-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy path鳶尾花分類-iris檔案-03.py
55 lines (41 loc) · 1.74 KB
/
鳶尾花分類-iris檔案-03.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
# 讀入資料
data=np.genfromtxt('iris.csv', dtype=[('sepal_length', 'f'), ('sepal_width', 'f'), ('petal_length', 'f'), ('petal_width', 'f'), ('speices', 'U25')], delimiter=',', usecols=(0, 1, 2, 3, 4), unpack=True)
# 整理資料
petal_length=data['petal_length']
petal_width=data['petal_width']
speices=data['speices']
not_setosa_petal_length=petal_length[speices!='setosa']
not_setosa_petal_width=petal_width[speices!='setosa']
not_setosa_speices=speices[speices!='setosa']
# 訓練資料 + 測試資料共100筆
x = np.random.rand(100, 5)
# 前80筆作為訓練資料, 後20筆作為測試資料
indices = np.random.permutation(x.shape[0])
training_idx, test_idx = indices[:80], indices[80:]
# 進行訓練
t=0;
success_rate=-100
for idx in training_idx:
one=not_setosa_petal_width[idx]
a1 = not_setosa_speices[not_setosa_petal_width >= one]
a2 = not_setosa_speices[not_setosa_petal_width < one]
acc1=len(a1[a1 == 'virginica'])
acc2=len(a2[a2=='versicolor'])
acc=acc1+acc2
if (acc/len(not_setosa_speices)) > success_rate:
success_rate=acc/len(not_setosa_speices)
t=one
# 印出資料
print('訓練正確率:', success_rate)
print('訓練閥值:', t)
# 進行測試
test_set_not_setosa_speices=not_setosa_speices[test_idx]
test_set_not_setosa_petal_width=not_setosa_petal_width[test_idx]
a3 = test_set_not_setosa_speices[test_set_not_setosa_petal_width >= t]
a4 = test_set_not_setosa_speices[test_set_not_setosa_petal_width < t]
acc3 = len(a3[a3 == 'virginica'])
acc4 = len(a4[a4 == 'versicolor'])
print('應該是 virginica:', a3)
print('應該是 versicolor:', a4)
print('測試正確率:', (acc3 + acc4)/len(test_set_not_setosa_speices))