-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathggplot2.R
69 lines (47 loc) · 1.25 KB
/
ggplot2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# _/_/ _/_/ _/_/_/ _/
# _/ _/ _/ _/ _/ _/_/
# _/ _/ _/ _/_/ _/
# _/ _/ _/ _/ _/
# _/_/_/_/ _/_/ _/_/_/ _/_/_/
library(tidyverse)
library(data.table)
# Activity 2
# load in the data set, ensuring that `id` is read as a factor
fev1 <- fread("fev1.csv", colClasses = list(factor = 'id'))
fev1 <- fev1[ , id := fct_inorder(id)]
fev1_sampled <- fev1[ , .N, by = id
][N > 6
][id %in% sample(id, 20)
][ , id := fct_drop(id)
][ , .(id, N)]
... <- merge(fev1, fev1_sampled)
# Activity 3
# 3a
ggplot(data = ...,
aes(x = age, y = FEV1)) +
geom_...()
fev1_plot3a
# 3b
... +
xlab(...) +
... +
theme_...()
fev1_plot3b
# 3c
...
# Activity 4
...
# Activity 5
... # count number of times id appears
# Activity 6
ggplot(data = ...,
aes(x = ..., y = ...)) +
geom_...(aes(... = ...)) +
...
# Activity 7
library(mgcv)
model <- gamm(data = ..., FEV1 ~ ...)
pred <- data.table(age = seq(min(...$age),
max(...$age),
length.out = 101))
pred[, FEV1 := predict(model$gam, pred)]