forked from saltudelft/type4py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dockerfile.cuda
39 lines (29 loc) · 1.36 KB
/
Dockerfile.cuda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# NOTE: This Docker file is configured to deploy Type4Py on our server and GPUs.
# For us, these configs seem to work: CUDA 11.0.3, ONNX v1.10.0, nvidia driver 450.36.06
FROM nvidia/cuda:11.0.3-cudnn8-runtime-ubuntu20.04
WORKDIR /type4py/
# Put the required models files in a folder "t4py_model_files" inside "/type4py"
# -type4py/
# --type4py/
# --t4py_model_files/
COPY . /type4py
ENV T4PY_LOCAL_MODE="1"
RUN apt update --fix-missing -y && apt upgrade -y && apt install -y python3-pip libpq-dev
# The current model files are pickled with the below ver. of sklearn
RUN pip install scikit-learn==0.24.1
# Install Annoy from a pre-built binary wheel to avoid weird SIGILL error on some systems
RUN pip install https://type4py.com/pretrained_models/annoy-wheels/annoy-1.17.0-cp38-cp38-linux_x86_64.whl
# For production env., install ONNXRuntime with GPU support
RUN pip install onnx==1.10 onnxruntime==1.10 onnxruntime-gpu==1.10
# Install Type4Py
RUN pip install -e .
# Web server's required packages
RUN pip install -r type4py/server/requirements.txt
# Install NLTK corpus
RUN python3 -c "import nltk; nltk.download('stopwords')"
RUN python3 -c "import nltk; nltk.download('wordnet')"
RUN python3 -c "import nltk; nltk.download('omw-1.4')"
RUN python3 -c "import nltk; nltk.download('averaged_perceptron_tagger')"
WORKDIR /type4py/type4py/server/
EXPOSE 5010
CMD ["bash", "run_server.sh"]