.model(**inputs)
# Use mean pooling over last hidden states
embeddings = outputs.last_hidden_state.mean(dim=1)
return F.normalize(embeddings, p=2, dim=1)
def track_drift(self, edit: EditInstance) -> Dict[str, float]:
"""Measure semantic drift caused by edit"""
key = f"{edit.subject}_{edit.relation}"
if key not in self.baseline_embeddings:
self.baseline_embeddings[key] = self.compute_semantic_embedding(
f"{edit.subject} {edit.relation} {edit.original_object}"
)
current_embedding = self.compute_semantic_embedding(
f"{edit.subject} {edit.relation} {edit.target_object}"
)
drift_metrics = {
'cosine_drift': float(F.cosine_similarity(
self.baseline_embeddings[key],
current_embedding
)),
'euclidean_drift': float(torch.norm(
self.baseline_embeddings[key] - current_embedding
))
}
# Check semantic neighbors for collective drift
neighbor_drifts = []
for neighbor, _ in edit.semantic_neighbors:
neighbor_emb = self.compute_semantic_embedding(neighbor)
neighbor_drifts.append(float(F.cosine_similarity(
self.baseline_embeddings[key],
neighbor_emb
)))
drift_metrics['neighbor_drift'] = np.mean(neighbor_drifts)
drift_metrics['drift_severity'] = 'high' if any(
d < self.drift_threshold for d in neighbor_drifts
) else 'low'
return drift_metrics
class ChainOfThoughtVerifier:
"""Verifies edits using chain-of-thought reasoning"""
def __init__(self, model: PreTrainedModel, tokenizer: PreTrainedTokenizer):
self.model = model
self.tokenizer = tokenizer
self.reasoning_templates = self._load_reasoning_templates()
def _load_reasoning_templates(self) -> Dict[str, str]:
"""Load templates for different relation types"""
return {
"birthPlace": """
Let's verify this step by step:
1. Check if {subject} was a real person
2. Verify if {target} existed during {subject}'s birth
3. Look for historical records connecting {subject} to {target}
4. Check for any conflicting birth locations
Therefore, the statement that {subject} was born in {target} is:
""",
"employer": """
Let's analyze this employment relationship:
1. Confirm {subject}'s career timeline
2. Verify {target}'s operational dates
3. Check for overlapping time periods
4. Look for official documentation
Based on this, the employment relationship between {subject} and {target} is:
"""
}
def verify_edit(self, edit: EditInstance) -> Dict[str, Any]:
"""Perform chain-of-thought verification of edit"""
template = self.reasoning_templates.get(
edit.relation,
"Let's verify if {subject} has relation {relation} with {target}:"
)
reasoning_prompt = template.format(
subject=edit.subject,
target=edit.target_object,
relation=edit.relation
)
inputs = self.tokenizer(reasoning_prompt, return_tensors="pt")
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=200,
num_beams=3,
temperature=0.7,
do_sample=True
)
reasoning = self.tokenizer.decode(outputs[0])
# Extract key verification points
verification_result = {
'reasoning_chain': reasoning,
'verification_queries': [
self._generate_verification_query(edit, point)
for point in self._extract_reasoning_points(reasoning)
],
'confidence_score': self._calculate_verification_confidence(reasoning),
'potential_conflicts': self._identify_conflicts(edit, reasoning)
}
return verification_result
def _generate_verification_query(self, edit: EditInstance, point: str) -> str:
"""Generate specific verification query based on reasoning point"""
return f"Verify: {point} regarding {edit.subject} {edit.relation} {edit.target_object}"
def _extract_reasoning_points(self, reasoning: str) -> List[str]:
"""Extract key points from reasoning chain"""
points = []
for line in reasoning.split('\n'):
if line.strip().startswith(('1.', '2.', '3.', '4.')):
points.append(line.strip())
return points
def _calculate_verification_confidence(self, reasoning: str) -> float:
"""Calculate confidence score based on reasoning chain"""
positive_indicators = ['confirmed', 'verified', 'documented', 'proven']
negative_indicators = ['uncertain', 'conflicting', 'unclear', 'disputed']
confidence = 0.5 # baseline
for indicator in positive_indicators:
if indicator in reasoning.lower():
confidence += 0.1
for indicator in negative_indicators:
if indicator in reasoning.lower():
confidence -= 0.1
return max(0.0, min(1.0, confidence))
def _identify_conflicts(self, edit: EditInstance, reasoning: str) -> List[str]:
"""Identify potential conflicts in reasoning"""
conflicts = []
conflict_indicators = ['however', 'but', 'although', 'contrary']
for indicator in conflict_indicators:
idx = reasoning.lower().find(indicator)
if idx != -1:
# Extract the conflicting statement
end_idx = reasoning.find('.', idx)
if end_idx != -1:
conflicts.append(reasoning[idx:end_idx + 1].strip())
return conflicts
class EditEvaluator:
"""Main class for evaluating knowledge edits"""
def __init__(self, model: PreTrainedModel, tokenizer: PreTrainedTokenizer):
self.knowledge_graph = KnowledgeGraph()
self.drift_tracker = SemanticDriftTracker(model, tokenizer)
self.thought_verifier = ChainOfThoughtVerifier(model, tokenizer)
self.edit_history = []
def evaluate_edit(self, edit: EditInstance) -> Dict[str, Any]:
"""Comprehensive evaluation of a knowledge edit"""
# Track edit in knowledge graph
self.knowledge_graph.add_edit(edit)
# Perform evaluations
consistency_check = self.knowledge_graph.check_consistency(edit.subject)
semantic_drift = self.drift_tracker.track_drift(edit)
verification = self.thought_verifier.verify_edit(edit)
# Compile evaluation results
evaluation = {
'edit_id': edit.id,
'timestamp': edit.edit_time.isoformat(),
'consistency': consistency_check,
'semantic_drift': semantic_drift,
'verification': verification,
'confidence_score': verification['confidence_score'],
'status': self._determine_edit_status(
consistency_check,
semantic_drift,
verification
)
}
self.edit_history.append(evaluation)
return evaluation
def _determine_edit_status(
self,
consistency: Dict[str, List[str]],
drift: Dict[str, float],
verification: Dict[str, Any]
) -> str:
"""Determine overall status of edit"""
if consistency['temporal'] or consistency['relational']:
return 'rejected_consistency'
if drift['drift_severity'] == 'high':
return 'rejected_drift'
if verification['confidence_score'] < 0.6:
return 'rejected_verification'
return 'accepted'
def generate_report(self) -> Dict[str, Any]:
"""Generate comprehensive evaluation report"""
total_edits = len(self.edit_history)
accepted_edits = sum(1 for e in self.edit_history
if e['status'] == 'accepted')
report = {
'summary': {
'total_edits': total_edits,
'accepted_rate': accepted_edits / total_edits if total_edits > 0 else 0,
'rejection_reasons': self._analyze_rejections(),
'drift_analysis': self._analyze_drift(),
'consistency_analysis': self._analyze_consistency()
},
'detailed_history': self.edit_history
}
return report
def _analyze_rejections(self) -> Dict[str, int]:
"""Analyze reasons for edit rejections"""
rejection_counts = defaultdict(int)
for edit in self.edit_history:
if edit['status'].startswith('rejected'):
rejection_counts[edit['status']] += 1
return dict(rejection_counts)
def _analyze_drift(self) -> Dict[str, float]:
"""Analyze semantic drift patterns"""
drifts = [e['semantic_drift']['cosine_drift']
for e in self.edit_history]
return {
'mean_drift': np.mean(drifts),
'max_drift': np.max(drifts),
'drift_std': np.std(drifts)
}
def _analyze_consistency(self) -> Dict[str, int]:
"""Analyze consistency violations"""
temporal_violations = sum(
1 for e in self.edit_history
if e['consistency']['temporal']
)
relational_violations = sum(
1 for e in self.edit_history
if e['consistency']['relational']
)
return {
'temporal_violations': temporal_violations,
'relational_violations': relational_violations
}