-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcompiler.rb
977 lines (839 loc) · 22 KB
/
compiler.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
# A compiler as described by Jack Crenshaw in his famous book "Let's
# Build a Compiler". At least in the beginning, this code will
# closely reflect the Pascal code written by Jack. Over time it may
# become more idiomatic, however this is an academic exercise.
#
# sjs
# may 2009
require 'asm/registers'
require 'asm/varproxy'
class ParseError < StandardError
attr_reader :caller, :context
def initialize(caller, context=nil)
@caller = caller
@context = context
end
end
class Compiler
include Assembler::Registers
Keywords = {
'if' => :if_else_stmt,
'while' => :while_stmt,
'until' => :until_stmt,
'repeat' => :repeat_stmt,
'for' => :for_stmt,
'do' => :do_stmt,
'break' => :break_stmt,
'print' => :print_stmt,
'else' => nil,
'end' => nil
}
# Grouped by precedence.
Ops = {
:add => %w[+ -],
:mul => %w[* /],
:rel => %w[== != < > <= >=],
:or => %w[||],
:and => %w[&&],
:bit => %w[| ^ &],
:unary => %w[- +]
}
# Op chars are chars that can begin an op, so OpChars needs to be a
# map of kinds of operators to a list of valid prefix chars.
OpChars = Ops.inject({}) { |hash, kv|
key, val = *kv
hash[key] = val.map {|op| op[0, 1]} # slice off first char for each op
hash
# Include :all for a very general test.
}.merge(:all => Ops.values.flatten.map{|op| op[0, 1]}.sort.uniq)
FALSE = 0
TRUE = -1
attr_reader :asm
def initialize(input, asm)
@indent = 0 # for pretty printing
@look = '' # Next lookahead char.
@token = nil # Type of last read token.
@value = nil # Value of last read token.
@input = input # Stream to read from.
@asm = asm # assembler
@keywords = Keywords.clone
@keyword_names = @keywords.keys
@label_stack = []
# seed the lexer
get_char
end
def compile
block # parse a block of code
expected(:'end of file') unless eof?
asm.output
end
# Scan the input stream for the next token.
def scan
return if @look.nil? # eof
if alpha?(@look)
get_name
elsif digit?(@look)
get_number
elsif op_char?(@look)
get_op
elsif newline?(@look)
skip_any_whitespace
scan
elsif comment_char?(@look)
skip_comment
scan
else
# XXX default to single char op... should probably raise.
@token = :op
@value = @look
get_char
end
end
# put back the most recently parsed value
def backtrack
@input.ungetc(@look[0])
@value.reverse.each_byte {|i| @input.ungetc(i)}
get_char
end
# Parse and translate an identifier or function call.
def identifier
name = get_name
if @look == '('
# function call
match('(')
# TODO arg list
match(')')
asm.call(name)
else
# variable access
asm.mov(EAX, [asm.var(name)])
end
end
# Parse and translate a single factor. Result is in eax.
def factor
if @look == '('
match('(')
boolean_expression
match(')')
elsif alpha?(@look)
identifier # or call
elsif digit?(@look)
asm.mov(EAX, get_number.to_i)
else
expected(:'integer, identifier, function call, or parenthesized expression', :got => @look)
end
end
# Parse a signed factor.
def signed_factor
sign = @look
match(sign) if op?(:unary, sign)
factor
asm.neg(EAX) if sign == '-'
end
# Parse and translate a single term (factor or mulop). Result is in
# eax.
def term
signed_factor # Result in eax.
while op?(:mul, @look)
asm.push(EAX)
case @look
when '*'
multiply
when '/'
divide
end
end
end
# Parse and translate a general expression of terms. Result is
# in eax.
def arithmetic_expression
term # Result is in eax.
while op_char?(@look, :add)
asm.push(EAX)
case @look
when '+'
add
when '-'
subtract
end
end
end
# Parse an addition operator and the 2nd term (b). The result is
# left in eax. The 1st term (a) is expected on the stack.
def add
match('+')
term # Result is in eax.
asm.pop(EBX)
asm.add(EAX, EBX) # Add a to b.
end
# Parse a subtraction operator and the 2nd term (b). The result is
# left in eax. The 1st term (a) is expected on the stack.
def subtract
match('-')
term # Result, b, is in eax.
asm.pop(EBX)
asm.neg(EAX) # Fake the subtraction. a - b == a + -b
asm.add(EAX, EBX) # Add a(ebx) to -b(eax).
end
# Parse an addition operator and the 2nd term (b). The result is
# left in eax. The 1st term (a) is expected on the stack.
def multiply
match('*')
signed_factor # Result is in eax.
asm.pop(EBX)
asm.imul(EBX) # Multiply a by b.
end
# Parse a division operator and the divisor (b). The result is
# left in eax. The dividend (a) is expected on the stack.
def divide
match('/')
signed_factor # Result is in eax.
asm.pop(EBX)
asm.xchg(EAX, EBX) # Swap the divisor and dividend into
# the correct places.
# idiv uses edx:eax as the dividend so we need to ensure that edx
# is correctly sign-extended w.r.t. eax.
asm.cdq # Sign-extend eax into edx (Convert Double to
# Quad).
asm.idiv(EBX) # Divide a (eax) by b (ebx).
end
###################
# bit expressions #
###################
def bit_expression
arithmetic_expression
while op?(:bit, @look)
scan
case @value
when '|'
bitor_expression
when '^'
bitxor_expression
when '&'
bitand_expression
else
backtrack
return
end
end
end
def bit_op(op, token)
asm.push(EAX)
arithmetic_expression
asm.pop(EBX)
asm.send(op, EAX, EBX)
end
def bitor_expression
bit_op(:or, '|')
end
def bitxor_expression
bit_op(:xor, '^')
end
def bitand_expression
bit_op(:and, '&')
end
#######################
# boolean expressions #
#######################
def boolean_expression
boolean_term
while @look == '|'
scan
expected('||') unless match_word('||')
false_label = asm.mklabel(:false)
truthy_label = asm.mklabel(:truthy)
done_label = asm.mklabel(:done)
asm.cmp(EAX, FALSE)
asm.jne(truthy_label)
boolean_term
asm.cmp(EAX, FALSE)
asm.je(false_label)
asm.deflabel(truthy_label)
asm.mov(EAX, TRUE)
asm.jmp(done_label)
asm.deflabel(false_label)
asm.mov(EAX, FALSE)
asm.deflabel(done_label)
end
end
def boolean_term
not_factor
while @look == '&'
scan
expected('&&') unless match_word('&&')
false_label = asm.mklabel(:false)
done_label = asm.mklabel(:done)
asm.cmp(EAX, FALSE)
asm.je(false_label)
not_factor
asm.cmp(EAX, FALSE)
asm.je(false_label)
asm.mov(EAX, TRUE)
asm.jmp(done_label)
asm.deflabel(false_label)
asm.mov(EAX, TRUE)
asm.deflabel(done_label)
end
end
def boolean_factor
if boolean?(@look)
if get_boolean == 'true'
asm.mov(EAX, TRUE)
else
asm.xor(EAX, EAX)
end
scan
else
relation
end
end
def not_factor
if @look == '!'
match('!')
boolean_factor
make_boolean(EAX) # ensure it is -1 or 0...
asm.not_(EAX) # so that 1's complement NOT is also boolean not
else
boolean_factor
end
end
# Convert any identifier to a boolean (-1 or 0). This is
# semantically equivalent to !!reg in C or Ruby.
def make_boolean(reg=EAX)
end_label = asm.mklabel(:endmakebool)
asm.cmp(reg, FALSE) # if false do nothing
asm.jz(end_label)
asm.mov(reg, TRUE) # truthy, make it true
asm.deflabel(end_label)
end
def relation
bit_expression
if op_char?(@look, :rel)
scan
asm.push(EAX)
case @value
when '=='
eq_relation
when '!='
neq_relation
when '>'
gt_relation
when '>='
ge_relation
when '<'
lt_relation
when '<='
le_relation
end
end
end
# a: <on the stack>
# b: eax
#
# If b - a is zero then a = b, and make_boolean will leave the zero
# to effectively return false. If b - a is non-zero then a != b,
# and make_boolean will leave -1 (true) for us in eax.
def neq_relation
bit_expression
asm.pop(EBX)
asm.sub(EAX, EBX)
make_boolean
end
# Invert the != test for equal.
def eq_relation
neq_relation
asm.not_(EAX)
end
# > and < are both implemented in terms of jl (jump if less than).
# We exploit the fact that cmp is the subtraction of src from dest
# and order the terms appropriately for each function. As for >=
# and <=, they in turn are implemented in terms of > and <. a is
# greater than or equal to b if and only if a is *not* less than b.
#
# Note: This was done to minimize the number of instructions that
# the assembler needed to implement, but since the Jcc
# instructions are very cheap to implement this is no longer
# a concern.
# The next 4 relations all compare 2 values a and b, then return
# true (-1) if the difference was below zero and false (0)
# otherwise (using JL, jump if less than).
def cmp_relation(a, b, options={})
bit_expression
asm.pop(EBX)
# Invert the sense of the test?
invert = options[:invert]
true_label = asm.mklabel(:cmp)
end_label = asm.mklabel(:endcmp)
asm.cmp(a, b)
asm.jl(true_label)
asm.mov(EAX, FALSE) # return false
asm.not_(EAX) if invert # (or true if inverted)
asm.jmp(end_label)
asm.deflabel(true_label)
asm.mov(EAX, FALSE) # return true
asm.not_(EAX) unless invert # (or false if inverted)
asm.deflabel(end_label)
end
# a: <on the stack>
# b: eax
#
# if a > b then b - a < 0
def gt_relation
cmp_relation(EAX, EBX) # b - a
end
# a: <on the stack>
# b: eax
#
# if a < b then a - b < 0
def lt_relation
cmp_relation(EBX, EAX) # a - b
end
# a: <on the stack>
# b: eax
#
# if a >= b then !(a < b)
def ge_relation
# Compare them as in less than but invert the result.
cmp_relation(EBX, EAX, :invert => true)
end
# a: <on the stack>
# b: eax
#
# if a <= b then !(a > b)
def le_relation
# Compare them as in greater than but invert the result.
cmp_relation(EAX, EBX, :invert => true)
end
######################################
# statements and controls structures #
######################################
def keyword
unless action = @keywords[@value]
raise "unsupported keyword: #{@value}"
end
send(action)
end
# Parse an assignment statement. Value is in eax.
def assignment
name = @value
match('=')
boolean_expression
lval = asm.var!(name)
asm.mov([lval], EAX)
end
# Parse a code block.
def block
@indent += 1
scan
until @value == 'else' || @value == 'end' || eof?
if @token == :keyword
keyword
else
assignment
end
scan
end
@indent -= 1
end
# Parse an if-else statement.
def if_else_stmt
else_label = asm.mklabel(:end_or_else)
end_label = else_label # only generated if else clause
# present
condition
skip_any_whitespace
asm.jz(else_label)
block
if @token == :keyword && @value == 'else'
skip_any_whitespace
end_label = asm.mklabel(:endif) # now we need the 2nd label
asm.jmp(end_label)
asm.deflabel(else_label)
block
end
match_word('end')
asm.deflabel(end_label)
end
# Used to implement the Two-Label-Loops (while, until, repeat).
#
# name: Name of the loop for readable labels.
# block: Code to execute at the start of each iteration. (e.g. a
# condition)
def simple_loop(name)
start_label = asm.mklabel(:"#{name}_loop")
end_label = asm.mklabel(:"end_#{name}")
asm.deflabel(start_label)
yield(end_label)
pushing_label(end_label) { block }
match_word('end')
asm.jmp(start_label)
asm.deflabel(end_label)
end
def condition_loop(name, jump_instruction)
simple_loop(name) do |end_label|
condition
skip_any_whitespace
asm.send(jump_instruction, end_label)
end
end
def while_stmt
condition_loop('while', :jz) # done when == 0 (falsish)
end
def until_stmt
condition_loop('until', :jnz) # done when != 0 (truthy)
end
def repeat_stmt
simple_loop('repeat') do |end_label|
skip_any_whitespace
end
end
# s = 0
# f x = 1 to 5
# s = s + x
# e
def for_stmt
name = get_name
counter = asm.defvar(name)
match('=')
boolean_expression # initial value
asm.sub(EAX, 1) # pre-decrement because of the
# following pre-increment
asm.mov([counter], EAX) # stash the counter in memory
match_word('to', :scan => true)
boolean_expression # final value
skip_any_whitespace
asm.push(EAX) # stash final value on stack
final = [ESP]
simple_loop('for') do |end_label|
asm.mov(ECX, [counter]) # get the counter
asm.add(ECX, 1) # increment
asm.mov([counter], ECX) # store the counter
asm.cmp(final, ECX) # check if we're done
asm.jz(end_label) # if so jump to the end
end
asm.add(ESP, 4) # clean up the stack
end
# do 5
# ...
# end
def do_stmt
boolean_expression
skip_any_whitespace
asm.mov(ECX, EAX)
start_label = asm.mklabel(:do)
end_label = asm.mklabel(:enddo)
asm.deflabel(start_label)
asm.push(ECX)
pushing_label(end_label) { block }
asm.pop(ECX)
match_word('end')
asm.dec(ECX)
asm.jnz(start_label)
# Phony push! break needs to clean up the stack, but since we
# don't know if there is a break at this point we fake a push and
# always clean up the stack after.
asm.sub(ESP, 4)
asm.deflabel(end_label)
# If there was a break we have to clean up the stack here. If
# there was no break we clean up the phony push above.
asm.add(ESP, 4)
end
def break_stmt
if top_label
asm.jmp(top_label)
else
expected(:'break to be somewhere useful',
:got => :'a break outside a loop')
end
end
# Evaluates any expression for now. There are no boolean operators.
def condition
boolean_expression
skip_whitespace
asm.cmp(EAX, 0) # 0 is false, anything else is true
end
# print eax in hex format
def print_stmt
# variables
d = '__DIGITS'
h = '__HEX'
digits = if asm.var?(d)
asm.var(d)
else
d_var = asm.defvar(d, 16)
asm.block do
# define a lookup table of digits
mov([d_var], 0x33323130)
mov([d_var+4], 0x37363534)
mov([d_var+8], 0x62613938)
mov([d_var+12], 0x66656463)
end
d_var
end
# 12 bytes: 2 for "0x", 8 hex digits, 2 for newline + null terminator
hex = asm.var!(h, 12)
asm.block do
# TODO check sign and prepend '-' if negative
mov([hex], 0x7830) # "0x" ==> 0x30 (48), 0x78 (120)
mov([hex+4], 0) # zero the rest
mov([hex+8], 0)
mov([:byte, hex+10], 0xa) # newline
mov([:byte, hex+11], 0) # null terminator
end
boolean_expression # result in EAX
asm.block do
# convert eax to a hex string
lea(ESI, [digits])
lea(EDI, [hex+9])
# build the string backwards (right to left), byte by byte
mov(ECX, 4)
end
asm.block do
deflabel(loop_label=mklabel)
# low nybble of nth byte
movzx(EBX, AL)
and_(BL, 0x0f) # isolate low nybble
movzx(EDX, [:byte, ESI+EBX])
mov([EDI], DL)
dec(EDI)
# high nybble of nth byte
movzx(EBX, AL)
and_(BL, 0xf0) # isolate high nybble
shr(BL, 4)
mov(DL, [ESI+EBX])
mov([EDI], DL)
dec(EDI)
shr(EAX, 8)
loop_(loop_label)
# write(int fd, char *s, int n)
mov(EAX, 4) # SYS_write
lea(ECX, [hex]) # ecx = &s
args = [1, # fd = 1 (STDOUT)
ECX, # s = &s
11] # n = 11 (excluding term, max # of chars to print)
case platform
when 'darwin' # on the stack, right to left (right @ highest addr)
####
# setup bogus stack frame
push(EBP)
mov(EBP, ESP)
sub(ESP, 36)
####
args.reverse.each { |a| push(a) }
push(EAX)
int(0x80)
####
# teardown bogus stack frame
xor(EAX, EAX)
add(ESP, 36)
pop(EBX)
leave
####
when 'linux'
mov(EBX, args[0])
mov(ECX, args[1])
mov(EDX, args[2])
int(0x80)
end
end
end
############
# internal #
############
def eof?
@input.eof? && @look.nil?
end
def op_char?(char, kind=:all)
OpChars[kind].include?(char)
end
def op?(kind, token)
Ops[kind].include?(token)
end
# Read the next character from the input stream.
def get_char
@look = if @input.eof?
nil
else
@input.readbyte.chr
end
end
# Report error and halt
def abort(msg)
raise ParseError, msg
end
# Report what was expected
def expected(what, options={})
got = options.has_key?(:got) ? options[:got] : @value
got, what = *[got, what].map {|x| x.is_a?(Symbol) ? x : "'#{x}'" }
if eof?
raise ParseError.new(caller), "Premature end of file, expected: #{what}."
else
context = (@input.readline rescue '(EOF)').gsub("\n", "\\n")
raise ParseError.new(caller, context), "Expected #{what} but got #{got}."
end
end
# Recognize an alphabetical character.
def alpha?(char)
('A'..'Z') === char.upcase
end
# Recognize a decimal digit.
def digit?(char)
('0'..'9') === char
end
# Recognize an alphanumeric character.
def alnum?(char)
alpha?(char) || digit?(char) || char == '_'
end
# XXX disabled! ... should treat true/false as constants
# once again we need a token of lookahead
def boolean?(char)
#char == 't' || char == 'f'
false
end
def whitespace?(char)
char == ' ' || char == "\t"
end
def newline?(char)
char == "\n" || char == "\r"
end
def comment_char?(char)
char == '#'
end
def any_whitespace?(char)
whitespace?(char) || newline?(char)
end
# Parse one or more newlines.
def get_newline
expected(:newline, :got => @look) unless newline?(@look)
many(:newline?)
@token = :newline
@value = "\n"
end
# Match literal input.
def match(char)
expected(char, :got => @look) unless @look == char
# puts "[ch] #{indent}#{char}"
get_char
skip_whitespace
end
# Match literal input.
def match_word(word, options={})
scan if options[:scan]
match = @value == word
expected(word) unless match
match
end
# Parse zero or more consecutive characters for which the test is
# true.
def many(test)
test = method(test) if test.is_a?(Symbol)
token = ''
while !eof? && test[@look]
token << @look
get_char
end
skip_whitespace
token
end
# Parse a "name" (keyword or identifier).
def get_name
expected(:identifier) unless alpha?(@look)
@value = many(:alnum?)
@token = @keyword_names.include?(@value) ? :keyword : :identifier
@value
end
# Parse a number.
def get_number
expected(:integer) unless digit?(@look)
@token = :number
@value = many(:digit?)
# puts "[nu] #{indent}#{@value} (0x#{@value.to_i.to_s(16)})"
@value
end
def get_boolean
get_name
expected(:boolean) unless @value == 'true' || @value == 'false'
@token = :boolean
# puts "[bo] #{indent}#{@value}"
@value
end
def get_op
expected(:operator) unless op_char?(@look)
@token = :op
@value = many(:op_char?)
end
# Skip leading whitespace.
def skip_whitespace
get_char while whitespace?(@look)
end
# Skip leading whitespace including newlines.
def skip_any_whitespace
get_char while any_whitespace?(@look)
end
def skip_comment
get_char until newline?(@look)
skip_any_whitespace
end
def indent
real_indent = if @value == 'else' || @value == 'end'
@indent - 1
else
@indent
end
' ' * (real_indent * 4)
end
def pushing(reg)
asm.push(reg)
yield
asm.add(ESP, 4)
end
class <<self
def hook(callback, *methods)
methods.each do |m|
orig = :"orig_#{m}"
alias_method orig, m
define_method(m) do
val = send(orig)
send(callback)
val
end
end
end
end
def print_token
print(case @token
when :keyword
'[kw] '
when :number
'[nu] '
when :identifier
'[id] '
when :op
'[op] '
when :boolean
'[bo] '
when :newline
''
else
raise "print doesn't know about #{@token}: #{@value}"
end)
print indent
puts @value
end
def pushing_label(label)
push_label(label)
yield
pop_label
end
def push_label(label)
@label_stack.push(label)
end
def top_label
@label_stack[-1]
end
def pop_label
@label_stack.pop
end
# hook(:print_token,
# :get_name, :get_newline, :get_number, :get_op, :get_boolean)
end