-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDESCRIPTION
executable file
·28 lines (28 loc) · 1.15 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Package: veesa
Type: Package
Title: Pipeline for Explainable Machine Learning with Functional Data
Version: 0.1.6
Authors@R: c(
person("Katherine", "Goode", email = "[email protected]", role = c("cre", "aut")),
person("J. Derek", "Tucker", email = "[email protected]", role = c("aut")),
person("Sandia National Laboratories", role = c("cph", "fnd")))
Description: Implements the Variable importance Explainable Elastic Shape Analysis pipeline for explainable machine learning with functional data inputs. Converts training and testing data functional inputs to elastic shape analysis principal components that account for vertical and/or horizontal variability. Computes feature importance to identify important principal components and visualizes variability captured by functional principal components. See Goode et al. (2025) <doi:10.48550/arXiv.2501.07602> for technical details about the methodology.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.2
Depends:
R (>= 3.5.0)
Imports:
dplyr,
fdasrvf,
forcats,
ggplot2,
purrr,
stats,
stringr,
tidyr
Suggests:
randomForest,
testthat (>= 3.0.0)
Config/testthat/edition: 3