-
Notifications
You must be signed in to change notification settings - Fork 240
/
bam2bcf_iaux.c
737 lines (658 loc) · 27.7 KB
/
bam2bcf_iaux.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/* bam2bcf_iaux.c -- modified indel caller
Copyright (C) 2022 Genome Research Ltd.
Author: pd3@sanger, jkb
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE
*/
#include <assert.h>
#include <ctype.h>
#include <string.h>
#include <math.h>
#include <htslib/hts.h>
#include <htslib/sam.h>
#include <htslib/khash_str2int.h>
#include "bcftools.h"
#include "bam2bcf.h"
#include "read_consensus.h"
#include "cigar_state.h"
#include <htslib/ksort.h>
KSORT_INIT_STATIC_GENERIC(uint32_t)
#ifndef DEBUG_ALN
#define DEBUG_ALN 0
#endif
#define MAX_TYPES 64
typedef struct
{
int pos; // current position
char *chr; // current chromosome
int nsmpl; // number of samples
int *nplp; // per-sample number of reads
bam_pileup1_t **plp; // per-sample reads
bcf_callaux_t *bca; // auxiliary bam2bcf structure
const char *ref; // reference genome (ASCII)
uint32_t *uitmp; // temporary unsigned int array
char *inscns; // insertions consensus "ACGTN"[itype*max_ins_len+i]
int muitmp, minscns; // size of uitmp, inscns
int iref_type, ntypes, types[MAX_TYPES]; // indel types
int max_ins_len; // largest insertion
int left, right; // consensus sequence boundaries, 0-based fa ref coordinates
read_cns_t *rcns; // read consensus
cns_seq_t *cns_seq; // array of consensus sequences
int *cns_pos; // array of relative pos indexes within cns_seq sequences
uint8_t *ref_seq, *qry_seq; // reference and query sequence to align
int nref_seq, nqry_seq; // the allocated size of ref_seq and qry_seq
uint8_t *qual;
int nqual;
int *read_scores, // read scores for each indel type [ntypes*iread+itype]
mread_scores,
ref_qual[MAX_TYPES], // refseq quality at pos for each indel type in the context of homopolymer runs
sum_qual[MAX_TYPES]; // qual contributions to each indel type from all reads
}
indel_aux_t;
#if DEBUG_ALN
static void debug_print_types(indel_aux_t *iaux)
{
int i,j;
fprintf(stderr,"types at %s:%d ntypes=%d... ",iaux->chr,iaux->pos+1,iaux->ntypes);
for (i=0; i<iaux->ntypes; i++)
{
fprintf(stderr," type%d=",i);
if ( iaux->types[i]<=0 )
{
if ( i==iaux->iref_type ) fprintf(stderr,"%d(ref)",iaux->types[i]);
else fprintf(stderr,"%d",iaux->types[i]);
continue;
}
char *cns = &iaux->inscns[i*iaux->max_ins_len];
for (j=0; j<iaux->types[i]; j++) fprintf(stderr,"%c","ACGTN"[(int)cns[j]]);
}
fprintf(stderr,"\n");
}
#else
#define debug_print_types(iaux)
#endif
void bcf_iaux_destroy(bcf_callaux_t *bca)
{
if ( !bca->iaux ) return;
indel_aux_t *iaux = (indel_aux_t*)bca->iaux;
free(iaux->uitmp);
free(iaux->inscns);
free(iaux->ref_seq);
free(iaux->qry_seq);
free(iaux->qual);
free(iaux->read_scores);
rcns_destroy(iaux->rcns);
free(iaux);
}
static void iaux_init_sequence_context(indel_aux_t *iaux)
{
// Calculate left and right boundary. The array types is sorted in ascending order, the first
// element is the largest deletion (if a deletion present)
iaux->left = iaux->pos > iaux->bca->indel_win_size ? iaux->pos - iaux->bca->indel_win_size : 0;
iaux->right = iaux->pos + iaux->bca->indel_win_size;
if ( iaux->types[0] < 0 ) iaux->right -= iaux->types[0]; // extend by the largest deletion length
// In case the alignments stand out the reference
int i;
for (i=iaux->pos; i<iaux->right; i++)
if ( !iaux->ref[i] ) break;
iaux->right = i;
// Sequence quality in the context of homopolymers for each indel type
int l_run = bcf_cgp_l_run(iaux->ref, iaux->pos); // The length of the homopolymer run around the current position
for (i=0; i<iaux->ntypes; i++)
{
int l = iaux->types[i];
// This is the original est_seqQ() code. FIXME: check if the inserted sequence is consistent with the homopolymer run
int q = iaux->bca->openQ + iaux->bca->extQ * (abs(l) - 1);
int qh = l_run >= 3? (int)(iaux->bca->tandemQ * (double)abs(l) / l_run + .499) : 1000;
if ( q > qh ) q = qh;
iaux->ref_qual[i] = q < 255 ? q : 255;
}
// Determine the indel region, this makes the difference between e.g. T>TA vs TA>TAA
iaux->bca->indelreg = 0;
for (i=0; i<iaux->ntypes; i++)
{
if ( !iaux->types[i] ) continue;
int ireg;
if ( iaux->types[i] > 0 )
ireg = est_indelreg(iaux->pos, iaux->ref, iaux->types[i], &iaux->inscns[i*iaux->max_ins_len]);
else
ireg = est_indelreg(iaux->pos, iaux->ref, -iaux->types[i], 0);
if ( ireg > iaux->bca->indelreg ) iaux->bca->indelreg = ireg;
}
}
static int iaux_init_scores(indel_aux_t *iaux, int ismpl)
{
int n = iaux->nplp[ismpl] * iaux->ntypes;
if ( iaux->mread_scores < n )
{
int *tmp = (int*) realloc(iaux->read_scores,n*sizeof(int));
if ( !tmp ) return -1;
iaux->mread_scores = n;
iaux->read_scores = tmp;
}
memset(iaux->read_scores,0,n);
return 0;
}
static int _have_indel_reads(indel_aux_t *iaux)
{
int i,j;
for (i=0; i<iaux->nsmpl; i++)
{
for (j=0; j<iaux->nplp[i]; j++)
if ( iaux->plp[i][j].indel ) return 1;
}
return 0;
}
// For insertions only their sizes were collected so far. Now go through the reads and
// create consensus sequence for each insert, therefore note that there can be only one
// sequence per insertion length
static int iaux_init_ins_types(indel_aux_t *iaux)
{
if ( !iaux->max_ins_len ) return 0;
uint32_t *aux;
int naux = 5 * iaux->ntypes * iaux->max_ins_len;
if ( iaux->muitmp < naux )
{
aux = (uint32_t*) realloc(iaux->uitmp,naux*sizeof(*aux));
if ( !aux ) return -1;
iaux->uitmp = aux;
iaux->muitmp = naux;
}
else aux = iaux->uitmp;
memset(aux,0,naux*sizeof(*aux));
// count the number of occurrences of each base at each position for each type of insertion
int t,s,i,j;
for (t=0; t<iaux->ntypes; t++)
{
if ( iaux->types[t] <= 0) continue;
for (s=0; s<iaux->nsmpl; s++)
{
for (i=0; i<iaux->nplp[s]; i++)
{
bam_pileup1_t *plp = iaux->plp[s] + i;
if ( plp->indel != iaux->types[t] ) continue;
uint8_t *seq = bam_get_seq(plp->b);
for (j=0; j<plp->indel; j++)
{
int c = seq_nt16_int[bam_seqi(seq, plp->qpos+j+1)];
assert(c<5);
aux[5*(t*iaux->max_ins_len+j) + c]++;
}
}
}
}
char *cns;
int ncns = iaux->ntypes * iaux->max_ins_len;
if ( iaux->minscns < ncns )
{
cns = (char*) realloc(iaux->inscns,naux*sizeof(*aux));
if ( !cns ) return -1;
iaux->inscns = cns;
iaux->minscns = ncns;
}
else cns = iaux->inscns;
memset(aux,0,ncns*sizeof(*cns));
// use the majority rule to construct the consensus
for (t=0; t<iaux->ntypes; t++)
{
for (i=0; i<iaux->types[t]; i++) // this naturally includes only insertions
{
uint32_t *tmp = &aux[5*(t*iaux->max_ins_len+i)], max = tmp[0], max_j = 0;
for (j=1; j<5; j++)
if ( max < tmp[j] ) max = tmp[j], max_j = j;
cns[t*iaux->max_ins_len + i] = max ? max_j : 4;
if ( max_j==4 ) { iaux->types[t] = 0; break; } // discard insertions which contain N's
}
}
return 0;
}
#define MINUS_CONST 0x10000000
static int iaux_init_types(indel_aux_t *iaux)
{
if ( !_have_indel_reads(iaux) ) return 0;
iaux->bca->max_support = 0;
memset(iaux->sum_qual,0,MAX_TYPES*sizeof(*iaux->sum_qual));
int i,j, nreads = 0;
for (i=0; i<iaux->nsmpl; i++) nreads += iaux->nplp[i];
uint32_t *aux;
if ( iaux->muitmp < nreads+1 )
{
aux = (uint32_t*) realloc(iaux->uitmp,(nreads+1)*sizeof(*iaux->uitmp));
if ( !aux ) return -1;
iaux->uitmp = aux;
iaux->muitmp = nreads+1;
}
else aux = iaux->uitmp;
memset(aux,0,(nreads+1)*sizeof(*aux));
int naux = 0, indel_support_ok = 0, n_alt = 0, n_tot = 0;
int max_rd_len = 0; // max sequence length that includes ref+del bases
// Fill out aux[] array with all the non-zero indel sizes. This is an unsorted list with as many
// entries as there are reads
aux[naux++] = MINUS_CONST; // zero indel is always a type (REF)
for (i=0; i<iaux->nsmpl; i++)
{
int nalt = naux, ntot = 0; // per sample values
for (j=0; j<iaux->nplp[i]; j++)
{
const bam_pileup1_t *plp = iaux->plp[i] + j;
ntot++;
if ( plp->indel ) aux[naux++] = MINUS_CONST + plp->indel;
if ( !PLP_QLEN(&plp->cd) ) PLP_QLEN(&plp->cd) = bam_cigar2qlen(plp->b->core.n_cigar, bam_get_cigar(plp->b));
if ( PLP_QLEN(&plp->cd) > max_rd_len ) max_rd_len = PLP_QLEN(&plp->cd);
}
nalt = naux - nalt;
if ( iaux->bca->per_sample_flt )
{
double frac = (double)nalt/naux;
if ( nalt >= iaux->bca->min_support && frac >= iaux->bca->min_frac ) indel_support_ok = 1;
if ( nalt > iaux->bca->max_support && frac > 0 ) iaux->bca->max_support = nalt, iaux->bca->max_frac = frac;
}
else
{
n_alt += nalt;
n_tot += ntot;
}
}
// Check if the minimum required number of indel reads has been observed
if ( !iaux->bca->per_sample_flt && n_alt >= iaux->bca->min_support && (double)n_alt/n_tot >= iaux->bca->min_frac ) indel_support_ok = 1;
if ( naux==1 || !indel_support_ok ) return 0;
// To prevent long stretches of N's to be mistaken for indels (sometimes thousands of bases), check the number of N's in the
// sequence and skip places where half or more reference bases in the sequence that follows pos are Ns
int nN = 0, i_end = iaux->pos + (iaux->bca->indel_win_size < max_rd_len ? iaux->bca->indel_win_size : max_rd_len);
for (i=iaux->pos; i<i_end && iaux->ref[i]; i++)
if ( iaux->ref[i] == 'N' ) nN++;
if ( 2*nN > i - iaux->pos ) return -1;
// Sort aux[] and dedup indel types
int n_types = 1;
ks_introsort(uint32_t, naux, aux);
for (i=1; i<naux; i++)
if ( aux[i] != aux[i-1] ) n_types++;
if ( n_types >= MAX_TYPES )
{
static int warned = 0;
if ( !warned )
{
fprintf(stderr, "Warning: excessive number of INDEL alleles at %s:%d, skipping. (This warning is printed only once)\n",iaux->chr,iaux->pos+1);
warned = 1;
}
return -1;
}
// Fill out the types[] array detailing the size of insertion or deletion.
iaux->ntypes = 0;
iaux->max_ins_len = 0;
for (i=0; i<naux; i++)
{
int isize = (int32_t)(aux[i] - MINUS_CONST);
for (j=i+1; j<naux; j++)
if ( aux[j] != aux[i] ) break;
// Only include the REF type and types with sufficient support. Note that the position
// already passed, this is just to reduce the number of indel types. The check is
// permissive, the thresholds min_support and min_frac are not enforced in per-sample mode
int is_ok = 0;
if ( !isize )
{
is_ok = 1;
iaux->iref_type = iaux->ntypes;
}
else
{
if ( j-i >= iaux->bca->min_support ) is_ok = 1;
// What is the best way to handle the -pmF options:
// - consider only sites where a single indel type passes the -mF threshold, as opposed to all indel types cumulatively
// - once a site passes, include all indel types in the evaluation, as opposed to considering only the strong candidates
// In this implementation sites are selected by counting reads from all indel types cumulatively and all indel types
// are considered.
// Uncomment the following condition to consider only strong indel candidates once the site has been selected
// if ( !iaux->bca->per_sample_flt && (double)(j-i) / n_tot < iaux->bca->min_frac ) is_ok = 0;
}
if ( is_ok )
{
iaux->types[iaux->ntypes++] = isize;
if ( isize > 0 && isize > iaux->max_ins_len ) iaux->max_ins_len = isize;
}
i = j-1;
}
if ( iaux->ntypes <= 1 ) return 0;
// Init insertion types, including their sequence
if ( iaux_init_ins_types(iaux) < 0 ) return -1;
iaux_init_sequence_context(iaux);
return iaux->ntypes;
}
#undef MINUS_CONST
static int iaux_set_consensus(indel_aux_t *iaux, int ismpl)
{
if ( !iaux->rcns )
iaux->rcns = rcns_init(iaux->pos, iaux->left, iaux->right);
else
rcns_reset(iaux->rcns, iaux->pos, iaux->left, iaux->right);
rcns_set_reads(iaux->rcns, iaux->plp[ismpl], iaux->nplp[ismpl]);
iaux->cns_seq = rcns_get_consensus(iaux->rcns, iaux->ref + iaux->left);
// todo:
// rcns should also collect localized number of mismatches as a substitute
// for uninformative MQ. This would not affect calling but would help with
// filtering
return 0;
}
#if 0
// Finds the smallest index in the seq_pos array holding value equal to pos, or if there is no
// such value, the largest index with value smaller than pos. Starts at initial guess ioff.
// This could use a binary search but the assumption is that the initial guess is indel-size close
// to the actual coordinate.
//
// TODO: remove this function and seq_pos from cns creation as it seems unnecessary
static int find_ref_offset(hts_pos_t pos, hts_pos_t *seq_pos, int nseq_pos, int ioff)
{
if ( ioff<0 ) ioff = 0;
else if ( ioff >= nseq_pos ) ioff = nseq_pos - 1;
if ( seq_pos[ioff] < pos )
{
while ( ioff+1 < nseq_pos && seq_pos[ioff] < pos ) ioff++;
if ( seq_pos[ioff] > pos ) ioff--;
return ioff;
}
while ( ioff > 0 && seq_pos[ioff-1] >= pos ) ioff--;
return ioff;
}
#endif
static int iaux_align_read(indel_aux_t *iaux, bam1_t *bam, uint8_t *ref_seq, int nref_seq)
{
if ( bam->core.flag & BAM_FUNMAP ) return 1; // skip unmapped reads
// Trim both ref and qry to the window of interest
hts_pos_t ref_beg = iaux->left; // fa ref coordinates
hts_pos_t ref_end = iaux->right < ref_beg + nref_seq ? iaux->right : ref_beg + nref_seq - 1;
cigar_state_t cigar;
cstate_init(&cigar,bam);
int qry_off1, qry_off2, ref_off1, ref_off2;
if ( ref_beg > bam->core.pos )
{
// the read needs trimming from left
qry_off1 = cstate_seek_fwd(&cigar, &ref_beg, 1);
ref_off1 = ref_beg - iaux->left;
if ( ref_beg + (bam->core.l_qseq - qry_off1) > ref_end )
{
// the read needs trimming from right
qry_off2 = ref_end - ref_beg + qry_off1;
ref_off2 = ref_end - iaux->left;
}
else
{
// the ref template needs trimming from right
qry_off2 = bam->core.l_qseq - 1;
ref_off2 = ref_off1 + qry_off2 - qry_off1;
}
}
else
{
// the ref template needs trimming from left
qry_off1 = 0;
ref_off1 = bam->core.pos - ref_beg;
if ( bam->core.pos + bam->core.l_qseq - 1 > ref_end )
{
// the read needs trimming from right
ref_off2 = ref_end - iaux->left;
qry_off2 = ref_off2 - ref_off1;
}
else
{
// the ref template needs trimming from right
qry_off2 = bam->core.l_qseq - 1;
ref_off2 = ref_off1 + qry_off2 - qry_off1;
}
}
//fprintf(stderr,"xtrim: %s .. left,right=%d,%d rbeg,end=%d,%d qpos=%d qlen=%d qoff=%d,%d roff=%d,%d rlen=%d\n",bam_get_qname(bam),iaux->left,iaux->right,(int)ref_beg,(int)ref_end,(int)bam->core.pos,bam->core.l_qseq, qry_off1,qry_off2,ref_off1,ref_off2,nref_seq);
assert( qry_off1<=qry_off2 );
assert( qry_off1>=0 && qry_off1<bam->core.l_qseq );
assert( qry_off2>=0 && qry_off2<bam->core.l_qseq );
assert( ref_off1<=ref_off2 );
assert( ref_off1>=0 && ref_off1<nref_seq );
assert( ref_off2>=0 && ref_off2<nref_seq );
// prepare query sequence
int i, qlen = qry_off2 - qry_off1 + 1, rlen = ref_off2 - ref_off1 + 1;
if ( iaux->nqry_seq < qlen )
{
uint8_t *tmp = (uint8_t*) realloc(iaux->qry_seq, qlen);
if ( !tmp ) return -1; // critical error
iaux->qry_seq = tmp;
iaux->nqry_seq = qlen;
}
uint8_t *seq = bam_get_seq(bam);
for (i=qry_off1; i<=qry_off2; i++) iaux->qry_seq[i-qry_off1] = seq_nt16_int[bam_seqi(seq,i)];
// prepare qualities, either BQ or BAQ qualities (ZQ)
if ( iaux->nqual < qlen )
{
uint8_t *tmp = (uint8_t*) realloc(iaux->qual, qlen);
if ( !tmp ) return -1; // critical error
iaux->qual = tmp;
iaux->nqual = qlen;
}
uint8_t *qual = iaux->qual;
const uint8_t *qq = bam_get_qual(bam);
const uint8_t *bq = (uint8_t*)bam_aux_get(bam, "ZQ");
if ( bq ) bq++; // skip type
for (i=qry_off1; i<=qry_off2; i++)
{
int j = i - qry_off1;
qual[j] = bq ? qq[i] + (bq[i] - 64) : qq[i];
if ( qual[j] > 30 ) qual[j] = 30;
if ( qual[j] < 7 ) qual[j] = 7;
}
// Illumina
probaln_par_t apf = { 1e-4, 1e-2, 10 };
// align
int score = probaln_glocal(ref_seq + ref_off1, rlen, iaux->qry_seq, qlen, qual, &apf, 0, 0);
int adj_score = (int)(100. * score / qlen + .499) * iaux->bca->indel_bias;
#if DEBUG_ALN
fprintf(stderr,"aln: %d/%d\t%s\n\tref: ",score,adj_score,bam_get_qname(bam));
for (i=0; i<rlen; i++) fprintf(stderr,"%c","ACGTN"[(int)ref_seq[ref_off1 + i]]);
fprintf(stderr,"\n\tqry: ");
for (i=0; i<qlen; i++) fprintf(stderr,"%c","ACGTN"[(int)iaux->qry_seq[i]]);
fprintf(stderr,"\n\tqual: ");
for (i=0; i<qlen; i++) fprintf(stderr,"%c",(char)(qual[i]+64));
fprintf(stderr,"\n\ttrim: qry_len=%d qry_off=%d,%d ref_len=%d ref_off=%d,%d ref_beg,end=%d,%d\n",qlen,qry_off1,qry_off2,rlen,ref_off1,ref_off2,(int)ref_beg,(int)ref_end);
#endif
if ( adj_score > 255 ) adj_score = 255;
return score<<8 | adj_score;
}
// Score all reads for this sample and indel type using the up to two consensus sequence templates.
// On output sets iaux->read_scores[iread*ntypes+itype] = (raw_score<<8 | length_adjusted_score)
static int iaux_score_reads(indel_aux_t *iaux, int ismpl, int itype)
{
int i;
cns_seq_t *cns = iaux->cns_seq;
while ( cns->nseq )
{
// Resize buffers if necessary
int ref_len = cns->nseq + iaux->types[itype];
if ( iaux->nref_seq < ref_len )
{
uint8_t *ref_buf = (uint8_t*) realloc(iaux->ref_seq,sizeof(uint8_t)*ref_len);
if ( !ref_buf ) return -1;
iaux->ref_seq = ref_buf;
iaux->nref_seq = ref_len;
}
// Apply the indel and create the template ref sequence...
memcpy(iaux->ref_seq,cns->seq,(cns->ipos+1)*sizeof(*iaux->ref_seq));
if ( iaux->types[itype] < 0 ) // deletion
memcpy(iaux->ref_seq + cns->ipos + 1, cns->seq + cns->ipos + 1 - iaux->types[itype], (cns->nseq - cns->ipos - 1 + iaux->types[itype])*sizeof(*iaux->ref_seq));
else
{
char *ins = &iaux->inscns[itype*iaux->max_ins_len];
for (i=0; i<iaux->types[itype]; i++) iaux->ref_seq[cns->ipos+1+i] = ins[i];
memcpy(iaux->ref_seq + cns->ipos + 1 + iaux->types[itype], cns->seq + 1 + cns->ipos, (cns->nseq - cns->ipos - 1)*sizeof(*iaux->ref_seq));
}
#if DEBUG_ALN
fprintf(stderr,"template %d, type %d, sample %d: ",cns==iaux->cns_seq?0:1,itype,ismpl);
for (i=0; i<ref_len; i++) fprintf(stderr,"%c","ACGTN"[(int)iaux->ref_seq[i]]);
fprintf(stderr,"\n");
#endif
// Align and score reads
for (i=0; i<iaux->nplp[ismpl]; i++)
{
const bam_pileup1_t *plp = iaux->plp[ismpl] + i;
int aln_score = iaux_align_read(iaux, plp->b, iaux->ref_seq, ref_len);
int *score = &iaux->read_scores[i*iaux->ntypes+itype];
if ( cns==iaux->cns_seq || *score > aln_score ) *score = aln_score;
}
cns++;
}
return 0;
}
// Determines indel quality for each read and populates 22 bits of pileup aux field with
// three integers as follows
// plp->aux = indel_type << 16 | seqQ << 8 | indelQ
static int iaux_eval_scored_reads(indel_aux_t *iaux, int ismpl)
{
int i,j;
for (i=0; i<iaux->nplp[ismpl]; i++)
{
bam_pileup1_t *plp = iaux->plp[ismpl] + i;
// Find the best indel type and the ref type, their scores difference is the indel quality
int *score = &iaux->read_scores[i*iaux->ntypes];
int alt_score = INT_MAX, alt_j = 0;
for (j=0; j<iaux->iref_type; j++)
if ( alt_score > score[j] ) alt_score = score[j], alt_j = j;
for (j=iaux->iref_type+1; j<iaux->ntypes; j++)
if ( alt_score > score[j] ) alt_score = score[j], alt_j = j;
int ref_score = score[iaux->iref_type];
int sc0, sc1, j0;
if ( alt_score < ref_score ) sc0 = alt_score, sc1 = ref_score, j0 = alt_j;
else sc0 = ref_score, sc1 = alt_score, j0 = iaux->iref_type;
int indelQ = (sc1>>8) - (sc0>>8); // low=bad, high=good
int seqQ = iaux->ref_qual[alt_j];
// Reduce indelQ. High length-normalized alignment scores (i.e. bad alignments)
// lower the quality more (e.g. gnuplot> plot [0:111] (1-x/111.)*255)
int len_normQ = sc0 & 0xff; // length-normalized score of the best match (ref or alt)
int adj_indelQ; // final indelQ used in calling
if ( len_normQ > 111 )
{
// In the original code reads matching badly to any indel type or reference had indelQ set to 0
// here and thus would be effectively removed from calling. This leads to problems when there are
// many soft clipped reads and a few good matching indel reads (see noisy-softclips.bam in
// mpileup-tests). Only the few good quality indel reads would become visible to the caller and
// the indel would be called with high quality. Here we change the logic to make the badly matching
// reads low quality reference reads. The threshold was set to make the test case still be called
// as an indel, but with very low quality.
//
// Original code:
// adj_indelQ = 0;
//
adj_indelQ = 12;
j0 = iaux->iref_type;
}
else
adj_indelQ = (int)((1. - len_normQ/111.) * indelQ + .499);
#if DEBUG_ALN
// Prints the selected indel type (itype); adjusted indelQ which will be used if bigger than seqQ;
// raw indelQ; length-normalized indelQ and sequence context quality; ref and best alt indel type
// and their raw and length-normalized scores
fprintf(stderr,"itype=%d adj_indelQ=%d\trawQ=%d\tlen_normQ=%d\tseqQ=%d\tref:%d=%d/%d alt:%d=%d/%d)\t%s\n",
j0,adj_indelQ,indelQ,len_normQ,seqQ,iaux->iref_type,ref_score>>8,ref_score&0xff,alt_j,alt_score>>8,alt_score&0xff,bam_get_qname(plp->b));
#endif
if ( adj_indelQ > seqQ ) adj_indelQ = seqQ; // seqQ already capped at 255
plp->aux = j0<<16 | seqQ<<8 | adj_indelQ; // use 22 bits in total
iaux->sum_qual[j0] += adj_indelQ;
}
return 0;
}
// Find the best indel types, include the ref type plus maximum three alternate indel alleles.
static int iaux_eval_best_indels(indel_aux_t *iaux)
{
bcf_callaux_t *bca = iaux->bca;
bca->maxins = iaux->max_ins_len;
bca->inscns = (char*) realloc(bca->inscns, bca->maxins * 4);
if ( bca->maxins && !bca->inscns ) return -1;
// insertion sort, descending, high-quality indels come first
int i,j,t, tmp, *sumq = iaux->sum_qual, ntypes = iaux->ntypes;
for (t=0; t<ntypes; t++) sumq[t] = sumq[t]<<6 | t;
for (t=1; t<ntypes; t++)
for (j=t; j>0 && sumq[j] > sumq[j-1]; j--)
tmp = sumq[j], sumq[j] = sumq[j-1], sumq[j-1] = tmp;
for (t=0; t<ntypes; t++) // look for the reference type
if ( (sumq[t]&0x3f)==iaux->iref_type ) break;
if ( t )
{
// move the reference type to the first
tmp = sumq[t];
for (; t>0; t--) sumq[t] = sumq[t-1];
sumq[0] = tmp;
}
// Initialize bca's structures and create a mapping between old and new types
int old2new_type[MAX_TYPES];
for (t=0; t<iaux->ntypes; t++)
{
int itype = sumq[t] & 0x3f;
old2new_type[itype] = t;
if ( t>=4 ) continue;
bca->indel_types[t] = iaux->types[itype];
if ( bca->indel_types[t] <= 0 ) continue;
memcpy(&bca->inscns[t*bca->maxins], &iaux->inscns[itype*iaux->max_ins_len], bca->maxins);
}
// Update indel type in plp->aux for all reads
int ismpl, n_alt = 0;
for (ismpl=0; ismpl<iaux->nsmpl; ismpl++)
{
for (i=0; i<iaux->nplp[ismpl]; i++)
{
bam_pileup1_t *plp = iaux->plp[ismpl] + i;
int itype_old = (plp->aux >> 16) & 0x3f;
int itype_new = old2new_type[itype_old];
plp->aux = itype_new<<16 | (itype_new>=4 ? 0 : (plp->aux & 0xffff));
if ( itype_new>0 ) n_alt++;
}
}
return n_alt;
}
/*
notes:
- n .. number of samples
- the routine sets bam_pileup1_t.aux (27 bits) of each read as follows:
- 5: unused
- 6: the call; index to bcf_callaux_t.indel_types .. (aux>>16)&0x3f
- 8: estimated sequence quality .. (aux>>8)&0xff
- 8: indel quality .. aux&0xff
*/
int bcf_iaux_gap_prep(int n, int *n_plp, bam_pileup1_t **plp, int pos, bcf_callaux_t *bca, const char *ref)
{
assert(!(ref == 0 || bca == 0)); // can this ever happen? when?
if (ref == 0 || bca == 0) return -1;
if ( !bca->iaux ) bca->iaux = calloc(1,sizeof(indel_aux_t));
indel_aux_t *iaux = bca->iaux;
iaux->nsmpl = n;
iaux->nplp = n_plp;
iaux->plp = plp;
iaux->bca = bca;
iaux->ref = ref;
iaux->pos = pos;
iaux->chr = bca->chr;
// Check if there is an indel at this position and if yes, find all indel types and determine
// window boundaries. todo: We want this information cached so that for long reads we don't keep
// redoing the whole analysis again and again
int ntypes = iaux_init_types(iaux);
if ( ntypes<=0 ) return -1;
debug_print_types(iaux);
// Create two template consensus sequences for each sample (assuming max diploid organism).
// Then apply each indel type on top of the templates, realign every read and remember score
int i,j;
for (i=0; i<iaux->nsmpl; i++)
{
iaux_set_consensus(iaux, i);
iaux_init_scores(iaux, i);
for (j=0; j<ntypes; j++) iaux_score_reads(iaux, i, j);
iaux_eval_scored_reads(iaux, i);
}
int nalt = iaux_eval_best_indels(iaux);
return nalt > 0 ? 0 : -1;
}