From 0c1f53f8166e6d3826930f947ae76bcd23af2688 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=EC=9D=B4=ED=98=84=EA=B2=BD?= <70500841+sallyy1@users.noreply.github.com> Date: Thu, 10 Aug 2023 10:21:01 +0900 Subject: [PATCH] Add files via upload --- 0807_Llama_2_Fine_Tuning_using_QLora.ipynb | 20892 +++++++++++++++++++ 1 file changed, 20892 insertions(+) create mode 100644 0807_Llama_2_Fine_Tuning_using_QLora.ipynb diff --git a/0807_Llama_2_Fine_Tuning_using_QLora.ipynb b/0807_Llama_2_Fine_Tuning_using_QLora.ipynb new file mode 100644 index 0000000..19d22e2 --- /dev/null +++ b/0807_Llama_2_Fine_Tuning_using_QLora.ipynb @@ -0,0 +1,20892 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true, + "base_uri": "https://localhost:8080/" + }, + "id": "1MFR2sZ6gojg", + "outputId": "9a11257e-b3f7-48a4-ed5b-f01d37d7a3f0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fri Aug 4 07:55:42 2023 \n", + "+-----------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 525.105.17 Driver Version: 525.105.17 CUDA Version: 12.0 |\n", + "|-------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|===============================+======================+======================|\n", + "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 50C P8 10W / 70W | 0MiB / 15360MiB | 0% Default |\n", + "| | | N/A |\n", + "+-------------------------------+----------------------+----------------------+\n", + " \n", + "+-----------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=============================================================================|\n", + "| No running processes found |\n", + "+-----------------------------------------------------------------------------+\n" + ] + } + ], + "source": [ + "gpu_info = !nvidia-smi\n", + "gpu_info = '\\n'.join(gpu_info)\n", + "if gpu_info.find('failed') >= 0:\n", + " print('Not connected to a GPU')\n", + "else:\n", + " print(gpu_info)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YO20b0TD5D4w" + }, + "source": [ + "**Code Credit: Hugging Face**\n", + "\n", + "**Dataset Credit: https://twitter.com/Dorialexander/status/1681671177696161794 **" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dhX35d6CK0VE", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "f29c6748-d9fe-4d8f-8d9b-91519c2ab53c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Drive already mounted at /content/drive/; to attempt to forcibly remount, call drive.mount(\"/content/drive/\", force_remount=True).\n" + ] + } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive/')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C2EgqEPDQ8v6" + }, + "source": [ + "## Finetune Llama-2-7b on a Google colab\n", + "\n", + "Welcome to this Google Colab notebook that shows how to fine-tune the recent Llama-2-7b model on a single Google colab and turn it into a chatbot\n", + "\n", + "We will leverage PEFT library from Hugging Face ecosystem, as well as QLoRA for more memory efficient finetuning" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i-tTvEF1RT3y" + }, + "source": [ + "## Setup\n", + "\n", + "Run the cells below to setup and install the required libraries. For our experiment we will need `accelerate`, `peft`, `transformers`, `datasets` and TRL to leverage the recent [`SFTTrainer`](https://huggingface.co/docs/trl/main/en/sft_trainer). We will use `bitsandbytes` to [quantize the base model into 4bit](https://huggingface.co/blog/4bit-transformers-bitsandbytes). We will also install `einops` as it is a requirement to load Falcon models." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mNnkgBq7Q3EU", + "outputId": "357c8ef9-d11d-4675-ae3d-802b8a4d1b5c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n" + ] + } + ], + "source": [ + "!pip install -q -U trl transformers accelerate git+https://github.com/huggingface/peft.git\n", + "!pip install -q datasets bitsandbytes einops wandb" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rjOMoSbGSxx9" + }, + "source": [ + "## Loading the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 625, + "referenced_widgets": [ + "ce92f31907fe42d5b26d9504c4a711b3", + "6cfcda89e55e44a2afbc869e93a309ec", + "282a1bd889e94ad3b23ed66597493fb4", + "89eb8868526b40a4bbcb4f659e320932", + "560ef814e4cf4705b1cf7fc01d492024", + "e81819d8b10a4939bd3f6c164c0648bb", + "f03a6c8da0ee4c2298c6c7f6a5a35f34", + "71807071c87143fba6a9a0cfbc7750e0", + "239a01a354ab42719c762114355bf203", + "fc22b4a627f14408a8074118d6f91fb0", + "29048666ae3d4a72bb045e626563ba96", + "872457bd9d2e44338d7a3a4850f67351", + "bb46c7d5a8c94e06b44351945547950f", + "67a1517783794d469a230e41bd4a2c52", + "21aeb708c25146c995f0b749e9f53210", + "bac61063dc594b758b4145e453f71bc6", + "63760ec5481b490e93aab52e56a3b026", + "ccfee465045e48bcbd59b27e4bf95497", + "4b9b24ff7fa0462695f1a1c294699aea", + "264753eecba44435a32717375508960d", + "bad6a36bc16c4fc4908a6e397313f7d4", + "8c3e94ba403145eb9e88c6248cf7fb86", + "742db438a8de4d469ec95ac5b08328f5", + "61f96fa3beda472b8d3a83b4a62095c2", + "3282b7221da04e07bd53843e586e5359", + "bc54767bb2bf419a9ae90a32c45d7867", + "fe74b1e1dbc9459b9d3149e0292b61dd", + "4e0506f6b3434af7be92ae42bf7cce38", + "1666593fe35249ee9d6482ba4959fa68", + "78f2c529c3984d608ea974d6b14540a4", + "31b5cc59ecea4304a2c8648ef3fe0e5f", + "8e31f8867172492db898e2bd95c5a9d3", + "84980d9310094272b757d6a5dcadc5c9", + "e16812bf18534591ba0f809c162bb62d", + "6656f64a138c4ceaa2d458ac59885cf8", + "0295c2a8f6a2466bb4de9f3f3f2315df", + "50057af63993464d8134ba04358af73b", + "98e106ad07894c8db8f5ffacc73ec9b7", + "022b0138f7084b23a7b29f8519d21983", + "2713c693b5cb4939b434586d1e18e654", + "1cd018705a5f4a9389bfe553bc126300", + "173e869b1594466d89c8a6cfef4e67c4", + "d9446c16d6f34aaaad76bfb3f4962ab9", + "3e52589d9e494d44bee8c786e0afd82d", + "e1542bf49744457e9545a7ab6987fe12", + "4689f476e5e84850926077781bfe28b7", + "684ab4d8414841eba6ec24034c7be858", + "85ef1513c69247f497bccf7720105bd4", + "a7f85893789549d3879873ea147126cf", + "5f25798757cc4378b2f9730a6e422305", + "c2729c53f0d646deb3078b2eede27631", + "9372c52ca1f24ed0b1ffb79c0e238e8c", + "1f26e19dfda644b49027f5ccf7fc7592", + "11c4931f37124e53bd177aea6e7600d0", + "accccc8214cd4c519168a69a0fc43ad2", + "07e1cee633fc4fdf9c5d044fe638c17e", + "4e36f9f622f5453da0e2baff8684b147", + "06c490a7b0d841868ea0ec5fe1adeb47", + "21175ed38dbe4ed388f33a3fc43eda4b", + "b018cec84267405d9676badc260e566e", + "05a0697cfde14d578529013f55d6911d", + "e5bb1eed742f4a00bdb678a422be806c", + "0d70d4a2897a4b0b89e892356af2f604", + "ec31c296eeac4794a6056bb0c941dbdc", + "98d0c0344e754dd4ba13203ff23a9caf", + "9363060587df4a928005c91f41fdf389", + "d43dd7b71b8f40d1950294fb251e6b88", + "2405c114b1924e878362c07489f60541", + "665f1f618e6842bfb9cf04e8ea6ef8f7", + "13b46cd5dd0342a48cff6e47975649cb", + "0f6fd71b290540469996d5c5934fed9b", + "6f06e9d8d18a40999f6369f719ebc60b", + "5d4a7805570d4244840a131deab53d81", + "dcc74879638042758dfd975b34757cfb", + "165442d5731c4fdb8ce6ed1a4f04c945", + "b2eb988428f845fbb24f70e612f2edac", + "72cc6561fa4d41f6926acfcf967e43f7", + "7bf00b2d0d4e43448e5c2ad5df8f0479", + "3ade76d3a19b40cd90e92d9f17870f32", + "a920f261f7ad4891998dbdd49aab5d7d", + "05c95b1fcc674381bb458d226ded5cbb", + "1180092ad5ac4355801a91fe954e459a", + "f70f777828c04621a4bdedd6619d28ee", + "f46863b8cfd2470f9f3baf0bf88d745a", + "f8017266fbcd475a8ff9bf26ad2ec084", + "7694f93c83b64cfba0239682e58cb4f8", + "f370524950df4b9b9dee8185efc2d3f9", + "b9e0c145a3464d8e966e7aa30010596c", + "cd9fd3f1d25841a48bdc4bc215c607f3", + "2366bc8109654b78a66b5f067b9bcb68", + "a50f415bbdaa49f7b0a5f15bf2e2e70a", + "6bf30d0f072c47bd96869683fb773f36", + "8c9bc520fe7b42b9b24a121f1cbfe266", + "863632d14bbd49658629c7fba27ed59e", + "ea56c169c17e46a095fa9c38fb6e6083", + "d6cc1e4577304ace9f291a23aad954ad", + "92f082b11e184e85985fa96620576c5a", + "ddb86475b65b4f30b97ff8189107d398", + "5685a450afbb4bf1ae402979a5ff113c", + "1a27acb80f4840a8bf078005394680e5", + "7713931709b34ab1adfa6a9c3a933394", + "6bdeff9151664bad8d6195b2699eaa86", + "1efde1c1dfe848e0aaec524fca36c93a", + "0749408711f54acc8e9314b43526009b", + "2cf52693a0544c00992c4791938e094d", + "9dc21a20a18f4fd391d5c62a05353ead", + "649bac9ab18347b086d0538f72876ea3", + "3da849acb17948aab4507763be6e9ef2", + "54bdabc7076c4a1396d9f36f2bb01806", + "5ab0b26a21ea497cb1f5a11e05d350a0", + "116083be58214c3697defd7bde45a9fb", + "8a4a171666204461ae00d3fdba6eab3c", + "5f22aa6033244c8bb49f34ff5da21d09", + "34a4c98a6de1425393c8f6cc20fd4184", + "ca001c40d32b4d7d8e1e55d13f169f3a", + "984188eeafb84aa4b0cd532a55fd2c36", + "368a71de0f294427a5e19a39fadafb89", + "c168ec905545458ca64a2479822c8a31", + "c4dae4d09cdd4772b1a74ea1c999f8f2", + "3536d6c5461f49bb98baea2664e65ffc", + "767d1d428473459ba6ae37c9203f82c2", + "75602dd425834c69a0c4d7f74ceefdc7", + "dac11481926e492ca828e82923e5f422", + "4fb39852532f4ba1917dbf2257052beb", + "6126b1233fcd44489266e112ac3c829d", + "4d9f17d508724d0e84d8fbf6a328351e", + "f68f302eaf7e4b8a99674a557f957fe8", + "d37208bde58b464ba01ff75689288731", + "dbfb82d1c2de44b2a7ae5c5ea96c4f16", + "b42b58f4e7484e138d955fb1ad0d36dd", + "95a353e2269a4ac3a9dc579e89b1f554", + "4a203b3ece6b4fce82f359f5f7d9d3b1", + "b6ae05a3c0394108ac03c5408df77c25", + "ac18d2044ea8425da5d1ecbb55b51f2d", + "567a11c88c304f47bcfedf0a11ec0f7e", + "3b3699b303e04c0682ff022da289125b", + "791f7037d96a4384a112a5a18b3b6e26", + "6005d476fbd04076b0a2602117053995", + "7641844727934b7f8d7d1be1fbde14d0", + "821344eb5a8447cabc79b55748c365a2", + "16f83acf057b423695bea7fae8ac5a5e", + "1236e04b94a74ff0b7c25aaa2ffe29d4", + "ae7219f980ae409c8c86c29eb6c5fc7f", + "e803d4089bbe41439589a787ff546377", + "4f4b4ab230bc4d768b2e3db930d05ef3", + "7b5a63ded1f2419796a28efe0b46cdd4", + "25488dce95b9476f907fde4f1e8e4bc3", + "b915967bab5b406a8d265fd784b5ccb2", + "f4df3f3d931d4b0d93cd75e62bb175bb", + "c8f2fa253fc94b1495cb28f1de54a199", + "364ae4dfee6a4150905f4883be536379", + "c4511ce13ffa4a67818c1caf3144433c", + "a951c50db5be4adb8e0e15eb3630ae19", + "11750cf87c5c4e2c90d2fe1114afad42", + "f96ed086860d4865916c8fc9af5b80fd", + "ad3302adafe44cc9aaeeb2cb28a680c8", + "9d068cdbf6bf4f63bd2570256a360040", + "e5b55acbb75f4b29be0c39bb5ba2e1c8", + "23a1fc0acb67406a85a7e0da1d8da0a9", + "ebddfe959f704af6b01a178d1e901884", + "494cefbf65a0476ab56794a41ce12c7b", + "4a6c8a43044f4e318bde4d5847f2258f", + "40dd157d0ed0456d9e8c4866e17b2413", + "3be3eb5f927c4c8494813b6432a6f2a9", + "b8e3fe64f8d14c8aa69dba70e1b21fdc", + "e930379bf2864e8f875c7d15e1d3b99d", + "634e3b7ad74c4402a8f95b8f100137e9", + "a24174025cde4259ac21ffe6c8064b6c", + "80f8d0b992a0484382393a7190051ff6", + "4f55ff200502463aa58acc2e4d8fc138", + "5e3f269df8c4417eb6cd97c85db981d7", + "2fe50dbf853c4247ab4890b6eedaeddd", + "49424ab9b9644130926283af6c041045", + "6d22958233724f37a8c3e3a26b6413f4", + "891c6bff6dd440498bb2619e838962b7", + "064d297944834bf69251a3625891265c", + "4b380e3aba5347a3ab29baddca0515f8", + "64682971f4704c15a83d437636e6b8d6", + "bb4580499a014f48830288b583633d31", + "23157af907734d45b709ddf960ebb881", + "b2ad15fcc29f4ae1b30abb2969f464cf", + "5dbf98d992874573a434a729a5f3ec99", + "88b01c22454b4d58a1d8268e64d4958e", + "850abdb1d66e4a1fb28e25d1810c3ef8", + "a9875b8c0cc740ed95f419048208a3f6", + "592bc4eb115245929143dc3663a026cf", + "e00562fd1b2b44c4a2a0afc6dd3fecdd", + "2bb168ca1694409db684e836b5045669", + "800e19dab2a5478db0d3a9cefcb6b6c3", + "34b4de233e38436f93ecf7a250fea4a8", + "9aa69a27b9a8419b89b6f80f96c13181", + "c9706c31d2b745b38cc16049d2b4cb83", + "fd6b621fe3b3452fb0b62c1a1f697d15", + "c48c00b2f7ae4c7aba61c73170f26f34", + "587213a5fa1c4b4bacdaffde907c7dea", + "0f11cdb17b954a9cb8ae0906a6655b07", + "cfe1743c0361495892a2e65c1e18ddc8", + "4b9b9e212155437cb15c1ac3031942b6", + "05bb3ec0cc9a418194eb0cfbaadcd0fa", + "28bc33d45e7b41e0a0b2a670356a501a", + "23ffe6901e7f40c3b33cf981ecc04ae7", + "eff5d63df9414d3e9a6476bcef3dd146", + "75628f824f3b48c59427073c86fbedf2", + "f9ca05a99f794a088c441f081245265e", + "c4bbf59536074447bd97c7e9f0ea547e", + "f3b2e08428c647cba78e43644270f754", + "d08163a11978497eb1b8fb7c96dd78a8", + "2562cc91dcf94d24a0d3e9bee16841d8", + "27f34cc8e5a2416788290729cdc3c273" + ] + }, + "id": "ZwXZbQ2dSwzI", + "outputId": "816ef14b-2184-4a02-8481-4173e9150e0e" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)lve/main/config.json: 0%| | 0.00/626 [00:00\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleartistalbumrelease_datesong_genreis_titlelikecreatorlyrics
0태지 보이스서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN269서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제...
1시대유감(時代遺憾)서태지와 아이들시대유감(時代遺憾)1996.06.07Rock타이틀 곡3,274서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐...
2수시아(誰是我)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN487서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ...
3이 밤이 깊어 가지만 (Remix)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN704양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소...
4Free Style서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN602서태지\\r\\r\\n작사\\r\\r\\n김종서\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\...항상 난 지나치기만 했네\\r\\r\\n이젠 난 미련없이 끝내\\r\\r\\n됐어 찾아냈어 난...
..............................
18165덩크슛 (Dunk Shot)엔시티 드림The First - The 1st Single Album2017.02.09Rock인기 곡16,431김광진\\r\\r\\n작사\\r\\r\\n김광진\\r\\r\\n작곡\\r\\r\\nkenzie\\r\\r\\n편곡주문을 외워보자\\r\\r\\n유난히 고요하던\\r\\r\\n밤 하늘을 바라보다가\\r\\r\\n유...
18166Chewing Gum엔시티 드림The First - The 1st Single Album2017.02.09DanceNaN7,766조윤경\\r\\r\\n작사\\r\\r\\n문설리\\r\\r\\n작사\\r\\r\\n정민지\\r\\r\\n작사\\...C-c-c-c-c-c-Chewing Gum\\r\\r\\nC-c-c-c-c-c C-c-c...
18167Chewing Gum (泡泡糖)엔시티 드림The First - The 1st Single Album2017.02.09DanceNaN5,480조윤경\\r\\r\\n작사\\r\\r\\n문설리\\r\\r\\n작사\\r\\r\\n정민지\\r\\r\\n작사\\...C-c-c-c-c-c-Chewing Gum\\r\\r\\nC-c-c-c-c-c C-c-c...
18168Chewing Gum엔시티 드림Chewing Gum2016.08.27Dance타이틀 곡25,546조윤경\\r\\r\\n작사\\r\\r\\n문설리\\r\\r\\n작사\\r\\r\\n정민지\\r\\r\\n작사\\...C-c-c-c-c-c-Chewing Gum\\r\\r\\nC-c-c-c-c-c C-c-c...
18169Chewing Gum (泡泡糖) (Chinese Ver.)엔시티 드림Chewing Gum2016.08.27DanceNaN7,057조윤경\\r\\r\\n작사\\r\\r\\n문설리\\r\\r\\n작사\\r\\r\\n정민지\\r\\r\\n작사\\...C-c-c-c-c-c-Chewing Gum\\r\\r\\nC-c-c-c-c-c C-c-c...
\n", + "

18170 rows × 9 columns

\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + " \n" + ], + "text/plain": [ + " title artist \\\n", + "0 태지 보이스 서태지와 아이들 \n", + "1 시대유감(時代遺憾) 서태지와 아이들 \n", + "2 수시아(誰是我) 서태지와 아이들 \n", + "3 이 밤이 깊어 가지만 (Remix) 서태지와 아이들 \n", + "4 Free Style 서태지와 아이들 \n", + "... ... ... \n", + "18165 덩크슛 (Dunk Shot) 엔시티 드림 \n", + "18166 Chewing Gum 엔시티 드림 \n", + "18167 Chewing Gum (泡泡糖) 엔시티 드림 \n", + "18168 Chewing Gum 엔시티 드림 \n", + "18169 Chewing Gum (泡泡糖) (Chinese Ver.) 엔시티 드림 \n", + "\n", + " album release_date song_genre is_title \\\n", + "0 시대유감(時代遺憾) 1996.06.07 Rock NaN \n", + "1 시대유감(時代遺憾) 1996.06.07 Rock 타이틀 곡 \n", + "2 시대유감(時代遺憾) 1996.06.07 Rock NaN \n", + "3 시대유감(時代遺憾) 1996.06.07 Rock NaN \n", + "4 시대유감(時代遺憾) 1996.06.07 Rock NaN \n", + "... ... ... ... ... \n", + "18165 The First - The 1st Single Album 2017.02.09 Rock 인기 곡 \n", + "18166 The First - The 1st Single Album 2017.02.09 Dance NaN \n", + "18167 The First - The 1st Single Album 2017.02.09 Dance NaN \n", + "18168 Chewing Gum 2016.08.27 Dance 타이틀 곡 \n", + "18169 Chewing Gum 2016.08.27 Dance NaN \n", + "\n", + " like creator \\\n", + "0 269 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "1 3,274 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "2 487 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "3 704 양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "4 602 서태지\\r\\r\\n작사\\r\\r\\n김종서\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\... \n", + "... ... ... \n", + "18165 16,431 김광진\\r\\r\\n작사\\r\\r\\n김광진\\r\\r\\n작곡\\r\\r\\nkenzie\\r\\r\\n편곡 \n", + "18166 7,766 조윤경\\r\\r\\n작사\\r\\r\\n문설리\\r\\r\\n작사\\r\\r\\n정민지\\r\\r\\n작사\\... \n", + "18167 5,480 조윤경\\r\\r\\n작사\\r\\r\\n문설리\\r\\r\\n작사\\r\\r\\n정민지\\r\\r\\n작사\\... \n", + "18168 25,546 조윤경\\r\\r\\n작사\\r\\r\\n문설리\\r\\r\\n작사\\r\\r\\n정민지\\r\\r\\n작사\\... \n", + "18169 7,057 조윤경\\r\\r\\n작사\\r\\r\\n문설리\\r\\r\\n작사\\r\\r\\n정민지\\r\\r\\n작사\\... \n", + "\n", + " lyrics \n", + "0 갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제... \n", + "1 왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐... \n", + "2 이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ... \n", + "3 옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소... \n", + "4 항상 난 지나치기만 했네\\r\\r\\n이젠 난 미련없이 끝내\\r\\r\\n됐어 찾아냈어 난... \n", + "... ... \n", + "18165 주문을 외워보자\\r\\r\\n유난히 고요하던\\r\\r\\n밤 하늘을 바라보다가\\r\\r\\n유... \n", + "18166 C-c-c-c-c-c-Chewing Gum\\r\\r\\nC-c-c-c-c-c C-c-c... \n", + "18167 C-c-c-c-c-c-Chewing Gum\\r\\r\\nC-c-c-c-c-c C-c-c... \n", + "18168 C-c-c-c-c-c-Chewing Gum\\r\\r\\nC-c-c-c-c-c C-c-c... \n", + "18169 C-c-c-c-c-c-Chewing Gum\\r\\r\\nC-c-c-c-c-c C-c-c... \n", + "\n", + "[18170 rows x 9 columns]" + ] + }, + "execution_count": 240, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# raw dataset split\n", + "folder_path = '/content/drive/MyDrive/llama2/'\n", + "path = 'utils/song_data_raw_20180921_ver02.csv'\n", + "\n", + "train_data = pd.read_csv(folder_path + path)\n", + "train_data = train_data.drop(columns='Unnamed: 0')\n", + "train_data\n", + "#print(train_data.head(5))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 695 + }, + "id": "wNR3_lEHbC9k", + "outputId": "bc9c210d-f95e-4a6c-ff82-a3e51e23f80b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "12719\n", + "3634\n", + "1817\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleartistalbumrelease_datesong_genreis_titlelikecreatorlyrics
0태지 보이스서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN269서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제...
1시대유감(時代遺憾)서태지와 아이들시대유감(時代遺憾)1996.06.07Rock타이틀 곡3,274서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐...
2수시아(誰是我)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN487서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ...
3이 밤이 깊어 가지만 (Remix)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN704양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소...
4Free Style서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN602서태지\\r\\r\\n작사\\r\\r\\n김종서\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\...항상 난 지나치기만 했네\\r\\r\\n이젠 난 미련없이 끝내\\r\\r\\n됐어 찾아냈어 난...
..............................
12714빠삐용 (Pop Beyond) (Inst.)엔소닉Reset2014.06.09DanceNaN21원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡N-Sonic We Make It Pop Beyond\\r\\r\\nN-Sonic Boo...
12715미치겠네 (Inst.)엔소닉Reset2014.06.09DanceNaN21원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...
12716미치겠네 (Acoustic Ver.) (Inst.)엔소닉Reset2014.06.09DanceNaN24원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...
12717미치겠네엔소닉미치겠네2014.05.29Dance타이틀 곡435원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...
12718Brightly엔소닉Into The Light2013.10.25DanceNaN46원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡Yes Rihgt Hey Ha Come On\\r\\r\\n저기 저 먼 어둠속을 뚫고\\r...
\n", + "

12719 rows × 9 columns

\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n" + ], + "text/plain": [ + " title artist album release_date \\\n", + "0 태지 보이스 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "1 시대유감(時代遺憾) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "2 수시아(誰是我) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "3 이 밤이 깊어 가지만 (Remix) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "4 Free Style 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "... ... ... ... ... \n", + "12714 빠삐용 (Pop Beyond) (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12715 미치겠네 (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12716 미치겠네 (Acoustic Ver.) (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12717 미치겠네 엔소닉 미치겠네 2014.05.29 \n", + "12718 Brightly 엔소닉 Into The Light 2013.10.25 \n", + "\n", + " song_genre is_title like \\\n", + "0 Rock NaN 269 \n", + "1 Rock 타이틀 곡 3,274 \n", + "2 Rock NaN 487 \n", + "3 Rock NaN 704 \n", + "4 Rock NaN 602 \n", + "... ... ... ... \n", + "12714 Dance NaN 21 \n", + "12715 Dance NaN 21 \n", + "12716 Dance NaN 24 \n", + "12717 Dance 타이틀 곡 435 \n", + "12718 Dance NaN 46 \n", + "\n", + " creator \\\n", + "0 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "1 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "2 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "3 양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "4 서태지\\r\\r\\n작사\\r\\r\\n김종서\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\... \n", + "... ... \n", + "12714 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12715 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12716 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12717 원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12718 원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "\n", + " lyrics \n", + "0 갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제... \n", + "1 왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐... \n", + "2 이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ... \n", + "3 옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소... \n", + "4 항상 난 지나치기만 했네\\r\\r\\n이젠 난 미련없이 끝내\\r\\r\\n됐어 찾아냈어 난... \n", + "... ... \n", + "12714 N-Sonic We Make It Pop Beyond\\r\\r\\nN-Sonic Boo... \n", + "12715 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... \n", + "12716 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... \n", + "12717 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... \n", + "12718 Yes Rihgt Hey Ha Come On\\r\\r\\n저기 저 먼 어둠속을 뚫고\\r... \n", + "\n", + "[12719 rows x 9 columns]" + ] + }, + "execution_count": 241, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train, valid, test = train_data[:int(len(train_data)*0.7)], train_data[int(len(train_data)*0.7):int(len(train_data)*0.9)], train_data[int(len(train_data)*0.9):]\n", + "print(len(train))\n", + "print(len(valid))\n", + "print(len(test))\n", + "\n", + "train" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Vw8bQjSabJAd" + }, + "outputs": [], + "source": [ + "# train.to_csv(folder_path + 'utils/train.csv', index=False, encoding='utf-8', header=True)\n", + "# valid.to_csv(folder_path + 'utils/valid.csv', index=False, encoding='utf-8', header=True)\n", + "# test.to_csv(folder_path + 'utils/test.csv', index=False, encoding='utf-8', header=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "nVUof7VpbvK2", + "outputId": "ec4398b8-5fbe-4da0-9935-2b8cd72a4ad2" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['title', 'artist', 'album', 'release_date', 'song_genre', 'is_title',\n", + " 'like', 'creator', 'lyrics'],\n", + " dtype='object')" + ] + }, + "execution_count": 185, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train.columns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 624 + }, + "id": "UYH3h5BIQ1TQ", + "outputId": "fa165cd9-aa9f-4832-edc3-0d672146359d" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleartistalbumrelease_datesong_genreis_titlelikecreatorlyrics
0titleartistalbumrelease_datesong_genreis_titlelikecreatorlyrics
1태지 보이스서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN269서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제...
2시대유감(時代遺憾)서태지와 아이들시대유감(時代遺憾)1996.06.07Rock타이틀 곡3,274서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐...
3수시아(誰是我)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN487서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ...
4이 밤이 깊어 가지만 (Remix)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN704양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소...
..............................
12715빠삐용 (Pop Beyond) (Inst.)엔소닉Reset2014.06.09DanceNaN21원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡N-Sonic We Make It Pop Beyond\\r\\r\\nN-Sonic Boo...
12716미치겠네 (Inst.)엔소닉Reset2014.06.09DanceNaN21원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...
12717미치겠네 (Acoustic Ver.) (Inst.)엔소닉Reset2014.06.09DanceNaN24원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...
12718미치겠네엔소닉미치겠네2014.05.29Dance타이틀 곡435원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...
12719Brightly엔소닉Into The Light2013.10.25DanceNaN46원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡Yes Rihgt Hey Ha Come On\\r\\r\\n저기 저 먼 어둠속을 뚫고\\r...
\n", + "

12720 rows × 9 columns

\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n" + ], + "text/plain": [ + " title artist album release_date \\\n", + "0 title artist album release_date \n", + "1 태지 보이스 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "2 시대유감(時代遺憾) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "3 수시아(誰是我) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "4 이 밤이 깊어 가지만 (Remix) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "... ... ... ... ... \n", + "12715 빠삐용 (Pop Beyond) (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12716 미치겠네 (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12717 미치겠네 (Acoustic Ver.) (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12718 미치겠네 엔소닉 미치겠네 2014.05.29 \n", + "12719 Brightly 엔소닉 Into The Light 2013.10.25 \n", + "\n", + " song_genre is_title like \\\n", + "0 song_genre is_title like \n", + "1 Rock NaN 269 \n", + "2 Rock 타이틀 곡 3,274 \n", + "3 Rock NaN 487 \n", + "4 Rock NaN 704 \n", + "... ... ... ... \n", + "12715 Dance NaN 21 \n", + "12716 Dance NaN 21 \n", + "12717 Dance NaN 24 \n", + "12718 Dance 타이틀 곡 435 \n", + "12719 Dance NaN 46 \n", + "\n", + " creator \\\n", + "0 creator \n", + "1 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "2 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "3 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "4 양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "... ... \n", + "12715 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12716 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12717 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12718 원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12719 원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "\n", + " lyrics \n", + "0 lyrics \n", + "1 갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제... \n", + "2 왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐... \n", + "3 이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ... \n", + "4 옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소... \n", + "... ... \n", + "12715 N-Sonic We Make It Pop Beyond\\r\\r\\nN-Sonic Boo... \n", + "12716 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... \n", + "12717 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... \n", + "12718 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... \n", + "12719 Yes Rihgt Hey Ha Come On\\r\\r\\n저기 저 먼 어둠속을 뚫고\\r... \n", + "\n", + "[12720 rows x 9 columns]" + ] + }, + "execution_count": 187, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset_pandas = pd.read_csv(folder_path + 'utils/train.csv', names=['title', 'artist', 'album', 'release_date', 'song_genre', 'is_title',\n", + " 'like', 'creator', 'lyrics']) # pandas\n", + "dataset_pandas" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KlGnjxehcVwl" + }, + "outputs": [], + "source": [ + "title_list = dataset_pandas['title'].tolist()\n", + "title_list" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "a8RmpvZxcdIA" + }, + "outputs": [], + "source": [ + "lyrics_list = dataset_pandas['lyrics'].tolist()\n", + "lyrics_list" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "8GWpjAkVbbI-", + "outputId": "03fe043e-1dd8-40a8-ba95-090e45937e9a" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " title artist album release_date \\\n", + "0 title artist album release_date \n", + "1 태지 보이스 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "2 시대유감(時代遺憾) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "3 수시아(誰是我) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "4 이 밤이 깊어 가지만 (Remix) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "... ... ... ... ... \n", + "12715 빠삐용 (Pop Beyond) (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12716 미치겠네 (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12717 미치겠네 (Acoustic Ver.) (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12718 미치겠네 엔소닉 미치겠네 2014.05.29 \n", + "12719 Brightly 엔소닉 Into The Light 2013.10.25 \n", + "\n", + " song_genre is_title like \\\n", + "0 song_genre is_title like \n", + "1 Rock NaN 269 \n", + "2 Rock 타이틀 곡 3,274 \n", + "3 Rock NaN 487 \n", + "4 Rock NaN 704 \n", + "... ... ... ... \n", + "12715 Dance NaN 21 \n", + "12716 Dance NaN 21 \n", + "12717 Dance NaN 24 \n", + "12718 Dance 타이틀 곡 435 \n", + "12719 Dance NaN 46 \n", + "\n", + " creator \\\n", + "0 creator \n", + "1 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "2 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "3 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "4 양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "... ... \n", + "12715 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12716 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12717 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12718 원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12719 원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "\n", + " lyrics \n", + "0 lyrics \n", + "1 갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제... \n", + "2 왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐... \n", + "3 이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ... \n", + "4 옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소... \n", + "... ... \n", + "12715 N-Sonic We Make It Pop Beyond\\r\\r\\nN-Sonic Boo... \n", + "12716 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... \n", + "12717 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... \n", + "12718 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... \n", + "12719 Yes Rihgt Hey Ha Come On\\r\\r\\n저기 저 먼 어둠속을 뚫고\\r... \n", + "\n", + "[12720 rows x 9 columns]" + ], + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleartistalbumrelease_datesong_genreis_titlelikecreatorlyrics
0titleartistalbumrelease_datesong_genreis_titlelikecreatorlyrics
1태지 보이스서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN269서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제...
2시대유감(時代遺憾)서태지와 아이들시대유감(時代遺憾)1996.06.07Rock타이틀 곡3,274서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐...
3수시아(誰是我)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN487서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ...
4이 밤이 깊어 가지만 (Remix)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN704양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소...
..............................
12715빠삐용 (Pop Beyond) (Inst.)엔소닉Reset2014.06.09DanceNaN21원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡N-Sonic We Make It Pop Beyond\\r\\r\\nN-Sonic Boo...
12716미치겠네 (Inst.)엔소닉Reset2014.06.09DanceNaN21원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...
12717미치겠네 (Acoustic Ver.) (Inst.)엔소닉Reset2014.06.09DanceNaN24원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...
12718미치겠네엔소닉미치겠네2014.05.29Dance타이틀 곡435원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...
12719Brightly엔소닉Into The Light2013.10.25DanceNaN46원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡Yes Rihgt Hey Ha Come On\\r\\r\\n저기 저 먼 어둠속을 뚫고\\r...
\n", + "

12720 rows × 9 columns

\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "dataset_pandas = pd.read_csv(folder_path + 'utils/train.csv', names=['title', 'artist', 'album', 'release_date', 'song_genre', 'is_title',\n", + " 'like', 'creator', 'lyrics']) # pandas\n", + "dataset_pandas" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PxA1I_JbNBY4" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import torch\n", + "from torch.utils.data import DataLoader, Dataset\n", + "\n", + "class LyricsDataset(Dataset):\n", + " def tokenize(self, prompt, add_eos_token=True):\n", + " ###CUTOFF_LEN = 1024\n", + " CUTOFF_LEN = 512\n", + "\n", + " result = self.tokenizer(\n", + " prompt,\n", + " truncation=True,\n", + " max_length=CUTOFF_LEN,\n", + " padding='max_length',\n", + " return_tensors=None, # 'pt' or None\n", + " )\n", + " if (\n", + " result[\"input_ids\"][-1] != self.tokenizer.eos_token_id\n", + " and len(result[\"input_ids\"]) < CUTOFF_LEN\n", + " and add_eos_token\n", + " ):\n", + " result[\"input_ids\"].append(self.tokenizer.eos_token_id)\n", + " result[\"attention_mask\"].append(1)\n", + "\n", + " result[\"labels\"] = result[\"input_ids\"].copy() # 정답 prompt 자체가 labels이 되어 들어감\n", + "\n", + " return result\n", + "\n", + " def __init__(self, data_path, mode=\"train\", transform_func=None, tokenizer=None):\n", + " if '_selected' in data_path:\n", + " self.dataset = pd.read_csv(data_path, names=['title', 'artist', 'album', 'release_date', 'song_genre', 'is_title',\n", + " 'like', 'creator', 'lyrics', 'title_tokens_num', 'lyrics_tokens_num', 'sum_tokens_num']) # pandas\n", + " else:\n", + " self.dataset = pd.read_csv(data_path, names=['title', 'artist', 'album', 'release_date', 'song_genre', 'is_title',\n", + " 'like', 'creator', 'lyrics']) # pandas\n", + "\n", + " self.dataset = self.dataset[1:]\n", + "\n", + " self.mode = mode\n", + " self.transform_func = transform_func\n", + "\n", + " if mode == \"train\":\n", + " self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side='right') # 학습 시에는 padding left\n", + " self.tokenizer.pad_token = tokenizer.eos_token\n", + " else:\n", + " self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side='left') # 추론 시에는 padding left\n", + " self.tokenizer.pad_token = tokenizer.eos_token\n", + "\n", + " self.title_list = self.dataset['title'].tolist() # KeyError 해결 위함\n", + " self.lyrics_list = self.dataset['lyrics'].tolist() # KeyError 해결 위함\n", + "\n", + " def __len__(self):\n", + " ###print(len(self.dataset))\n", + " return len(self.dataset)\n", + "\n", + " def __getitem__(self, idx):\n", + " # if index < 0 or index >= len(self.dataset):\n", + " # raise IndexError(\"Index out of range\")\n", + "\n", + " title = self.title_list[idx] # string\n", + " lyric = self.lyrics_list[idx] # string\n", + "\n", + " if self.mode == \"train\":\n", + " basic_datasetdict = {\n", + " 'title': title,\n", + " 'lyric': lyric,\n", + " }\n", + " else: # \"valid/eval\"\n", + " basic_datasetdict = {\n", + " 'title': title,\n", + " }\n", + "\n", + " if self.transform_func != None: # map 함수 대신 구현\n", + " transformed_datasetdict = self.transform_func(basic_datasetdict)\n", + " for (key, value) in transformed_datasetdict.items():\n", + " # print(key, type(key))\n", + " # print(value, type(value))\n", + " basic_datasetdict[key] = value\n", + "\n", + " test = self.tokenize(value)\n", + " #print(type(test))\n", + " #print(test['input_ids'])\n", + " basic_datasetdict['input_ids'] = test['input_ids']\n", + " basic_datasetdict['attention_mask'] = test['attention_mask']\n", + "\n", + " return basic_datasetdict\n", + "\n", + " else:\n", + " return basic_datasetdict" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oGEHiJdBMze8" + }, + "outputs": [], + "source": [ + "'''커스텀 데이터셋 로드'''\n", + "import random\n", + "from datasets import DatasetDict\n", + "\n", + "# 프롬프트\n", + "prompt_format1 = \"노래 제목에 따라 가사를 창의적으로 작성해주세요. ###제목: %s ###가사: %s\"\n", + "prompt_format2 = \"노래 제목이 주어지면 창의적으로 작사해주세요. 제목: %s 가사: %s\"\n", + "prompt_format3 = \"당신은 노래 가사를 작사하는 생성 모델입니다. 주어진 제목이 따라 가사를 생성해주세요. 제목: %s 가사: %s\"\n", + "\n", + "prompts = [prompt_format1, prompt_format2, prompt_format3]\n", + "def gen_prompt(song_data):\n", + " selected_prompt_format = prompts[random.randint(0, len(prompts)-1)]\n", + " ###print(song_data['title'])\n", + " ###print(song_data['lyric'])\n", + " return DatasetDict({'input_with_instruction': selected_prompt_format%(song_data['title'], str(song_data['lyric']).replace(\"\\r\", \"\").replace(\"\\n\", \" \"))})\n", + "\n", + "\n", + "def gen_prompt_for_inference(song_data):\n", + " selected_prompt_format = prompts[random.randint(0, len(prompts)-1)]\n", + " ###print(song_data['title'])\n", + " return DatasetDict({'input_with_instruction': selected_prompt_format%(song_data['title'])})\n", + "\n", + "# train/valid/test 데이터셋 spilt\n", + "# 7: 2: 1\n", + "folder_path = '/content/drive/MyDrive/llama2/'\n", + "# train_data = LyricsDataset(folder_path + 'utils/train.csv', mode=\"train\", transform_func=gen_prompt, tokenizer=tokenizer)\n", + "# valid_data = LyricsDataset(folder_path + 'utils/valid.csv', mode=\"train\", transform_func=gen_prompt, tokenizer=tokenizer)\n", + "# test_data = LyricsDataset(folder_path + 'utils/test.csv', mode=\"train\", transform_func=gen_prompt, tokenizer=tokenizer)\n", + "\n", + "##file_path = 'utils/train_selected.csv'\n", + "train_data = LyricsDataset(folder_path + 'utils/train_selected.csv', mode=\"train\", transform_func=gen_prompt, tokenizer=tokenizer)\n", + "valid_data = LyricsDataset(folder_path + 'utils/valid_selected.csv', mode=\"train\", transform_func=gen_prompt, tokenizer=tokenizer)" + ] + }, + { + "cell_type": "code", + "source": [ + "len(train_data)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lxH96tOnwQij", + "outputId": "b0a56f43-191b-4edc-91e5-0d60c4bad517" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "283" + ] + }, + "metadata": {}, + "execution_count": 189 + } + ] + }, + { + "cell_type": "code", + "source": [ + "train_data[100]['input_with_instruction']" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 172 + }, + "id": "Skx3zMIFwTdl", + "outputId": "b75880c8-c27f-4c9b-baab-e8a796e6c0b7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'당신은 노래 가사를 작사하는 생성 모델입니다. 주어진 제목이 따라 가사를 생성해주세요. 제목: Hold On 가사: Hold On sung by Jet You tried so hard to be someone That forgot who you are You tried to fill some emptiness Till all you had spilled over Now everything’s so far away That you don’t know where are You are (Chorus) When all that you wanted When all that you had don’t seem so much For you to hold onto For you to hold onto For you to belong to When it’s hard to be yourself It’s not to be someone else Still everything’s so far away That you forget where you are You are (Chorus) When all that you wanted When all that you had don’t seem so much For you to hold onto For you to hold onto Hold on Hold on Hold on Hold on Hold on Hold on Hold on Hold on (Chorus) When all that you wanted When all that you had don’t seem so much For you to hold onto For you to hold onto For you to hold onto For you to belong to'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 190 + } + ] + }, + { + "cell_type": "code", + "source": [ + "train_data[200]['input_with_instruction']" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 94 + }, + "id": "ewPVpGqr0h59", + "outputId": "fb276a41-e425-496e-bf93-d9d998d07c1f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "\"노래 제목이 주어지면 창의적으로 작사해주세요. 제목: BIG TRANSFORMER 가사: Yeah it's been a long time man The saga begins Come on let's do it BIG TRANSFORMER BIG TRANSFORMER FORMER 내 유치찬란했던 과거는 버리고 마냥 미소만 짓던 그런 소년 말고 난 다시 태어났어 A better man 크게 소리질러 봐 Say my name 예전에 기억하던 내 모습 이제 더는 찾아볼 수도 없을 걸 BIG TRANSFORMER FORMER BIG TRANSFORMER FORMER 별보다 밝게 빛나고 태양보다 뜨겁게 끝을 알 수가 없는 우주보다 드넓게 BIG TRANSFORMER FORMER\"" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 191 + } + ] + }, + { + "cell_type": "code", + "source": [ + "train_data[-1]['input_with_instruction']" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 75 + }, + "id": "DZk3csq70ltp", + "outputId": "1fee9129-7006-4bae-f0a6-1227467e949c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'노래 제목에 따라 가사를 창의적으로 작성해주세요. 제목: Seven Springs Of Apink 가사: Believe wonders seven wonders seven colors Seven seasons destiny same place Same dream same time always Meant to be time can only tell the passion within us A new day And a new start A Pink'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 193 + } + ] + }, + { + "cell_type": "code", + "source": [ + "train_data[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0Vd7H3kg7nNu", + "outputId": "8f789c35-c31a-4377-b12f-3dd2780fa616" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'title': 'Alone',\n", + " 'lyric': \"정말로 자신있었어\\r\\r\\n내가 원할 땐 언제나\\r\\r\\n내게 달려온 너였으니\\r\\r\\n한번도 신경 안 썼어\\r\\r\\n누가 니곁에 있어도\\r\\r\\n항상 내 주윌 맴돌던 너니까\\r\\r\\n내 속에 니가 없었던\\r\\r\\n그 많은 시간들이\\r\\r\\n널 그렇게 떠나게 했어\\r\\r\\n너무 갑자기 두려워져\\r\\r\\n한순간 나 아닌 곳을\\r\\r\\n바라본 너의 시선이\\r\\r\\n그 동안 얼마나 너\\r\\r\\n혼자서 아파한거니\\r\\r\\n용서해줘 외롭던 시간만큼\\r\\r\\n나 이제서야 알았어 난 느꼈어\\r\\r\\nBabe you're the only for me\\r\\r\\n니가 없는 하루는 길었지\\r\\r\\n너 떠난 후 이제야 알았지\\r\\r\\n매일같이 all day\\r\\r\\n그렇게 넌 내 주위만\\r\\r\\nall day oh my babe\\r\\r\\n이제는 내게로 돌아와줘\\r\\r\\nI really really miss\\r\\r\\nyou don't say goodbye\\r\\r\\n참 오랜 시간이었어\\r\\r\\n늘 혼자 있게 했지\\r\\r\\n널 그렇게 날 잊게 했어\\r\\r\\n이젠 너 없인 힘들거야\\r\\r\\n앞으로 내가 많이 널\\r\\r\\n귀찮게 할지도 몰라\\r\\r\\n이런맘 알 수 있니\\r\\r\\n어쩔수 없는 거잖아\\r\\r\\n이해해줘 예전에 사랑만큼\\r\\r\\n너무나 두려워져\\r\\r\\n한순간 나 아닌 곳을\\r\\r\\n바라본 너의 시선이\\r\\r\\n그 동안 얼마나 너\\r\\r\\n혼자서 아파한거니\",\n", + " 'input_with_instruction': \"노래 제목에 따라 가사를 창의적으로 작성해주세요. 제목: Alone 가사: 정말로 자신있었어 내가 원할 땐 언제나 내게 달려온 너였으니 한번도 신경 안 썼어 누가 니곁에 있어도 항상 내 주윌 맴돌던 너니까 내 속에 니가 없었던 그 많은 시간들이 널 그렇게 떠나게 했어 너무 갑자기 두려워져 한순간 나 아닌 곳을 바라본 너의 시선이 그 동안 얼마나 너 혼자서 아파한거니 용서해줘 외롭던 시간만큼 나 이제서야 알았어 난 느꼈어 Babe you're the only for me 니가 없는 하루는 길었지 너 떠난 후 이제야 알았지 매일같이 all day 그렇게 넌 내 주위만 all day oh my babe 이제는 내게로 돌아와줘 I really really miss you don't say goodbye 참 오랜 시간이었어 늘 혼자 있게 했지 널 그렇게 날 잊게 했어 이젠 너 없인 힘들거야 앞으로 내가 많이 널 귀찮게 할지도 몰라 이런맘 알 수 있니 어쩔수 없는 거잖아 이해해줘 예전에 사랑만큼 너무나 두려워져 한순간 나 아닌 곳을 바라본 너의 시선이 그 동안 얼마나 너 혼자서 아파한거니\",\n", + " 'input_ids': [1,\n", + " 29871,\n", + " 238,\n", + " 136,\n", + " 187,\n", + " 238,\n", + " 161,\n", + " 155,\n", + " 29871,\n", + " 31306,\n", + " 238,\n", + " 173,\n", + " 172,\n", + " 31054,\n", + " 29871,\n", + " 238,\n", + " 151,\n", + " 179,\n", + " 31197,\n", + " 29871,\n", + " 30903,\n", + " 30791,\n", + " 31517,\n", + " 29871,\n", + " 239,\n", + " 179,\n", + " 192,\n", + " 30708,\n", + " 239,\n", + " 163,\n", + " 132,\n", + " 239,\n", + " 159,\n", + " 191,\n", + " 30906,\n", + " 29871,\n", + " 239,\n", + " 161,\n", + " 148,\n", + " 31126,\n", + " 31435,\n", + " 30981,\n", + " 31578,\n", + " 31527,\n", + " 29889,\n", + " 29871,\n", + " 31306,\n", + " 238,\n", + " 173,\n", + " 172,\n", + " 29901,\n", + " 838,\n", + " 650,\n", + " 29871,\n", + " 30903,\n", + " 30791,\n", + " 29901,\n", + " 29871,\n", + " 30852,\n", + " 238,\n", + " 170,\n", + " 147,\n", + " 30906,\n", + " 29871,\n", + " 31013,\n", + " 31262,\n", + " 239,\n", + " 161,\n", + " 139,\n", + " 239,\n", + " 154,\n", + " 139,\n", + " 31129,\n", + " 29871,\n", + " 31940,\n", + " 30903,\n", + " 29871,\n", + " 31198,\n", + " 240,\n", + " 152,\n", + " 163,\n", + " 29871,\n", + " 238,\n", + " 152,\n", + " 147,\n", + " 29871,\n", + " 239,\n", + " 153,\n", + " 187,\n", + " 31306,\n", + " 31207,\n", + " 29871,\n", + " 31940,\n", + " 237,\n", + " 181,\n", + " 143,\n", + " 29871,\n", + " 238,\n", + " 142,\n", + " 175,\n", + " 238,\n", + " 163,\n", + " 167,\n", + " 239,\n", + " 155,\n", + " 171,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 139,\n", + " 239,\n", + " 155,\n", + " 131,\n", + " 239,\n", + " 159,\n", + " 191,\n", + " 31063,\n", + " 29871,\n", + " 30877,\n", + " 238,\n", + " 181,\n", + " 139,\n", + " 31136,\n", + " 29871,\n", + " 31262,\n", + " 31378,\n", + " 29871,\n", + " 31734,\n", + " 29871,\n", + " 239,\n", + " 144,\n", + " 191,\n", + " 31129,\n", + " 29871,\n", + " 238,\n", + " 139,\n", + " 135,\n", + " 30903,\n", + " 29871,\n", + " 31063,\n", + " 237,\n", + " 182,\n", + " 132,\n", + " 31054,\n", + " 29871,\n", + " 239,\n", + " 161,\n", + " 139,\n", + " 31129,\n", + " 31136,\n", + " 29871,\n", + " 240,\n", + " 152,\n", + " 176,\n", + " 31158,\n", + " 29871,\n", + " 31940,\n", + " 29871,\n", + " 30981,\n", + " 239,\n", + " 159,\n", + " 143,\n", + " 29871,\n", + " 238,\n", + " 170,\n", + " 183,\n", + " 238,\n", + " 146,\n", + " 143,\n", + " 238,\n", + " 144,\n", + " 155,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 139,\n", + " 31063,\n", + " 237,\n", + " 188,\n", + " 143,\n", + " 29871,\n", + " 31940,\n", + " 29871,\n", + " 239,\n", + " 137,\n", + " 144,\n", + " 31054,\n", + " 29871,\n", + " 31063,\n", + " 30903,\n", + " 29871,\n", + " 239,\n", + " 154,\n", + " 137,\n", + " 239,\n", + " 154,\n", + " 139,\n", + " 238,\n", + " 144,\n", + " 155,\n", + " 29871,\n", + " 31607,\n", + " 29871,\n", + " 238,\n", + " 170,\n", + " 145,\n", + " 31354,\n", + " 29871,\n", + " 30889,\n", + " 237,\n", + " 179,\n", + " 135,\n", + " 31804,\n", + " 30393,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 147,\n", + " 29871,\n", + " 31607,\n", + " 238,\n", + " 163,\n", + " 138,\n", + " 237,\n", + " 181,\n", + " 143,\n", + " 29871,\n", + " 238,\n", + " 153,\n", + " 163,\n", + " 31207,\n", + " 237,\n", + " 181,\n", + " 143,\n", + " 29871,\n", + " 240,\n", + " 153,\n", + " 139,\n", + " 31129,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 139,\n", + " 31716,\n", + " 29871,\n", + " 237,\n", + " 179,\n", + " 148,\n", + " 31013,\n", + " 30827,\n", + " 29871,\n", + " 238,\n", + " 148,\n", + " 147,\n", + " 238,\n", + " 163,\n", + " 167,\n", + " 239,\n", + " 158,\n", + " 143,\n", + " 239,\n", + " 163,\n", + " 187,\n", + " 29871,\n", + " 30877,\n", + " 239,\n", + " 139,\n", + " 159,\n", + " 237,\n", + " 179,\n", + " 135,\n", + " 29871,\n", + " 31207,\n", + " 29871,\n", + " 30860,\n", + " 238,\n", + " 142,\n", + " 143,\n", + " 29871,\n", + " 237,\n", + " 182,\n", + " 182,\n", + " 31286,\n", + " 29871,\n", + " 31963,\n", + " 31197,\n", + " 238,\n", + " 182,\n", + " 187,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 139,\n", + " 30708,\n", + " 29871,\n", + " 30889,\n", + " 31345,\n", + " 30393,\n", + " 29871,\n", + " 31607,\n", + " 29871,\n", + " 31000,\n", + " 31734,\n", + " 29871,\n", + " 239,\n", + " 153,\n", + " 191,\n", + " 31417,\n", + " 31207,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 139,\n", + " 29871,\n", + " 240,\n", + " 155,\n", + " 191,\n", + " 31013,\n", + " 31093,\n", + " 29871,\n", + " 30860,\n", + " 240,\n", + " 143,\n", + " 143,\n", + " 30877,\n", + " 237,\n", + " 180,\n", + " 179,\n", + " 31063,\n", + " 29871,\n", + " 31737,\n", + " 31093,\n", + " 31435,\n", + " 239,\n", + " 167,\n", + " 155,\n", + " 29871,\n", + " 239,\n", + " 156,\n", + " 187,\n", + " 238,\n", + " 164,\n", + " 176,\n", + " 238,\n", + " 144,\n", + " 155,\n", + " 29871,\n", + " 30889,\n", + " 237,\n", + " 179,\n", + " 135,\n", + " 31826,\n", + " 240,\n", + " 132,\n", + " 191,\n", + " 29871,\n", + " 31207,\n", + " 29871,\n", + " 30393,\n", + " 31306,\n", + " 31093,\n", + " 239,\n", + " 152,\n", + " 191,\n", + " 29871,\n", + " 239,\n", + " 152,\n", + " 143,\n", + " 239,\n", + " 152,\n", + " 155,\n", + " 31129,\n", + " 29871,\n", + " 238,\n", + " 133,\n", + " 159,\n", + " 29871,\n", + " 238,\n", + " 141,\n", + " 147,\n", + " 237,\n", + " 191,\n", + " 139,\n", + " 31129,\n", + " 350,\n", + " 4302,\n", + " 366,\n", + " 29915,\n", + " 276,\n", + " 278,\n", + " 871,\n", + " 363,\n", + " 592,\n", + " 29871,\n", + " 31063,\n", + " 30903,\n", + " 29871,\n", + " 239,\n", + " 154,\n", + " 137,\n", + " 31081,\n", + " 29871,\n", + " 30944,\n", + " 238,\n", + " 166,\n", + " 171,\n", + " 31081,\n", + " 29871,\n", + " 237,\n", + " 187,\n", + " 187,\n", + " 239,\n", + " 154,\n", + " 139,\n", + " 30811,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 139,\n", + " 29871,\n", + " 238,\n", + " 153,\n", + " 163,\n", + " 238,\n", + " 133,\n", + " 159,\n", + " 29871,\n", + " 240,\n", + " 158,\n", + " 135,\n", + " 29871,\n", + " 30393,\n", + " 31306,\n", + " 239,\n", + " 152,\n", + " 191,\n", + " 29871,\n", + " 239,\n", + " 152,\n", + " 143,\n", + " 239,\n", + " 152,\n", + " 155,\n", + " 30811,\n", + " 29871,\n", + " 238,\n", + " 170,\n", + " 167,\n", + " 31153,\n", + " 237,\n", + " 179,\n", + " 156,\n", + " 30393,\n", + " 599,\n", + " 2462,\n", + " 29871,\n", + " 31607,\n", + " 238,\n", + " 163,\n", + " 138,\n", + " 237,\n", + " 181,\n", + " 143,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 143,\n", + " 29871,\n", + " 31940,\n", + " 29871,\n", + " 30981,\n", + " 31724,\n", + " 31826,\n", + " 599,\n", + " 2462,\n", + " 9360,\n", + " 590,\n", + " 289,\n", + " 4302,\n", + " 29871,\n", + " 30393,\n", + " 31306,\n", + " 31081,\n", + " 29871,\n", + " 31940,\n", + " 237,\n", + " 181,\n", + " 143,\n", + " 30906,\n", + " 29871,\n", + " 238,\n", + " 146,\n", + " 143,\n", + " 30860,\n", + " 239,\n", + " 156,\n", + " 131,\n", + " 239,\n", + " 167,\n", + " 155,\n", + " 306,\n", + " 2289,\n", + " 2289,\n", + " 3052,\n", + " 366,\n", + " 1016,\n", + " 29915,\n", + " 29873,\n", + " 1827,\n", + " 1781,\n", + " 26966,\n", + " 29871,\n", + " 239,\n", + " 179,\n", + " 187,\n", + " 29871,\n", + " 31346,\n", + " 238,\n", + " 161,\n", + " 159,\n", + " 29871,\n", + " 30889,\n", + " 237,\n", + " 179,\n", + " 135,\n", + " 30393,\n", + " 239,\n", + " 154,\n", + " 139,\n", + " 31129,\n", + " 29871,\n", + " 238,\n", + " 141,\n", + " 155,\n", + " 29871,\n", + " 240,\n", + " 155,\n", + " 191,\n", + " 31013,\n", + " 29871,\n", + " 239,\n", + " 161,\n", + " 139,\n", + " 237,\n", + " 181,\n", + " 143,\n", + " 29871,\n", + " 240,\n", + " 153,\n", + " 139,\n", + " 30811,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 147,\n", + " 29871,\n", + " 31607,\n", + " 238,\n", + " 163,\n", + " 138,\n", + " 237,\n", + " 181,\n", + " 143,\n", + " 29871,\n", + " 238,\n", + " 133,\n", + " 163,\n", + " 29871,\n", + " 239,\n", + " 161,\n", + " 141,\n", + " 237,\n", + " 181,\n", + " 143,\n", + " 29871,\n", + " 240,\n", + " 153,\n", + " 139,\n", + " 31129,\n", + " 29871,\n", + " 30393,\n", + " 239,\n", + " 163,\n", + " 163,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 139,\n", + " 29871,\n", + " 239,\n", + " 154,\n", + " 137,\n", + " 30918,\n", + " 29871,\n", + " 240,\n", + " 161,\n", + " 155,\n", + " 31804,\n", + " 237,\n", + " 180,\n", + " 179,\n", + " 239,\n", + " 152,\n", + " 191,\n", + " 29871,\n", + " 239,\n", + " 152,\n", + " 161,\n", + " 239,\n", + " 159,\n", + " 191,\n", + " 30906,\n", + " 29871,\n", + " 31940,\n", + " 30903,\n", + " 29871,\n", + " 238,\n", + " 170,\n", + " 145,\n", + " 30393,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 147,\n", + " 29871,\n", + " 237,\n", + " 186,\n", + " 131,\n", + " 239,\n", + " 179,\n", + " 177,\n", + " 237,\n", + " 181,\n", + " 143,\n", + " 29871,\n", + " 240,\n", + " 152,\n", + " 163,\n", + " 30811,\n", + " 31136,\n", + " 29871,\n", + " 238,\n", + " 173,\n", + " 179,\n", + " 31197,\n", + " 29871,\n", + " 30393,\n", + " 238,\n", + " 162,\n", + " 179,\n", + " 238,\n", + " 170,\n", + " 155,\n", + " 29871,\n", + " 239,\n", + " 152,\n", + " 143,\n", + " 29871,\n", + " 30970,\n", + " 29871,\n", + " 239,\n", + " 161,\n", + " 139,\n", + " 31063,\n", + " 29871,\n", + " 31129,\n", + " 239,\n", + " 172,\n", + " 151,\n", + " 30970,\n", + " 29871,\n", + " 239,\n", + " 154,\n", + " 137,\n", + " 31081,\n", + " 29871,\n", + " 237,\n", + " 180,\n", + " 179,\n", + " 239,\n", + " 161,\n", + " 153,\n", + " 30860,\n", + " 29871,\n", + " 30393,\n", + " 31435,\n", + " 31435,\n", + " 239,\n", + " 167,\n", + " 155,\n", + " 29871,\n", + " 239,\n", + " 155,\n", + " 139,\n", + " 31170,\n", + " 31054,\n", + " 29871,\n", + " 30791,\n", + " 238,\n", + " 161,\n", + " 148,\n", + " 31826,\n", + " 240,\n", + " 132,\n", + " 191,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 139,\n", + " 31716,\n", + " 31207,\n", + " 29871,\n", + " 238,\n", + " 148,\n", + " 147,\n", + " 238,\n", + " 163,\n", + " 167,\n", + " 239,\n", + " 158,\n", + " 143,\n", + " 239,\n", + " 163,\n", + " 187,\n", + " 29871,\n", + " 30877,\n", + " 239,\n", + " 139,\n", + " 159,\n", + " 237,\n", + " 179,\n", + " 135,\n", + " 29871,\n", + " 31207,\n", + " 29871,\n", + " 30860,\n", + " 238,\n", + " 142,\n", + " 143,\n", + " 29871,\n", + " 237,\n", + " 182,\n", + " 182,\n", + " 31286,\n", + " 29871,\n", + " 31963,\n", + " 31197,\n", + " 238,\n", + " 182,\n", + " 187,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 139,\n", + " 30708,\n", + " 29871,\n", + " 30889,\n", + " 31345,\n", + " 30393,\n", + " 29871,\n", + " 31607,\n", + " 29871,\n", + " 31000,\n", + " 31734,\n", + " 29871,\n", + " 239,\n", + " 153,\n", + " 191,\n", + " 31417,\n", + " 31207,\n", + " 29871,\n", + " 238,\n", + " 135,\n", + " 139,\n", + " 29871,\n", + " 240,\n", + " 155,\n", + " 191,\n", + " 31013,\n", + " 31093,\n", + " 29871,\n", + " 30860,\n", + " 240,\n", + " 143,\n", + " 143,\n", + " 30877,\n", + " 237,\n", + " 180,\n", + " 179,\n", + " 31063,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " ...],\n", + " 'attention_mask': [1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " ...]}" + ] + }, + "metadata": {}, + "execution_count": 156 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# 프롬프트\n", + "prompt_format1 = \"노래 제목에 따라 가사를 창의적으로 작성해주세요. 제목: %s 가사: \"\n", + "prompt_format2 = \"노래 제목이 주어지면 창의적으로 작사해주세요. 제목: %s 가사: \"\n", + "prompt_format3 = \"당신은 노래 가사를 작사하는 생성 모델입니다. 주어진 제목이 따라 가사를 생성해주세요. 제목: %s 가사: \" # 뒤를 생성해야 함\n", + "\n", + "prompts = [prompt_format1, prompt_format2, prompt_format3]\n", + "\n", + "def gen_prompt_for_inference(song_data):\n", + " selected_prompt_format = prompts[random.randint(0, len(prompts)-1)]\n", + " ###print(song_data['title'])\n", + " return DatasetDict({'input_with_instruction': selected_prompt_format%(song_data['title'])})\n", + "\n", + "test_data = LyricsDataset(folder_path + 'utils/test_selected.csv', mode=\"eval\", transform_func=gen_prompt_for_inference, tokenizer=tokenizer) # 프롬프트 생성 방식 달라짐" + ], + "metadata": { + "id": "Zcc_BBA3oyDV" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "test_data[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gDXYc4uNogTp", + "outputId": "00a86ee6-8958-4f75-c9cb-5926aa3ee9bc" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'title': 'Never Ending',\n", + " 'input_with_instruction': '노래 제목이 주어지면 창의적으로 작사해주세요. 제목: Never Ending 가사: ',\n", + " 'input_ids': [2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 2,\n", + " 1,\n", + " 29871,\n", + " 238,\n", + " 136,\n", + " 187,\n", + " 238,\n", + " 161,\n", + " 155,\n", + " 29871,\n", + " 31306,\n", + " 238,\n", + " 173,\n", + " 172,\n", + " 30393,\n", + " 29871,\n", + " 30981,\n", + " 31129,\n", + " 30811,\n", + " 31747,\n", + " 29871,\n", + " 239,\n", + " 179,\n", + " 192,\n", + " 30708,\n", + " 239,\n", + " 163,\n", + " 132,\n", + " 239,\n", + " 159,\n", + " 191,\n", + " 30906,\n", + " ...],\n", + " 'attention_mask': [0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " ...]}" + ] + }, + "metadata": {}, + "execution_count": 119 + } + ] + }, + { + "cell_type": "code", + "source": [ + "train_data[0]['input_with_instruction']" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 114 + }, + "id": "IB2EZDIn9jGA", + "outputId": "d4b4ab3d-83ea-49dd-9237-65e3ba9b9388" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'노래 제목에 따라 가사를 창의적으로 작성해주세요. 제목: 태지 보이스 가사: 갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제나 식지않는 마음이 있어\\r\\r\\n자유로운 내뜻을 막을순 없어\\r\\r\\nTaiji Boys 언제나 영원히\\r\\r\\nTaiji Boys 더 넓은 세상이\\r\\r\\nTaiji Boys 우리의 마음이\\r\\r\\nTaiji Boys 하나가 돼\\r\\r\\n\\r\\r\\n무심코 던진 돌에 개구리는 죽어\\r\\r\\n우리가 사는 이유를 알고 싶었어\\r\\r\\nTaiji Boys 언제나 영원히\\r\\r\\nTaiji Boys 더 넓은 세상이\\r\\r\\nTaiji Boys 우리의 마음이\\r\\r\\nTaiji Boys 하나가 돼'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 86 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side='right') # 학습 시에는 padding left\n", + "tokenizer.pad_token = tokenizer.eos_token" + ], + "metadata": { + "id": "4LfirwCgXiIZ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "###CUTOFF_LEN = 1024\n", + "CUTOFF_LEN = 512\n", + "\n", + "result = tokenizer(\n", + " train_data[0]['input_with_instruction'],\n", + " truncation=True,\n", + " max_length=CUTOFF_LEN,\n", + " padding='max_length',\n", + " return_tensors='pt',\n", + ")" + ], + "metadata": { + "id": "sU_w2RAxYTLu" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "result" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "951jXhX5YTpa", + "outputId": "bd389f57-1d7c-49ce-db02-194dece288b9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'input_ids': tensor([[ 1, 29871, 238, ..., 2, 2, 2]]), 'attention_mask': tensor([[1, 1, 1, ..., 0, 0, 0]])}" + ] + }, + "metadata": {}, + "execution_count": 65 + } + ] + }, + { + "cell_type": "code", + "source": [ + "len(result['input_ids'])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "odARlvUhbD-r", + "outputId": "58085e36-53ee-4b0f-ba80-c5503f5577a9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1" + ] + }, + "metadata": {}, + "execution_count": 68 + } + ] + }, + { + "cell_type": "code", + "source": [ + "result['input_ids'].size()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "c16xHbcybIB2", + "outputId": "479b9f42-f2b1-4c30-f632-495dba43343f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([1, 1024])" + ] + }, + "metadata": {}, + "execution_count": 71 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side='left') # 추론 시에는 padding left\n", + "tokenizer.pad_token = tokenizer.eos_token" + ], + "metadata": { + "id": "ka1DFXM4YKE4" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "CUTOFF_LEN = 1024\n", + "\n", + "result = tokenizer(\n", + " train_data[0]['input_with_instruction'],\n", + " truncation=True,\n", + " max_length=CUTOFF_LEN,\n", + " padding='max_length',\n", + " return_tensors=None,\n", + ")" + ], + "metadata": { + "id": "QBG5jQTh9Mif" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "result" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XdnEj36l_cDF", + "outputId": "b3b0a1bd-6d2a-4c4b-d3d7-0b77164d36cd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'input_ids': [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 29871, 238, 136, 187, 238, 161, 155, 29871, 31306, 238, 173, 172, 30393, 29871, 30981, 31129, 30811, 31747, 29871, 239, 179, 192, 30708, 239, 163, 132, 239, 159, 191, 30906, 29871, 239, 161, 148, 30791, 31435, 30981, 31578, 31527, 29889, 29871, 31306, 238, 173, 172, 29901, 29871, 240, 134, 159, 30811, 29871, 31199, 30393, 30784, 29871, 30903, 30791, 29901, 29871, 237, 179, 139, 30970, 29871, 239, 154, 137, 31081, 29871, 237, 182, 182, 30393, 238, 161, 131, 29871, 31327, 30826, 31054, 237, 181, 147, 29871, 239, 154, 137, 31129, 30004, 30004, 13, 31199, 30393, 31081, 29871, 237, 187, 187, 238, 179, 153, 31054, 31136, 29871, 31578, 31158, 31354, 29871, 239, 161, 139, 31129, 30004, 30004, 13, 239, 153, 187, 31306, 31207, 29871, 31895, 30811, 239, 152, 141, 31081, 29871, 31417, 31966, 30393, 29871, 239, 161, 139, 31129, 30004, 30004, 13, 31013, 31533, 30906, 239, 157, 183, 29871, 31940, 238, 159, 190, 31286, 29871, 238, 170, 140, 31286, 239, 139, 159, 29871, 239, 154, 137, 31129, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 239, 153, 187, 31306, 31207, 29871, 31288, 31198, 240, 161, 139, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 238, 144, 151, 29871, 238, 135, 150, 31354, 29871, 31578, 31158, 30393, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 31327, 30826, 30708, 29871, 31417, 31966, 30393, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 30944, 31207, 30903, 29871, 238, 146, 191, 30004, 30004, 13, 30004, 30004, 13, 31716, 239, 142, 175, 239, 192, 151, 29871, 238, 144, 155, 31536, 29871, 238, 146, 143, 31054, 29871, 31789, 31231, 30826, 31081, 29871, 239, 166, 192, 31129, 30004, 30004, 13, 31327, 30826, 30903, 29871, 30791, 31081, 29871, 30393, 31533, 31517, 29871, 239, 152, 143, 31137, 29871, 239, 142, 185, 239, 154, 139, 31129, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 239, 153, 187, 31306, 31207, 29871, 31288, 31198, 240, 161, 139, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 238, 144, 151, 29871, 238, 135, 150, 31354, 29871, 31578, 31158, 30393, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 31327, 30826, 30708, 29871, 31417, 31966, 30393, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 30944, 31207, 30903, 29871, 238, 146, 191], 'attention_mask': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}" + ] + }, + "metadata": {}, + "execution_count": 46 + } + ] + }, + { + "cell_type": "code", + "source": [ + "len(result['input_ids'])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4VdXnuwF_hcM", + "outputId": "e0e31c3c-4382-4746-9a70-b7a7cb4866e2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1024" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ] + }, + { + "cell_type": "code", + "source": [ + "result = tokenizer(\n", + " train_data[0]['input_with_instruction'],\n", + " truncation=True,\n", + " max_length=CUTOFF_LEN,\n", + " padding=True, # right\n", + " return_tensors=None,\n", + ")" + ], + "metadata": { + "id": "gXNF8eLlWpmH" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "dataset_pandas['title'][1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 36 + }, + "id": "5cOAnQT8zzlg", + "outputId": "71160f05-7ca5-41ad-f817-2f7411e61057" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'태지 보이스'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "code", + "source": [ + "dataset_pandas['lyrics'][1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 94 + }, + "id": "ftj8r-fC0MGP", + "outputId": "4aa2a5d0-df48-48b8-9235-bd55d3afbc5a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제나 식지않는 마음이 있어\\r\\r\\n자유로운 내뜻을 막을순 없어\\r\\r\\nTaiji Boys 언제나 영원히\\r\\r\\nTaiji Boys 더 넓은 세상이\\r\\r\\nTaiji Boys 우리의 마음이\\r\\r\\nTaiji Boys 하나가 돼\\r\\r\\n\\r\\r\\n무심코 던진 돌에 개구리는 죽어\\r\\r\\n우리가 사는 이유를 알고 싶었어\\r\\r\\nTaiji Boys 언제나 영원히\\r\\r\\nTaiji Boys 더 넓은 세상이\\r\\r\\nTaiji Boys 우리의 마음이\\r\\r\\nTaiji Boys 하나가 돼'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# raw data의 최대 길이 구하기\n", + "\n", + "dataset_pandas['title'].apply(len)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-MAfGNrrz6f-", + "outputId": "ef4bbf1e-2fd8-452f-aff9-f8727d0f24a7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 5\n", + "1 6\n", + "2 10\n", + "3 8\n", + "4 19\n", + " ..\n", + "12715 24\n", + "12716 12\n", + "12717 28\n", + "12718 4\n", + "12719 8\n", + "Name: title, Length: 12720, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tokenizer(\n", + " dataset_pandas['title'][1],\n", + " padding=False,\n", + " return_tensors=None,\n", + " )" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "583YvtEI1KIN", + "outputId": "93eb9998-80eb-4ca0-a6ce-258acd02422b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'input_ids': [1, 29871, 240, 134, 159, 30811, 29871, 31199, 30393, 30784], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tokenizer(\n", + " dataset_pandas['lyrics'][1],\n", + " padding=False,\n", + " return_tensors=None,\n", + " )" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GEQ8EVMx2U2G", + "outputId": "0746e39a-fa2f-4166-d609-7b355f2b17b0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'input_ids': [1, 29871, 237, 179, 139, 30970, 29871, 239, 154, 137, 31081, 29871, 237, 182, 182, 30393, 238, 161, 131, 29871, 31327, 30826, 31054, 237, 181, 147, 29871, 239, 154, 137, 31129, 30004, 30004, 13, 31199, 30393, 31081, 29871, 237, 187, 187, 238, 179, 153, 31054, 31136, 29871, 31578, 31158, 31354, 29871, 239, 161, 139, 31129, 30004, 30004, 13, 239, 153, 187, 31306, 31207, 29871, 31895, 30811, 239, 152, 141, 31081, 29871, 31417, 31966, 30393, 29871, 239, 161, 139, 31129, 30004, 30004, 13, 31013, 31533, 30906, 239, 157, 183, 29871, 31940, 238, 159, 190, 31286, 29871, 238, 170, 140, 31286, 239, 139, 159, 29871, 239, 154, 137, 31129, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 239, 153, 187, 31306, 31207, 29871, 31288, 31198, 240, 161, 139, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 238, 144, 151, 29871, 238, 135, 150, 31354, 29871, 31578, 31158, 30393, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 31327, 30826, 30708, 29871, 31417, 31966, 30393, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 30944, 31207, 30903, 29871, 238, 146, 191, 30004, 30004, 13, 30004, 30004, 13, 31716, 239, 142, 175, 239, 192, 151, 29871, 238, 144, 155, 31536, 29871, 238, 146, 143, 31054, 29871, 31789, 31231, 30826, 31081, 29871, 239, 166, 192, 31129, 30004, 30004, 13, 31327, 30826, 30903, 29871, 30791, 31081, 29871, 30393, 31533, 31517, 29871, 239, 152, 143, 31137, 29871, 239, 142, 185, 239, 154, 139, 31129, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 239, 153, 187, 31306, 31207, 29871, 31288, 31198, 240, 161, 139, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 238, 144, 151, 29871, 238, 135, 150, 31354, 29871, 31578, 31158, 30393, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 31327, 30826, 30708, 29871, 31417, 31966, 30393, 30004, 30004, 13, 29911, 29874, 13188, 22148, 29871, 30944, 31207, 30903, 29871, 238, 146, 191], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}" + ] + }, + "metadata": {}, + "execution_count": 36 + } + ] + }, + { + "cell_type": "code", + "source": [ + "def cal_tokens_num(x):\n", + " res = tokenizer(\n", + " x,\n", + " padding=False,\n", + " return_tensors=None,\n", + " )\n", + "\n", + " return len(res['input_ids'])" + ], + "metadata": { + "id": "6IysmC_K1rUl" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "dataset_pandas['title_tokens_num'] = dataset_pandas['title'].apply(lambda x: cal_tokens_num(x))\n", + "\n", + "dataset_pandas" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "ArbWi33x1XWk", + "outputId": "2c640c8a-1afc-476e-e86d-12f72513cc02" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " title artist album release_date \\\n", + "0 title artist album release_date \n", + "1 태지 보이스 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "2 시대유감(時代遺憾) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "3 수시아(誰是我) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "4 이 밤이 깊어 가지만 (Remix) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "... ... ... ... ... \n", + "12715 빠삐용 (Pop Beyond) (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12716 미치겠네 (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12717 미치겠네 (Acoustic Ver.) (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12718 미치겠네 엔소닉 미치겠네 2014.05.29 \n", + "12719 Brightly 엔소닉 Into The Light 2013.10.25 \n", + "\n", + " song_genre is_title like \\\n", + "0 song_genre is_title like \n", + "1 Rock NaN 269 \n", + "2 Rock 타이틀 곡 3,274 \n", + "3 Rock NaN 487 \n", + "4 Rock NaN 704 \n", + "... ... ... ... \n", + "12715 Dance NaN 21 \n", + "12716 Dance NaN 21 \n", + "12717 Dance NaN 24 \n", + "12718 Dance 타이틀 곡 435 \n", + "12719 Dance NaN 46 \n", + "\n", + " creator \\\n", + "0 creator \n", + "1 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "2 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "3 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "4 양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "... ... \n", + "12715 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12716 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12717 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12718 원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12719 원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "\n", + " lyrics title_tokens_num \n", + "0 lyrics 2 \n", + "1 갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제... 10 \n", + "2 왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐... 18 \n", + "3 이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ... 12 \n", + "4 옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소... 21 \n", + "... ... ... \n", + "12715 N-Sonic We Make It Pop Beyond\\r\\r\\nN-Sonic Boo... 17 \n", + "12716 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... 15 \n", + "12717 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... 21 \n", + "12718 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... 12 \n", + "12719 Yes Rihgt Hey Ha Come On\\r\\r\\n저기 저 먼 어둠속을 뚫고\\r... 3 \n", + "\n", + "[12720 rows x 10 columns]" + ], + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleartistalbumrelease_datesong_genreis_titlelikecreatorlyricstitle_tokens_num
0titleartistalbumrelease_datesong_genreis_titlelikecreatorlyrics2
1태지 보이스서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN269서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제...10
2시대유감(時代遺憾)서태지와 아이들시대유감(時代遺憾)1996.06.07Rock타이틀 곡3,274서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐...18
3수시아(誰是我)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN487서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ...12
4이 밤이 깊어 가지만 (Remix)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN704양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소...21
.................................
12715빠삐용 (Pop Beyond) (Inst.)엔소닉Reset2014.06.09DanceNaN21원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡N-Sonic We Make It Pop Beyond\\r\\r\\nN-Sonic Boo...17
12716미치겠네 (Inst.)엔소닉Reset2014.06.09DanceNaN21원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...15
12717미치겠네 (Acoustic Ver.) (Inst.)엔소닉Reset2014.06.09DanceNaN24원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...21
12718미치겠네엔소닉미치겠네2014.05.29Dance타이틀 곡435원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...12
12719Brightly엔소닉Into The Light2013.10.25DanceNaN46원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡Yes Rihgt Hey Ha Come On\\r\\r\\n저기 저 먼 어둠속을 뚫고\\r...3
\n", + "

12720 rows × 10 columns

\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ] + }, + { + "cell_type": "code", + "source": [ + "dataset_pandas['lyrics_tokens_num'] = dataset_pandas['lyrics'].apply(lambda x: cal_tokens_num(str(x)))\n", + "\n", + "dataset_pandas" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "uSA_KKah2IAJ", + "outputId": "8b1a9539-1d2f-4f29-b4a4-1bd8703ad810" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " title artist album release_date \\\n", + "0 title artist album release_date \n", + "1 태지 보이스 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "2 시대유감(時代遺憾) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "3 수시아(誰是我) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "4 이 밤이 깊어 가지만 (Remix) 서태지와 아이들 시대유감(時代遺憾) 1996.06.07 \n", + "... ... ... ... ... \n", + "12715 빠삐용 (Pop Beyond) (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12716 미치겠네 (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12717 미치겠네 (Acoustic Ver.) (Inst.) 엔소닉 Reset 2014.06.09 \n", + "12718 미치겠네 엔소닉 미치겠네 2014.05.29 \n", + "12719 Brightly 엔소닉 Into The Light 2013.10.25 \n", + "\n", + " song_genre is_title like \\\n", + "0 song_genre is_title like \n", + "1 Rock NaN 269 \n", + "2 Rock 타이틀 곡 3,274 \n", + "3 Rock NaN 487 \n", + "4 Rock NaN 704 \n", + "... ... ... ... \n", + "12715 Dance NaN 21 \n", + "12716 Dance NaN 21 \n", + "12717 Dance NaN 24 \n", + "12718 Dance 타이틀 곡 435 \n", + "12719 Dance NaN 46 \n", + "\n", + " creator \\\n", + "0 creator \n", + "1 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "2 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "3 서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "4 양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡 \n", + "... ... \n", + "12715 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12716 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12717 원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12718 원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "12719 원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡 \n", + "\n", + " lyrics title_tokens_num \\\n", + "0 lyrics 2 \n", + "1 갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제... 10 \n", + "2 왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐... 18 \n", + "3 이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ... 12 \n", + "4 옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소... 21 \n", + "... ... ... \n", + "12715 N-Sonic We Make It Pop Beyond\\r\\r\\nN-Sonic Boo... 17 \n", + "12716 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... 15 \n", + "12717 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... 21 \n", + "12718 오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ... 12 \n", + "12719 Yes Rihgt Hey Ha Come On\\r\\r\\n저기 저 먼 어둠속을 뚫고\\r... 3 \n", + "\n", + " lyrics_tokens_num \n", + "0 3 \n", + "1 304 \n", + "2 980 \n", + "3 254 \n", + "4 792 \n", + "... ... \n", + "12715 1309 \n", + "12716 1298 \n", + "12717 1298 \n", + "12718 1298 \n", + "12719 474 \n", + "\n", + "[12720 rows x 11 columns]" + ], + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleartistalbumrelease_datesong_genreis_titlelikecreatorlyricstitle_tokens_numlyrics_tokens_num
0titleartistalbumrelease_datesong_genreis_titlelikecreatorlyrics23
1태지 보이스서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN269서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡갈수 없는 곳이란 우리에겐 없어\\r\\r\\n보이는 길밖에도 세상은 있어\\r\\r\\n언제...10304
2시대유감(時代遺憾)서태지와 아이들시대유감(時代遺憾)1996.06.07Rock타이틀 곡3,274서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡왜 기다려 왔잖아\\r\\r\\n모든 삶을 포기하는 소리를\\r\\r\\n이 세상이 모두 미쳐...18980
3수시아(誰是我)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN487서태지\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡이 세상 그 누구도 나를 닮을 순 없네\\r\\r\\n날 세상에 알릴 거야\\r\\r\\n나 ...12254
4이 밤이 깊어 가지만 (Remix)서태지와 아이들시대유감(時代遺憾)1996.06.07RockNaN704양현석\\r\\r\\n작사\\r\\r\\n서태지\\r\\r\\n작곡\\r\\r\\n서태지\\r\\r\\n편곡옛 생각에 까페 문을열고\\r\\r\\n지난 추억을 기억하려했지\\r\\r\\n부드러운 음악소...21792
....................................
12715빠삐용 (Pop Beyond) (Inst.)엔소닉Reset2014.06.09DanceNaN21원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡N-Sonic We Make It Pop Beyond\\r\\r\\nN-Sonic Boo...171309
12716미치겠네 (Inst.)엔소닉Reset2014.06.09DanceNaN21원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...151298
12717미치겠네 (Acoustic Ver.) (Inst.)엔소닉Reset2014.06.09DanceNaN24원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...211298
12718미치겠네엔소닉미치겠네2014.05.29Dance타이틀 곡435원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡오늘 아침 문자를 주고받는데\\r\\r\\n안부리던 애교 작렬이던 너 Oh\\r\\r\\n좀 ...121298
12719Brightly엔소닉Into The Light2013.10.25DanceNaN46원펀치\\r\\r\\n작사\\r\\r\\n원펀치\\r\\r\\n작곡\\r\\r\\n원펀치\\r\\r\\n편곡Yes Rihgt Hey Ha Come On\\r\\r\\n저기 저 먼 어둠속을 뚫고\\r...3474
\n", + "

12720 rows × 11 columns

\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "dataset_pandas['sum_tokens_num'] = dataset_pandas['title_tokens_num'] + dataset_pandas['lyrics_tokens_num']" + ], + "metadata": { + "id": "m6EcmUro1A9c" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "max(dataset_pandas['sum_tokens_num'])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TIqSJkce2r-t", + "outputId": "b374feeb-8338-406b-b7e2-ec0d3c100551" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "5562" + ] + }, + "metadata": {}, + "execution_count": 40 + } + ] + }, + { + "cell_type": "code", + "source": [ + "max_value = dataset_pandas['sum_tokens_num'].max()\n", + "max_rows = dataset_pandas[dataset_pandas['sum_tokens_num'] == max_value]\n", + "\n", + "max_rows" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 353 + }, + "id": "kKv5NZye3OyL", + "outputId": "fddfec70-68ff-4d9f-c7c4-2834ab83a6b9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " title artist album release_date song_genre is_title \\\n", + "2428 Mega 엔알지 NRG (New Radiancy Group) 1997.11 Dance NaN \n", + "\n", + " like creator lyrics \\\n", + "2428 62 NaN 불안해 넌 말을해\\r\\r\\n니네 무슨 불만이 많은데\\r\\r\\n줏대 없는 애들이\\r\\... \n", + "\n", + " title_tokens_num lyrics_tokens_num sum_tokens_num \n", + "2428 3 5559 5562 " + ], + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleartistalbumrelease_datesong_genreis_titlelikecreatorlyricstitle_tokens_numlyrics_tokens_numsum_tokens_num
2428Mega엔알지NRG (New Radiancy Group)1997.11DanceNaN62NaN불안해 넌 말을해\\r\\r\\n니네 무슨 불만이 많은데\\r\\r\\n줏대 없는 애들이\\r\\...355595562
\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [ + "s = max_rows['lyrics'].str.replace('\\\\r\\\\n', '\\n', regex=True).iloc[0]\n", + "print(s)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "U7krysXt3fGY", + "outputId": "6d5124f8-678e-444e-d36b-9b6f4039266e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "불안해 넌 말을해\r\n", + "니네 무슨 불만이 많은데\r\n", + "줏대 없는 애들이\r\n", + "공부를 못한대\r\n", + "그리해 꼭꼭꼭 투덜대\r\n", + "대학 쑥쑥쑥 붙은 형이 말을해\r\n", + "이 세상에서\r\n", + "공부가 제일 쉬웠다는데\r\n", + "열심히 공부해\r\n", + "난나 열심히 해\r\n", + "난나 이제 알아\r\n", + "난나 이제 공부 잘해\r\n", + "공부 잘하고 잘노는 애가\r\n", + "요즘 시대엔 짱이라고 말하지\r\n", + "겉모습만 멀쩡한것보단\r\n", + "똑똑한 애가 연애도 잘한대\r\n", + "누가 뭐라 할말 있겠어\r\n", + "흠잡을 데 없이 완벽한걸\r\n", + "나또한 그렇게 살수 있다면\r\n", + "야야 정말 멋지구나\r\n", + "남얘기가 아냐 외면하지마\r\n", + "도전해 볼만해\r\n", + "미리 포긴 왜해\r\n", + "뜻이 있는 곳에 길이 있는 법\r\n", + "나의 꿈을 이룰수 있어\r\n", + "나에게 기횐 한번 뿐이야\r\n", + "자신있게 살아가는 거야\r\n", + "내가 만들거야\r\n", + "나의 멋진 미래를\r\n", + "불안해 넌 말을해\r\n", + "니네 무슨 불만이 많은데\r\n", + "줏대 없는 애들이\r\n", + "공부를 못한대\r\n", + "그리해 꼭꼭꼭 투덜대\r\n", + "대학 쑥쑥쑥 붙은 형이 말을해\r\n", + "이 세상에서\r\n", + "공부가 제일 쉬웠다는데\r\n", + "열심히 공부해\r\n", + "난나 열심히 해\r\n", + "난나 이제 알아\r\n", + "난나 이제 공부 잘해\r\n", + "너는 가끔 내게 물었지\r\n", + "감춰온 사랑이 궁금하다고\r\n", + "하지만 내맘 비밀이라 말했어\r\n", + "오 다름아닌 너였어\r\n", + "너의 하나뿐인 사랑은\r\n", + "내게도 소중한 친구인데\r\n", + "내가 어떻게\r\n", + "너라 말할수 있겠어\r\n", + "나를 보는 가슴엔 항상\r\n", + "내 친구의 사랑이 있던\r\n", + "그런 슬픔도 익숙한 나인데\r\n", + "너만 좋다면\r\n", + "나의 사랑을 모른채\r\n", + "언제나 친구와 행복한 널 보면\r\n", + "그만큼 내안에 서러움도\r\n", + "녹아 내렸어\r\n", + "내가 해줄수 없어도\r\n", + "넌 그저 행복한 미솔 지켜줘\r\n", + "영원히 너를 향한\r\n", + "나의 사랑은 그 모습으로 족해\r\n", + "후후 왈칵 왈칵 나의 눈물\r\n", + "후후 왈칵 왈칵 흘러도\r\n", + "후후 감춰 감춰 나의 사랑\r\n", + "후후 감춰감춰 널위해 지켜\r\n", + "미친듯 달리는 새벽의\r\n", + "굉음속에 열일곱 미랠\r\n", + "아낌없이 걸고\r\n", + "더 이상 여기서\r\n", + "나빠질게 있냐며\r\n", + "어둠의 고통속으로 빠져들어\r\n", + "단 하루를 살아도\r\n", + "자유롭고 싶다는\r\n", + "그들의 외침 끝내 외면한채\r\n", + "덧없는 절망에 지친\r\n", + "어린 영혼을 우리는 심판하지\r\n", + "나도 그런 때가 있었다며\r\n", + "같지 않을 용서와 때묻은\r\n", + "위선 눈물 그속에서\r\n", + "더욱 멍든 아이들 워\r\n", + "욕하지마 그들의 분놀\r\n", + "우리 책임 져야만해\r\n", + "영혼까지 상처를 받은\r\n", + "열일곱의 절규를\r\n", + "빌어먹을 우리가 갈곳이\r\n", + "어디 있어 어디에도\r\n", + "속할수 없는 우리가\r\n", + "당신들이 그려 놓은 퍼즐\r\n", + "그곳에 끼워 맞춰지는\r\n", + "우리 호기심은 모두\r\n", + "위험한 상상 용기는\r\n", + "모두 미련한 무모함\r\n", + "닫혀진 사고속에\r\n", + "절대적 기준속에\r\n", + "우리의 꿈들은\r\n", + "고여 썩어가고 있다\r\n", + "일류만이 살길 삼류는\r\n", + "곧 죽음 새로워 지겠다는\r\n", + "다짐조차 10대라는\r\n", + "이름하에 짓밟히고 부서지고\r\n", + "차가운 교실엔 불타버린\r\n", + "내 책상 뿐 그곳만이\r\n", + "최고가 될 수 있어\r\n", + "위험의 천국 위험의 나라\r\n", + "바로 당신이 잠든사이에\r\n", + "둘다 없앴어 둘다 끝냈어\r\n", + "난 널 심판해 날 봐\r\n", + "해냈어 둘다 없앴어\r\n", + "둘다 끝냈어\r\n", + "난 널 심판해 날 봐 해냈어\r\n", + "나를 자꾸 피하는 눈빛이\r\n", + "뭔가 달라진거야\r\n", + "전같지 않았던 어색한\r\n", + "니 모습 감추고 숨기는 듯 했어\r\n", + "변해버린 이유를 찾던\r\n", + "날 너와 싸우게 됐어\r\n", + "내 심한 말투가 널 울려버렸고\r\n", + "전부 내가 잘못한 거야\r\n", + "네게 정말 미안해\r\n", + "그날 밤 전화를 걸었지\r\n", + "그런 나를 너는\r\n", + "내 친구로 착각 한거야\r\n", + "넌 그만 애타게 기다린 듯\r\n", + "그 목소린 내 친구\r\n", + "이름을 부른거야 순간\r\n", + "하늘이 노래지고 쓰러진\r\n", + "날 이제야 모두 알게됐어\r\n", + "가장 믿었던 내친구와\r\n", + "너에게서 지금껏\r\n", + "멍청히 속은거야\r\n", + "더는 뜻대로 바란대로\r\n", + "되지 않아\r\n", + "나이제 둘을 없앨거야\r\n", + "더이상 속을수 없어\r\n", + "나 혼자 당할수 없어\r\n", + "실컷 비웃어\r\n", + "그 얼굴을 이젠 박살내겠어\r\n", + "맺혀버린 박혀버린\r\n", + "내 마음의 상처를 박어버려\r\n", + "그래 둘다 각오해\r\n", + "난 둘을 심판해\r\n", + "똑같은 절망속에 빠질거야\r\n", + "누구도 놔주지 않을거야\r\n", + "나의 가슴에 묻어버린\r\n", + "아픔들을 조금씩 알게 해줄거야\r\n", + "가장 믿었던 내친구와\r\n", + "너에게서 지금껏\r\n", + "멍청히 속은거야\r\n", + "더는 뜻대로 바란대로\r\n", + "되지 않아\r\n", + "나이제 둘을 없앨거야\r\n", + "똑같은 상처에 빠져 더깊은\r\n", + "절망에 빠져 내가 어때서\r\n", + "내 짜릿한 기분 맛이 어땠어\r\n", + "어딜 감히 내게 감히\r\n", + "몇배로 되돌려 갚아버려\r\n", + "쓰린속이 내려가\r\n", + "난 결국 해냈어\r\n", + "똑같은 절망속에 빠진거야\r\n", + "누구도 놔주지 않을거야\r\n", + "나의 가슴에 묻어버린\r\n", + "아픔들을 조금씩 알게 해줄거야\r\n", + "둘다 없앴어 둘다 끝냈어\r\n", + "난 널 심판해 날 봐 해냈어\r\n", + "둘다 없앴어 둘다 끝냈어\r\n", + "난 널 심판해 날 봐 해냈어\r\n", + "할 수 없어 널 사랑한다는 말\r\n", + "또 널 그리워 한단말\r\n", + "니 주위에서\r\n", + "난 항상 맴돌고있어\r\n", + "니 앞에선 땅만 쳐다보고있어\r\n", + "고개도 들수없어\r\n", + "단 한번의 내 첫사랑을 위해서\r\n", + "오 내맘을 전해줘\r\n", + "누구라도 내가 여기 서있겠다\r\n", + "해줘 빠라빠라 너를 누구보다\r\n", + "아껴줄 내가 여기있어\r\n", + "빠라빠라 니가 나를 어\r\n", + "사랑할때까지 그때까지\r\n", + "널 기다릴 수 있을때까지\r\n", + "너무나 힘들어 쓰러질때까지\r\n", + "널 원할때까지 그때까지 받아줘\r\n", + "니안에 있게해줘 울리지 말아줘\r\n", + "나를 그저 너의 옆에서만\r\n", + "같이 있게해줘\r\n", + "언제가 내맘을 넌 알아줄까나\r\n", + "언제쯤 나를 애타게 안할까\r\n", + "우리는 우연일까\r\n", + "아니 필연일거야\r\n", + "나를 사랑한다해\r\n", + "할 수 없어 널 사랑한다는 말\r\n", + "또 널 그리워 한단말\r\n", + "니 주위에서\r\n", + "난 항상 맴돌고있어\r\n", + "니 앞에선 땅만 쳐다보고있어\r\n", + "고개도 들수없어\r\n", + "단 한번의 내 첫사랑을 위해서\r\n", + "할 수 없어 널 사랑한다는 말\r\n", + "또 널 그리워 한단말\r\n", + "니 주위에서\r\n", + "난 항상 맴돌고있어\r\n", + "니 앞에선 땅만 쳐다보고있어\r\n", + "고개도 들수없어\r\n", + "단 한번의 내 첫사랑을 위해서\r\n", + "어떻게 해 나를 도와줄 사람\r\n", + "또 그녀에게 전해줄\r\n", + "날 도와줘 끝나지 않게\r\n", + "내마음을 그녀에게 전해\r\n", + "단한번의 내 첫사랑을 위해서\r\n", + "이제 나를 원할때가 됐잖아\r\n", + "여기저기 전부다 재보지 말고\r\n", + "나를 택해 영원히 함께할거야\r\n", + "행복하게 우린 잘살수 있어\r\n", + "그대 나만을 기다려 주는\r\n", + "어어어 너무 좋아 그런 어어어\r\n", + "그렇게 된다면 할수만 있다면\r\n", + "너무나도 좋아요 어어\r\n", + "할 수 있을까\r\n", + "널 내껄 만들 수 있나 어어\r\n", + "개인 기도하면 그렇게 될거야\r\n", + "너무 나도 좋아요 어어\r\n", + "널 향한 내 사랑은\r\n", + "너무 커 들 수가 없어\r\n", + "어떻게 니가\r\n", + "그 무겔 덜어 주겠니\r\n", + "나에게 돌아와\r\n", + "와와우 그렇게 다가 와우\r\n", + "내게로 지금와우\r\n", + "너무나도 오랫동안\r\n", + "난 기다리게\r\n", + "하지는 마우\r\n", + "정말 사랑한다는 마음\r\n", + "꼭꼭 변치 않는 맘 난 원해\r\n", + "그리고 평생을 너를 사랑해\r\n", + "사랑해 너 하나를\r\n", + "난 항상 기다려\r\n", + "너 하나를 원해 튕기지마\r\n", + "이제 그만해 그만큼\r\n", + "나를 괴롭히지는 마\r\n", + "사랑해 너 하나로\r\n", + "목숨 걸 수 있어\r\n", + "너 하나로 다 포기할 수 있어\r\n", + "이별보다도 널 기다리는게\r\n", + "너무 힘든 거야 제발\r\n", + "내게 돌아와줘\r\n", + "사랑해 너 하나로\r\n", + "목숨 걸 수 있어\r\n", + "너 하나로 다 포기할 수 있어\r\n", + "이별보다도 널 기다리는게\r\n", + "너무 힘든 거야 제발\r\n", + "내게 돌아와줘\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# 예시 데이터프레임과 열 이름으로 가정하겠습니다.\n", + "# dataset_pandas = ... # 예시 데이터프레임\n", + "# 'sum_tokens_num' 열이 정의되어 있다고 가정합니다.\n", + "\n", + "# seaborn 스타일 설정\n", + "sns.set(style='whitegrid')\n", + "\n", + "# 히스토그램을 그리기 위해 seaborn을 사용합니다.\n", + "plt.figure(figsize=(10, 6)) # 그래프 크기 조정\n", + "sns.histplot(data=dataset_pandas, x='sum_tokens_num', bins=20, kde=True, color='skyblue')\n", + "plt.title('Distribution of sum_tokens_num')\n", + "plt.xlabel('sum_tokens_num')\n", + "plt.ylabel('Frequency')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 573 + }, + "id": "EX7Fb-Uv2yYT", + "outputId": "58b76e99-5689-4454-98f0-d7b2cad4f9b2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAAIsCAYAAACZYbpAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACToElEQVR4nOzdeXxU1f3/8fedNZNlsiCiAkICJoCsbohA/IJaC/KV1mq1rdQFcZdCN9Cq1W/df+4bCsa1i3ttrXGpaEURtVZaq2IVAohUdrLOJLPd3x+zkCEBskwy2+v5eGDMnTN3zsyZSe4nn3M+xzBN0xQAAAAAIGksye4AAAAAAGQ7AjMAAAAASDICMwAAAABIMgIzAAAAAEgyAjMAAAAASDICMwAAAABIMgIzAAAAAEgyAjMAAAAASDICMwAAAABIMgIzAEiie+65RxUVFb3yWLNmzdKsWbNi37///vuqqKjQK6+80iuPv3DhQk2dOrVXHqurmpqa9Ktf/UoTJ05URUWFrr/++mR3KWVE36s7duxIdlcAICPZkt0BAMgUzz//vC6//PLY9w6HQ4WFhaqoqNCxxx6rU045Rfn5+d1+nM2bN+vpp5/W8ccfr+HDh3f7fImUyn3riAcffFB//OMfdfHFF2vgwIEaMmRIsruUEF6vVw899JCOOuoojR8/PtndAQC0g8AMABJs7ty5GjBggAKBgLZt26YPPvhAN9xwgx599FHdf//9GjZsWKztRRddpPPPP79T59+yZYvuvfde9e/fv1PBT1VVVacepyv21rff/OY3Mk2zx/vQHe+9957GjBmjSy+9NNldSSiv16t7771Xl156KYEZAKQoAjMASLDKykqNGjUq9v0FF1ygFStW6MILL9TFF1+s6upq5eTkSJJsNptstp79Uez1euVyueRwOHr0cfbFbrcn9fE7Yvv27Ro6dGiyuwEAyEKsMQOAXjBhwgRdfPHF2rhxo/785z/Hjre3xmz58uX6wQ9+oCOOOELjxo3TiSeeqNtvv11SeF3YqaeeKkm6/PLLVVFRoYqKCj3//POSwuvIZsyYoU8++UQ/+tGPNGbMmNh9d19jFhUKhXT77bdr4sSJGjt2rC688EJ98803cW2mTp2qhQsXtrlv63Puq2/trTHzeDy66aabdOyxx2rkyJE68cQTVVVV1SazVlFRof/7v//T66+/rhkzZmjkyJE66aSTtGzZsr297DHbt2/XFVdcoWOOOUajRo3SySefrD/+8Y+x26Pr7b7++mv97W9/i/X966+/3uM59zZOUnhqa3vniD7W+++/H/c6zpgxQ59//rnOPPNMjRkzRieccEJs/d8HH3yg0047TaNHj9aJJ56od999t0PPW5K+/vprTZgwQZJ07733xp7bPffcE2uzYsUK/fCHP9TYsWN1xBFH6KKLLtKaNWv2ee6NGzfqhBNO0IwZM7Rt2zZJUn19va6//vrYmJ5wwglavHixQqFQXJ8qKipUVVWlp556Sscff7xGjhyp733ve/r444/jHmPr1q26/PLLVVlZqZEjR2rSpEm66KKL9jo2u4t+ztavX6+FCxfqiCOO0OGHH67LL79cXq+3Tb+i79nWdn/Noudcu3atfv7zn+vwww/X0UcfrTvvvFOmaeqbb77RRRddpMMOO0wTJ07Uww8/3OH+AshOZMwAoJfMnDlTt99+u9555x19//vfb7fNl19+qQsuuEAVFRWaO3euHA6H1q9fr48++kiSNGTIEM2dO1d33323Tj/9dB1++OGSpMMOOyx2jtraWs2ZM0cnnXSSTj75ZPXp02ev/Vq0aJEMw9CcOXO0fft2PfbYYzr77LP1pz/9KZbZ64iO9K010zR10UUXxQK64cOH6+2339Ytt9yizZs364orrohr/49//EOvvfaafvjDHyovL09PPPGE5s6dqzfffFPFxcV77Fdzc7NmzZqlr776Sj/60Y80YMAAvfLKK1q4cKHq6+t11llnaciQIbrlllt044036oADDtA555wjSSopKWn3nPsap66oq6vThRdeqOnTp+vb3/62/vCHP+inP/2pQqGQbrjhBp1xxhmaMWOGqqqqNHfuXP3tb3/r0JrFkpISXXPNNbrmmmt0wgkn6IQTTpCk2B8E3n33Xc2ZM0cDBgzQpZdequbmZv32t7/VD37wAz3//PMaMGBAu+f96quvdNZZZ6mwsFAPP/ywSkpK5PV6deaZZ2rz5s0644wzdOCBB2rlypW6/fbbtXXrVv3qV7+KO8df/vIXNTU16fTTT5dhGHrooYd02WWX6fXXX49lWC+77DKtXr1aZ555pvr3768dO3Zo+fLl+uabb/bYtz2ZN2+eBgwYoJ/+9Kf67LPP9Mwzz6ikpES/+MUvOnWe1ubPn68hQ4boZz/7md566y0tWrRIRUVFevLJJ3X00Ufr5z//uV588UXdfPPNGjVqlI488sguPxaADGcCABLiueeeM8vLy82PP/54j20OP/xw8zvf+U7s+7vvvtssLy+Pff/II4+Y5eXl5vbt2/d4jo8//tgsLy83n3vuuTa3nXnmmWZ5ebn5hz/8od3bzjzzzNj37733nlleXm5OnjzZbGhoiB2vrq42y8vLzcceeyx2bMqUKeaCBQv2ec699W3BggXmlClTYt//9a9/NcvLy837778/rt1ll11mVlRUmOvXr48dKy8vNw899NC4Y6tWrTLLy8vNJ554os1jtfboo4+a5eXl5p/+9KfYMZ/PZ55++unm2LFj4577lClTzPPPP3+v5zPNjo1T9P2wYcOGuOPR1/29996LHYuO24svvhg7tmbNGrO8vNwcNmyY+c9//jN2/O23397ja7wn27dvN8vLy8277767zW0zZ840J0yYYO7cuTN2bNWqVeawYcPMX/7yl7Fj0ffq9u3bzdWrV5uTJk0yv/e975m1tbWxNvfdd585duxYc+3atXGPceutt5rDhw83//vf/5qmaZobNmwwy8vLzaOOOiru/q+//rpZXl5uvvHGG6ZpmmZdXZ1ZXl5uPvTQQx1+ru2J9v3yyy+PO37JJZeYRx11VOz7aL/ae213f/2i57zqqqtixwKBgFlZWWlWVFSYDz74YOx4XV2dOXr06HY/QwAQxVRGAOhFubm5ampq2uPtbrdbkrR06dK4qV+d4XA4dMopp3S4/Xe+8524zMu3v/1t9e3bV2+99VaXHr+jli1bJqvV2mZ65bnnnivTNNtMUzzmmGN08MEHx74fNmyY8vPztWHDhn0+Tt++fTVjxozYMbvdrlmzZsnj8ejvf/97p/ueiHHaXW5urk466aTY92VlZXK73RoyZIjGjBkTOx79/309747YsmWLVq1ape9+97sqKiqKHR82bJiOOeaYdt8DX375pWbNmqX+/fvr0UcfVWFhYey2V155RYcffrjcbrd27NgR+3fMMccoGAy2ea2nT58ed/8jjjgi7rnl5OTIbrfrgw8+UF1dXbef7xlnnBH3/RFHHKHa2lo1NjZ2+ZzR6buSZLVaNXLkSJmmGXfc7XartLQ0IWMGIHMRmAFAL/J4PMrLy9vj7dOnT9dhhx2mK6+8Usccc4zmz5+v6urqTl389+vXr1OFPgYNGhT3vWEYGjRokDZu3Njhc3TFxo0btf/++7eZjhctUb/74x944IFtzlFYWKj6+vp9Ps6gQYNkscT/yos+zn//+99O9z0R47S7Aw44QIZhxB0rKCjQAQcc0OaYpH0+746IPvfS0tI2tw0ZMkQ7d+6Ux+OJO37hhRcqLy9PVVVVbcZu/fr1evvttzVhwoS4f2effbYktdkDbfcxjQZp0efmcDj085//XMuWLdPEiRP1ox/9SEuWLNHWrVu79HwPOuiguO+jAXZ3gr7dz1lQUCCn09lmGmxBQUFCxgxA5mKNGQD0kk2bNqmhoSEu67O7nJwc/e53v9P777+vv/3tb3r77bdVXV2tp556Sg8//LCsVus+H6cz68K6KxgMdqhPibCnxzGTUIK/I+O0e5AVtafgbU/PL5WetySdeOKJ+uMf/6gXX3yxTQYqFApp4sSJOu+889q97+DBg+O+78hzO/vsszV16lS9/vrreuedd3TXXXdp8eLFeuyxxzRixIhO9X334Hz3x9vTmAWDwU6dM9XGDEB6IGMGAL3kT3/6kyRp0qRJe21nsVg0YcIEXX755aqurtb8+fP13nvvxar47enisavWr18f971pmlq/fr369+8fO7anzNTu2abO9K1///7asmVLm2lkNTU1sdsToX///lq/fn2bgCj6OLtnPDpqX+MUzcY0NDTE3a+nM5Ht2dO4RJ/72rVr29xWU1Oj4uJi5ebmxh3/5S9/qVNPPVXXXnutXnzxxbjbDj74YHk8Hh1zzDHt/uvqa33wwQfr3HPP1cMPP6y//OUv8vv9PVLlcPeMXVRXsqoA0FkEZgDQC1asWKH7779fAwYM0Mknn7zHdrW1tW2ORTdq9vl8kiSXyyUpMVPZJOmFF16IC45eeeUVbd26VZWVlbFjAwcO1L/+9a9YHyTpzTffbFNWvzN9q6ysVDAY1O9+97u4448++qgMw4h7/O6orKzU1q1bVV1dHTsWCAT0xBNPKDc3t0tV8joyTtHMaOt1VcFgUE8//XSnH6+79jQu+++/v4YPH64XXngh7rYvvvhCy5cv17HHHtvu+X7zm9/oxBNP1MKFC7V06dLY8WnTpmnlypV6++2329ynvr5egUCgU/32er1qaWmJO3bwwQcrLy8v7r2YKPn5+SouLtaHH34Yd/z3v/99wh8LAHbHVEYASLBly5appqZGwWBQ27Zt0/vvv6/ly5froIMO0qJFi+R0Ovd43/vuu08ffvihjj32WPXv31/bt2/X73//ex1wwAGx8vMHH3yw3G63nnzySeXl5Sk3N1ejR4/WwIEDu9TfwsJC/fCHP9Qpp5wSK5c/aNCguJL+p512ml599VWdd955mjZtmr766iu9+OKLbaZldqZvU6dO1fjx43XHHXdo48aNqqio0PLly7V06VKdddZZe53y2Rmnn366nnrqKS1cuFCffvqp+vfvr1dffVUfffSRrrjiig6VnN9dR8bpkEMO0dixY3X77berrq5OhYWFqq6u7nRwkgg5OTkaOnSoXn75ZQ0ePFhFRUU65JBDVF5erl/+8peaM2eOTj/9dJ166qmxcvkFBQW69NJL2z2fxWLR//t//0+XXHKJ5s2bp8WLF2vChAmaPXu23njjDV144YX67ne/q0MPPVRer1dffPGFXn31VS1dunSPWxC0Z926dTr77LP17W9/W0OHDpXVatXrr7+ubdu2xRVKSaTTTjtNixcv1q9+9SuNHDlSH374YbsZRQBINAIzAEiwu+++W1K48l9RUZHKy8t1xRVX6JRTTtlnEDB16lRt3LhRzz33nHbu3Kni4mIdddRRuuyyy2JFH+x2u2666SbdfvvtuuaaaxQIBHTjjTd2OTC78MIL9Z///EeLFy9WU1OTJkyYoF//+texLIskTZ48WQsXLtQjjzyiG264QSNHjtQDDzygm2++Oe5cnembxWLRokWLdPfdd6u6ulrPP/+8+vfvr1/+8pc699xzu/Rc2pOTk6MnnnhCt956q/74xz+qsbFRpaWluvHGGztVvbK1joyTJN166626+uqrtXjxYrndbp166qkaP358bJ+03nTdddfpN7/5jW688Ub5/X5deumlKi8v1zHHHKOHHnpId999t+6++27ZbDYdeeSR+sUvfrHX95Tdbtfdd9+tOXPm6OKLL9ajjz6qMWPG6IknntCDDz6oV155RS+88ILy8/M1ePDgNq9NRxxwwAE66aSTtGLFCv35z3+W1WpVWVmZ7rzzTp144ondfUnadckll2jHjh169dVX9fLLL6uyslIPPfRQbJNuAOgphslKVAAAAABIKtaYAQAAAECSMZURAIA0FQwG2+wNtrvc3Ny97p2Xzpqamtrss7a7kpKSXtvSAQC6g8AMAIA09c033+i4447ba5tLL71Ul112WS/1qHc9/PDDuvfee/faZunSpRowYEAv9QgAuo41ZgAApKmWlhb94x//2GubgQMHdrkwTKrbsGGDNmzYsNc2hx9++F4roQJAqiAwAwAAAIAko/gHAAAAACQZa8wSbOXKlTJNU3a7PdldAQAAAJBEfr9fhmFo3Lhx+2xLxizBTNNUqswONU1TPp8vZfqD3sPYZy/GPjsx7tmLsc9ejH166ExsQMYswaKZslGjRiW5J5LH49GqVas0dOhQ5ebmJrs76EWMffZi7LMT4569GPvsxdinh3//+98dbkvGDAAAAACSjMAMAAAAAJKMwAwAAAAAkozADAAAAACSjMAMAAAAAJKMwAwAAAAAkiylArO33npLZ555po4++miNHDlSxx13nG688UY1NDTE2ixcuFAVFRVt/i1btizuXD6fTzfffLMmTpyosWPH6pxzzlFNTU2bx1yzZo3OOeccjR07VhMnTtQtt9win8/X488VAAAAAKJSah+z2tpajR49WrNmzVJRUZG+/PJL3XPPPfryyy/18MMPx9oNHDhQt956a9x9hwwZEvf9ddddp+rqai1cuFD9+vXTAw88oLPPPlsvvfSSCgoKJEl1dXU666yzNHjwYN1zzz3avHmzbrrpJjU3N+vqq6/u+ScMAAAAAEqxwGzmzJlx348fP14Oh0NXXXWVNm/erH79+kmScnJyNHbs2D2eZ9OmTXr22Wf161//Wqeeeqqk8IbPU6ZM0ZNPPqk5c+ZIkp588kk1NTXp3nvvVVFRkSQpGAzq2muv1QUXXBB7PAAAAADoSSk1lbE90YDJ7/d3+D7vvPOOQqGQvv3tb8edZ+LEiXFTHpctW6YJEybEHkOSpk2bplAopOXLl3e77wAAAADQESkZmAWDQbW0tOjTTz/Vfffdp6lTp2rAgAGx29evX6/DDz9cI0eO1CmnnKLXX3897v41NTXq06ePCgsL444PGTIkbp1ZTU2NysrK4tq43W717du33fVoAAAAANATUmoqY9SUKVO0efNmSdLkyZN12223xW4bPny4Ro0apaFDh6qhoUF/+MMfdMkll+iuu+6KZcjq6+tj68hac7vdqquri31fX18vt9vdpl1hYWFcu84yTVMej6fL908Ur9cb9xXZg7HPXox9dmLcsxdjn70Y+/RgmqYMw+hQ25QMzBYvXiyv16vVq1dr0aJFuvDCC/XII4/IarXqrLPOims7depUnXHGGbr77rvjpi4mk9/v16pVq5LdjZh169YluwtIEsY+ezH22Ylxz16MffZi7FOfw+HoULuUDMyGDRsmSRo3bpxGjRqlmTNn6q9//Wu7gZfFYtG3vvUt/b//9//U3NysnJwcud1uNTY2tmlbX18fN73R7XbHleKPqqurazMNsjPsdruGDh3a5fsnitfr1bp16zR48GC5XK5kdwe9iLHPXox9dmLcsxdjn70Y+/SwevXqDrdNycCstYqKCtntdn311Vcdvk9ZWZm2bdvWJsDafU1ZWVlZm7VkDQ0N2rp1a5u1Z51hGIZyc3O7fP9Ec7lcKdUf9B7GPnsx9tmJcc9ejH32YuxTW0enMUopWvyjtX/961/y+/1xxT9aC4VCeuWVV3TIIYcoJydHkjRp0iRZLBa99tprsXZ1dXV65513VFlZGTtWWVmpd999V/X19bFjr7zyiiwWiyZOnNhDzwgAAAAA4qVUxuzSSy/VyJEjVVFRoZycHH3++eeqqqpSRUWFjj/+eG3cuFELFy7USSedpEGDBqmurk5/+MMf9Mknn+iee+6JneeAAw7QqaeeqltuuUUWi0X9+vXTgw8+qIKCAp1xxhmxdmeccYaeeOIJXXLJJbrgggu0efNm3XLLLTrjjDPYwwwAAABAr0mpwGz06NGqrq7W4sWLZZqm+vfvr9NOO02zZ8+Ww+FQXl6e8vPztWjRIm3fvl12u10jR47UkiVLNHny5LhzXXnllcrLy9Ntt92mpqYmHXbYYXrkkUfiqjUWFhbqscce029+8xtdcsklysvL06mnnqr58+f39lMHAAAAkMVSKjA7//zzdf755+/x9qKiIi1atKhD53I4HFqwYIEWLFiw13ZDhgzRo48+2pluAgAAAEBCpVRgBiB5tnkD+mxniz7b2SJPwNTIEqeO2t+lIqc12V0DAADIeARmQJbb3hzQi+satckbiDv+0bZmrdzWrBHFTk0+MJcADQAAoAcRmAFZrM4X1FOr61XvD8liSGVuhw4tdsppNfTBFq/WNfj16c4WfdXo1zkVRcq1p3whVwAAgLREYAZkKY8/FAvK+jit+sEhhcpvFXiVuR3a5Anoz+satKMlqD+vb9D3h7hl6cR+HAAAAOgY/vwNZKGWYEhPranTjpag3HaLTh/qjgvKog7Item7pQWyW6R1DX4t3+RJQm8BAAAyH4EZkGVM09QLaxu02RtUrs3Q6UPdcjv2vH6sr8umbw/MlyQt3+RVTb2vt7oKAACQNQjMgCzz6c4WrW3wy2ZI3x9SqD45+57RfGhJjsbtlyNJ+vO6BjX4gz3dTQAAgKxCYAZkkeZASG9sbJIkTTwgVwfkdnyZ6XH989TPZVVz0NT7m7091UUAAICsRGAGZJG3vvHIEzDVJ8eqo/Z3deq+Nouh/zkoT5L0r+3N8gRCPdFFAACArERgBmSJb5r8WrmtWZL0rQF5slo6X11xcIFdB7hs8oekf2wlawYAAJAoBGZAFgiZpl7dEJ7CeGixU4MKHF06j2EYOrpfONP2j63N8gXNhPURAAAgmxGYAVng4+0t2uQNyGk1NLV/XrfOVV7kULHTouagqX9ub05QDwEAALIbgRmQ4YIhU+9G9h+beECu8trZr6wzLIaho/fPlST9fYtXwRBZMwAAgO4iMAMy3Cc7WlTvDynPZsRK3nfXoSVO5dssavCH9OnOloScEwAAIJsRmAEZLGiaendzOFs2vl+u7F0o+NEem8XQkfuHg7wPtnhlmmTNAAAAuoPADMhgn9cHVedLbLYsasx+ObIa0rbmoLY2s+E0AABAdxCYARkqJOnv2/2SpKP2dyUsWxaVY7VoiDtc3XEV0xkBAAC6hcAMyFCblKd6v6lcm6Fx+3VuM+mOGl7slBQOzJjOCAAA0HUEZkAGCpmmaoxCSeFsmcOa2GxZ1BC3Q3aLVOsLaZMn0COPAQAAkA0IzIAMtK4pKK9hl9MiHdZD2TJJclgNDY1OZ6z19djjAAAAZDoCMyAD/XNnOHs1ssjWY9myKKYzAgAAdB+BGZBhtngD+toTkmGaGl1k6/HHK3M75LQYavCH9HUT0xkBAAC6gsAMyDAfbvVKkg6wtsjtsPb449kshg4pojojAABAdxCYASkgUVMAPYGQPtsRDo6mDuknl6tr68s625/hReHpjP+pbVGI6YwAAACd1vPznADsk2EY+nxnszyB7gU1NfU+BUypwGbos6826ZviItlsnfuY59oMDSvu3GbUg9125VgNNQVMfdXo1+ACR6fuDwAAkO0IzIAU4QmYagqEunz/kBkOiiSpb46huoYW2f1B2TudGO98It1qGCovdOjjHS1aU+cjMAMAAOgkpjICGWJ7c1C+kGS3SCWOnq3E2J6ySNn8tQ3+Xn9sAACAdEdgBmSIzd6gJOkAl00Wo/cDs0EFdknStuagGnzBXn98AACAdEZgBmSA5kBIdb7wNMj9c3u+EmN7XDaLDswNz44mawYAANA5BGZABtgSyZYVOizKsSbvY10ayZqtIzADAADoFAIzIM2ZphkLzPZ3JSdbFlUaW2fmS9gWAAAAANmAwAxIc3W+kFpCpqyG1CcnuYHZQXk2OSyGvAEztuYNAAAA+0ZgBqS5aLZsvxyrrEko+tGa1TB0cGQ649p6X1L7AgAAkE4IzIA0FgiZ2t4cDsz6uVJjW8LoOjMKgAAAAHQcgRmQxrY1BxWS5LIayrcnJltmtxjdWh9WGtlc+usmv3zB7q8zY60aAADIBqnxJ3YAXbLFG5Ak9cu1ykjQNEabRTIMQ5/vbJYn0PmgyDRN5VgNNQdNvbmxUX27kcnLtRkaVpzT5fsDAACkCwIzIE15AyE1+MOBU9+cxH+UPQFTTYFQl+5b6LCo2RvUJm9AufbuJOZJ6gMAgOzAVQ+Qpna07Nq7zGFNbtGP3RU5w9Uha1u6FtgBAABkGwIzIE1tbw4HPX2cyS2R354iR/hHizdoJmSdGQAAQKYjMAPSkC9oqsEfDsxKkrx3WXtsFkO5tnAWL9pPAAAA7BmBGZCGtkemMebbDTlTbBpjVEFkbVm9j8AMAABgXwjMgDS0I7J3WSpOY4xyR6Yz1vuDSe4JAABA6iMwA9JMIGSqLpKF6pOC0xij3JGMWZPfVJC9yAAAAPaKwAxIMztagjIV3uPLZUvdj7DTashhkUxJjawzAwAA2KvUvaoD0K7tkWmMJSk8jVEKb1Jd4Aj3kXVmAAAAe0dgBqSRoGnG9gZL5WmMUdHpjA0EZgAAAHtFYAakkdqWkEKSnBZDebbUrMbY2q4CICGZrDMDAADYIwIzII3siJTJL8mxyDBSPzDLsxmyGFLQlDwBAjMAAIA9ITAD0oRpmqqLTGMsTvH1ZVGGYezaz4wCIAAAAHtEYAakiZagqZaQKUO71m6lA9aZAQAA7Fv6XN0BWa42EtgU2C2yWlJ/GmNU63VmAAAAaF9KBWZvvfWWzjzzTB199NEaOXKkjjvuON14441qaGiIa/fGG2/o5JNP1qhRo3TiiSfqueeea3Mun8+nm2++WRMnTtTYsWN1zjnnqKampk27NWvW6JxzztHYsWM1ceJE3XLLLfL5fD32HIGuim4qXehIqY/tPuVHMmYtQVMtQdaZAQAAtCelrvBqa2s1evRoXXvttaqqqtI555yjF154QT/5yU9ibT788ENdeumlGjt2rJYsWaJp06bpV7/6lV555ZW4c1133XV65plnNH/+fN1zzz3y+Xw6++yz44K8uro6nXXWWfL7/brnnns0f/58Pf3007rpppt67TkDHWGapup84cIf6RaY2VpVkGyIPAcAAADEsyW7A63NnDkz7vvx48fL4XDoqquu0ubNm9WvXz8tWrRIo0eP1v/93/9Jko4++mht2LBBd999t7797W9LkjZt2qRnn31Wv/71r3XqqadKkkaNGqUpU6boySef1Jw5cyRJTz75pJqamnTvvfeqqKhIkhQMBnXttdfqggsuUL9+/XrpmQN75w2a8ofCf0kpSLPATApPZ2wKBFXvD2k/V7J7AwAAkHpS/govGjD5/X75fD69//77sQAsavr06VqzZo2+/vprSdI777yjUCgU166oqEgTJ07UsmXLYseWLVumCRMmxB5DkqZNm6ZQKKTly5f33JMCOilajbHAYZElDcrk7y46nbHRz1RGAACA9qRkYBYMBtXS0qJPP/1U9913n6ZOnaoBAwboq6++kt/vV1lZWVz7IUOGSFJsDVlNTY369OmjwsLCNu1arzOrqalpcy63262+ffu2ux4NSJZ0ncYYFQ3MmgJsNA0AANCelJrKGDVlyhRt3rxZkjR58mTddtttksJrwqRw8NRa9Pvo7fX19SooKGhzXrfbHWsTbbf7uSSpsLAwrl1nmaYpj8fT5fsnitfrjfuK1GQYhlwulwKBgPz+tmuwTNOMVWTMs5jy+/37PGfAH4j72hnByE+F4B760xU205TFkEKmVN/sV66tY1m/gML7tXm9XgK6DuJzn50Y9+zF2Gcvxj49mKYpo4OznVIyMFu8eLG8Xq9Wr16tRYsW6cILL9QjjzyS7G51mN/v16pVq5LdjZh169YluwvYC5fLpREjRqi2tla13pY2t7fIqqBRIMM01Vy3XW1b7FltXW3n+1OcL/XNU0Njo7Y1NHX6/nviUJ6aDbs21TbIrY5VPg24nNKBBVq7di2/eDqJz312YtyzF2OfvRj71OdwODrULiUDs2HDhkmSxo0bp1GjRmnmzJn661//qqFDh0pSm/L59fX1khSbuuh2u9XY2NjmvPX19XHTG91ud5tzSeHM2+7TIDvDbrfH+ppMXq9X69at0+DBg+VyUXEhVUX/ilJUVCRbXtsM1SZvSPKE5HZY1Ne9X4fOGfAHVFtXq6LCItnsnfuYF7js4a/5+ZIzce8bT1NQm5pNWXLytF9+20x1e/Lt4YxZaWkpGbMO4nOfnRj37MXYZy/GPj2sXr26w21TMjBrraKiQna7XV999ZWmTp0qu92umpoaTZ48OdYmuh4sul6srKxM27ZtaxNg7b6mrKysrM1asoaGBm3durXN2rPOMAxDubm5Xb5/orlcrpTqD9pns9lkb2fZZ0NjOEdWnGOV3W7v3Dnttk7fx2qzRr6235+uKnQa2tTslyeoDvfJZgs/Pr9wOo/PfXZi3LMXY5+9GPvU1tFpjFKKFv9o7V//+pf8fr8GDBggh8Oh8ePH69VXX41rU11drSFDhmjAgAGSpEmTJslisei1116Ltamrq9M777yjysrK2LHKykq9++67sYybJL3yyiuyWCyaOHFiDz8zYN9M01R9bGNpa5J70z27CoCYCpH9AgAAiJNSGbNLL71UI0eOVEVFhXJycvT555+rqqpKFRUVOv744yVJF110kX784x/rmmuu0bRp0/T+++/rL3/5i+64447YeQ444ACdeuqpuuWWW2SxWNSvXz89+OCDKigo0BlnnBFrd8YZZ+iJJ57QJZdcogsuuECbN2/WLbfcojPOOIM9zJASmgKmgqZkNRTbpDldOa2GbIYUMMPPq8Ce3s8HAAAgkVIqMBs9erSqq6u1ePFimaap/v3767TTTtPs2bNji+aOOOII3XPPPbrzzjv17LPP6qCDDtJ1112nadOmxZ3ryiuvVF5enm677TY1NTXpsMMO0yOPPBJXrbGwsFCPPfaYfvOb3+iSSy5RXl6eTj31VM2fP79XnzewJ43+yP5ldkunUuGpyDAM5dstqvWF1OgPqcCe8gl7AACAXpNSgdn555+v888/f5/tjjvuOB133HF7beNwOLRgwQItWLBgr+2GDBmiRx99tDPdBHpNQyQwy8+QIKZ1YAYAAIBdMuNqD8hQjRkYmEkiMAMAANhNZlztARkoaJryBMJFMjItMPMETAVDFAABAACIyoyrPSADNUWySnZLuHBGJnBaDTkiP3WaAmTNAAAAogjMgBTV6A9nlDKtSMau6YxkzAAAAKIy64oPyCCZVvgjKvp8GlhnBgAAEJNZV3xABsm0wh9RFAABAABoK7Ou+IAMEQiZag5mVuGPqOjzaQ6aClAABAAAQBKBGZCSotkkp9WQ3ZIZhT+i7BZDzshzogAIAABAGIEZkIIydRpjVJ49EphRAAQAAEASgRmQkqKBWYE9s7JlUXm28I8eMmYAAABhBGZACmrwZ+b6sqi8yPNqogAIAACAJAIzIOX4gqZ8kaIY0cxSpsmzhTOBnoCpkMl0RgAAgMy86gPSWHQao8tmyJZhhT+inFZDVkMyJXkDBGYAAAAEZkCKia0vy9BsmSQZhsE6MwAAgFYy98oPSFONgcyuyBhFZUYAAIBdMvvKD0hDnkigkpuhFRmjyJgBAADsQmAGpJBAyFRLpPBHbgZPZZTiKzOaFAABAABZLrOv/IA0Ey2EYbdI9gwt/BGVazNkSAqYko+kGQAAyHIEZkAK8USm9WVqmfzWLIYhly26zozIDAAAZLfMv/oD0kh0vVWuLbOzZVGsMwMAAAgjMANSiCeQHevLonZVZiQwAwAA2S07rv6ANOGJZcyy46O5K2NG8Q8AAJDdsuPqD0gDvqCpaOLIlS1TGSOVGZuDpgIhgjMAAJC9CMyAFBHdWNppNWTL8IqMUXaLIUfkuXpYZwYAALIYgRmQIhr92VX4I2rXOjMyZgAAIHsRmAEposmfXevLoqLrzBrJmAEAgCyWXVeAQArL3oxZ+McQUxkBAEA2IzADUoBpmrGMUbZlzKKBqCdgyjSZzggAALJTdl0BAimqKbCrImO2ZcxcVkOGpJAptQQJzAAAQHYiMANSwFZvQJKUYzVkMbIrMDMMIy5rBgAAkI0IzIAUsK05KEnKy7JsWVR0+ibrzAAAQLYiMANSwNbmcMYs29aXRUUzZk1kzAAAQJbKzqtAIMVs84YzZtm2viyKjBkAAMh2BGZAkpmmGZvKmGvPzo9kbmSTaW/AVIjKjAAAIAtl51UgkELq/SH5QqYMhYt/ZCOnxZDVkExJzUxnBAAAWYjADEiy1tMYs60iY1S4MmP4x1ET0xkBAEAWIjADkmxnS6QiY5ZOY4yiZD4AAMhm2X0lCKSAHdHALEsrMkZRAAQAAGSz7L4SBFJANDDL1oqMUWTMAABANiMwA5JsV2CW3R/H6FTO5qCpYIjgDAAAZJfsvhIEkiwQMlXvC0/dy/bAzG4xFF1m5wkSmAEAgOyS3VeCQJJFC384rYYcfBp3rTPzs84MAABkFy4FgSSKTmMscVplZGmp/NZ2rTMjMAMAANmFwAxIop2tAjPsqkzZRAEQAACQZQjMgCTa0RwOzIoJzCRRMh8AAGQvAjMgiXaQMYsTncroD0l+KjMCAIAsQmAGJFFsKmMOgZkkWS2GnFbWmQEAgOxDYAYkSXMwFFtLVezkoxiVGwnMvKwzAwAAWYSrQSBJotmyPJshp5WPYpSLdWYAACALcTUIJEm08AfTGONF15mRMQMAANmEwAxIkmjhDyoyxnOxlxkAAMhCKRWYvfzyy7roootUWVmpsWPHaubMmXr22Wdlmrv+cj5r1ixVVFS0+bdmzZq4czU0NOiKK67QUUcdpXHjxmnu3LnasmVLm8f86KOPdPrpp2v06NGaMmWKFi9eHPd4QE/Z2RIOPKjIGC9aMt9HZUYAAJBFbMnuQGuPPvqo+vfvr4ULF6q4uFjvvvuurrrqKm3atEmXXnpprN1hhx2mBQsWxN13wIABcd/PmzdPq1ev1jXXXCOn06k777xTc+bM0XPPPSebLfy0169fr9mzZ2vixImaN2+e/vOf/+jWW2+V1WrV7Nmze/4JI6tRKr99NoshuyVcMr/JT9YMAABkh5QKzBYtWqSSkpLY9xMmTFBtba0eeeQRXXzxxbJYwn9Jd7vdGjt27B7Ps3LlSr3zzjuqqqrSpEmTJEmlpaWaPn26XnvtNU2fPl2SVFVVpeLiYt1+++1yOByaMGGCduzYoQceeECzZs2Sw+HouSeLrGaapnY2E5jtSa7NojpfSE1MZwQAAFkipaYytg7KooYPH67GxkZ5PJ4On2fZsmVyu92aOHFi7FhZWZmGDx+uZcuWxbU77rjj4gKw6dOnq76+XitXruziswD2zRMw1RKZpldEYNZGtABIo5+pjAAAIDukVGDWnn/84x/q16+f8vPzY8c++OADjR07VqNGjdKZZ56pv//973H3qampUWlpqQzDiDteVlammpoaSZLH49E333yjsrKyNm0Mw4i1A3pCdBpjocMim8XYR+vsEy2ZT8YMAABki5Sayri7Dz/8UNXV1XHryY488kjNnDlTgwcP1pYtW1RVVaVzzjlHTzzxhMaNGydJqq+vV0FBQZvzFRYW6pNPPpEULg4ihadFtuZwOORyuVRXV9flfpum2akMX0/xer1xX5E6NtUHJEmFtvD4uFwuBQIB+f3BhJw/4A/Efe2MYOSnQjCB/eksh8KZssbI43u9XorydBCf++zEuGcvxj57MfbpwTTNNsmiPUnZwGzTpk2aP3++xo8frx//+Mex43Pnzo1r9z//8z+aMWOG7r//fi1ZsqS3u9kuv9+vVatWJbsbMevWrUt2F7CbNUaRZBTKbKrV2rWbNGLECNXW1qrW25LQx6mtq+30fVzF+VLfPDU0NmpbQ1NC+9NRQRmSUajmoCl/yNTatWv5xdNJfO6zE+OevRj77MXYp76O1q1IycCsvr5ec+bMUVFRke65555Y0Y/25Obm6thjj9Wrr74aO+Z2u7Vp06Y2bevq6lRYWChJsYxaNHMW5fP55PV6Y+26wm63a+jQoV2+f6J4vV6tW7dOgwcPlsvlSnZ30ErNxhapMaiyfn1UWhL+sBYVFcmWl7iMWW1drYoKi2Szd+5jXuCyh7/m50vO5L1vNu4IKGAa2t4cVGlpKRmzDuJzn50Y9+zF2Gcvxj49rF69usNtUy4wa25u1gUXXKCGhgY99dRT7U5J3JeysjKtWLGiTepw7dq1Ki8vlxQO6A488MA2a8nWrl0r0zTbrD3rDMMwlJub2+X7J5rL5Uqp/kCqD4QzY/0KXHK5woGZzWaTPcHLPm12m+x2e6fuY7VZI18T35/OyLWFVO8PaXtzQAeU8Auns/jcZyfGPXsx9tmLsU9tHZ3GKKVY8Y9AIKB58+appqZGDz30kPr167fP+3g8Hv3tb3/TqFGjYscqKytVV1enFStWxI6tXbtWn332mSorK+PaLV26VH6/P3asurpabrc7tl4NSDTTNFXrC2fGihxUZNwTV6Qy4/bm5KxzAwAA6E0plTG79tpr9eabb2rhwoVqbGzUP//5z9htI0aM0Mcff6yHHnpIJ5xwgvr3768tW7bokUce0datW3XXXXfF2o4bN06TJk3SFVdcoQULFsjpdOqOO+5QRUWFvvWtb8XazZ49Wy+++KJ+9rOf6Qc/+IG++OILVVVVaf78+exhhh7jCZiK7ptc6Eipv42klFybRVJQ2wjMAABAFkipwGz58uWSpJtuuqnNbUuXLlXfvn3l9/t1xx13qLa2Vi6XS+PGjdO1116r0aNHx7W/8847deONN+rqq69WIBDQpEmTdOWVV8pm2/WUBw0apKqqKt100006//zzVVJSorlz5+rcc8/t2SeKrBbNlrntFlkplb9H0b3MCMwAAEA2SKnA7I033thnm6qqqg6dq6CgQDfccINuuOGGvbY77LDD9PTTT3fonEAi7IzsYcbG0nsX3ctsZ0tQwZBJEAsAADIa86iAXlbbEp7HWOTk47c3DotkNSRTuzbkBgAAyFRcGQK9jMIfHWMYhvIiWTMKgAAAgExHYAb0slqmMnZYvj38I4p1ZgAAINMRmAG9rNYXnspYTEXGfcqzR0vmB5LcEwAAgJ7FlSHQi/whU43+6BozMmb7EpvKyBozAACQ4QjMgF5UF1lf5rQYyrFSZXBfooHZjuagTNNMcm8AAAB6DoEZ0ItaV2Q0DAKzfXHZDFkMKWBK9dFduQEAADIQgRnQiyj80TkWw1BxpHrlDgqAAACADEZgBvQiSuV3XklO+LVinRkAAMhkBGZAL9oZy5jx0euoPk4yZgAAIPNxdZjBTNNUrRzyhyiakCrqIqXyyZh1XCxjRmAGAAAyGIFZBlvTGNTfLQfqyfXN7AOVAkzTZI1ZF/SJBGY7mMoIAAAyGIFZBjsgxyKnGdBOn6nH/lOnL2pbkt2lrNYUMBUwJUOSm82lO6wkEsQ2+EPyBcn+AgCAzMTVYQbLt1t0tPmNDnJZ5AuZen5tg5Zv8iS7W1krur7M7bDISqn8DnPZLMq1hV8vsmYAACBTEZhlOIdC+u5Apw7vmyNJevsbD0UUkiQ2jZH1ZZ0WzZoxJRcAAGQqArMsYDUMnTAgX/u7WKuTTNFS+cWsL+s01pkBAIBMR2CWRQrs4eFu9IeS3JPsVNsSqchIqfxO25UxIzADAACZiSvELFJgjxZR4OI2GdhcuutKyJgBAIAMR2CWRfIjGbMGMmZJQan8ruvjtEkKbzJtmlRmBAAAmYfALIsUOJjKmCy+oKmmQDigKKJUfqcVOS2yGFLAlOp5/wIAgAzEFWIWia4xa/BxYdvb6iLTGHOshnJsfOw6y2IYsaIprDMDAACZiCvELJJP8Y+kYX1Z90ULgLDdAwAAyEQEZlkkmjHzBk0FQqzT6U3RioyFVGTsMkrmAwCATMZVYhbJsRqyGeH/J2vWu+rImHUbJfMBAEAmIzDLIoZhUJkxSeoi6/oKKfzRZWTMAABAJuMqMcsQmCVHtFR+IRmzLuvjjO7DF1JLkPcvAADILARmWWZXZUayDr3FNM1YxqyINWZdlmOzKDcyF5esGQAAyDRcJWaZgkjGhjVmvac5aMoXKbbiJmPWLdF1Zjubef8CAIDMQmCWZZjK2Pui2bI8myG7xUhyb9JbrGQ+GTMAAJBhCMyyTAF7mfW66PqyIifZsu4qoQAIAADIUARmWaaAjFmvi5bKp/BH9xWTMQMAABmKwCzL5LfKmJkmm0z3BkrlJ86uNWZB3r8AACCjcKWYZaIZs6ApeQNc2PaGWjaXTphoxqwlZMrD+xcAAGQQArMsY7UYsZLjTGfsHWTMEsdmMWKvI9MZAQBAJuFKMQvlUwCk15imqbro5tIU/0gIKjMCAIBMRGCWhSgA0nuaAqYCpmRIctv5uCVCrABIM4EZAADIHFwpZqECe/jCtsHPhW1Pi1ZkLLBbZGUPs4SgZD4AAMhEBGZZiKmMvaeuJbK+zMlHLVFilRkJzAAAQAbhajELFTiYythbatnDLOFaB2YhSuYDAIAMQWCWhfJtkcDMR2DW03ZtLs1HLVHcDousRnjLh3rewwAAIENwtZiFohkzpjL2vGipfPYwSxyLYewqAMJ0RgAAkCEIzLJQtCqjN2gqEGIqWE+qbWEqY08gMAMAAJmmW4HZli1bEtUP9KIcqyFrpEAgWbOeEzJN1fsp/tETSiiZDwAAMky3rhb/53/+R+eee65eeOEFeTyeRPUJPcwwDPYy6wWN/pBCZvhDVsAeZgkVLZlPZUYAAJApunW1OHfuXG3ZskULFy7UxIkT9fOf/1zLli1TKMTFfqrLJzDrcbWR9WVuh0UWgz3MEqmEqYwAACDD2Lpz5wsvvFAXXnihPvvsM7344ot66aWX9Je//EV9+vTRSSedpP/93//VqFGjEtVXJFAsY+bjwran1LG+rMdEA7M6X0iBkCkbm3cDAIA0163ALGrEiBEaMWKEfvnLX+q9997Tiy++qOeff15PPPGESktLdfLJJ+vkk0/WQQcdlIiHQwIURIIF1pj1nFhFRtaXJVyuzZDTYqglZGpnS1B9XQn5UQYAAJA0Cb1iNAxDhx9+uI499liNGTNGpmlq/fr1uvfee3X88cfHpj4i+ZjK2PPYXLrnGIah4hymMwIAgMyRsD8zRzNlr732mhobG1VeXq4FCxbof//3f2W1WvX888/rwQcf1C9/+Us9+uijiXpYdFE0MGsKEJj1FDaX7lklTqs2eQIUAAEAABmhW4HZ559/rj//+c966aWXtGXLFu2333469dRT9Z3vfEcVFRVxbWfPni2n06mbb765Wx1GYuRE6uU3B9jHrKfUtURK5ZMx6xGUzAcAAJmkW4HZd77zHeXk5Oi4447Td77zHU2cOFEWy56zA0OHDtXYsWO785BIkGhg1hIkMOsJQdOMTRMtchKY9QQqMwIAgEzSrcDshhtu0Iknnqi8vLwOtT/66KN19NFH7/H2l19+WX/+85/16aefqr6+XoMGDdKsWbP0ve99T0arcuPPPPOMHnroIf33v/9VaWmp5s+frylTpsSdq6GhQTfeeKNef/11+f1+TZ48WVdeeaX233//uHYfffSRbr75Zq1atUp9+vTRD37wA82ZMyfu8TJRjjUcQDcTmPWIel9IpiSbIeXZMvu9lCwlrDEDAAAZpFuLX0455ZQOB2Ud8eijj8rlcmnhwoVatGiRKisrddVVV+m+++6LtXnppZd01VVXadq0aVqyZInGjh2rSy+9VP/85z/jzjVv3jwtX75c11xzjW699VatXbtWc+bMUSAQiLVZv369Zs+erb59++rBBx/UWWedpbvvvlsPP/xwwp5TqsqJBAu+kKmgSXCWaK1L5Wd6kJ8sxZFql56AqWbWSgIAgDTXrYzZ448/rrfeektVVVXt3n7eeedp6tSp+uEPf9ih8y1atEglJSWx7ydMmKDa2lo98sgjuvjii2WxWHT33XfrpJNO0rx58ySFs3BffPGF7rvvPi1ZskSStHLlSr3zzjuqqqrSpEmTJEmlpaWaPn26XnvtNU2fPl2SVFVVpeLiYt1+++1yOByaMGGCduzYoQceeECzZs2Sw+Ho6kuT8qJTGSWpJWAq107wkEjRzaULKZXfY5xWi/JshpoC4ZL5B9p4rQEAQPrq1pXMs88+qyFDhuzx9qFDh+rpp5/u8PlaB2VRw4cPV2NjozwejzZs2KB169Zp2rRpcW2mT5+uFStWyOfzSZKWLVsmt9utiRMnxtqUlZVp+PDhWrZsWezYsmXLdNxxx8UFYNOnT1d9fb1WrlzZ4X6nI4thyBHZlJfpjIkXrchYROGPHsV0RgAAkCm6FZht2LBhr4FZWVmZvvrqq+48hP7xj3+oX79+ys/PV01NjaRw9qu1IUOGyO/3a8OGDZKkmpoalZaWtplCVlZWFjuHx+PRN998o7KysjZtDMOItctkscqMQaaBJVp0c2lK5fcsCoAAAIBM0a2pjHa7XVu3bt3j7Vu2bNlrlcZ9+fDDD1VdXa0FCxZIkurq6iRJbrc7rl30++jt9fX1KigoaHO+wsJCffLJJ5LCxUHaO5fD4ZDL5YqdqytM05TH4+ny/RPF6/XGfd2dwxLOlNV6mlVk+HutX9lghzf8eroU2Od7wTAMuVwuBQIB+f2JCTAC/kDc184IRn4qBBPYn64KKBx4eb1eme2shcy3hAPgrU0+eTxMx5X2/blHZmLcsxdjn70Y+/RgmmaH6w10KzAbM2aM/vjHP+rss89Wfn5+3G0NDQ16/vnnNWbMmC6de9OmTZo/f77Gjx+vH//4x93pZq/z+/1atWpVsrsRs27dunaPB41+kpGjmq++llfJDyQzyQ5jgGRYtf3r9fLLt9e2LpdLI0aMUG1trWq9LQntR21dbafv4yrOl/rmqaGxUdsamhLan84KuJzSgQVau3Ztu794GuWSLPvrm3qPVtVlfpa7M/b0uUdmY9yzF2OfvRj71NfRuhXdCswuvfRSnXnmmfrOd76js846S0OHDpUkffnll3rssce0detW3XbbbZ0+b319vebMmaOioiLdc889saxbYWGhpHDQ17dv37j2rW93u93atGlTm/PW1dXF2kQzatHMWZTP55PX64216wq73R57LZLJ6/Vq3bp1Gjx4sFwuV5vbaza2aGdjUH0OOEjDi+1J6GFm8odM/fXLcBAxprwsrtBKe6J/RSkqKpItL3EZs9q6WhUVFslm79zHvMAVfi8U5OdLzrbvm96Ubw9nzEpLS9vNmPVrCelf65rVbHFq2CHDqICpfX/ukZkY9+zF2Gcvxj49rF69usNtu50xe+CBB3T11Vfr+uuvj10UmaapAQMGaNGiRRo3blynztnc3KwLLrhADQ0Neuqpp+KmJEbXg9XU1MStDaupqZHdbtfAgQNj7VasWNEmdbh27VqVl5dLknJzc3XggQe2WUu2du1amabZZu1ZZxiGodzc3C7fP9FcLle7/clzBqXGoEJWe0r1N91t8wYkeeW0GCrOz+14+tpmk717yz7bntNuk93euaDbarNGvia+P51li1Ra3NMvHEeOKUPN8puS6XApz86avqg9fe6R2Rj37MXYZy/GPrV15o/G3QrMJGnixIn661//qs8++yxW6OPggw/WoYce2um/XgcCAc2bN081NTX63e9+p379+sXdPnDgQA0ePFivvPKKjj/++Njx6upqTZgwIZYmrKys1P33368VK1bomGOOkRQOuD777DOdd955sftVVlZq6dKl+sUvfhG7eK2urpbb7e50QJmOYptMswdUQrUulU8Gp2fZLIYKHRbV+kLa0RxUPoEZAABIU90OzCTJYrFo5MiRGjlyZLfOc+211+rNN9/UwoUL1djYGLdp9IgRI+RwOHTZZZfp5z//uQ4++GCNHz9e1dXV+vjjj/Xb3/421nbcuHGaNGmSrrjiCi1YsEBOp1N33HGHKioq9K1vfSvWbvbs2XrxxRf1s5/9TD/4wQ/0xRdfqKqqSvPnz8/oPcyidlVlpFx+IkVL5RdSKr9XlDit4cCsJaiDC5iSCwAA0lNCArPVq1drw4YNe6xk+J3vfKdD51m+fLkk6aabbmpz29KlSzVgwADNmDFDXq9XS5Ys0eLFi1VaWqp77723TYbrzjvv1I033qirr75agUBAkyZN0pVXXimbbddTHjRokKqqqnTTTTfp/PPPV0lJiebOnatzzz23g888vRGY9YzalugeZmRvekNxjlVq8FMyHwAApLVuBWZfffWVfvGLX+jjjz9ud2G+FJ5X2dHA7I033uhQu9NOO02nnXbaXtsUFBTohhtu0A033LDXdocddlinNsHOJDmR9TvsY5ZYsT3MnGTMegN7mQEAgEzQrcDs6quv1hdffKErrrhCRxxxRJs9wZDaYhmzABmzRIpOZSxiKmOviAZmO5sJzAAAQPrqVmD20Ucf6YILLtCsWbMS1R/0IlckMGthKmNCxYp/MJWxV5TkRAIzX1Ah05SFgisAACANdevKsbi4OK6cPdLLrqmMBGaJ0hwIxQJdin/0DrfdIqshhcxd00gBAADSTbcCszPOOEN//vOfFQwyhSgdRacy+kKmgntYI4jOiWbLcm2GHPvYWBqJYRjGrnVmTGcEAABpqltTGQcPHqxQKKSZM2fqe9/7ng444ABZrW2zBK1L1CN1OFsFDs0BU3l2AonuYn1ZchQ7rdraHNSOlqCGJLszAAAAXdCtwGz+/Pmx/7/55pvbbWMYhlatWtWdh0EPsRiGnBZDLSFTzcGQ8tict9uipfJZX9a7SnKsUp20k8qMAAAgTXUrMHv88ccT1Q/0IGMvxRCcNkMtPpN1ZglCqfzkoGQ+AABId90KzI466qhE9QM9xG63y5mTs8fbc6yG6tV7JfNN09xroJjumMqYHKwxAwAA6a5bgVmUz+fTp59+qu3bt+uwww5TSUlJIk6LBLDZbLIYhj7f2SxPO8GXPxQ+9nltSyyo6Cm5NkPDivccJGYCSuUnRzQwq/eH5A+ZslsyN/gHAACZqduB2eOPP657771XDQ0NkqSHH35YEyZM0I4dOzRt2jT94he/0KmnntrtjqJ7PAFTTYG2pcSj4UOTP9Tu7YmV2cGKaZqqi0ylK2IqY69y2Qw5rYZagqZ2tgS1vyshf3MCAADoNd26Un7uued0ww03aPLkybr++utltiq5XlJSoqOPPlrV1dXd7iR6ji2SWQhQLr/bPAFT0aSkm0IqvSquZD7rzAAAQBrq1tXjI488ouOOO0633XabpkyZ0ub2Qw89VF9++WV3HgI9LBaYsS9vt9VGpoK67RZZmUrX66KB2U7WmQEAgDTUrcBs/fr1qqys3OPtRUVFqq2t7c5DoIfZIvEDGbPuq2uJVmQkW5YMJTlkzAAAQPrq1hWk2+3Wzp0793j76tWr1bdv3+48BHqYNZYxIzDrrmjGrJCKjEnBVEYAAJDOuhWYVVZW6umnn1Z9fX2b27788ks988wzmjp1anceAj0sljFjKmO3USo/uYoJzAAAQBrrVumyefPm6fvf/75mzJihKVOmyDAMvfDCC3ruuef02muvqW/fvrr44osT1Vf0AIp/JE5tC6XykymaMfMGTHkDIblsjAMAAEgf3bpy6devn55//nlNnjxZL7/8skzT1J/+9Ce9+eabOumkk/T000+zp1mKo/hH4kQzZoWUyk8Kh9VQfqQa5k6yZgAAIM10e7OfPn366Prrr9f111+vHTt2KBQKqaSkRBYLf61OBxT/SIyQaao+srl0ERmzpClxWtXoD2lHS1AH5dmT3R0AAIAOS+gurGTH0k80YxYyw8GFxaDMe1c0+EMKSbIYimVt0PtKnFZ91ejXDkrmAwCANNOtwOzee+/dZxvDMHTJJZd052HQg2yt4rBASKJuRdfUtVpfRnCbPMWRrQooAAIAANJNjwVmhmHINE0CsxRnGIashhQ0w9MZHSKo6ApK5acG9jIDAADpqluB2eeff97mWCgU0saNG/X73/9ef//737VkyZLuPAR6gc1iKBg0FaQASJdRKj81RCsz7mwJxv4wBAAAkA4SvhjGYrFo4MCBWrBggQYNGqTrrrsu0Q+BBKMASPdRKj81FDmsMiT5Q1Kjn780AACA9NGjV5FHHnmk3nrrrZ58CCTArpL5BGZdFcuYUSo/qawWQ0WsMwMAAGmoRwOzTz75hLL5aSCWMSPB0GV1PjJmqSI6nZHADAAApJNurTF74YUX2j1eX1+vDz/8UK+99ppOO+207jwEekEsY8ZUxi4JhEw1+KN7mJExS7Zip1USJfMBAEB66VZgtnDhwj3eVlxcrPPPP5+KjGmAqYzdE91Y2m6RXDaKTSTbrgIgpIABAED66FZgtnTp0jbHDMOQ2+1Wfn5+d06NXrSr+Edy+5GuWpfKpwpg8lEyHwAApKNuBWb9+/dPVD+QRFYyZt1SFwvMWF+WCqIZs9qWoEKmyYbfAAAgLXAlCdkp/tEtdZEpc1RkTA0FdotshhTSrqIsAAAAqa5bGbNhw4Z1euqWYRj67LPPuvOwSDCKf3RP66mMSD7DMFTstGprc1A7moORYiAAAACprVuB2SWXXKLXX39dq1ev1qRJk1RaWipJqqmp0fLly3XIIYfo+OOPT0hH0XN2TWVMckfSVDQrU8RUxpRRkhMJzFqCGpLszgAAAHRAtwKz/fffX9u3b9eLL76osrKyuNvWrFmjs846S/vvv7++//3vd6uT6Fm7in+QMesKMmaph73MAABAuunWn/irqqp05plntgnKJGnIkCH60Y9+pIceeqg7D4FeEJ3KGDKlEMFZp/iCpryRcpZFTjJmqSIWmLGXGQAASBPdupLctGmTbLY9J91sNps2bdrUnYdAL2i99RbTGTsnmi3LsRpyWgnMUkW0ZP5OMmYAACBNdOtK8pBDDtHvf/97bd68uc1tmzZt0h/+8AeVl5d35yHQCwzDkJXpjF0SLZVfxDTGlBLNmNX7Q/KzDQQAAEgD3Vpjdvnll+u8887TiSeeqOOPP16DBg2SJK1bt05Lly6VaZq65ZZbEtJR9CybxVAwaLKXWSfVRkrlFzKNMaW4bBblWA01B03tbAlqf1e3ftQBAAD0uG5drRxxxBF6+umnddddd+n1119Xc3OzJCknJ0eTJk3SZZddpoqKioR0FD3LZkgtkgLEZZ1Cxix1lTit+q8noB3NBGYAACD1dftqpby8XPfdd59CoZB27NghSSopKZHFQgYhnYQLgJgKkjHrlGip/EJK5aeckpxIYMY6MwAAkAYS9mdki8Uip9Op3NxcgrI0tGuNWXL7kW5qWyiVn6oomQ8AANJJtyOof//735o9e7bGjBmj8ePH64MPPpAk7dixQxdddJHef//9bncSPS9aMp+MWceZprlrc2nWmKWcaGBGZUYAAJAOunU1+dFHH+mHP/yh1q9fr5NPPlmh0K5a6yUlJWpsbNRTTz3V7U6i59nImHWaJ2DKFwlkyZilnmL2MgMAAGmkW4HZHXfcoSFDhqi6ulrz589vc/v48eP1r3/9qzsPgV5ijWTMqMrYcdE9zNx2SyzjiNQRDcy8QVNeNugDAAAprluB2b///W+dcsopcjgcMoy2F6b9+vXTtm3buvMQ6CW2yPgFsyguM7u5Z1t0ilw0AEBqcVgNFdjDP+JYZwYAAFJdt4p/2Gy2uOmLu9u8ebNyc3O78xDoJbZIiJ5NGTPDMPT5zmZ5ujh/c3WdT1J4U+6Ptnq73I9ip0WlbmeX7489K3Fa1eAPaUdzUP3z7MnuDgAAwB51KzAbM2aMXn31VZ199tltbvN4PHr++ed15JFHduch0EuskYxZoJtZpHTjCZhq6uI0twZ/+H42Q10+hyS5bEyD7CklOVatb/RTAAQAAKS8bk1lnDt3rj755BOdf/75WrZsmSTpP//5j5555hmdcsop2rFjhy6++OKEdBQ9K5oxC7IUp8O8kRcrx0ZFxlRVTMl8AACQJrp1RTlmzBgtXrxY69ev14IFCyRJN910k6666iqFQiEtXrxYw4YNS0hH0bNsWZox647myBRIl5WMV6piLzMAAJAuujyV0TRNNTU16bDDDtOrr76qVatWad26dTJNUwMHDtTIkSPbLQiC1LRrjVly+5EuAiEztrWAk8AsZbXey8w0TX4mAQCAlNXlwMzv9+uoo47S/PnzNWfOHA0fPlzDhw9PZN/Qi6JrzExJIdOUhQvYvWqOlK+0W0Sp/BRW6LTIIskfCq8JdLPfHAAASFFdnsrocDi03377yeFwJLI/SJLWSR+yZvvWHHmRcqysL0tlVsNQEdMZAQBAGujWVeV3v/td/elPf5LP50tIZ9avX6+rr75aM2fO1IgRIzRjxow2bWbNmqWKioo2/9asWRPXrqGhQVdccYWOOuoojRs3TnPnztWWLVvanO+jjz7S6aefrtGjR2vKlClavHhxt/e3SkeGYcSCM9aZ7Vs0Y5bDNMaUV+wM/5ijMiMAAEhl3SqXX1FRoaVLl2rGjBn67ne/q/79+ysnJ6dNu29961sdOt+XX36pt956S2PGjFEoFNpjgHTYYYfFio1EDRgwIO77efPmafXq1brmmmvkdDp15513as6cOXruuedks4Wf9vr16zV79mxNnDhR8+bN03/+8x/deuutslqtmj17dof6nElsFkPBoEllxg7wRgIzSt2nvhKnVWvk145mAjMAAJC6uhWY/fSnP439/1133dVuG8MwtGrVqg6db+rUqTr++OMlSQsXLtQnn3zSbju3262xY8fu8TwrV67UO++8o6qqKk2aNEmSVFpaqunTp+u1117T9OnTJUlVVVUqLi7W7bffLofDoQkTJmjHjh164IEHNGvWrKybpmkzpBaRMeuIaEVGMmY9y24xul20oyQncVMZKSACAAB6SqcDs9tvv13Tp0/XsGHD9Pjjjye0MxZLYtbrLFu2TG63WxMnTowdKysr0/Dhw7Vs2bJYYLZs2TKdcMIJcQHY9OnT9eCDD2rlypUaP358QvqTLqwWQ5KpQIjAbF+ag6wx6w02S/iPO5/vbJYn0LX3ZTRT9o0noI+2ervcl1yboWHFbWcEAAAAJEKnA7PFixfrkEMO0bBhw3TUUUdp586dOuaYY/Twww9rwoQJPdHHNj744AONHTtWwWBQY8aM0U9+8hMdeeSRsdtrampUWlra5i/bZWVlqqmpkSR5PB598803Kisra9PGMAzV1NRkXWAWnZUXJC7bq6BpyheZ7pnDVMZe4QmYaupqVRpj1zka/MFuVBwlCAcAAD2nW1MZo3qzWMaRRx6pmTNnavDgwdqyZYuqqqp0zjnn6IknntC4ceMkSfX19SooKGhz38LCwtj0yIaGBknhaZGtORwOuVwu1dXVdbmPpmnK4/F0+f6J4vXuyg4EAgH5/XufymVReBxbAkH5/Ykf04CssX4lu8CKYRhyuVwdel12F83cWA3JDPjl7+bUtmDkUxjsQl/2JOAPxH1Ndn+6KhF9MUxTFkkhSY0t/i5vCJ5K79+9iX7uW3/+kfkY9+zF2Gcvxj49dGYZREICs940d+7cuO//53/+RzNmzND999+vJUuWJKlX8fx+f4fX1fU0l8slSaqtrVWtt2WvbX3KkYwcNTZ5tK2pOeF9Cbic0oEFWrt2bdJ/iLhcLo0YMaJDr8vummSTjHxZQwFt317b/b4U50t989TQ2KhtDU3dPl9rtXW1KdWfZPXFpnz5DJu27KxTnjofrEqp9f7tiHXr1iW7C0gCxj17MfbZi7FPfR2tW5F2gdnucnNzdeyxx+rVV1+NHXO73dq0aVObtnV1dSosLJSkWEYtmjmL8vl88nq9sXZdYbfbNXTo0C7fP1G8Xq82b94sSSoqKpItb+8ZhxZPSPXekBw5Lu2Xn5/w/uTbwxmH0tLSpGccon+56Mjrsju/NyR5Qsp32rVfwX7d7kuByx7+mp8vOV3dPp8UzpTV1tWqqLBINnvnPuY90Z+uSlRfahuC2uEz5chzaz9X16YkptL7d2+8Xq/WrVunwYMHx/4wg8zHuGcvxj57MfbpYfXq1R1u26XAbOPGjfr0008l7Qps1q9f32ZaYNShhx7alYfpsrKyMq1YsaJN6nDt2rUqLy+XFA7oDjzwwNias9ZtTNNss/asMwzDUG5ubpfv3xNsNpvs+1gj47AFJIUUMiyy2+090Ifw46fSD4+OvC6783vD+/bl2q0JeZ2sNmvka+f7si82u63TfezJ/nRWovqS75B2+AJqCRldHrNUfP/ujcvlSrmfQ+h5jHv2YuyzF2Of2jpTzblLgdldd93Vpjz+tdde26ZdNDDqyWl9Ho9Hf/vb3zRq1KjYscrKSt1///1asWKFjjnmGEnhgOuzzz7TeeedF9du6dKl+sUvfhG7WKuurpbb7Y6tV8smketOqjLuA6Xy048r8ub2dLWACAAAQA/rdGB244039kQ/JIVTsm+99ZakcFausbFRr7zyiiTpqKOOUk1NjR566CGdcMIJ6t+/v7Zs2aJHHnlEW7dujQsUx40bp0mTJumKK67QggUL5HQ6dccdd6iioiJus+vZs2frxRdf1M9+9jP94Ac/0BdffKGqqirNnz8/6/YwkyRrJKIPpvA0rVTQHClbSUXG9JEbGStP0GQvMgAAkJI6HZh997vf7Yl+SJK2b9+un/zkJ3HHot8//vjjOuCAA+T3+3XHHXeotrZWLpdL48aN07XXXqvRo0fH3e/OO+/UjTfeqKuvvlqBQECTJk3SlVdeKZtt11MeNGiQqqqqdNNNN+n8889XSUmJ5s6dq3PPPbfHnmMq25UxS24/UlnINHcFZuxhljZcVkOGpJAptQRNgmoAAJByUqr4x4ABA/Sf//xnr22qqqo6dK6CggLdcMMNuuGGG/ba7rDDDtPTTz/d4T5mMlskixAgY7ZHLZGgzCLJQVyWNgzDkMtmyBMw5QmYykmpn3wAAADsmIpWokumgmTM9qj1NEamw6WX3Og6M97gAAAgBRGYIcZmCQcaIYWn7KGtXdMYCcrSTXSdmbcHNk8HAADoLgIzxLSONVhn1j5v5IVhfVn6cZExAwAAKYyrS8QYhrFrOiMZs3Z5I6XyXRSPSDuxyowBM6U3iAYAANmJwAxxYgVASCq0yxskMEtXObtVZgQAAEglBGaIEyuZT0ahjZBpxi7oXUxlTDuWSGVGKbyfGQAAQCrh6hJxYptMh7hw3V10GqPVkOx8ctJSrDIjKWEAAJBiuLxEnF0Zs+T2IxW1nsZIqfz05KIyIwAASFEEZoiza40ZF667a45kWZjGmL7YywwAAKQqrjARJxpzsASnLSoypj8qMwIAgFRFYIY4ZMz2zBvJskT3w0L6iavMyHscAACkEK4wEcdmiQRmXLPGMU1zV8bMSsYsXcVVZuRNDgAAUgiBGeLENpgmmxAnYO4KVnOYypjWqMwIAABSEYEZ4pAxa583chHvtBixLQWQnmKVGXmTAwCAFEJghjjRjBlrzOJR+CNzkDEDAACpiMAMcXZlzAjMWmu9hxnSG5UZAQBAKiIwQxxbbI1ZcvuRarzsYZYxXFZDFoUrMzazLwQAAEgRXGUiTjRjFpIUIpsQE53KSOGP9GcYhnLt4XFs8vMXCAAAkBoIzBCndSV4kglhpmnGMitMZcwMeZF1Zk0UAAEAACmCwAxxDMOgAMhumoOmTIU/LE4LgVkmyLNHAjMyZgAAIEUQmKENm0HJ/NZaT2M0KJWfEfIjGbNGKjMCAIAUQWCGNqL1LdhkOswbqYTisvFxyRTRyoz+kORjzi4AAEgBXGmiDTJm8WJ7mFnJlmUKq8WIjWcTWTMAAJACCMzQRjQxxBqzMDaXzkysMwMAAKmEwAxtWA02mW4tNpWRPcwySp4tmjHjfQ4AAJKPK020YYutMUtuP1JBIGQqmlAhY5ZZyJgBAIBUQmCGNsiY7eKJrD9yWHZtvo3MEN3LzBs0FeS9DgAAkozADG3sWmOW3H6kAk9kmlsuFRkzjsNqKJI0k8dPYAYAAJKLq020Ea3KSBZhV8aMwCwzRbNmVGYEAADJxtUm2ohO2eNatXXGjGmMmYh1ZgAAIFUQmKGN6HZdlMsnY5bpqMwIAABSBVebaMNuofiHJPlbVWQkY5aZYhmzQEhmlr/fAQBAchGYoY3WUxmz+WI1mi1zWgxZqciYkVxWQxZJIVNqDmbvex0AACQfgRnaiM7aMyVl87VqbH2ZnaAsUxmGERvfRtaZAQCAJCIwQxtWw4i9MbJ5nRnry7LDrsqM2fteBwAAyccVJ9oVjUWyeXun6N5WrC/LbAWRdWYNPjJmAAAgeQjM0K5d68yyMzIzTZOMWZYocITHt5ECIAAAIIm44kS7sj0w84ek6Mw2FxmzjOayGrIa4QIgTGcEAADJQmCGdtlje5kltx/JEs2W5VgNWQ0Cs0xmGIbyI9MZKQACAACShcAM7YpmzPxZOrUrVpGRbFlWiK0zIzADAABJQmCGdtmzfCoj68uyC4EZAABINq460a5oPJK9UxnJmGWT6FRGb8DM2j9GAACA5CIwQ7tsRvZmzKjImH0cVkNOKxtNAwCA5OGqE+3K5jVmvpAUpCJj1mE6IwAASCYCM7TLnsVTGaPZMpfVkIWKjFmDyowAACCZCMzQrljGLAunMu6axkhQlk0KIntENPjZaBoAAPQ+AjO0K7rGLGgq6y5Sm/zRwh98PLJJnt0iQ+HNxVuC2fWeBwAAyceVJ9rVOiYJZNk1alMkY5Zn5+ORTayGoTzbrqwZAABAb+LKE+2yGIYiReqyajpjyDRjpfLz7UxlzDb5DtaZAQCA5CAwwx7ZsnCT6aZIUGYzJIeFwCzb7KrMmD3veQAAkBoIzLBH0doX2VSZsSmSKcm3W2RQkTHrRAOzJn9IoSxbWwkAAJIrpQKz9evX6+qrr9bMmTM1YsQIzZgxo912zzzzjE488USNGjVKJ598st588802bRoaGnTFFVfoqKOO0rhx4zR37lxt2bKlTbuPPvpIp59+ukaPHq0pU6Zo8eLFWVfsYk/s0YxZFr0e0cCM9WXZKcdqyG6RQmI6IwAA6F0pdfX55Zdf6q233tKgQYM0ZMiQdtu89NJLuuqqqzRt2jQtWbJEY8eO1aWXXqp//vOfce3mzZun5cuX65prrtGtt96qtWvXas6cOQoEArE269ev1+zZs9W3b189+OCDOuuss3T33Xfr4Ycf7smnmTaysWR+Y7TwB6Xys5JhGHI7rJKkOh+BGQAA6D22ZHegtalTp+r444+XJC1cuFCffPJJmzZ33323TjrpJM2bN0+SdPTRR+uLL77QfffdpyVLlkiSVq5cqXfeeUdVVVWaNGmSJKm0tFTTp0/Xa6+9punTp0uSqqqqVFxcrNtvv10Oh0MTJkzQjh079MADD2jWrFlyOBy98KxTV7ZtMm2apjz+aOGPlPqbBXpRocOi7c1B1flCGpjszgAAgKyRUlefFsveu7NhwwatW7dO06ZNizs+ffp0rVixQj6fT5K0bNkyud1uTZw4MdamrKxMw4cP17Jly2LHli1bpuOOOy4uAJs+fbrq6+u1cuXKRDyltBbdyyxbin94A6ZCkixGeEobslNhpDJjg491ZgAAoPekVGC2LzU1NZLC2a/WhgwZIr/frw0bNsTalZaWtineUFZWFjuHx+PRN998o7KysjZtDMOItctmsamMWXJtumsaI4U/spmLdWYAACAJUmoq477U1dVJktxud9zx6PfR2+vr61VQUNDm/oWFhbHpkQ0NDe2ey+FwyOVyxc7VFaZpyuPxdPn+ieL1emP/HwgE5PcHO3V/wwxflPqDIfn9/m73JyBrrF/JLrBiGIZcLlfc61LfEv6aazUT8nw7Khj5FAa7MEZ7EvAH4r4muz9dlay+FNgM7fCZ2uENyGWEPwep9P7dm+jnvvXnH5mPcc9ejH32YuzTg2maHf6Df1oFZunC7/dr1apVye6GJMnlckmSamtrVett6dR9PbJJRr6afX5t27az230JuJzSgQVau3Zt0n+IuFwujRgxIu51qVOeZNgV8jZpm9fXe30pzpf65qmhsVHbGpoSeu7autqU6k+69MUih2TkaoenRU5P+HFT6f3bEevWrUt2F5AEjHv2YuyzF2Of+jpatyKtArPCwkJJ4WxX3759Y8fr6+vjbne73dq0aVOb+9fV1cXaRDNq0cxZlM/nk9frjbXrCrvdrqFDh3b5/oni9Xq1efNmSVJRUZFseZ3LODT6TW2qD0pWm/Yr3q/b/cm3hzMOpaWlSc84RP9yEX1dTNPU+p1ByZT2Lyro1aqMBS57+Gt+vuR0JeScAX9AtXW1Kiosks3euY95T/Snq5LVl7yAqW11QbUYdpWU9JHFMFLq/bs3Xq9X69at0+DBg2N/mEHmY9yzF2OfvRj79LB69eoOt02rwCy6HqympiZubVhNTY3sdrsGDhwYa7dixYo2qcO1a9eqvLxckpSbm6sDDzywzVqytWvXyjTNNmvPOsMwDOXm5nb5/j3BZrPJ3sklhTlGSFJQATMcbHa/D+HHT6UfHtHXpTkQUtAMypDkzrHL0otrzKw2a+Rr58doX2x2W6fHrif701nJ6ovNZsreEJQ/JLXIKrfdmpLv371xuVwp93MIPY9xz16MffZi7FNbZ+oWpFXxj4EDB2rw4MF65ZVX4o5XV1drwoQJsTRhZWWl6urqtGLFilibtWvX6rPPPlNlZWXsWGVlpZYuXRq3nqi6ulput1vjxo3r4WeT+qIbTIdMZXx1usZA+Pnl2oxeDcqQmtjPDAAA9LaUyph5vV699dZbkqSNGzeqsbExFoQdddRRKikp0WWXXaaf//znOvjggzV+/HhVV1fr448/1m9/+9vYecaNG6dJkybpiiuu0IIFC+R0OnXHHXeooqJC3/rWt2LtZs+erRdffFE/+9nP9IMf/EBffPGFqqqqNH/+/Kzfw0ySWleM94ckpzV5felpTZHqe3nsX4YI9jMDAAC9KaUCs+3bt+snP/lJ3LHo948//rjGjx+vGTNmyOv1asmSJVq8eLFKS0t17733tslw3Xnnnbrxxht19dVXKxAIaNKkSbryyitls+16yoMGDVJVVZVuuukmnX/++SopKdHcuXN17rnn9vyTTQOGYchmSAEzvJeZM4P39ooGZmwsjSj2MwMAAL0ppQKzAQMG6D//+c8+25122mk67bTT9tqmoKBAN9xwg2644Ya9tjvssMP09NNPd6qf2cRmMRQImgpk+IXprj3MMjf4ROdE9zPzh8L7mRXYMzhlDAAAko70APYqus4skMHLbFqCpqL7COfZ+EggrPU6s1rWmQEAgB7GVSj2Khqn+EOZmzFriERluTZDVgsZM+xSFJnOWNtCYAYAAHoWgRn2ym5EM2YZHJhFsiEFrC/DboojFW8a/CH5gpn7GQAAAMnHlSj2KpoxC2TwNWk0Y+Z28HFAPKfVUG5k3eH2ls5t0A4AANAZXIlir2yRqX2ZOpUxZJpq9JMxw55Fs2bbmgNJ7gkAAMhkXIlir2yWzJ7KWO8LyZRkM6ScDN4OAF1X7Az/mNzWHKRsPgAA6DEEZtgreyRWydSqjHXR9WUOiwyDwAxtue0WWY1w2fxvPGTNAABAzyAww17FpjJmaKag1hdeN8Q0RuyJYRgqikxnXFPvS3JvAABApuJqFHuV6VMZa6nIiA4oiUxnrKnzJ7knAAAgU3E1ir2KxiuBkGRmWNas3hdUS6QEOoEZ9qYostH0Jm8gViwGAAAgkbgaxV7ZIuuuTEmZto3Tf5vC64Xy2Fga++CwGnJHgvcapjMCAIAeQGCGvbIYUjRkybTpjBubwtPSCti/DB2wX044a0ZgBgAAegJXpNgrwzAydpPpjZGMGdMY0RHRwGxtvV/BDJvWCwAAko8rUuyTPQMLgARCpjZ7CczQcYUOi3JthlpCptY3UAQEAAAkFlek2KfoOjN/BgVmm70BBc1wcRM2lkZHGIahiiKnJOnznS1J7g0AAMg0BGbYJ0ckcPFlUGAWncZY5LCysTQ6rKLIIUn6os7HdEYAAJBQBGbYJ0dkKmNkL+aM8HVjeCpaEYU/0AkH59uVazPUHGQ6IwAASCyuSrFPkS2cMiZjFjJNrY8EZsVOa5J7g3RiaT2dsZbpjAAAIHEIzLBPuzJmmRGYbfYG1BI05bQYcpMxQyfFpjPWMp0RAAAkDlel2Cdnhq0xi05BG1hgl4X1ZegkpjMCAICeQGCGfYpmzFqCpswMyBCsi1xMD863J7knSEcWw1B5IdMZAQBAYhGYYZ+iVRlNpf8m04GQGSv8MaiAwAxdM6yY6YwAACCxCMywTxbDkC0y4y/d15ltbPIrYEp5NkP75VD4A13TejrjV0xnBAAACUBghg7JlL3MomuCBhU42L8MXdZ6OuNnbDYNAAASgMAMHZIplRnXM40RCXJoya51Zun+uQAAAMlHYIYOyYSMWUswpP82BSRJgwnM0E0D8mwqdlrkD1EEBAAAdB+BGTqkdWXGdLWhMSBTUpHDokIH68vQPYZhaFRJjiTp3zuak9wbAACQ7gjM0CGZsJfZugafJGlwgSPJPUGmGFnilKFw0L+zJZjs7gAAgDRGYIYOyYQ1ZrsKfzCNEYnhdlhVGnk//Xs7WTMAANB1BGbokHRfY9bkD2lrczijMYiNpZFAo/pEpzO2KMSeZgAAoIsIzNAh0YyZP6S0vPhcXR+extjPZVWunbc9EueQQodyrIYa/CGtY08zAADQRVyhokPsFim665c/DbNmX9aGA7PyImeSe4JMY7MYGlEcfl8xnREAAHQVgRk6xDAM2WPrzJLcmU7yBc1Y4Y9DCin8gcQbHZnO+EWdT95AKMm9AQAA6YjADB3mjFSYb0mzjNnaBp8CplTosKhvDmXykXgH5NrUz2VV0JT+RdYMAAB0AYEZOixdKzN+WReZxljokGEY+2gNdM3hfV2SpI+2NqflOkwAAJBcBGbosHSszBgyTa2ui05jZH0Zes6IYqdybYbq/SF9EVnTCAAA0FEEZuiwdMyYbWj0qzloymU1NCDfluzuIIPZLIbGRtaafbjVm+TeAACAdENghg5Lx4xZdBrj0EKHLExjRA8b1zdHFklfNwW0yRNIdncAAEAaITBDh6Vbxsw0TX1RRzVG9J4Cu1XDIqXzyZoBAIDOIDBDh6VbxmyLN6h6X0g2Qyp1E5ihdxzRNzydcdXOFjX5KZ0PAAA6hsAMHRbNmAVNKZAGwVl0GmOp2xHbgw3oaQfl2XVQrk1BU1q5jdL5AACgYwjM0GE2i6FI0izls2amaWrVzhZJTGNE7zti/3Dp/H9s9abN1F8AAJBcBGbolHRZZ/aNJ6DtLUHZDKmiiMAMvWtYkUNFDou8QVP/ZMNpAADQAQRm6JR0WWf28fZwtqyiyCmnlbc5epfFMDShX64k6YPN3rSY+gsAAJKLK1Z0SjpkzPwhU6tqw4HZqD5sKo3kGFniVIHdosZASP/eQdYMAADsHYEZOiUdMmZf1vrUEjTltls0KN+e7O4gS1kthsb3C681W7HZq6CZup8ZAACQfARm6BRnGmTMotmJkX2cMthUGkk0pk+Ocm2G6n0hfbajJdndAQAAKYzADJ0SzZi1pGjGrN4X1NoGvyRpVElOknuDbGe3GDpq/11ZsxBZMwAAsAcEZuiU6BqzlhTNmH0SyUoMzLep2GlNcm8Aadx+OcqxGtrREoxt4QAAALA7AjN0issWDsz8oXCRjVRimmZsGiPZMqQKp9USy5q9/Y2HtWYAAKBdBGboFJvFiK0z8wRCSe5NvA2NAe1sCclukYYVUY0RqeOIvi7l2gzV+kL693ayZgAAoK20C8yef/55VVRUtPl36623xrV75plndOKJJ2rUqFE6+eST9eabb7Y5V0NDg6644godddRRGjdunObOnastW7b01lNJW7n2cGDW5E+tv/y/v8UjSTq0OCe2Fg5IBQ6roWMi+5ot3+RJuWwzAABIPluyO9BVDz30kAoKCmLf9+vXL/b/L730kq666ipdeOGFOvroo1VdXa1LL71Uv/vd7zR27NhYu3nz5mn16tW65ppr5HQ6deedd2rOnDl67rnnZLOl7UvT4/JsFu1sCaVUxmyLN6A19X4ZUqxEOZBKxu6Xow+2eFXvD2nltubY9EYAAAApjQOzQw89VCUlJe3edvfdd+ukk07SvHnzJElHH320vvjiC913331asmSJJGnlypV65513VFVVpUmTJkmSSktLNX36dL322muaPn16rzyPdJQXWWfWlEKB2fubvZKkiiIHRT+QkmwWQxMPzNXLXzVqxWaPxvRxymlNu0kLAACgh2TcVcGGDRu0bt06TZs2Le749OnTtWLFCvl8PknSsmXL5Ha7NXHixFibsrIyDR8+XMuWLevVPqebXHv4beMJmDJToJBBbUtQn0Wq3R0dmS4GJJrdYnT7/T6qxKkSp1XegKm/b2nu1rlS4bMHAAASJ20zZjNmzNDOnTt10EEH6fvf/77OO+88Wa1W1dTUSApnv1obMmSI/H6/NmzYoCFDhqimpkalpaVtNiAuKyuLnQPtc1kNGZJCptQcNGOVGpPl71u9MiUNyrfrgNy0fUsjxdkskmEY+nxnszyBrgdFA/Js2tES1IrNHlkNydmF9ZC5NkPDiqk8CgBAJkm7q9i+ffvqsssu05gxY2QYht544w3deeed2rx5s66++mrV1dVJktxud9z9ot9Hb6+vr49boxZVWFioTz75pFt9NE1THo+nW+dIBK/XG/v/QCAgvz+YsHO7rJInKNU3+2VzdizxGpA11q9E/bXfGzD1r23hzMO4IkuHX3fDMORyuRL+unRFMPIpDCawLwF/IO5rsvvTVanYl4Zmvxq60RenTOVZpaagtGqHV4PzOz/1NmC3Sspp97MU/dy3/vwj8zHu2Yuxz16MfXowTbNNImhP0i4wmzx5siZPnhz7ftKkSXI6nXrsscd04YUXJrFnu/j9fq1atSrZ3ZAkuVzhAgO1tbWq9SauTLdFLslwantDk0INHTtvwOWUDizQ2rVrE/ZDZI1RqIBRpAKzRY1frVdHX3WXy6URI0Yk/HXpCldxvtQ3Tw2NjdrW0JTQc9fW1aZUf+hLmFtWNRkF2tIckqO5Tg51br1mRz5L69at61YfkZ4Y9+zF2Gcvxj71ORyODrVLu8CsPdOmTdPDDz+sVatWqbCwUFK4FH7fvn1jberr6yUpdrvb7damTZvanKuuri7WpqvsdruGDh3arXMkgtfr1ebNmyVJRUVFsuUlLuMQ8IbU6AlJzlzt107msT359nBmoLS0NCEZs6aAqb/VeCVTmnhQgcrdxR2+b/QvF4l+XbqiwGUPf83Pl5yJqdQX8AdUW1erosIi2eyd+5j3RH+6KpP74q0PqtYvNdkLdZC7c1mzvX2WvF6v1q1bp8GDB8f+MIPMx7hnL8Y+ezH26WH16tUdbpsRgVlrZWVlkqSamprY/0e/t9vtGjhwYKzdihUr2qQX165dq/Ly8m71wTAM5eamVhEKm80mewJrvRSEgpLHJ28wHIh2rA/hx0/UD4831jfIb0oH5to0pl9Bh9PE8X1K7OvSFVabNfI18X2x2W0dHp/e6E9nZXJfSgutWrmtRTv9pjymRYWOjgdnHfksuVyulPs5hJ7HuGcvxj57MfaprTPXpxlRlbG6ulpWq1UjRozQwIEDNXjwYL3yyitt2kyYMCGWSqysrFRdXZ1WrFgRa7N27Vp99tlnqqys7NX+p6PcyIVhc9BUMAmb5W5s8uuTHeEpiCcMyOtSUAYkU67Non6ucDC2rsFPlUUAALJc2mXMZs+erfHjx6uiokKStHTpUj399NP68Y9/HJu6eNlll+nnP/+5Dj74YI0fP17V1dX6+OOP9dvf/jZ2nnHjxmnSpEm64oortGDBAjmdTt1xxx2qqKjQt771raQ8t3TisBqyWyR/KFw2v8DRe4GRaZr669fhNT6jSpw6KK9zGSEgVRycb9fW5qAa/aa2Nwe1nyvtfiQDAIAESburgNLSUj333HPatGmTQqGQBg8erCuuuEKzZs2KtZkxY4a8Xq+WLFmixYsXq7S0VPfee6/GjRsXd64777xTN954o66++moFAgFNmjRJV155pWy2tHtZkiLPZlGtL6SmQEgFjt5Lvn68o0WbPAE5LYb+56C8XntcINEcVkP982za0BjQ+saASnKsspD9BQAgK6VdBHLllVd2qN1pp52m0047ba9tCgoKdMMNN+iGG25IRNeyTm4kMPMEOldRrjuaAyG99d9wtmzigbnKs2fEbFxksf65Nm3yBNQcNLXJE9RBeWn3YxkAACQAV7Xosjx7+C/7Tf7eWRtjmqZe3tAoT8BUH6dVh/dlg12kP6vF0MH54em4Gxr9CiRhzSYAAEg+AjN0WbQAiCcQ6lDhArvF6FaBg39sa9Z/an2yGNJJg/JlZcoXMkQ/l1Uum6GAKX3d1PlNwQEAQPpjzgy6LNcWDowCpuQLSc59VPu2WcIlQz/f2SxPoHMBWp0vqA+2NEuSDnE7tMkT0CZP1y9gi50WlbqdXb4/kEiGYWhwvl2ran36b1NAB+RalWPl72YAAGQTAjN0mcUw5LIZ8gZMeQIhOa0d24fJEzDV1Il1aYGQqX9ub5EpqcRpUZ8cS6fu3x6XjWwbUkux06JCh0V1vpC+agiovMiR7C4BAIBexJ9k0S35kemMtS3BHjl/yDT1RZ1PLUFTTquhQwod7FmGjGQYhgYXhNeahUvo915RHQAAkHwEZuiW/XLCWbKtzUGFErxBrmma+rLOr50tIRmSKoocslkIypC58u2W2GeKTacBAMguBGbolmKnJbbR9M6WxP2F3zRNra73a1tzUIakYUUOFVAaH1lgUL5NhqQ6X0g7fWTNAADIFlzpolsMw9D+rvBSxc3exFSTM01TNQ1+bfGGp0eWFzlUktOx9WtAusuxWXRgbvgztZ6sGQAAWYPADN3WzxUOmna2hNQS7N5FZCgyfXGTJxyUHVJoj03tArLFwHybbEa4UM5mb8+s3wQAAKmFwAzd5rJZ5I5MM9zSjayZL2jqkx0+bW0OX4gOddtj2Tggm9gshgZENp3+qtGvIJtOAwCQ8QjMkBD7R7JmW7zBLk29avKH9PH2FjX4Q7Ia0qHFDvXLJShD9jow1yqn1ZA/JG1k02kAADIegRkSYr8cqyyG1Bw0Vd+JMt+maeq/TQF9vL1FLSFTOVZDo/s4VbSv3aqBDGcxDA3OD/9xYqMn0O1pwgAAILURmCEhrBZDfSNrwTZ7OrYmpiUY0qc7fVrb4FdIUpHDotF9nMq18bYEJKlPjlUFdotCpvRVgz/Z3QEAAD2IK2AkTHQ649bm4F6ryQVCpr5u9GvlthbV+UKyGFKZ264RxQ7Z2acMiDEMQ6WRTae3sOk0AAAZjcAMCVNgt+igyLqwr5sC+mynT4FWRQsCIVMfbPHqnU0erW8MKGhKBXZDY/s4dWCuTYZBUAbsrsCxa9PptfWUzwcAIFNRXQEJYxiGSt125dkNranzq9YX0sptLXJYpJaQqdZ/7M+xGhqYb1PfHCsBGbAPgwts2tEcVL0/pB0tIeXbWYMJAECmITBDwu3vsinXZtHntT61BE35WgVkhQ6LBuTZ5HZYZCEgAzrEabXooDybvm4KaF2DX/3z+NENAECm4bc7ekS+3aKxfZza2RKUxTDktBo6MNemMX1ytHJbs5oCrJUBOqN/nk2bvQE1B02tb/DryP2T3SMAAJBIrDFDj7FZDPV12dQnx6p8u0VOq8G0RaCLbJZdhUBqGvyq83Ws+ikAAEgPBGYAkCb2y7HKHSmf/8bGpmR3BwAAJBCBGQCkCcMwVOa2y5D0n1qf1tb7kt0lAACQIARmAJBG8uwWDcwPLw/+69dNCoYonw8AQCYgMAOANDPE7VCezdCOlqDe2+JNdncAAEACEJgBQJqxWwxN7Z8nSVq+yaMt3kCSewQAALqLwAwA0tCIYqeGFjoUMqWX1jcoaDKlEQCAdEZgBgBpyDAMfXtgvnKshjZ7g3pvM1MaAQBIZwRmAJCm8u0WnTCAKY0AAGQCAjMASGMjip06JDKl8S/rGxSgSiMAAGmJwAwA0lh0SqPLZmiLN6g3NvtEaAYAQPohMAOANJdnt2jm4AIZkj6vD2qDCpLdJQAA0EkEZgCQAQYXOGIl9L8wirXBE0xyjwAAQGcQmAFAhjiib44q3FaZhqGX/9ui2haCMwAA0gWBGQBkCMMwdFw/hwrMFjUHpd+vriM4AwAgTRCYAUAGsVkMjTW3qshuqN4X0m+/rNP2ZsroAwCQ6gjMACDD5Cio7x2co/1yrGr0h/S7L+vY4wwAgBRHYAYAGSjPZuiHQwu1v8sqT8DU776s02c7W5LdLQAAsAcEZgCQoXLtFv1waKH659nUEjT153UN+vO6BjUHQsnuGgAA2A2BGQBksBybRT88pFDHHOCSIemznS2q+rxWn+9skWmyFTUAAKnCluwOAAB6ltUwVHlgnoa4HXpxXYNqfSG9sK5B++VYdcwBuRpW5JDFMJLdTQAAshoZMwDIIIZhyOVyyWgn0OqfZ9e5w4p1zAEuOa2GtjUH9ed1DVr82U69841HOymtDwBA0pAxA4A0Y7cYMk2z3eDL5XJpxIgRe7yvwxrOnh3V16V/bGvW37d4VesL6Z1NHr2zyaMDc20qL3SozO3Q/i5ru4+xuz31BQAAdByBGQCkGZslnBn7fGezPIH4dWKBQEC1tbUqKiqSzbb3H/Euq6Fj+rm0xRvQN56gtrcE9Y0noG88Ab31jUdOi6E+OVYVOy0qdlrlshptArBcm6FhxTkJf44AAGQbAjMASFOegKmm3Sos+v1B1XpbZMsLyt7B2eqFTqsKnVb5gqa2twS1syWoOl9ILSFT//UE9F9PuJ3DIrkdVrkdFhU6LHJZDUnWBD8rAACyE4EZAEBSeJrjgbk2HZhrU8g0Ve8LqdYXUr0vpEZ/SL6QtK05qG3N4bVoNkMqdlrlD5kamG9Xv1ybrExpBACgSwjMAABtWAxDRU6ripzhjFjQNNXgC6neHw7UGnwhBUxpa3NQb0ZSanaLdFCuXQPybRqYZ9dBeXY5rARqAAB0BIEZAGCfrLsFaiHTVKM/pOagKdM09HWTX81BU+sb/Vrf6JfklSGpX65NA/NsGpBv14A8u/LsFAMGAKA9BGYAgE6zGIbcDqsOtFl0WF+XTNPUtuagvm7y6+vGgDY0+lXvD2mTJ6BNnoD+vrVZklTitGpAvk398+w6KNem/XI6VvkRAIBMR2AGAOg2wzDU12VTX5dN4/YLH6vzBfV1o19fNwX0daNfW5uD2tES/vfx9hZJktNi6MA8mw7KtemgPLsOyrMp10ZWDQCQfQjMAABdtrc91QodVhWWWHVoSfh7byCkjZEg7b+egL7x+NUSMrWuwa91DeHpj5KUZzNUkmNVH6dNxU6LChxWFdgtKrBblGe3yG7Ze4aNfdUAAOmIwAwA0GV721NtT9wOi9wOh8oL7Wryhys/1vlCqvMF1RQww/8aA9rQGGj3/hZJdqshh8WQ3RIODu2W8Pd5dkODChzKtYXL+btsFrls4dsI1gAAqYzADADQbe3tqdYRFks4O1aSY5VkVyBkyhs05Q2E5A2Yag6a8gVN+UKmWoKmTEkhSS3B8Pft+fcOX9vHMRQL1HJtllgGrsDR+qtVeTYCOABAchCYSVqzZo2uu+46rVy5Unl5eZo5c6bmzZsnh8OR7K4BQFaxWQwVWAwVtFO90TRNBU0pEDLlj34NmQqEosdMyZScVou8wXBg5w2Ey/qHTEWycUFJwT0+vkVSvsMidyRwy7Vb5LJalGMzlGMNZ+ZshhHOFMpQyDQVUng7gVDkcUKRfobM8PGgKQVD0WPh4NJmMWQ1JJthKMdmKDcSMObZDOXbLQSHAJCFsj4wq6ur01lnnaXBgwfrnnvu0ebNm3XTTTepublZV199dbK7BwCIMAxDNiMc1OTsoU1epEpka/7QrgycNxBSUyC8YXa9P7wfW4M//K/RH1JIUn1kU+1kiW7cHf1XEv2aQ0YPADJZ1gdmTz75pJqamnTvvfeqqKhIkhQMBnXttdfqggsuUL9+/ZLbQQBAh7VXjMRuMWR3WOXexySIoGmqKRKkRTfTjgV0wZCaA6YCpqlAaFdGzGqEp0lajHAGzDDCe75ZWn217fa9YUjBkGLnag6a8gRC4emg/l0bd29tbpvZc1gMFTst6pMTLoxS4rSqT45NOSHJ5XIlPGgLmbsykiGFg0arJRwgEyACQGJlfWC2bNkyTZgwIRaUSdK0adP061//WsuXL9cpp5ySvM4BADqlK8VI9nguQ5G1aJJk7fT93XZDQwqdnQpggqapupaQdka2FdjZ6l+dLyRfyNRmb1CbvW2DNrtlf+XVeJVvb5EzUhzFFimMIoWngpoyFIwEhNHpoIHodFAzOjU0/L0/Mj1zT6JBp80S/uqIPGbrr9F+tD7utLZqYzFktewKXKOBbjSItRD8AcgiWR+Y1dTU6Hvf+17cMbfbrb59+6qmpiZJvQIAdEdXi5Ekkstm7VaQaDWk/XKs2i8nHBSGTFOeQDi71hQIyeMPP0dPICRfSPKHpFpfuMplTzAktX4WIVPymabCD2dK/p55TGskQAsHbK3/Pxq87cpYWgzJImOf94mu8bNGAsvWX62xrKARyxBaWwWJZutXwYz7EvfamIqsKTTDBWvCXyPft7492r717ZH2pqIBdavvY/8fbusPBLTTvp92bPXLamva1T7uHLv6bTGMNq9r69ew9WsQXQcZfc2iwXjr262GoWj83DqMNiL/MSJHjd2OtznW6iU1I/8T+3/ter6xNrsNw67bzPbv33bYYu2jbXe/zdjb8zDaPqdwe6PN7W3a73a++Pvv2e7vM2/QlE8WeQOmFAjFNWjvJ077x9q/U0fvL8W/tu3e3on7mO20Nnf7pvX7O3p763GM3lboDBd1SidZH5jV19fL7Xa3OV5YWKi6urpOn8/v98s0TX388ceJ6F63mKapYDCof//731LIlKt7fzzutmZD+vfXBn3phb64TFP5CsmyvUnq5F+cM/21yfS+dGfsE92XZEil/kT74g/tPfPUGbmRf/vtdtyUqVBkCmd7F6JG5MI71Opg/EWj0eb47heVscfa4wVu+Mb4i2nt8aLXNNu5fy8zFY4neyCm7BWGJIekfpK0rbZb5wpF/qXra5G9LPrsy9XJ7kRKMiQV2I29Bru9we/3d3jmRNYHZokWfeFTYe69YRiyWMKVzfa1IWtvoi/tS2xfDIXry3Vd5r423ZP6fen+2HdFKr0uUmr1p3f60tHH6Om+pM7rDgCpwDA6XrQp6wMzt9uthoaGNsfr6upUWFjY6fONGzcuEd0CAAAAkEV6/8+qKaasrKzNWrKGhgZt3bpVZWVlSeoVAAAAgGyS9YFZZWWl3n33XdXX18eOvfLKK7JYLJo4cWISewYAAAAgWximua9aKpmtrq5OJ510kkpLS3XBBRfENpj+3//9XzaYBgAAANArsj4wk6Q1a9boN7/5jVauXKm8vDzNnDlT8+fPl8Oxj91IAQAAACABCMwAAAAAIMmyfo0ZAAAAACQbgRkAAAAAJBmBGQAAAAAkGYEZAAAAACQZgRkAAAAAJBmBGQAAAAAkGYEZAAAAACQZgVkGWrNmjc455xyNHTtWEydO1C233CKfz5fsbqGD1q9fr6uvvlozZ87UiBEjNGPGjHbbPfPMMzrxxBM1atQonXzyyXrzzTfbtGloaNAVV1yho446SuPGjdPcuXO1ZcuWNu0++ugjnX766Ro9erSmTJmixYsXiy0Oe9fLL7+siy66SJWVlRo7dqxmzpypZ599ts04MO6Z56233tKZZ56po48+WiNHjtRxxx2nG2+8UQ0NDXHt3njjDZ188skaNWqUTjzxRD333HNtzuXz+XTzzTdr4sSJGjt2rM455xzV1NS0acfvidTU1NSkyspKVVRU6N///nfcbXz2M8vzzz+vioqKNv9uvfXWuHaMe3YhMMswdXV1Ouuss+T3+3XPPfdo/vz5evrpp3XTTTclu2vooC+//FJvvfWWBg0apCFDhrTb5qWXXtJVV12ladOmacmSJRo7dqwuvfRS/fOf/4xrN2/ePC1fvlzXXHONbr31Vq1du1Zz5sxRIBCItVm/fr1mz56tvn376sEHH9RZZ52lu+++Ww8//HBPPk3s5tFHH5XL5dLChQu1aNEiVVZW6qqrrtJ9990Xa8O4Z6ba2lqNHj1a1157raqqqnTOOefohRde0E9+8pNYmw8//FCXXnqpxo4dqyVLlmjatGn61a9+pVdeeSXuXNddd52eeeYZzZ8/X/fcc498Pp/OPvvsuCCP3xOp6/7771cwGGxznM9+5nrooYf01FNPxf796Ec/it3GuGchExnlgQceMMeOHWvu3LkzduzJJ580hw8fbm7atCl5HUOHBYPB2P8vWLDAPOmkk9q0+da3vmX+9Kc/jTt2+umnm+edd17s+48++sgsLy8333777dixNWvWmBUVFeZLL70UO3bVVVeZU6ZMMVtaWmLHbrvtNvOII46IO4aetX379jbHrrzySvOwww6LvScY9+zx1FNPmeXl5bGf2+eee655+umnx7X56U9/ak6bNi32/TfffGMOHz7cfPLJJ2PHdu7caY4dO9ZcvHhx7Bi/J1LT6tWrzbFjx5p/+MMfzPLycvPjjz+O3cZnP/M899xzZnl5ebs/+6MY9+xDxizDLFu2TBMmTFBRUVHs2LRp0xQKhbR8+fLkdQwdZrHs/WO5YcMGrVu3TtOmTYs7Pn36dK1YsSI2HWnZsmVyu92aOHFirE1ZWZmGDx+uZcuWxY4tW7ZMxx13nBwOR9y56uvrtXLlykQ8JXRASUlJm2PDhw9XY2OjPB4P455loj/D/X6/fD6f3n//fX3729+OazN9+nStWbNGX3/9tSTpnXfeUSgUimtXVFSkiRMnthl7fk+knuuuu05nnHGGSktL447z2c9OjHt2IjDLMDU1NSorK4s75na71bdv33bXGSD9RMdx91/eQ4YMkd/v14YNG2LtSktLZRhGXLuysrLYOTwej7755ps275mysjIZhsF7Jsn+8Y9/qF+/fsrPz2fcs0AwGFRLS4s+/fRT3XfffZo6daoGDBigr776Sn6/v814Rac6R8erpqZGffr0UWFhYZt2rceU3xOp55VXXtEXX3yhSy65pM1tfPYz24wZMzR8+HAdd9xxevDBB2NTWRn37GRLdgeQWPX19XK73W2OFxYWqq6uLgk9QqJFx3H3cY5+H729vr5eBQUFbe5fWFioTz75RJJi6052P5fD4ZDL5eI9k0QffvihqqurtWDBAkmMezaYMmWKNm/eLEmaPHmybrvtNkndH3u32x03pvyeSC1er1c33XST5s+fr/z8/Da389nPTH379tVll12mMWPGyDAMvfHGG7rzzju1efNmXX311Yx7liIwA4AUs2nTJs2fP1/jx4/Xj3/842R3B71k8eLF8nq9Wr16tRYtWqQLL7xQjzzySLK7hR62aNEi9enTR9/73veS3RX0osmTJ2vy5Mmx7ydNmiSn06nHHntMF154YRJ7hmRiKmOGcbvdbUosS+G/rOw+vQXpKTqOu49zfX193O1ut1uNjY1t7t/6vRD9K9vu5/L5fPJ6vbxnkqC+vl5z5sxRUVGR7rnnntiaQ8Y98w0bNkzjxo3Taaedpvvvv1/vv/++/vrXv3Z77Ovr6+PGlN8TqWPjxo16+OGHNXfuXDU0NKi+vl4ej0dSePpZU1MTn/0sMm3aNAWDQa1atYpxz1IEZhmm9ZziqIaGBm3durXN3GKkp+g47j7ONTU1stvtGjhwYKzd2rVr2+xRsnbt2tg5cnNzdeCBB7Y5V/R+vGd6V3Nzsy644AI1NDTooYceipuewrhnl4qKCtntdn311Vc6+OCDZbfb2x17add7o6ysTNu2bWszLWn3NWX8nkgdX3/9tfx+v84//3wdeeSROvLII2PZkh//+Mc655xz+OxnKcY9OxGYZZjKykq9++67sb+oSOFFxRaLJa5iD9LXwIEDNXjw4Db7F1VXV2vChAmxikuVlZWqq6vTihUrYm3Wrl2rzz77TJWVlbFjlZWVWrp0qfx+f9y53G63xo0b18PPBlGBQEDz5s1TTU2NHnroIfXr1y/udsY9u/zrX/+S3+/XgAED5HA4NH78eL366qtxbaqrqzVkyBANGDBAUngqlMVi0WuvvRZrU1dXp3feeafN2PN7IjUMHz5cjz/+eNy/yy+/XJJ07bXX6te//jWf/SxSXV0tq9WqESNGMO7ZKnmV+tETamtrzYkTJ5pnnnmm+fbbb5vPPvusecQRR5jXXnttsruGDvJ4PObLL79svvzyy+aZZ55pHnvssbHvo/udvPjii2ZFRYV51113me+995559dVXmyNGjDA/+uijuHOde+655rHHHmtWV1ebS5cuNWfMmGGefPLJpt/vj7VZt26dOXbsWPOyyy4z3333XfPRRx81Dz30UPOhhx7q1eed7a688kqzvLzcfPjhh82VK1fG/YvuMcO4Z6ZLLrnEXLRokfnGG2+Y7777rvnwww+bEydONP/3f/83NvZ///vfzeHDh5u//vWvzffee8+86667zIqKCrO6ujruXFdddZV5xBFHmM8++6z59ttvm2eeeaY5efJks76+PtaG3xOp7b333muzjxmf/cxz7rnnmg8++KD5t7/9zfzb3/5mXnXVVWZFRYV5/fXXx9ow7tnHMM3dcp9Ie2vWrNFvfvMbrVy5Unl5eZo5c6bmz58ft3cFUtfXX3+t4447rt3bHn/8cY0fP16S9Mwzz2jJkiX673//q9LSUv30pz/VlClT4to3NDToxhtv1F//+lcFAgFNmjRJV155ZZtszEcffaSbbrpJq1atUklJiX70ox9pzpw5bcrvoudMnTpVGzdubPe2pUuXxrIijHvmWbx4saqrq/XVV1/JNE31799fJ5xwgmbPnh1XpW/p0qW68847tXbtWh100EE6//zzdeqpp8ady+fz6Y477tCf/vQnNTU16bDDDtOVV14ZK60fxe+J1PX+++/rxz/+sZ599lmNGjUqdpzPfma57rrr9Pbbb2vTpk0KhUIaPHiwTjvtNM2aNStuHBj37EJgBgAAAABJxhozAAAAAEgyAjMAAAAASDICMwAAAABIMgIzAAAAAEgyAjMAAAAASDICMwAAAABIMgIzAAAAAEgyAjMAADqhoqJC//d//5fsbgAAMgyBGQAga7z11lu65557kt0NAADaIDADAGSNt956S/fee2+yuwEAQBsEZgAAAACQZARmAIBuaWxs1PXXX6+pU6dq5MiRmjBhgs455xx9+umnkqSpU6dq4cKFbe43a9YszZo1K/b9+++/r4qKClVXV+vee+/V5MmTNW7cOM2dO1cNDQ3y+Xy6/vrrNWHCBI0bN06XX365fD5fh/u5cOFC/e53v5MUXicW/Rfl8Xh000036dhjj9XIkSN14oknqqqqSqZp7vPc999/v4YNG6Ynnngiduytt97SD3/4w//f3v3HVFX/cRx/AlqYN0SZl1KhGm7iVPSSG0IijS3rgsqPUsYV5qbIpIg1xxhzTRn2Q7Bmy1LBUEP8seaQ1RB/oUle1E3dmP/oFAtTHLdNAzItvd7+6MuZV7x+4WKQ9nps94/z+Zzz/rw/5/713vmcz2HKlClYLBays7M5f/58t5wsFgttbW28/fbbWCwWpk2bRklJCU6n0+3c2tpaUlNTsVgsREZGMnv2bL7++usez79r3sXFxRw8eJBZs2YxceJEEhMTaWho6JZXfHx8t+vXrl3rds/ujVlXV0dCQgIRERGkpaVx7tw5AHbu3Mlrr73GpEmTyMzM5PLly73KWUTkv2LQQCcgIiKPtxUrVrBv3z4yMjIICwvj119/5dSpUzQ3NzNhwoRexysvL8ff35/s7GxaWlqoqqpi0KBB+Pj40NHRQW5uLk1NTVRXVzN69Ghyc3N7FDctLQ2Hw4Hdbqe0tNStz+VykZOTw4kTJ3jrrbcYP348P/zwA6WlpbS1tbFs2TKPcdesWUNZWRnFxcXMmzcPgJqaGgoLC5k+fTr5+fncvHmTHTt2YLPZ2L17N2PGjDGudzqdLFq0iIiICAoKCjh27BibNm0iJCQEm80GgN1uZ+nSpURHR5Ofnw/AxYsXOX36NAsWLOjV/T116hT79+/HZrMxdOhQtm7dSl5eHocPH2b48OG9itXl5MmTHDp0yMi3vLycJUuWkJWVxfbt27HZbLS3t/PVV1+xbNkyKisrvRpHRORJpsJMRET65MiRI8ybN8/tqdjixYu9jud0Otm6dSuDBw8G4Pr169TW1hIbG8vGjRsBmD9/PpcuXaK6urrHhZnFYuHFF1/EbreTlJTk1ldfX8/x48d57733yMnJMcbIy8ujsrKSjIwMQkNDu8UsKSlhy5YtfPzxx6SkpABw48YNPvzwQ+bOncvKlSuNc1NSUnjjjTcoKytza//jjz+wWq288847AKSnp5OSksKuXbuMQuf777/HZDJRUVGBn59fj+brSXNzM3v27DHmExUVRVJSErW1tWRkZHgV88cff6Surs4oOIcNG8by5ctZv349e/fuxWQyAXD37l3Kysq4fPmyW3EqIiJayigiIn0UEBBAU1MTbW1tjyReUlKSUZQBRERE4HK5ePPNN93Oi4iI4OrVq9y5c6fPYzY0NODn5+e2tBJg4cKFuFyubkv9XC4XxcXFVFZWsnr1aqMoA2hsbKSjo4PExESuXbtm/Hx9fZk8eTInTpzoNn56errb8csvv+y25C8gIICbN29it9v7PNeYmBi3IjM8PByTycTPP//sdczo6Gi3Qmvy5MkAzJw50yjK4O//DOjTWCIiTyo9MRMRkT7Jz8+nsLCQV199lQkTJhAXF0dycjIhISFexRs1apTb8bPPPgvA888/36397t27dHZ2er0Er8uVK1cwm81uRQRAWFiY0X+vmpoafv/9d4qKipg1a5Zb308//QTgcYnh/WM8/fTTjBgxwq1t2LBhtLe3G8c2m426ujoWL15McHAwr7zyClarlRkzZvR8kv9z/33sGq+jo6PXsTzF7Jrjc88959be9V/2ZSwRkSeVCjMREemThIQEpk6dyoEDB7Db7VRUVLBx40bWrl1LXFycx+ucTucDl+X5+j54MYen9p5szvGoRUZGcvbsWbZt24bVaiUwMLBbPqWlpYwcObLbtffPuSdLE4OCgqipqeHo0aM0NDTQ0NBAdXU1ycnJlJSU9Cp3T+Pdex99fHweeM79G5L8v5g9GUtERP6mpYwiItJnZrOZ+fPns27dOurr6wkMDGTDhg2A56cxra2t/Z2mx4Jj9OjROBwOfvvtN7f2ixcvGv33euGFF6ioqMDhcJCVleV2XdeTwqCgIGJiYrr9oqKivMr9qaeeIj4+nqKiIg4ePEhaWho1NTW0tLR4Fe9hAgIC/jX/mYjIf4UKMxER8ZrT6aSzs9OtLSgoCLPZbGxlHxISQlNTk9vW9ocPH+bq1av9mivAkCFDgO5L6WbMmIHT6TS20++yZcsWfHx8HrhkMDw8nPLycpqbm8nJyeHWrVsAxMbGYjKZKCsr4/bt292uu3btWq/zvn79utuxr6+vsW19bz4Z0FOhoaF0dnZy9uxZo83hcHDgwIFHPpaIiPxNSxlFRMRrN27cIC4ujtdff53w8HCeeeYZGhsbOXPmjLFL49y5c9m3bx9ZWVlYrVYuXbrEd99998BdDv9pXdv3f/DBB0yfPh0/Pz8SExOJj48nKiqKNWvWcOXKFcaNG4fdbqe+vp4FCxZ4zHXKlCmsW7eO7Oxs8vLy+PLLLzGZTBQVFVFQUEBqaioJCQmMGDGC1tZWjhw5QmRkJMuXL+9V3u+//z7t7e1MmzaN4OBgWltbqaqqYvz48cZ7cI9SQkICn3zyCbm5uWRmZnLr1i127NjBSy+9ZHyfTkREHi0VZiIi4jV/f3/S09Ox2+3s378fl8tFaGgoK1asMLZ6j42NpbCwkM2bN/PRRx8xceJENmzY0Ot3ox6FmTNnkpmZSW1tLd9++y0ul4vExER8fX1Zv349n3/+OXv27DG+kVZQUMDChQsfGjM6OprPPvuMvLw8CgoK+PTTT5k9ezZms5ny8nIqKir4888/CQ4OZurUqaSmpvY67zlz5vDNN9+wfft2Ojo6GDlyJFarlXfffdfju3d9MXz4cL744gtWrVrF6tWrGTNmDEuXLqWlpUWFmYjIP8THpTdwRUREREREBpTeMRMRERERERlgWsooIiKPvc7OTmPzDU8etHX9k+KXX355aL+/v7/xDTEREfl30lJGERF57BUWFrJ79+6HnnPu3Ll+yqb/de3Q6ElKSgqrVq3qp2xERMQbKsxEROSxd+HCBRwOx0PPiYmJ6ads+l9jY+ND+81mM2PHju2nbERExBsqzERERERERAaYNv8QEREREREZYCrMREREREREBpgKMxERERERkQGmwkxERERERGSAqTATEREREREZYCrMREREREREBpgKMxERERERkQGmwkxERERERGSA/QVfKi/jWWvV2gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "res = tokenizer(\n", + " prompt_format3,\n", + " padding=False,\n", + " return_tensors=None,\n", + " )\n", + "\n", + "len(res['input_ids'])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rspWA5bU4euK", + "outputId": "fed4f512-180d-4531-c1f8-5659423a5174" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "84" + ] + }, + "metadata": {}, + "execution_count": 53 + } + ] + }, + { + "cell_type": "code", + "source": [ + "### 1024 - 84 = 940\n", + "### 512 - 84 = 428\n", + "# RAW DATA에서 'title' 토큰 수와 'lyrics' 토큰 수가 940 개 이하인 데이터만 다시 저장\n", + "\n", + "# train.csv 정제\n", + "dataset_pandas = pd.read_csv(folder_path + 'utils/train.csv', names=['title', 'artist', 'album', 'release_date', 'song_genre', 'is_title',\n", + " 'like', 'creator', 'lyrics']) # pandas\n", + "\n", + "dataset_pandas = dataset_pandas[1:]\n", + "print('정제 전 데이터 행 개수: ', len(dataset_pandas))\n", + "\n", + "dataset_pandas = dataset_pandas.dropna(subset=['title', 'lyrics'])\n", + "\n", + "dataset_pandas['title_tokens_num'] = dataset_pandas['title'].apply(lambda x: cal_tokens_num(x))\n", + "dataset_pandas['lyrics_tokens_num'] = dataset_pandas['lyrics'].apply(lambda x: cal_tokens_num(str(x)))\n", + "dataset_pandas['sum_tokens_num'] = dataset_pandas['title_tokens_num'] + dataset_pandas['lyrics_tokens_num']\n", + "print(max(dataset_pandas['sum_tokens_num']))\n", + "print(min(dataset_pandas['sum_tokens_num']))\n", + "\n", + "###filtered_rows = dataset_pandas[dataset_pandas['sum_tokens_num'] <= 940]\n", + "filtered_rows = dataset_pandas[(dataset_pandas['sum_tokens_num'] <= 430) & (100 <= dataset_pandas['sum_tokens_num'])]\n", + "filtered_rows.to_csv(folder_path + 'utils/train_selected.csv', index=False, encoding='utf-8', header=True)\n", + "print('정제 후 데이터 행 개수: ', len(filtered_rows))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ukRUDKHG4sLw", + "outputId": "57834fd0-4ed3-4d88-ebde-8954ac8702f3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "정제 전 데이터 행 개수: 12719\n", + "4634\n", + "24\n", + "정제 후 데이터 행 개수: 283\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pd.set_option('display.max_colwidth', None)\n", + "\n", + "dataset_pandas[dataset_pandas['sum_tokens_num'] <= 50]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 875 + }, + "id": "ZQ0BBnSe1F4a", + "outputId": "6501b8c8-48c7-4f14-992a-d38cad34d032" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " title artist \\\n", + "2425 Intro 엔알지 \n", + "14652 Interlude : 뭐해 방탄소년단 \n", + "2414 Intro 엔알지 \n", + "8373 Break It (Inst.) 카라 \n", + "13444 EXO Keep On Dancing 엑소 \n", + "1182 L`esprit D`escalier 제트 \n", + "11340 Season 2 인피니트 \n", + "3017 기억나니? 신화 \n", + "2340 Intro 엔알지 \n", + "3027 기억나니? 신화 \n", + "11355 Season 2 인피니트 \n", + "\n", + " album release_date \\\n", + "2425 NRG (New Radiancy Group) 1997.11 \n", + "14652 DARK&WILD 2014.08.20 \n", + "2414 Race 1998 \n", + "8373 Blooming 2007.03.29 \n", + "13444 EXO PLANET #3 -The EXO`rDIUM(dot)- Live Album 2017.10.25 \n", + "1182 Shine On (Digital Album Version) 2006.09.29 \n", + "11340 Be Back 2014.07.22 \n", + "3017 신화 9집 (White Edition) 2008.07.03 \n", + "2340 Concert with Antonio 2001.10 \n", + "3027 신화 9집 2008.04.03 \n", + "11355 Season 2 2014.05.21 \n", + "\n", + " song_genre is_title like \\\n", + "2425 Dance NaN 31 \n", + "14652 Rap / Hip-hop NaN 37,535 \n", + "2414 Dance NaN 20 \n", + "8373 Dance NaN 409 \n", + "13444 Dance NaN 13,593 \n", + "1182 Rock NaN 3 \n", + "11340 Dance NaN 15,687 \n", + "3017 Dance NaN 1,914 \n", + "2340 Dance NaN 17 \n", + "3027 Dance NaN 1,613 \n", + "11355 Dance NaN 20,809 \n", + "\n", + " creator \\\n", + "2425 NaN \n", + "14652 Slow Rabbit\\r\\r\\n작곡 \n", + "2414 NaN \n", + "8373 한상원\\r\\r\\n작곡 \n", + "13444 심재원\\r\\r\\n작사\\r\\r\\n심재원\\r\\r\\n작곡\\r\\r\\n숀 (SHAUN)\\r\\r\\n작곡\\r\\r\\n심재원\\r\\r\\n편곡\\r\\r\\n숀 (SHAUN)\\r\\r\\n편곡 \n", + "1182 NaN \n", + "11340 NaN \n", + "3017 NaN \n", + "2340 NaN \n", + "3027 NaN \n", + "11355 NaN \n", + "\n", + " lyrics \\\n", + "2425 race!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race! \n", + "14652 뭐해\\r\\r\\n\\r\\r\\n뭐해\\r\\r\\n\\r\\r\\n\\r\\r\\n\\r\\r\\n뭐해 \n", + "2414 race!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race! \n", + "8373 가사가 없는 연주곡 입니다. \n", + "13444 EXO Keep On Dancing\\r\\r\\nFour three two one\\r\\r\\nEXO Keep On Dancing \n", + "1182 All you have to do\\r\\r\\nAll you have to do\\r\\r\\n\\r\\r\\nAhhhhhhh Ahhhhh \n", + "11340 난 너밖엔 안보인다 \n", + "3017 가사가 없는 멘트곡입니다. \n", + "2340 race!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race! \n", + "3027 가사가 없는 멘트곡입니다. \n", + "11355 난 너밖엔 안보인다 \n", + "\n", + " title_tokens_num lyrics_tokens_num sum_tokens_num \n", + "2425 3 28 31 \n", + "14652 10 32 42 \n", + "2414 3 28 31 \n", + "8373 6 23 29 \n", + "13444 7 24 31 \n", + "1182 10 27 37 \n", + "11340 4 20 24 \n", + "3017 9 24 33 \n", + "2340 3 28 31 \n", + "3027 9 24 33 \n", + "11355 4 20 24 " + ], + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleartistalbumrelease_datesong_genreis_titlelikecreatorlyricstitle_tokens_numlyrics_tokens_numsum_tokens_num
2425Intro엔알지NRG (New Radiancy Group)1997.11DanceNaN31NaNrace!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race!32831
14652Interlude : 뭐해방탄소년단DARK&WILD2014.08.20Rap / Hip-hopNaN37,535Slow Rabbit\\r\\r\\n작곡뭐해\\r\\r\\n\\r\\r\\n뭐해\\r\\r\\n\\r\\r\\n\\r\\r\\n\\r\\r\\n뭐해103242
2414Intro엔알지Race1998DanceNaN20NaNrace!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race!32831
8373Break It (Inst.)카라Blooming2007.03.29DanceNaN409한상원\\r\\r\\n작곡가사가 없는 연주곡 입니다.62329
13444EXO Keep On Dancing엑소EXO PLANET #3 -The EXO`rDIUM(dot)- Live Album2017.10.25DanceNaN13,593심재원\\r\\r\\n작사\\r\\r\\n심재원\\r\\r\\n작곡\\r\\r\\n숀 (SHAUN)\\r\\r\\n작곡\\r\\r\\n심재원\\r\\r\\n편곡\\r\\r\\n숀 (SHAUN)\\r\\r\\n편곡EXO Keep On Dancing\\r\\r\\nFour three two one\\r\\r\\nEXO Keep On Dancing72431
1182L`esprit D`escalier제트Shine On (Digital Album Version)2006.09.29RockNaN3NaNAll you have to do\\r\\r\\nAll you have to do\\r\\r\\n\\r\\r\\nAhhhhhhh Ahhhhh102737
11340Season 2인피니트Be Back2014.07.22DanceNaN15,687NaN난 너밖엔 안보인다42024
3017기억나니?신화신화 9집 (White Edition)2008.07.03DanceNaN1,914NaN가사가 없는 멘트곡입니다.92433
2340Intro엔알지Concert with Antonio2001.10DanceNaN17NaNrace!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race!32831
3027기억나니?신화신화 9집2008.04.03DanceNaN1,613NaN가사가 없는 멘트곡입니다.92433
11355Season 2인피니트Season 22014.05.21DanceNaN20,809NaN난 너밖엔 안보인다42024
\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 181 + } + ] + }, + { + "cell_type": "code", + "source": [ + "dataset_pandas[dataset_pandas['sum_tokens_num'] <= 100]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "1yyy-GvD1MIH", + "outputId": "0c8c415c-4326-41bb-c285-72abb67d4f51" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " title artist \\\n", + "13141 LE NOIR 비에이피 \n", + "2425 Intro 엔알지 \n", + "11570 aRtisT 틴탑 \n", + "11552 No. 1 틴탑 \n", + "14652 Interlude : 뭐해 방탄소년단 \n", + "3213 Intro 신화 \n", + "1584 서곡 (Intro) 알이에프 \n", + "12902 Time To Rock Da Show BP 라니아 \n", + "4089 사랑이 전부였던 날 god \n", + "5112 Intro (Can`t You Feel) 블랙 비트 \n", + "2414 Intro 엔알지 \n", + "8373 Break It (Inst.) 카라 \n", + "13444 EXO Keep On Dancing 엑소 \n", + "1182 L`esprit D`escalier 제트 \n", + "12203 Where R U 보이프렌드 \n", + "11732 Mighty Sistar 씨스타 \n", + "13086 Do You Hear Me? 스텔라 \n", + "1953 Music Makes Me High 구피 \n", + "592 All System Go! (Intro) 룰라 \n", + "620 Roo`Ra In 1996 룰라 \n", + "11340 Season 2 인피니트 \n", + "245 Amaging Grace 솔리드 \n", + "6489 Good Bye 테이크 \n", + "13624 I`m Lay (LAY) 엑소 \n", + "3017 기억나니? 신화 \n", + "4075 1999년 god \n", + "14405 Missing You 제아 파이브 \n", + "13097 T.I.E 스텔라 \n", + "13427 My Lady 엑소 \n", + "1573 서곡 (Back To The Black) 알이에프 \n", + "2340 Intro 엔알지 \n", + "3027 기억나니? 신화 \n", + "13842 We, 100% 백퍼센트 \n", + "1631 Scratch Show (우혁 Special) 에이치오티 \n", + "11355 Season 2 인피니트 \n", + "3091 Intro 신화 \n", + "8419 Love And Extasy 베이비 복스 리브 \n", + "12917 Outro (Rollin`) 브레이브걸스 \n", + "13021 UNE ANNEE 에이핑크 \n", + "10153 또다른 시작 (Outro) 엠블랙 \n", + "402 난 듀스 \n", + "14145 Gonna Get Your Heart 에이오에이 \n", + "6429 I Believe 에스 \n", + "240 Intro 솔리드 \n", + "\n", + " album release_date \\\n", + "13141 NOIR 2016.11.07 \n", + "2425 NRG (New Radiancy Group) 1997.11 \n", + "11570 aRtisT 2012.05.30 \n", + "11552 No.1 2013.02.25 \n", + "14652 DARK&WILD 2014.08.20 \n", + "3213 First Mythology: 2001 1st Live Concert 2001.04.01 \n", + "1584 Rave Effect 1995.03 \n", + "12902 Time To Rock Da Show 2011.11.17 \n", + "4089 보통날 2004.12.08 \n", + "5112 Black Beat #2002 - The First Performance 001 2002.03.01 \n", + "2414 Race 1998 \n", + "8373 Blooming 2007.03.29 \n", + "13444 EXO PLANET #3 -The EXO`rDIUM(dot)- Live Album 2017.10.25 \n", + "1182 Shine On (Digital Album Version) 2006.09.29 \n", + "12203 I`ll Be There 2011.12.08 \n", + "11732 니까짓게 2010.12.03 \n", + "13086 찔려 2016.01.18 \n", + "1953 청춘 2005.10.21 \n", + "592 All System Go 1996.06.15 \n", + "620 Reincarnation Of The Legend 1995 \n", + "11340 Be Back 2014.07.22 \n", + "245 솔리드 Live 1996.10.01 \n", + "6489 TAKE 2015.05.12 \n", + "13624 EXOLOGY CHAPTER 1: THE LOST PLANET 2014.12.22 \n", + "3017 신화 9집 (White Edition) 2008.07.03 \n", + "4075 하늘속으로 2005.10.28 \n", + "14405 Voulez-vous 2013.03.25 \n", + "13097 마리오네트 2014.02.12 \n", + "13427 EXO PLANET #3 -The EXO`rDIUM(dot)- Live Album 2017.10.25 \n", + "1573 Back To The Black 1996.04 \n", + "2340 Concert with Antonio 2001.10 \n", + "3027 신화 9집 2008.04.03 \n", + "13842 WE, 100% 2012.09.18 \n", + "1631 Forever 2001.05.01 \n", + "11355 Season 2 2014.05.21 \n", + "3091 Summer Story 2005 (Single) 2005.08.05 \n", + "8419 Baby V.O.X Special Album 2002.04.23 \n", + "12917 Rollin` 2017.03.07 \n", + "13021 UNE ANNEE 2012.05.09 \n", + "10153 BLAQ Style 3D Edition 2011.02.22 \n", + "402 Deuxism 1993.12.30 \n", + "14145 짧은 치마 2014.01.16 \n", + "6429 Group`S`1집 - I Swear 2003.09.25 \n", + "240 솔리드 Live 1996.10.01 \n", + "\n", + " song_genre is_title like \\\n", + "13141 Dance NaN 4,230 \n", + "2425 Dance NaN 31 \n", + "11570 Dance NaN 3,219 \n", + "11552 Dance NaN 4,111 \n", + "14652 Rap / Hip-hop NaN 37,535 \n", + "3213 Dance NaN 750 \n", + "1584 Dance NaN 27 \n", + "12902 Dance NaN 82 \n", + "4089 Ballad NaN 1,429 \n", + "5112 Ballad NaN 19 \n", + "2414 Dance NaN 20 \n", + "8373 Dance NaN 409 \n", + "13444 Dance NaN 13,593 \n", + "1182 Rock NaN 3 \n", + "12203 Dance NaN 764 \n", + "11732 Dance NaN 650 \n", + "13086 Dance NaN 344 \n", + "1953 Dance NaN 0 \n", + "592 Dance NaN 37 \n", + "620 Dance NaN 23 \n", + "11340 Dance NaN 15,687 \n", + "245 R&B / Soul NaN 17 \n", + "6489 Ballad NaN 264 \n", + "13624 Dance NaN 24,049 \n", + "3017 Dance NaN 1,914 \n", + "4075 Ballad NaN 1,231 \n", + "14405 Dance NaN 646 \n", + "13097 Dance NaN 875 \n", + "13427 Ballad NaN 10,755 \n", + "1573 Dance NaN 35 \n", + "2340 Dance NaN 17 \n", + "3027 Dance NaN 1,613 \n", + "13842 Dance NaN 541 \n", + "1631 Dance NaN 252 \n", + "11355 Dance NaN 20,809 \n", + "3091 Dance NaN 868 \n", + "8419 Dance NaN 20 \n", + "12917 Dance NaN 229 \n", + "13021 Dance NaN 6,956 \n", + "10153 Ballad NaN 417 \n", + "402 Rap / Hip-hop NaN 44 \n", + "14145 Dance NaN 3,173 \n", + "6429 Ballad NaN 271 \n", + "240 R&B / Soul NaN 14 \n", + "\n", + " creator \\\n", + "13141 방용국\\r\\r\\n작사\\r\\r\\n방용국\\r\\r\\n작곡\\r\\r\\n김창락\\r\\r\\n작곡\\r\\r\\n강기훈\\r\\r\\n작곡\\r\\r\\n지우\\r\\r\\n작곡\\r\\r\\n강기훈\\r\\r\\n편곡\\r\\r\\n지우\\r\\r\\n편곡 \n", + "2425 NaN \n", + "11570 별들의 전쟁\\r\\r\\n작사\\r\\r\\n용감한 형제\\r\\r\\n작곡\\r\\r\\n똘아이박\\r\\r\\n작곡\\r\\r\\n똘아이박\\r\\r\\n편곡 \n", + "11552 용감한 형제\\r\\r\\n작사\\r\\r\\n마부스 (Maboos)\\r\\r\\n작사\\r\\r\\n용감한 형제\\r\\r\\n작곡\\r\\r\\n용감한 형제\\r\\r\\n편곡 \n", + "14652 Slow Rabbit\\r\\r\\n작곡 \n", + "3213 NaN \n", + "1584 무\\r\\r\\n작사\\r\\r\\n이용민\\r\\r\\n작곡\\r\\r\\n이용민\\r\\r\\n편곡 \n", + "12902 별들의 전쟁\\r\\r\\n작사\\r\\r\\n용감한 형제\\r\\r\\n작곡\\r\\r\\n별들의 전쟁\\r\\r\\n작곡\\r\\r\\n별들의 전쟁\\r\\r\\n편곡 \n", + "4089 권태은\\r\\r\\n작곡\\r\\r\\n권태은\\r\\r\\n편곡 \n", + "5112 NaN \n", + "2414 NaN \n", + "8373 한상원\\r\\r\\n작곡 \n", + "13444 심재원\\r\\r\\n작사\\r\\r\\n심재원\\r\\r\\n작곡\\r\\r\\n숀 (SHAUN)\\r\\r\\n작곡\\r\\r\\n심재원\\r\\r\\n편곡\\r\\r\\n숀 (SHAUN)\\r\\r\\n편곡 \n", + "1182 NaN \n", + "12203 송수윤\\r\\r\\n작사\\r\\r\\n안준성\\r\\r\\n작곡 \n", + "11732 별들의 전쟁\\r\\r\\n작사\\r\\r\\n용감한 형제\\r\\r\\n작곡\\r\\r\\n똘아이박\\r\\r\\n편곡 \n", + "13086 NOPARI (MonoTree)\\r\\r\\n작사\\r\\r\\nNOPARI (MonoTree)\\r\\r\\n작곡\\r\\r\\nNOPARI (MonoTree)\\r\\r\\n편곡 \n", + "1953 박성호 (구피)\\r\\r\\n작곡\\r\\r\\n박성호 (구피)\\r\\r\\n편곡 \n", + "592 이현도\\r\\r\\n작사\\r\\r\\n이현도\\r\\r\\n작곡\\r\\r\\n이현도\\r\\r\\n편곡 \n", + "620 룰라\\r\\r\\n작사 \n", + "11340 NaN \n", + "245 NaN \n", + "6489 신승희\\r\\r\\n작사\\r\\r\\n신승희\\r\\r\\n작곡\\r\\r\\n송양하\\r\\r\\n편곡\\r\\r\\n김재현\\r\\r\\n편곡 \n", + "13624 Maxx Song\\r\\r\\n작사\\r\\r\\n레이 (LAY)\\r\\r\\n작곡\\r\\r\\nCommand Freaks\\r\\r\\n작곡\\r\\r\\n레이 (LAY)\\r\\r\\n편곡\\r\\r\\nCommand Freaks\\r\\r\\n편곡 \n", + "3017 NaN \n", + "4075 박진영\\r\\r\\n작사\\r\\r\\n박진영\\r\\r\\n작곡\\r\\r\\n권태은\\r\\r\\n편곡 \n", + "14405 차쿤 (일렉트로보이즈)\\r\\r\\n작사\\r\\r\\n별들의 전쟁\\r\\r\\n작곡\\r\\r\\n차쿤 (일렉트로보이즈)\\r\\r\\n작곡\\r\\r\\n미쓰리\\r\\r\\n작곡\\r\\r\\n별들의 전쟁\\r\\r\\n편곡\\r\\r\\n미쓰리\\r\\r\\n편곡 \n", + "13097 GDLO (MonoTree)\\r\\r\\n작사\\r\\r\\nGDLO (MonoTree)\\r\\r\\n작곡\\r\\r\\nGDLO (MonoTree)\\r\\r\\n편곡 \n", + "13427 김부민\\r\\r\\n작사\\r\\r\\nHitchhiker\\r\\r\\n작곡\\r\\r\\nHitchhiker\\r\\r\\n편곡\\r\\r\\nMaxx Song\\r\\r\\n편곡 \n", + "1573 무\\r\\r\\n작사\\r\\r\\n이용민\\r\\r\\n작곡\\r\\r\\n이용민\\r\\r\\n편곡 \n", + "2340 NaN \n", + "3027 NaN \n", + "13842 슈퍼창따이\\r\\r\\n작사\\r\\r\\n슈퍼창따이\\r\\r\\n작곡\\r\\r\\n슈퍼창따이\\r\\r\\n편곡 \n", + "1631 NaN \n", + "11355 NaN \n", + "3091 NaN \n", + "8419 NaN \n", + "12917 용감한 형제\\r\\r\\n작사\\r\\r\\n차쿤 (일렉트로보이즈)\\r\\r\\n작사\\r\\r\\n용감한 형제\\r\\r\\n작곡\\r\\r\\n투챔프\\r\\r\\n작곡\\r\\r\\n차쿤 (일렉트로보이즈)\\r\\r\\n작곡\\r\\r\\n투챔프\\r\\r\\n편곡 \n", + "13021 범이\\r\\r\\n작사\\r\\r\\n낭이\\r\\r\\n작사\\r\\r\\n범이\\r\\r\\n작곡\\r\\r\\n낭이\\r\\r\\n작곡\\r\\r\\n범이\\r\\r\\n편곡\\r\\r\\n낭이\\r\\r\\n편곡 \n", + "10153 배진렬 (JR Groove)\\r\\r\\n작사\\r\\r\\n배진렬 (JR Groove)\\r\\r\\n작곡 \n", + "402 이현도\\r\\r\\n작사\\r\\r\\n이현도\\r\\r\\n작곡\\r\\r\\n이현도\\r\\r\\n편곡 \n", + "14145 별들의 전쟁\\r\\r\\n작사\\r\\r\\n별들의 전쟁\\r\\r\\n작곡\\r\\r\\n별들의 전쟁\\r\\r\\n편곡 \n", + "6429 신혜성\\r\\r\\n작사\\r\\r\\n송광식\\r\\r\\n작곡 \n", + "240 NaN \n", + "\n", + " lyrics \\\n", + "13141 Le Noir\\r\\r\\nIf I never knew you\\r\\r\\nIf I never knew the love\\r\\r\\nI just wanna feel this moment\\r\\r\\nLe Noir\\r\\r\\nIf I never knew you\\r\\r\\nIf I never knew the love\\r\\r\\nI don't hate you like yesterday \n", + "2425 race!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race! \n", + "11570 I feel so empty\\r\\r\\nit's like it's kinda\\r\\r\\ndamn I can't explain\\r\\r\\nplease save me from this pain\\r\\r\\nI can't take this anymore\\r\\r\\nbaby please\\r\\r\\nplease don't drive me insane\\r\\r\\nI miss you everyday \n", + "11552 2013 Now's The Time\\r\\r\\nT Double E N T O P\\r\\r\\nFinally They Release\\r\\r\\nTheir Full Album\\r\\r\\nIt's Not A Mini\\r\\r\\nIt's Not A Single\\r\\r\\nIt's Full Album\\r\\r\\nSo Check This Out\\r\\r\\nNo 1 \n", + "14652 뭐해\\r\\r\\n\\r\\r\\n뭐해\\r\\r\\n\\r\\r\\n\\r\\r\\n\\r\\r\\n뭐해 \n", + "3213 마지막 내 몸짓속에 그 누구도 참을 수 없어\\r\\r\\n느껴봐 소리쳐봐 내 모든걸 보여주겠어\\r\\r\\n오~~~오~~~~오~~~~~오~~~~~ \n", + "1584 Yo! R.ef is back 1996, coming\\r\\r\\nstraight at you with the rave back\\r\\r\\ngive you the wave yo!\\r\\r\\nsay back to the black!!\\r\\r\\nEverybody say back-\\r\\r\\nComeon say back-\\r\\r\\nYe!! R.ef is back to the black \n", + "12902 Ladies and gentlemen\\r\\r\\nIt's time to rock da show\\r\\r\\nLet me introduce\\r\\r\\nThe incredibly outstandin' artist\\r\\r\\nLet's rock\\r\\r\\nIt's time to rock da show, show\\r\\r\\nEverybody on the floor, floor\\r\\r\\nIt's time to rock da show show\\r\\r\\nEverybody on the floor floor \n", + "4089 신스케 우리 이제 어디로 가는거야\\r\\r\\n멀리\\r\\r\\n너 정말 괜찮은 거지\\r\\r\\n응 \n", + "5112 It's love I know\\r\\r\\n그대 그리며 기도해요\\r\\r\\nCan't you feel my love\\r\\r\\nIt's all for you\\r\\r\\nBaby because of you\\r\\r\\n그대 내곁에 잠이 들죠 forever \n", + "2414 race!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race! \n", + "8373 가사가 없는 연주곡 입니다. \n", + "13444 EXO Keep On Dancing\\r\\r\\nFour three two one\\r\\r\\nEXO Keep On Dancing \n", + "1182 All you have to do\\r\\r\\nAll you have to do\\r\\r\\n\\r\\r\\nAhhhhhhh Ahhhhh \n", + "12203 어디로 넌 갔니 넌 어디로 대체\\r\\r\\n어디로 넌 갔니 넌 어디로 대체 \n", + "11732 We gonna sing like\\r\\r\\ndance like\\r\\r\\nSo just watch us\\r\\r\\nWe never give it up\\r\\r\\nwe never give it up\\r\\r\\nSo sing with us\\r\\r\\nso be with us\\r\\r\\ncuz we're mighty Sistar \n", + "13086 Do You Hear Me\\r\\r\\nDo You Hear Me\\r\\r\\n오늘도 나 혼자\\r\\r\\n어떡해 나 혼자\\r\\r\\nNo way\\r\\r\\n차가워\\r\\r\\n뻔한 거짓말은 No way\\r\\r\\n차가워 \n", + "1953 Music makes me high\\r\\r\\nMusic makes me high\\r\\r\\nbaby give me a melody\\r\\r\\ngive me a melody\\r\\r\\nNow it's time to motion\\r\\r\\nso make me high\\r\\r\\nso make me high\\r\\r\\nso make me high\\r\\r\\nso make me high \n", + "592 all system go\\r\\r\\n\\r\\r\\nall system go\\r\\r\\n아이고 아이고\\r\\r\\n와 아이고 와 아이야\\r\\r\\n오 아예\\r\\r\\n아하 예\\r\\r\\n예이예 컴온 \n", + "620 Ladies and gentleman\\r\\r\\non I feel cool\\r\\r\\non I follow me\\r\\r\\nWelcome to Roo'Ra number 3\\r\\r\\nwe like music We love Roo'Ra\\r\\r\\n\\r\\r\\nI want you I want a men\\r\\r\\n\\r\\r\\nThat's my troica Roo'Ra \n", + "11340 난 너밖엔 안보인다 \n", + "245 Amazing Grace oh how sweet the sound\\r\\r\\nThat saved a wreck like me\\r\\r\\nI once was lost though now I'm found\\r\\r\\nI was blind but now I see\\r\\r\\n\\r\\r\\nAmazing grace oh how sweet the sound\\r\\r\\nTo save a wreck like me\\r\\r\\nI once was lost but now I'm found\\r\\r\\nI was blind but now I see \n", + "6489 Good bye My love\\r\\r\\n밤거리 가득히\\r\\r\\n흩어진 불빛처럼\\r\\r\\n떠나가네요\\r\\r\\n못해준 일들이\\r\\r\\n참 많았는데 \n", + "13624 Haha 2014\\r\\r\\nI’m Lay I’m Lay\\r\\r\\nPut your hands up\\r\\r\\nOne step gotta make you high\\r\\r\\nTwo step gotta make you cry\\r\\r\\nShout Loud\\r\\r\\nI’m Lay Shout Loud\\r\\r\\nPut your hands up\\r\\r\\nMy name is \n", + "3017 가사가 없는 멘트곡입니다. \n", + "4075 만남....누군가를 만난다는 건\\r\\r\\n아무도 모르는 새로운 인연의 시작이죠\\r\\r\\n우리가 처음 만났던 때가 생각나요 \n", + "14405 I wanna go back\\r\\r\\nI wanna go back\\r\\r\\nI missing you\\r\\r\\nI missing you\\r\\r\\nI need you\\r\\r\\nI need you\\r\\r\\nI missing you\\r\\r\\n난 눈물뿐\\r\\r\\n아직도 난 네가 보고 싶다 \n", + "13097 두 손을 묶고 내 손을 묶고\\r\\r\\n니 마음대로 니 마음대로\\r\\r\\n내 머릴 묶고 내 눈을 묶고\\r\\r\\n니 마음대로 니 마음대로 \n", + "13427 She's my baby\\r\\r\\n새하얀 그 손 끝에\\r\\r\\n녹아버린 쇼콜라떼\\r\\r\\nYou're walking into my door \n", + "1573 Yo R ef is back 1996 coming\\r\\r\\nstraight at you\\r\\r\\nwith the rave back\\r\\r\\ngive you the wave yo\\r\\r\\nsay back to the black\\r\\r\\nEverybody say\\r\\r\\nback to the black\\r\\r\\nComeon say\\r\\r\\nback to the black\\r\\r\\nYe R ef is back to the black \n", + "2340 race!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race! \n", + "3027 가사가 없는 멘트곡입니다. \n", + "13842 우리가 왜 우리가 왜\\r\\r\\n우리가 왜 사랑을 해서\\r\\r\\n백퍼센트 \n", + "1631 시작한번 해보겠습니다~\\r\\r\\n아~\\r\\r\\n네~dj 우혁과 함께\\r\\r\\n1 2 3 4 5 6 do it~ \n", + "11355 난 너밖엔 안보인다 \n", + "3091 마지막 내 몸짓속에 그 누구도 참을 수 없어\\r\\r\\n느껴봐 소리쳐봐 내 모든걸 보여주겠어\\r\\r\\n오~~~오~~~~오~~~~~오~~~~~ \n", + "8419 Night After nights\\r\\r\\nSo many sleepless night\\r\\r\\nI'm Dreaming of your touch\\r\\r\\nCome on boy come to me\\r\\r\\nCan you feel my heart\\r\\r\\nfeel my heart beat\\r\\r\\nCan you feel my soul\\r\\r\\nCan you feel my soul \n", + "12917 You ready Brave Girl's\\r\\r\\nRollin Rollin Rollin Hey\\r\\r\\nRollin Rollin Rollin Hey\\r\\r\\nRollin Rollin Rollin Hey\\r\\r\\nRollin Rollin Rollin\\r\\r\\nRollin Rollin Rollin Hey\\r\\r\\nRollin Rollin Rollin\\r\\r\\nRollin Rollin Rollin\\r\\r\\nJust Only you \n", + "13021 Une annee\\r\\r\\nSeven Angels return\\r\\r\\nA new start\\r\\r\\na new beginning\\r\\r\\n4 seasons\\r\\r\\nWinter Fall Summer and Spring\\r\\r\\ntogether again Apink \n", + "10153 We did it\\r\\r\\nIt's another beginning\\r\\r\\nwe are MBLAQ\\r\\r\\nJust MBLAQ\\r\\r\\nFaster Stronger Deeper\\r\\r\\nThanks to our fans\\r\\r\\nSee ya \n", + "402 너도 외로웠니 나처럼\\r\\r\\n\\r\\r\\n난 널 위해 혼자 였던걸까\\r\\r\\n\\r\\r\\n이제 나에게 기대\\r\\r\\n나는 너를 사랑해 \n", + "14145 Hello\\r\\r\\nMy girls comin' at ya\\r\\r\\nGo girls and get that\\r\\r\\nWhat can\\r\\r\\nI do to make you love me baby\\r\\r\\nWhat I gotta do to make you care\\r\\r\\nmy love\\r\\r\\nMy girls gonna get your heart\\r\\r\\nMy girls gonna blow your mind\\r\\r\\nA O A A O A \n", + "6429 Everytime I look into your eyes forever\\r\\r\\nI believe you always will be mine\\r\\r\\nHow much I need your love\\r\\r\\nDon''t leave me alone\\r\\r\\nI''ll never let you go \n", + "240 What's up! your listeng to K R&B!\\r\\r\\nand I'm your DJ G money\\r\\r\\nwe got a request here from 최장필!\\r\\r\\nhe wants to here the new one\\r\\r\\nfrom JK revolution, Here you \n", + "\n", + " title_tokens_num lyrics_tokens_num sum_tokens_num \n", + "13141 4 65 69 \n", + "2425 3 28 31 \n", + "11570 5 73 78 \n", + "11552 5 75 80 \n", + "14652 10 32 42 \n", + "3213 3 93 96 \n", + "1584 10 77 87 \n", + "12902 6 84 90 \n", + "4089 20 65 85 \n", + "5112 11 72 83 \n", + "2414 3 28 31 \n", + "8373 6 23 29 \n", + "13444 7 24 31 \n", + "1182 10 27 37 \n", + "12203 4 63 67 \n", + "11732 7 61 68 \n", + "13086 7 85 92 \n", + "1953 6 69 75 \n", + "592 9 78 87 \n", + "620 12 76 88 \n", + "11340 4 20 24 \n", + "245 4 90 94 \n", + "6489 4 88 92 \n", + "13624 9 80 89 \n", + "3017 9 24 33 \n", + "4075 7 88 95 \n", + "14405 4 85 89 \n", + "13097 6 87 93 \n", + "13427 3 61 64 \n", + "1573 12 85 97 \n", + "2340 3 28 31 \n", + "3027 9 24 33 \n", + "13842 8 47 55 \n", + "1631 12 65 77 \n", + "11355 4 20 24 \n", + "3091 3 93 96 \n", + "8419 5 67 72 \n", + "12917 8 88 96 \n", + "13021 6 47 53 \n", + "10153 18 49 67 \n", + "402 5 90 95 \n", + "14145 6 82 88 \n", + "6429 4 47 51 \n", + "240 3 64 67 " + ], + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleartistalbumrelease_datesong_genreis_titlelikecreatorlyricstitle_tokens_numlyrics_tokens_numsum_tokens_num
13141LE NOIR비에이피NOIR2016.11.07DanceNaN4,230방용국\\r\\r\\n작사\\r\\r\\n방용국\\r\\r\\n작곡\\r\\r\\n김창락\\r\\r\\n작곡\\r\\r\\n강기훈\\r\\r\\n작곡\\r\\r\\n지우\\r\\r\\n작곡\\r\\r\\n강기훈\\r\\r\\n편곡\\r\\r\\n지우\\r\\r\\n편곡Le Noir\\r\\r\\nIf I never knew you\\r\\r\\nIf I never knew the love\\r\\r\\nI just wanna feel this moment\\r\\r\\nLe Noir\\r\\r\\nIf I never knew you\\r\\r\\nIf I never knew the love\\r\\r\\nI don't hate you like yesterday46569
2425Intro엔알지NRG (New Radiancy Group)1997.11DanceNaN31NaNrace!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race!32831
11570aRtisT틴탑aRtisT2012.05.30DanceNaN3,219별들의 전쟁\\r\\r\\n작사\\r\\r\\n용감한 형제\\r\\r\\n작곡\\r\\r\\n똘아이박\\r\\r\\n작곡\\r\\r\\n똘아이박\\r\\r\\n편곡I feel so empty\\r\\r\\nit's like it's kinda\\r\\r\\ndamn I can't explain\\r\\r\\nplease save me from this pain\\r\\r\\nI can't take this anymore\\r\\r\\nbaby please\\r\\r\\nplease don't drive me insane\\r\\r\\nI miss you everyday57378
11552No. 1틴탑No.12013.02.25DanceNaN4,111용감한 형제\\r\\r\\n작사\\r\\r\\n마부스 (Maboos)\\r\\r\\n작사\\r\\r\\n용감한 형제\\r\\r\\n작곡\\r\\r\\n용감한 형제\\r\\r\\n편곡2013 Now's The Time\\r\\r\\nT Double E N T O P\\r\\r\\nFinally They Release\\r\\r\\nTheir Full Album\\r\\r\\nIt's Not A Mini\\r\\r\\nIt's Not A Single\\r\\r\\nIt's Full Album\\r\\r\\nSo Check This Out\\r\\r\\nNo 157580
14652Interlude : 뭐해방탄소년단DARK&WILD2014.08.20Rap / Hip-hopNaN37,535Slow Rabbit\\r\\r\\n작곡뭐해\\r\\r\\n\\r\\r\\n뭐해\\r\\r\\n\\r\\r\\n\\r\\r\\n\\r\\r\\n뭐해103242
3213Intro신화First Mythology: 2001 1st Live Concert2001.04.01DanceNaN750NaN마지막 내 몸짓속에 그 누구도 참을 수 없어\\r\\r\\n느껴봐 소리쳐봐 내 모든걸 보여주겠어\\r\\r\\n오~~~오~~~~오~~~~~오~~~~~39396
1584서곡 (Intro)알이에프Rave Effect1995.03DanceNaN27무\\r\\r\\n작사\\r\\r\\n이용민\\r\\r\\n작곡\\r\\r\\n이용민\\r\\r\\n편곡Yo! R.ef is back 1996, coming\\r\\r\\nstraight at you with the rave back\\r\\r\\ngive you the wave yo!\\r\\r\\nsay back to the black!!\\r\\r\\nEverybody say back-\\r\\r\\nComeon say back-\\r\\r\\nYe!! R.ef is back to the black107787
12902Time To Rock Da ShowBP 라니아Time To Rock Da Show2011.11.17DanceNaN82별들의 전쟁\\r\\r\\n작사\\r\\r\\n용감한 형제\\r\\r\\n작곡\\r\\r\\n별들의 전쟁\\r\\r\\n작곡\\r\\r\\n별들의 전쟁\\r\\r\\n편곡Ladies and gentlemen\\r\\r\\nIt's time to rock da show\\r\\r\\nLet me introduce\\r\\r\\nThe incredibly outstandin' artist\\r\\r\\nLet's rock\\r\\r\\nIt's time to rock da show, show\\r\\r\\nEverybody on the floor, floor\\r\\r\\nIt's time to rock da show show\\r\\r\\nEverybody on the floor floor68490
4089사랑이 전부였던 날god보통날2004.12.08BalladNaN1,429권태은\\r\\r\\n작곡\\r\\r\\n권태은\\r\\r\\n편곡신스케 우리 이제 어디로 가는거야\\r\\r\\n멀리\\r\\r\\n너 정말 괜찮은 거지\\r\\r\\n응206585
5112Intro (Can`t You Feel)블랙 비트Black Beat #2002 - The First Performance 0012002.03.01BalladNaN19NaNIt's love I know\\r\\r\\n그대 그리며 기도해요\\r\\r\\nCan't you feel my love\\r\\r\\nIt's all for you\\r\\r\\nBaby because of you\\r\\r\\n그대 내곁에 잠이 들죠 forever117283
2414Intro엔알지Race1998DanceNaN20NaNrace!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race!32831
8373Break It (Inst.)카라Blooming2007.03.29DanceNaN409한상원\\r\\r\\n작곡가사가 없는 연주곡 입니다.62329
13444EXO Keep On Dancing엑소EXO PLANET #3 -The EXO`rDIUM(dot)- Live Album2017.10.25DanceNaN13,593심재원\\r\\r\\n작사\\r\\r\\n심재원\\r\\r\\n작곡\\r\\r\\n숀 (SHAUN)\\r\\r\\n작곡\\r\\r\\n심재원\\r\\r\\n편곡\\r\\r\\n숀 (SHAUN)\\r\\r\\n편곡EXO Keep On Dancing\\r\\r\\nFour three two one\\r\\r\\nEXO Keep On Dancing72431
1182L`esprit D`escalier제트Shine On (Digital Album Version)2006.09.29RockNaN3NaNAll you have to do\\r\\r\\nAll you have to do\\r\\r\\n\\r\\r\\nAhhhhhhh Ahhhhh102737
12203Where R U보이프렌드I`ll Be There2011.12.08DanceNaN764송수윤\\r\\r\\n작사\\r\\r\\n안준성\\r\\r\\n작곡어디로 넌 갔니 넌 어디로 대체\\r\\r\\n어디로 넌 갔니 넌 어디로 대체46367
11732Mighty Sistar씨스타니까짓게2010.12.03DanceNaN650별들의 전쟁\\r\\r\\n작사\\r\\r\\n용감한 형제\\r\\r\\n작곡\\r\\r\\n똘아이박\\r\\r\\n편곡We gonna sing like\\r\\r\\ndance like\\r\\r\\nSo just watch us\\r\\r\\nWe never give it up\\r\\r\\nwe never give it up\\r\\r\\nSo sing with us\\r\\r\\nso be with us\\r\\r\\ncuz we're mighty Sistar76168
13086Do You Hear Me?스텔라찔려2016.01.18DanceNaN344NOPARI (MonoTree)\\r\\r\\n작사\\r\\r\\nNOPARI (MonoTree)\\r\\r\\n작곡\\r\\r\\nNOPARI (MonoTree)\\r\\r\\n편곡Do You Hear Me\\r\\r\\nDo You Hear Me\\r\\r\\n오늘도 나 혼자\\r\\r\\n어떡해 나 혼자\\r\\r\\nNo way\\r\\r\\n차가워\\r\\r\\n뻔한 거짓말은 No way\\r\\r\\n차가워78592
1953Music Makes Me High구피청춘2005.10.21DanceNaN0박성호 (구피)\\r\\r\\n작곡\\r\\r\\n박성호 (구피)\\r\\r\\n편곡Music makes me high\\r\\r\\nMusic makes me high\\r\\r\\nbaby give me a melody\\r\\r\\ngive me a melody\\r\\r\\nNow it's time to motion\\r\\r\\nso make me high\\r\\r\\nso make me high\\r\\r\\nso make me high\\r\\r\\nso make me high66975
592All System Go! (Intro)룰라All System Go1996.06.15DanceNaN37이현도\\r\\r\\n작사\\r\\r\\n이현도\\r\\r\\n작곡\\r\\r\\n이현도\\r\\r\\n편곡all system go\\r\\r\\n\\r\\r\\nall system go\\r\\r\\n아이고 아이고\\r\\r\\n와 아이고 와 아이야\\r\\r\\n오 아예\\r\\r\\n아하 예\\r\\r\\n예이예 컴온97887
620Roo`Ra In 1996룰라Reincarnation Of The Legend1995DanceNaN23룰라\\r\\r\\n작사Ladies and gentleman\\r\\r\\non I feel cool\\r\\r\\non I follow me\\r\\r\\nWelcome to Roo'Ra number 3\\r\\r\\nwe like music We love Roo'Ra\\r\\r\\n\\r\\r\\nI want you I want a men\\r\\r\\n\\r\\r\\nThat's my troica Roo'Ra127688
11340Season 2인피니트Be Back2014.07.22DanceNaN15,687NaN난 너밖엔 안보인다42024
245Amaging Grace솔리드솔리드 Live1996.10.01R&B / SoulNaN17NaNAmazing Grace oh how sweet the sound\\r\\r\\nThat saved a wreck like me\\r\\r\\nI once was lost though now I'm found\\r\\r\\nI was blind but now I see\\r\\r\\n\\r\\r\\nAmazing grace oh how sweet the sound\\r\\r\\nTo save a wreck like me\\r\\r\\nI once was lost but now I'm found\\r\\r\\nI was blind but now I see49094
6489Good Bye테이크TAKE2015.05.12BalladNaN264신승희\\r\\r\\n작사\\r\\r\\n신승희\\r\\r\\n작곡\\r\\r\\n송양하\\r\\r\\n편곡\\r\\r\\n김재현\\r\\r\\n편곡Good bye My love\\r\\r\\n밤거리 가득히\\r\\r\\n흩어진 불빛처럼\\r\\r\\n떠나가네요\\r\\r\\n못해준 일들이\\r\\r\\n참 많았는데48892
13624I`m Lay (LAY)엑소EXOLOGY CHAPTER 1: THE LOST PLANET2014.12.22DanceNaN24,049Maxx Song\\r\\r\\n작사\\r\\r\\n레이 (LAY)\\r\\r\\n작곡\\r\\r\\nCommand Freaks\\r\\r\\n작곡\\r\\r\\n레이 (LAY)\\r\\r\\n편곡\\r\\r\\nCommand Freaks\\r\\r\\n편곡Haha 2014\\r\\r\\nI’m Lay I’m Lay\\r\\r\\nPut your hands up\\r\\r\\nOne step gotta make you high\\r\\r\\nTwo step gotta make you cry\\r\\r\\nShout Loud\\r\\r\\nI’m Lay Shout Loud\\r\\r\\nPut your hands up\\r\\r\\nMy name is98089
3017기억나니?신화신화 9집 (White Edition)2008.07.03DanceNaN1,914NaN가사가 없는 멘트곡입니다.92433
40751999년god하늘속으로2005.10.28BalladNaN1,231박진영\\r\\r\\n작사\\r\\r\\n박진영\\r\\r\\n작곡\\r\\r\\n권태은\\r\\r\\n편곡만남....누군가를 만난다는 건\\r\\r\\n아무도 모르는 새로운 인연의 시작이죠\\r\\r\\n우리가 처음 만났던 때가 생각나요78895
14405Missing You제아 파이브Voulez-vous2013.03.25DanceNaN646차쿤 (일렉트로보이즈)\\r\\r\\n작사\\r\\r\\n별들의 전쟁\\r\\r\\n작곡\\r\\r\\n차쿤 (일렉트로보이즈)\\r\\r\\n작곡\\r\\r\\n미쓰리\\r\\r\\n작곡\\r\\r\\n별들의 전쟁\\r\\r\\n편곡\\r\\r\\n미쓰리\\r\\r\\n편곡I wanna go back\\r\\r\\nI wanna go back\\r\\r\\nI missing you\\r\\r\\nI missing you\\r\\r\\nI need you\\r\\r\\nI need you\\r\\r\\nI missing you\\r\\r\\n난 눈물뿐\\r\\r\\n아직도 난 네가 보고 싶다48589
13097T.I.E스텔라마리오네트2014.02.12DanceNaN875GDLO (MonoTree)\\r\\r\\n작사\\r\\r\\nGDLO (MonoTree)\\r\\r\\n작곡\\r\\r\\nGDLO (MonoTree)\\r\\r\\n편곡두 손을 묶고 내 손을 묶고\\r\\r\\n니 마음대로 니 마음대로\\r\\r\\n내 머릴 묶고 내 눈을 묶고\\r\\r\\n니 마음대로 니 마음대로68793
13427My Lady엑소EXO PLANET #3 -The EXO`rDIUM(dot)- Live Album2017.10.25BalladNaN10,755김부민\\r\\r\\n작사\\r\\r\\nHitchhiker\\r\\r\\n작곡\\r\\r\\nHitchhiker\\r\\r\\n편곡\\r\\r\\nMaxx Song\\r\\r\\n편곡She's my baby\\r\\r\\n새하얀 그 손 끝에\\r\\r\\n녹아버린 쇼콜라떼\\r\\r\\nYou're walking into my door36164
1573서곡 (Back To The Black)알이에프Back To The Black1996.04DanceNaN35무\\r\\r\\n작사\\r\\r\\n이용민\\r\\r\\n작곡\\r\\r\\n이용민\\r\\r\\n편곡Yo R ef is back 1996 coming\\r\\r\\nstraight at you\\r\\r\\nwith the rave back\\r\\r\\ngive you the wave yo\\r\\r\\nsay back to the black\\r\\r\\nEverybody say\\r\\r\\nback to the black\\r\\r\\nComeon say\\r\\r\\nback to the black\\r\\r\\nYe R ef is back to the black128597
2340Intro엔알지Concert with Antonio2001.10DanceNaN17NaNrace!\\r\\r\\nrace!\\r\\r\\n(ra)(ra)race!\\r\\r\\n(ra)(ra)race!32831
3027기억나니?신화신화 9집2008.04.03DanceNaN1,613NaN가사가 없는 멘트곡입니다.92433
13842We, 100%백퍼센트WE, 100%2012.09.18DanceNaN541슈퍼창따이\\r\\r\\n작사\\r\\r\\n슈퍼창따이\\r\\r\\n작곡\\r\\r\\n슈퍼창따이\\r\\r\\n편곡우리가 왜 우리가 왜\\r\\r\\n우리가 왜 사랑을 해서\\r\\r\\n백퍼센트84755
1631Scratch Show (우혁 Special)에이치오티Forever2001.05.01DanceNaN252NaN시작한번 해보겠습니다~\\r\\r\\n아~\\r\\r\\n네~dj 우혁과 함께\\r\\r\\n1 2 3 4 5 6 do it~126577
11355Season 2인피니트Season 22014.05.21DanceNaN20,809NaN난 너밖엔 안보인다42024
3091Intro신화Summer Story 2005 (Single)2005.08.05DanceNaN868NaN마지막 내 몸짓속에 그 누구도 참을 수 없어\\r\\r\\n느껴봐 소리쳐봐 내 모든걸 보여주겠어\\r\\r\\n오~~~오~~~~오~~~~~오~~~~~39396
8419Love And Extasy베이비 복스 리브Baby V.O.X Special Album2002.04.23DanceNaN20NaNNight After nights\\r\\r\\nSo many sleepless night\\r\\r\\nI'm Dreaming of your touch\\r\\r\\nCome on boy come to me\\r\\r\\nCan you feel my heart\\r\\r\\nfeel my heart beat\\r\\r\\nCan you feel my soul\\r\\r\\nCan you feel my soul56772
12917Outro (Rollin`)브레이브걸스Rollin`2017.03.07DanceNaN229용감한 형제\\r\\r\\n작사\\r\\r\\n차쿤 (일렉트로보이즈)\\r\\r\\n작사\\r\\r\\n용감한 형제\\r\\r\\n작곡\\r\\r\\n투챔프\\r\\r\\n작곡\\r\\r\\n차쿤 (일렉트로보이즈)\\r\\r\\n작곡\\r\\r\\n투챔프\\r\\r\\n편곡You ready Brave Girl's\\r\\r\\nRollin Rollin Rollin Hey\\r\\r\\nRollin Rollin Rollin Hey\\r\\r\\nRollin Rollin Rollin Hey\\r\\r\\nRollin Rollin Rollin\\r\\r\\nRollin Rollin Rollin Hey\\r\\r\\nRollin Rollin Rollin\\r\\r\\nRollin Rollin Rollin\\r\\r\\nJust Only you88896
13021UNE ANNEE에이핑크UNE ANNEE2012.05.09DanceNaN6,956범이\\r\\r\\n작사\\r\\r\\n낭이\\r\\r\\n작사\\r\\r\\n범이\\r\\r\\n작곡\\r\\r\\n낭이\\r\\r\\n작곡\\r\\r\\n범이\\r\\r\\n편곡\\r\\r\\n낭이\\r\\r\\n편곡Une annee\\r\\r\\nSeven Angels return\\r\\r\\nA new start\\r\\r\\na new beginning\\r\\r\\n4 seasons\\r\\r\\nWinter Fall Summer and Spring\\r\\r\\ntogether again Apink64753
10153또다른 시작 (Outro)엠블랙BLAQ Style 3D Edition2011.02.22BalladNaN417배진렬 (JR Groove)\\r\\r\\n작사\\r\\r\\n배진렬 (JR Groove)\\r\\r\\n작곡We did it\\r\\r\\nIt's another beginning\\r\\r\\nwe are MBLAQ\\r\\r\\nJust MBLAQ\\r\\r\\nFaster Stronger Deeper\\r\\r\\nThanks to our fans\\r\\r\\nSee ya184967
402듀스Deuxism1993.12.30Rap / Hip-hopNaN44이현도\\r\\r\\n작사\\r\\r\\n이현도\\r\\r\\n작곡\\r\\r\\n이현도\\r\\r\\n편곡너도 외로웠니 나처럼\\r\\r\\n\\r\\r\\n난 널 위해 혼자 였던걸까\\r\\r\\n\\r\\r\\n이제 나에게 기대\\r\\r\\n나는 너를 사랑해59095
14145Gonna Get Your Heart에이오에이짧은 치마2014.01.16DanceNaN3,173별들의 전쟁\\r\\r\\n작사\\r\\r\\n별들의 전쟁\\r\\r\\n작곡\\r\\r\\n별들의 전쟁\\r\\r\\n편곡Hello\\r\\r\\nMy girls comin' at ya\\r\\r\\nGo girls and get that\\r\\r\\nWhat can\\r\\r\\nI do to make you love me baby\\r\\r\\nWhat I gotta do to make you care\\r\\r\\nmy love\\r\\r\\nMy girls gonna get your heart\\r\\r\\nMy girls gonna blow your mind\\r\\r\\nA O A A O A68288
6429I Believe에스Group`S`1집 - I Swear2003.09.25BalladNaN271신혜성\\r\\r\\n작사\\r\\r\\n송광식\\r\\r\\n작곡Everytime I look into your eyes forever\\r\\r\\nI believe you always will be mine\\r\\r\\nHow much I need your love\\r\\r\\nDon''t leave me alone\\r\\r\\nI''ll never let you go44751
240Intro솔리드솔리드 Live1996.10.01R&B / SoulNaN14NaNWhat's up! your listeng to K R&B!\\r\\r\\nand I'm your DJ G money\\r\\r\\nwe got a request here from 최장필!\\r\\r\\nhe wants to here the new one\\r\\r\\nfrom JK revolution, Here you36467
\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 182 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# valid.csv 정제\n", + "\n", + "dataset_pandas = pd.read_csv(folder_path + 'utils/valid.csv', names=['title', 'artist', 'album', 'release_date', 'song_genre', 'is_title',\n", + " 'like', 'creator', 'lyrics']) # pandas\n", + "\n", + "dataset_pandas = dataset_pandas[1:]\n", + "print('정제 전 데이터 행 개수: ', len(dataset_pandas))\n", + "\n", + "dataset_pandas = dataset_pandas.dropna(subset=['title', 'lyrics'])\n", + "\n", + "dataset_pandas['title_tokens_num'] = dataset_pandas['title'].apply(lambda x: cal_tokens_num(x))\n", + "dataset_pandas['lyrics_tokens_num'] = dataset_pandas['lyrics'].apply(lambda x: cal_tokens_num(str(x)))\n", + "dataset_pandas['sum_tokens_num'] = dataset_pandas['title_tokens_num'] + dataset_pandas['lyrics_tokens_num']\n", + "print(max(dataset_pandas['sum_tokens_num']))\n", + "print(min(dataset_pandas['sum_tokens_num']))\n", + "\n", + "###filtered_rows = dataset_pandas[dataset_pandas['sum_tokens_num'] <= 940]\n", + "filtered_rows = dataset_pandas[(dataset_pandas['sum_tokens_num'] <= 430) & (100 <= dataset_pandas['sum_tokens_num'])]\n", + "print('정제 후 데이터 행 개수: ', len(filtered_rows))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "R3RLUurb5vAm", + "outputId": "8fffcf35-7191-45a2-9f6c-c406d19c8e30" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "정제 전 데이터 행 개수: 3634\n", + "4682\n", + "16\n", + "정제 후 데이터 행 개수: 80\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# test.csv 정제\n", + "\n", + "dataset_pandas = pd.read_csv(folder_path + 'utils/test.csv', names=['title', 'artist', 'album', 'release_date', 'song_genre', 'is_title',\n", + " 'like', 'creator', 'lyrics']) # pandas\n", + "dataset_pandas = dataset_pandas[1:]\n", + "print('정제 전 데이터 행 개수: ', len(dataset_pandas))\n", + "\n", + "dataset_pandas = dataset_pandas.dropna(subset=['title', 'lyrics'])\n", + "\n", + "dataset_pandas['title_tokens_num'] = dataset_pandas['title'].apply(lambda x: cal_tokens_num(x))\n", + "dataset_pandas['lyrics_tokens_num'] = dataset_pandas['lyrics'].apply(lambda x: cal_tokens_num(str(x)))\n", + "dataset_pandas['sum_tokens_num'] = dataset_pandas['title_tokens_num'] + dataset_pandas['lyrics_tokens_num']\n", + "print(max(dataset_pandas['sum_tokens_num']))\n", + "print(min(dataset_pandas['sum_tokens_num']))\n", + "\n", + "###filtered_rows = dataset_pandas[dataset_pandas['sum_tokens_num'] <= 940]\n", + "filtered_rows = dataset_pandas[(dataset_pandas['sum_tokens_num'] <= 430) & (100 <= dataset_pandas['sum_tokens_num'])]\n", + "filtered_rows.to_csv(folder_path + 'utils/test_selected.csv', index=False, encoding='utf-8', header=True)\n", + "print('정제 후 데이터 행 개수: ', len(filtered_rows))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Kw7ryHkn7FLo", + "outputId": "949285a3-802a-4a83-f508-18c394839a17" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "정제 전 데이터 행 개수: 1817\n", + "5562\n", + "12\n", + "정제 후 데이터 행 개수: 34\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "filtered_rows" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "nlx5dsOl74-h", + "outputId": "8de523bb-3228-4c09-8392-659e57c5d88b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " title artist \\\n", + "6 TENSION UP! 업텐션 \n", + "9 Never Ending 업텐션 \n", + "12 Dash 업텐션 \n", + "20 Winter Breeze 브이에이브이 \n", + "22 She`s Mine (Inst.) 브이에이브이 \n", + "... ... ... \n", + "1803 JOY (Inst.) 엔시티 드림 \n", + "1805 La La Love 엔시티 드림 \n", + "1808 We Young (Chinese Ver.) 엔시티 드림 \n", + "1809 (Bonus Track) Trigger the fever 엔시티 드림 \n", + "1810 Trigger The Fever 엔시티 드림 \n", + "\n", + " album release_date \\\n", + "6 一級秘密 (일급비밀) 2015.09.11 \n", + "9 一級秘密 (일급비밀) 2015.09.11 \n", + "12 불후의 명곡 - 전설을 노래하다 (백지영 편) 2015.11.28 \n", + "20 Spotlight 2018.01.29 \n", + "22 She`s Mine 2017.11.02 \n", + "... ... ... \n", + "1803 JOY - SM STATION 2017.12.15 \n", + "1805 We Young - The 1st Mini Album 2017.08.17 \n", + "1808 We Young - The 1st Mini Album 2017.08.17 \n", + "1809 We Young - The 1st Mini Album 2017.08.17 \n", + "1810 Trigger The Fever - The Official Song Of The F... 2017.03.15 \n", + "\n", + " song_genre is_title like \\\n", + "6 Dance NaN 816 \n", + "9 Dance NaN 1,189 \n", + "12 Ballad Dash 199 \n", + "20 Ballad NaN 115 \n", + "22 Dance NaN 63 \n", + "... ... ... ... \n", + "1803 Dance NaN 2,947 \n", + "1805 Dance 인기 곡 14,016 \n", + "1808 Dance NaN 7,620 \n", + "1809 Dance NaN 10,158 \n", + "1810 Dance 타이틀 곡 11,304 \n", + "\n", + " creator \\\n", + "6 신혁\\r\\r\\n작곡\\r\\r\\nMrey\\r\\r\\n작곡\\r\\r\\n신혁\\r\\r\\n편곡\\r... \n", + "9 창조\\r\\r\\n작사\\r\\r\\n허성진\\r\\r\\n작사\\r\\r\\n허성진\\r\\r\\n작곡\\r... \n", + "12 이승호\\r\\r\\n작사\\r\\r\\n홍재선\\r\\r\\n작곡\\r\\r\\n정민경\\r\\r\\n편곡\\... \n", + "20 초콜릿 노트\\r\\r\\n작사\\r\\r\\n유송연\\r\\r\\n작곡\\r\\r\\nGabby\\r\\r... \n", + "22 Coach & Sendo\\r\\r\\n작곡\\r\\r\\nCoach & Sendo\\r\\r\\n편곡 \n", + "... ... \n", + "1803 James Pierpont\\r\\r\\n작곡\\r\\r\\nGeorge Frideric Ha... \n", + "1805 신아녜스\\r\\r\\n작사\\r\\r\\n마크 (MARK)\\r\\r\\n작사\\r\\r\\nDavid... \n", + "1808 왕정운\\r\\r\\n작사\\r\\r\\nkenzie\\r\\r\\n작곡\\r\\r\\nLDN Noise... \n", + "1809 100%서정\\r\\r\\n작사\\r\\r\\n황지원 (Jam Factory)\\r\\r\\n작사\\... \n", + "1810 100%서정\\r\\r\\n작사\\r\\r\\n황지원 (Jam Factory)\\r\\r\\n작사\\... \n", + "\n", + " lyrics title_tokens_num \\\n", + "6 NaN 6 \n", + "9 은은하게 퍼진 향기\\r\\r\\n너의 눈빛이 날 끌어당겨\\r\\r\\n너에게 잠겨 헤어 나... 4 \n", + "12 NaN 3 \n", + "20 창문 사이로 바람이 불어와\\r\\r\\n하얀 눈이 가득 쌓인 그 거리에\\r\\r\\n추억 ... 5 \n", + "22 NaN 8 \n", + "... ... ... \n", + "1803 Jingle bells jingle bells jingle\\r\\r\\nall the ... 7 \n", + "1805 Baby 스치는 바람을 따라\\r\\r\\n떠날래 아무도 모르게\\r\\r\\n하루 이틀 미뤘... 4 \n", + "1808 We just wanna have fun\\r\\r\\ncause' we hot and ... 8 \n", + "1809 저 드높은 하늘 끝에 난\\r\\r\\n지구를 닮은 공 하나로\\r\\r\\nGo Trigge... 12 \n", + "1810 Trigger The Fever\\r\\r\\n\\r\\r\\n저 드높은 하늘 끝에 난\\r\\r... 6 \n", + "\n", + " lyrics_tokens_num sum_tokens_num \n", + "6 2 8 \n", + "9 817 821 \n", + "12 2 5 \n", + "20 648 653 \n", + "22 2 10 \n", + "... ... ... \n", + "1803 816 823 \n", + "1805 817 821 \n", + "1808 791 799 \n", + "1809 835 847 \n", + "1810 851 857 \n", + "\n", + "[429 rows x 12 columns]" + ], + "text/html": [ + "\n", + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleartistalbumrelease_datesong_genreis_titlelikecreatorlyricstitle_tokens_numlyrics_tokens_numsum_tokens_num
6TENSION UP!업텐션一級秘密 (일급비밀)2015.09.11DanceNaN816신혁\\r\\r\\n작곡\\r\\r\\nMrey\\r\\r\\n작곡\\r\\r\\n신혁\\r\\r\\n편곡\\r...NaN628
9Never Ending업텐션一級秘密 (일급비밀)2015.09.11DanceNaN1,189창조\\r\\r\\n작사\\r\\r\\n허성진\\r\\r\\n작사\\r\\r\\n허성진\\r\\r\\n작곡\\r...은은하게 퍼진 향기\\r\\r\\n너의 눈빛이 날 끌어당겨\\r\\r\\n너에게 잠겨 헤어 나...4817821
12Dash업텐션불후의 명곡 - 전설을 노래하다 (백지영 편)2015.11.28BalladDash199이승호\\r\\r\\n작사\\r\\r\\n홍재선\\r\\r\\n작곡\\r\\r\\n정민경\\r\\r\\n편곡\\...NaN325
20Winter Breeze브이에이브이Spotlight2018.01.29BalladNaN115초콜릿 노트\\r\\r\\n작사\\r\\r\\n유송연\\r\\r\\n작곡\\r\\r\\nGabby\\r\\r...창문 사이로 바람이 불어와\\r\\r\\n하얀 눈이 가득 쌓인 그 거리에\\r\\r\\n추억 ...5648653
22She`s Mine (Inst.)브이에이브이She`s Mine2017.11.02DanceNaN63Coach & Sendo\\r\\r\\n작곡\\r\\r\\nCoach & Sendo\\r\\r\\n편곡NaN8210
.......................................
1803JOY (Inst.)엔시티 드림JOY - SM STATION2017.12.15DanceNaN2,947James Pierpont\\r\\r\\n작곡\\r\\r\\nGeorge Frideric Ha...Jingle bells jingle bells jingle\\r\\r\\nall the ...7816823
1805La La Love엔시티 드림We Young - The 1st Mini Album2017.08.17Dance인기 곡14,016신아녜스\\r\\r\\n작사\\r\\r\\n마크 (MARK)\\r\\r\\n작사\\r\\r\\nDavid...Baby 스치는 바람을 따라\\r\\r\\n떠날래 아무도 모르게\\r\\r\\n하루 이틀 미뤘...4817821
1808We Young (Chinese Ver.)엔시티 드림We Young - The 1st Mini Album2017.08.17DanceNaN7,620왕정운\\r\\r\\n작사\\r\\r\\nkenzie\\r\\r\\n작곡\\r\\r\\nLDN Noise...We just wanna have fun\\r\\r\\ncause' we hot and ...8791799
1809(Bonus Track) Trigger the fever엔시티 드림We Young - The 1st Mini Album2017.08.17DanceNaN10,158100%서정\\r\\r\\n작사\\r\\r\\n황지원 (Jam Factory)\\r\\r\\n작사\\...저 드높은 하늘 끝에 난\\r\\r\\n지구를 닮은 공 하나로\\r\\r\\nGo Trigge...12835847
1810Trigger The Fever엔시티 드림Trigger The Fever - The Official Song Of The F...2017.03.15Dance타이틀 곡11,304100%서정\\r\\r\\n작사\\r\\r\\n황지원 (Jam Factory)\\r\\r\\n작사\\...Trigger The Fever\\r\\r\\n\\r\\r\\n저 드높은 하늘 끝에 난\\r\\r...6851857
\n", + "

429 rows × 12 columns

\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 66 + } + ] + }, + { + "cell_type": "code", + "source": [ + "song_data = {\n", + " 'title': dataset_pandas['title'][1],\n", + " 'lyric': dataset_pandas['lyrics'][1],\n", + " }\n", + "\n", + "print(song_data['title'])\n", + "print(song_data['lyric'])\n", + "result = DatasetDict({'input_with_instruction': prompt_format3%(song_data['title'], song_data['lyric'])})\n", + "\n", + "result" + ], + "metadata": { + "id": "KhQlaVVYzmVM" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "tokenizer(\n", + " text,\n", + " truncation=True,\n", + " max_length=CUTOFF_LEN,\n", + " padding=False,\n", + " return_tensors=None,\n", + " )" + ], + "metadata": { + "id": "IA6zdEegyHiG" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "title_list = dataset_pandas['title'].tolist()\n", + "\n", + "title = title_list[1]\n", + "title" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 36 + }, + "id": "W5oONqKI6t2m", + "outputId": "1b1b7a32-eab5-4219-986a-df6443ea4fae" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'Run & Run'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 58 + } + ] + }, + { + "cell_type": "code", + "source": [ + "title" + ], + "metadata": { + "id": "qRszlJpU6zWL" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "title_list[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 36 + }, + "id": "fqh7hjUt62N7", + "outputId": "b5b2d4cf-1cca-46a5-802a-5a494e3a9db5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'title'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 59 + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "RnbvxCzR4PZR" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8LWlzKw1ipAN", + "outputId": "55344e42-40f4-48ed-caf1-48069a4370df" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "title\n", + "lyrics\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'title': 'title',\n", + " 'lyric': 'lyrics',\n", + " 'input_with_instruction': '노래 제목이 주어지면 창의적으로 작사해주세요. 제목: title 가사: lyrics',\n", + " 'input_ids': [1,\n", + " 29871,\n", + " 238,\n", + " 136,\n", + " 187,\n", + " 238,\n", + " 161,\n", + " 155,\n", + " 29871,\n", + " 31306,\n", + " 238,\n", + " 173,\n", + " 172,\n", + " 30393,\n", + " 29871,\n", + " 30981,\n", + " 31129,\n", + " 30811,\n", + " 31747,\n", + " 29871,\n", + " 239,\n", + " 179,\n", + " 192,\n", + " 30708,\n", + " 239,\n", + " 163,\n", + " 132,\n", + " 239,\n", + " 159,\n", + " 191,\n", + " 30906,\n", + " 29871,\n", + " 239,\n", + " 161,\n", + " 148,\n", + " 30791,\n", + " 31435,\n", + " 30981,\n", + " 31578,\n", + " 31527,\n", + " 29889,\n", + " 29871,\n", + " 31306,\n", + " 238,\n", + " 173,\n", + " 172,\n", + " 29901,\n", + " 3611,\n", + " 29871,\n", + " 30903,\n", + " 30791,\n", + " 29901,\n", + " 26627,\n", + " 1199,\n", + " 2],\n", + " 'attention_mask': [1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1,\n", + " 1]}" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "test_data[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dJLxAElpPx3c", + "outputId": "822b8fac-645b-4dd3-9ee5-0bcf311366b2" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "<__main__.LyricsDataset at 0x7f5d857f5b70>" + ] + }, + "metadata": {}, + "execution_count": 194 + } + ], + "source": [ + "dataset = train_data\n", + "\n", + "dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "b80iRlikQoOu" + }, + "outputs": [], + "source": [ + "# dataset[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wlOYxjqxc4gn", + "outputId": "a588941d-1b3b-44d7-b5f0-c1818d82a204" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "283" + ] + }, + "metadata": {}, + "execution_count": 196 + } + ], + "source": [ + "len(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DPjLYu1eZQ3B" + }, + "outputs": [], + "source": [ + "# dataset[12720-1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pHCq8kvVQ7pq", + "outputId": "0634fa9f-17c8-48e1-d656-8bc08f0cd569" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "11176" + ] + }, + "metadata": {}, + "execution_count": 198 + } + ], + "source": [ + "len(dataset_pandas)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dQdvjTYTT1vQ" + }, + "outputs": [], + "source": [ + "from peft import LoraConfig, get_peft_model\n", + "\n", + "lora_alpha = 16\n", + "lora_dropout = 0.1\n", + "lora_r = 64\n", + "\n", + "peft_config = LoraConfig(\n", + " lora_alpha=lora_alpha,\n", + " lora_dropout=lora_dropout,\n", + " r=lora_r,\n", + " bias=\"none\",\n", + " task_type=\"CAUSAL_LM\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dzsYHLwIZoLm" + }, + "source": [ + "## Loading the trainer" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aTBJVE4PaJwK" + }, + "source": [ + "Here we will use the [`SFTTrainer` from TRL library](https://huggingface.co/docs/trl/main/en/sft_trainer) that gives a wrapper around transformers `Trainer` to easily fine-tune models on instruction based datasets using PEFT adapters. Let's first load the training arguments below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OCFTvGW6aspE" + }, + "outputs": [], + "source": [ + "from transformers import TrainingArguments\n", + "\n", + "output_dir = \"./results_2\"\n", + "per_device_train_batch_size = 4\n", + "gradient_accumulation_steps = 4\n", + "optim = \"paged_adamw_32bit\"\n", + "save_steps = 5\n", + "logging_steps = 10\n", + "learning_rate = 2e-4\n", + "max_grad_norm = 0.3\n", + "max_steps = 50\n", + "warmup_ratio = 0.03\n", + "lr_scheduler_type = \"constant\"\n", + "\n", + "training_arguments = TrainingArguments(\n", + " output_dir=output_dir,\n", + " per_device_train_batch_size=per_device_train_batch_size,\n", + " gradient_accumulation_steps=gradient_accumulation_steps,\n", + " optim=optim,\n", + " save_steps=save_steps,\n", + " logging_steps=logging_steps,\n", + " learning_rate=learning_rate,\n", + " fp16=True,\n", + " max_grad_norm=max_grad_norm,\n", + " max_steps=max_steps,\n", + " warmup_ratio=warmup_ratio,\n", + " group_by_length=True,\n", + " lr_scheduler_type=lr_scheduler_type,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I3t6b2TkcJwy" + }, + "source": [ + "Then finally pass everthing to the trainer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TNeOBgZeTl2H", + "outputId": "eb047ad4-4c9d-40a0-da86-3477405342dc" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/peft/utils/other.py:119: FutureWarning: prepare_model_for_int8_training is deprecated and will be removed in a future version. Use prepare_model_for_kbit_training instead.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "from trl import SFTTrainer\n", + "\n", + "###max_seq_length = 1024\n", + "max_seq_length = 512\n", + "\n", + "trainer = SFTTrainer(\n", + " model=model,\n", + " train_dataset=dataset,\n", + " peft_config=peft_config,\n", + " dataset_text_field=\"text\",\n", + " max_seq_length=max_seq_length,\n", + " tokenizer=tokenizer,\n", + " args=training_arguments,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GWplqqDjb3sS" + }, + "source": [ + "We will also pre-process the model by upcasting the layer norms in float 32 for more stable training" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7OyIvEx7b1GT" + }, + "outputs": [], + "source": [ + "for name, module in trainer.model.named_modules():\n", + " if \"norm\" in name:\n", + " module = module.to(torch.float32)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1JApkSrCcL3O" + }, + "source": [ + "## Train the model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JjvisllacNZM" + }, + "source": [ + "Now let's train the model! Simply call `trainer.train()`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Oi5IYG-hRDUn", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a7ff4296-d216-4837-aac4-3fdd396daa5b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "283" + ] + }, + "metadata": {}, + "execution_count": 203 + } + ], + "source": [ + "len(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9OU-o1jQRIz2" + }, + "outputs": [], + "source": [ + "# dataset[12719-1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WgcOqsFtRAhW" + }, + "outputs": [], + "source": [ + "# dataset[12719]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 330 + }, + "id": "_kbS7nRxcMt7", + "outputId": "3798cb98-5bbb-4f8b-bb72-a1e238d1aade" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [50/50 20:37, Epoch 2/3]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
101.595200
201.470100
301.305600
401.318500
501.229100

" + ] + }, + "metadata": {} + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "TrainOutput(global_step=50, training_loss=1.3837078857421874, metrics={'train_runtime': 1262.1245, 'train_samples_per_second': 0.634, 'train_steps_per_second': 0.04, 'total_flos': 8342048247644160.0, 'train_loss': 1.3837078857421874, 'epoch': 2.82})" + ] + }, + "metadata": {}, + "execution_count": 206 + } + ], + "source": [ + "trainer.train()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "H5c0ppfasK29" + }, + "source": [ + "During training, the model should converge nicely as follows:\n", + "\n", + "![image](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/loss-falcon-7b.png)\n", + "\n", + "The `SFTTrainer` also takes care of properly saving only the adapters during training instead of saving the entire model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "v2CEgCF14M0m" + }, + "outputs": [], + "source": [ + "model_to_save = trainer.model.module if hasattr(trainer.model, 'module') else trainer.model # Take care of distributed/parallel training\n", + "model_to_save.save_pretrained(folder_path + \"outputs_2\")" + ] + }, + { + "cell_type": "code", + "source": [ + "model.save_pretrained(folder_path + \"llama_finetuned_2\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 346 + }, + "id": "-txn1QQP7soa", + "outputId": "64456337-89f8-4830-9db2-deb81948a122" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "NotImplementedError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_pretrained\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfolder_path\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m\"llama_finetuned_2\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36msave_pretrained\u001b[0;34m(self, save_directory, is_main_process, state_dict, save_function, push_to_hub, max_shard_size, safe_serialization, variant, **kwargs)\u001b[0m\n\u001b[1;32m 1713\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1714\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"is_loaded_in_4bit\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1715\u001b[0;31m raise NotImplementedError(\n\u001b[0m\u001b[1;32m 1716\u001b[0m \u001b[0;34m\"You are calling `save_pretrained` on a 4-bit converted model. This is currently not supported\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1717\u001b[0m )\n", + "\u001b[0;31mNotImplementedError\u001b[0m: You are calling `save_pretrained` on a 4-bit converted model. This is currently not supported" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "X71KzySsAghR" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pKOFrRt-ea9D" + }, + "outputs": [], + "source": [ + "# 학습한 모델로 결과 추론\n", + "infer_tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side='left') # 추론 시에는 padding left\n", + "infer_tokenizer.pad_token = infer_tokenizer.eos_token" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "qmA4G6C64dJ4" + }, + "outputs": [], + "source": [ + "output_lora_config = LoraConfig.from_pretrained(folder_path + 'outputs_2')\n", + "output_model = get_peft_model(model, output_lora_config)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yWEM89A48NrU" + }, + "outputs": [], + "source": [ + "# dataset['text']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pgt86z-x4diG" + }, + "outputs": [], + "source": [ + "# text = \"Écrire un texte dans un style baroque sur la glace et le feu ### Assistant: Si j'en luis éton\"\n", + "# device = \"cuda:0\"\n", + "\n", + "# inputs = infer_tokenizer(text, return_tensors=\"pt\").to(device)\n", + "# outputs = output_model.generate(**inputs, max_new_tokens=50)\n", + "# print(infer_tokenizer.decode(outputs[0], skip_special_tokens=True))" + ] + }, + { + "cell_type": "code", + "source": [ + "test_data[0]" + ], + "metadata": { + "id": "1LjyQbcul8-n" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "test_data[0]['input_with_instruction']" + ], + "metadata": { + "id": "jyl6zsdvluOI" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "test_data[0]['input_ids']" + ], + "metadata": { + "id": "5SxERpvxpy52" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "test_data[0]['attention_mask']" + ], + "metadata": { + "id": "0nAF1iVNqDJA" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "text = \"노래 제목이 주어지면 창의적으로 작사해주세요. 제목: Never Ending 가사: \"\n", + "device = 'cuda' #\"cuda:0\"\n", + "\n", + "inputs = infer_tokenizer(text, return_tensors=None)\n", + "inputs" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cq87aUMylrGi", + "outputId": "32b6ee2b-d8c0-4b28-c2d3-212e59599eb4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'input_ids': [1, 29871, 238, 136, 187, 238, 161, 155, 29871, 31306, 238, 173, 172, 30393, 29871, 30981, 31129, 30811, 31747, 29871, 239, 179, 192, 30708, 239, 163, 132, 239, 159, 191, 30906, 29871, 239, 161, 148, 30791, 31435, 30981, 31578, 31527, 29889, 29871, 31306, 238, 173, 172, 29901, 12391, 2796, 292, 29871, 30903, 30791, 29901, 29871], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}" + ] + }, + "metadata": {}, + "execution_count": 214 + } + ] + }, + { + "cell_type": "code", + "source": [ + "inputs = infer_tokenizer(text, return_tensors=\"pt\").to(device)\n", + "outputs = output_model.generate(**inputs, max_new_tokens=128)\n", + "print(infer_tokenizer.decode(outputs[0], skip_special_tokens=True))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lH-7ri2VplXK", + "outputId": "5576b512-8282-4489-a812-f9d922bc0134" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "노래 제목이 주어지면 창의적으로 작사해주세요. 제목: Never Ending 가사: 너무 잘 알고 있어요 너무 잘 알고 있어요 너무 잘 알고 있어요 너무 잘 알고 있어요 너무 잘 알고 있어요 너무 잘 알고 있어요 너무 잘\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 160, + "referenced_widgets": [ + "17dec344af074c258472c079d75badd4", + "05c0875d6bc94d0f9da1afba9a57f84c", + "cea00cb303454c76abc44c2355db4968", + "93beba7f546648f896211bbe77ae5983", + "652376188e9446ba89aaa28ae9ab17bc", + "195e71d434ef416892768c93b04327f4", + "58a8c69034444a43bb3dfe29c60cf54e", + "cdc2234337164968a5115bc40d240250", + "7102ad5ecb974accbfdd502750c66adc", + "36299fac4277436dbeb67e58a04b4b15", + "5e7080a1e2fb4b30a3878c4750a326eb", + "00d06b402d154645a5a79cd05b786010", + "6ec7ab97f38c4d309e6e7c651e6ccd39", + "3c4189003e5948c096013124d97e6961", + "cbc07dce089243c9998ab4f8aa74dac3", + "6f4cc82d77514e9781ec04714ffffda9", + "2938784c205b4fcfbcba13fb34aa9288", + "6aefd2158bbe4f11a40672b201b8a48c", + "f942694a54de46fd8de1a5e97269e31c", + "7ef4c538df094f12be83532b8214e23e", + "7969ab011163417d886060e5ab0a82c6", + "0370b063010740f4865a097d87e83730", + "417a3e9df6ec4c9b928af78487e49b59", + "a96182b8a08e46a59d65e267aad76140", + "871d45a28e7845e1a765275417b27f4e", + "f300223c3f2e467bb49d4a101a5d86e6", + "721614a0486e4bbd82e1b85c0623bffc", + "ca1747a28ca34234b2d491517e0bfc49", + "4dd189dff2794e44966682f11780766a", + "9ade4991af57408389962234873e8c26", + "76380783b82d4a4496e5fe6ae1a4f459", + "2ad8bf0c411f4f85bb2a7e544530d18e" + ] + }, + "id": "niyf5_Kc4ugO", + "outputId": "72a0d6b8-78fc-4d21-958d-6e885a50aa66" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "VBox(children=(HTML(value='

\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# model.push_to_hub(\"llama2-qlora-finetunined-french\")\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpush_to_hub\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"llama2-lyrics-finetunined-sample2\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py\u001b[0m in \u001b[0;36mpush_to_hub\u001b[0;34m(self, repo_id, use_temp_dir, commit_message, private, use_auth_token, max_shard_size, create_pr, safe_serialization, **deprecated_kwargs)\u001b[0m\n\u001b[1;32m 812\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 813\u001b[0m \u001b[0;31m# Save all files.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 814\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_pretrained\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwork_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmax_shard_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmax_shard_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msafe_serialization\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msafe_serialization\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 815\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 816\u001b[0m return self._upload_modified_files(\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36msave_pretrained\u001b[0;34m(self, save_directory, is_main_process, state_dict, save_function, push_to_hub, max_shard_size, safe_serialization, variant, **kwargs)\u001b[0m\n\u001b[1;32m 1713\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1714\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"is_loaded_in_4bit\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1715\u001b[0;31m raise NotImplementedError(\n\u001b[0m\u001b[1;32m 1716\u001b[0m \u001b[0;34m\"You are calling `save_pretrained` on a 4-bit converted model. This is currently not supported\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1717\u001b[0m )\n", + "\u001b[0;31mNotImplementedError\u001b[0m: You are calling `save_pretrained` on a 4-bit converted model. This is currently not supported" + ] + } + ], + "source": [ + "# model.push_to_hub(\"llama2-qlora-finetunined-french\")\n", + "model.push_to_hub(\"llama2-lyrics-finetunined-sample2\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cUmT5MRD_D9k", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 36 + }, + "outputId": "2459bb76-d5ec-45ec-80d2-17c821880eb4" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'배신'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 230 + } + ], + "source": [ + "train_data[170]['title']" + ] + }, + { + "cell_type": "code", + "source": [ + "train_data[170]['lyric']" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 94 + }, + "id": "xhPDQHkuIkSb", + "outputId": "69077519-0807-4000-8729-6513728874cf" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'너 없는 세상도 눈부신걸 알아\\r\\r\\n더 이상은 너만을 바라보던\\r\\r\\n내가 아니야\\r\\r\\n그렇게 슬픈듯이 쳐다보지마\\r\\r\\n이제 더는 너에게\\r\\r\\n줄 수 있는 마음이 없어\\r\\r\\n지금 남은건 떠나는 일 뿐이란걸\\r\\r\\n고맙게도 떠나는 날\\r\\r\\n잡지 않을 너잖아\\r\\r\\n사랑했던 난 이젠 없어\\r\\r\\n너를 너를 모두 잊었어\\r\\r\\n후회해도 다신 나를 돌아보지마\\r\\r\\n함께한 우리 기억 따윈\\r\\r\\n이젠 없어 모두 버려줘\\r\\r\\n돌아서면 그만인 이별까지\\r\\r\\n아름다울 필욘 없잖아'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 232 + } + ] + }, + { + "cell_type": "code", + "source": [ + "train_data[170]['input_with_instruction']" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 94 + }, + "id": "zSIB14IoIzU6", + "outputId": "d8a022a0-bb46-4836-f8a6-93d89a055359" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'당신은 노래 가사를 작사하는 생성 모델입니다. 주어진 제목이 따라 가사를 생성해주세요. 제목: 배신 가사: 너 없는 세상도 눈부신걸 알아 더 이상은 너만을 바라보던 내가 아니야 그렇게 슬픈듯이 쳐다보지마 이제 더는 너에게 줄 수 있는 마음이 없어 지금 남은건 떠나는 일 뿐이란걸 고맙게도 떠나는 날 잡지 않을 너잖아 사랑했던 난 이젠 없어 너를 너를 모두 잊었어 후회해도 다신 나를 돌아보지마 함께한 우리 기억 따윈 이젠 없어 모두 버려줘 돌아서면 그만인 이별까지 아름다울 필욘 없잖아'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 233 + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "D3aRt3pKJf2b" + }, + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "ce92f31907fe42d5b26d9504c4a711b3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6cfcda89e55e44a2afbc869e93a309ec", + "IPY_MODEL_282a1bd889e94ad3b23ed66597493fb4", + "IPY_MODEL_89eb8868526b40a4bbcb4f659e320932" + ], + "layout": "IPY_MODEL_560ef814e4cf4705b1cf7fc01d492024" + } + }, + "6cfcda89e55e44a2afbc869e93a309ec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e81819d8b10a4939bd3f6c164c0648bb", + "placeholder": "​", + "style": "IPY_MODEL_f03a6c8da0ee4c2298c6c7f6a5a35f34", + "value": "Downloading (…)lve/main/config.json: 100%" + } + }, + "282a1bd889e94ad3b23ed66597493fb4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_71807071c87143fba6a9a0cfbc7750e0", + "max": 626, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_239a01a354ab42719c762114355bf203", + "value": 626 + } + }, + "89eb8868526b40a4bbcb4f659e320932": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fc22b4a627f14408a8074118d6f91fb0", + "placeholder": "​", + "style": "IPY_MODEL_29048666ae3d4a72bb045e626563ba96", + "value": " 626/626 [00:00<00:00, 15.5kB/s]" + } + }, + "560ef814e4cf4705b1cf7fc01d492024": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e81819d8b10a4939bd3f6c164c0648bb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f03a6c8da0ee4c2298c6c7f6a5a35f34": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "71807071c87143fba6a9a0cfbc7750e0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "239a01a354ab42719c762114355bf203": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fc22b4a627f14408a8074118d6f91fb0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "29048666ae3d4a72bb045e626563ba96": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "872457bd9d2e44338d7a3a4850f67351": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bb46c7d5a8c94e06b44351945547950f", + "IPY_MODEL_67a1517783794d469a230e41bd4a2c52", + "IPY_MODEL_21aeb708c25146c995f0b749e9f53210" + ], + "layout": "IPY_MODEL_bac61063dc594b758b4145e453f71bc6" + } + }, + "bb46c7d5a8c94e06b44351945547950f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_63760ec5481b490e93aab52e56a3b026", + "placeholder": "​", + "style": "IPY_MODEL_ccfee465045e48bcbd59b27e4bf95497", + "value": "Downloading (…)model.bin.index.json: 100%" + } + }, + "67a1517783794d469a230e41bd4a2c52": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4b9b24ff7fa0462695f1a1c294699aea", + "max": 26788, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_264753eecba44435a32717375508960d", + "value": 26788 + } + }, + "21aeb708c25146c995f0b749e9f53210": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bad6a36bc16c4fc4908a6e397313f7d4", + "placeholder": "​", + "style": "IPY_MODEL_8c3e94ba403145eb9e88c6248cf7fb86", + "value": " 26.8k/26.8k [00:00<00:00, 334kB/s]" + } + }, + "bac61063dc594b758b4145e453f71bc6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "63760ec5481b490e93aab52e56a3b026": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ccfee465045e48bcbd59b27e4bf95497": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4b9b24ff7fa0462695f1a1c294699aea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "264753eecba44435a32717375508960d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bad6a36bc16c4fc4908a6e397313f7d4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c3e94ba403145eb9e88c6248cf7fb86": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "742db438a8de4d469ec95ac5b08328f5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_61f96fa3beda472b8d3a83b4a62095c2", + "IPY_MODEL_3282b7221da04e07bd53843e586e5359", + "IPY_MODEL_bc54767bb2bf419a9ae90a32c45d7867" + ], + "layout": "IPY_MODEL_fe74b1e1dbc9459b9d3149e0292b61dd" + } + }, + "61f96fa3beda472b8d3a83b4a62095c2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4e0506f6b3434af7be92ae42bf7cce38", + "placeholder": "​", + "style": "IPY_MODEL_1666593fe35249ee9d6482ba4959fa68", + "value": "Downloading shards: 100%" + } + }, + "3282b7221da04e07bd53843e586e5359": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_78f2c529c3984d608ea974d6b14540a4", + "max": 14, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_31b5cc59ecea4304a2c8648ef3fe0e5f", + "value": 14 + } + }, + "bc54767bb2bf419a9ae90a32c45d7867": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8e31f8867172492db898e2bd95c5a9d3", + "placeholder": "​", + "style": "IPY_MODEL_84980d9310094272b757d6a5dcadc5c9", + "value": " 14/14 [01:37<00:00, 4.74s/it]" + } + }, + "fe74b1e1dbc9459b9d3149e0292b61dd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4e0506f6b3434af7be92ae42bf7cce38": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1666593fe35249ee9d6482ba4959fa68": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "78f2c529c3984d608ea974d6b14540a4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "31b5cc59ecea4304a2c8648ef3fe0e5f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8e31f8867172492db898e2bd95c5a9d3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "84980d9310094272b757d6a5dcadc5c9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e16812bf18534591ba0f809c162bb62d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6656f64a138c4ceaa2d458ac59885cf8", + "IPY_MODEL_0295c2a8f6a2466bb4de9f3f3f2315df", + "IPY_MODEL_50057af63993464d8134ba04358af73b" + ], + "layout": "IPY_MODEL_98e106ad07894c8db8f5ffacc73ec9b7" + } + }, + "6656f64a138c4ceaa2d458ac59885cf8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_022b0138f7084b23a7b29f8519d21983", + "placeholder": "​", + "style": "IPY_MODEL_2713c693b5cb4939b434586d1e18e654", + "value": "Downloading (…)l-00001-of-00014.bin: 100%" + } + }, + "0295c2a8f6a2466bb4de9f3f3f2315df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1cd018705a5f4a9389bfe553bc126300", + "max": 981490451, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_173e869b1594466d89c8a6cfef4e67c4", + "value": 981490451 + } + }, + "50057af63993464d8134ba04358af73b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d9446c16d6f34aaaad76bfb3f4962ab9", + "placeholder": "​", + "style": "IPY_MODEL_3e52589d9e494d44bee8c786e0afd82d", + "value": " 981M/981M [00:10<00:00, 186MB/s]" + } + }, + "98e106ad07894c8db8f5ffacc73ec9b7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "022b0138f7084b23a7b29f8519d21983": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2713c693b5cb4939b434586d1e18e654": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1cd018705a5f4a9389bfe553bc126300": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "173e869b1594466d89c8a6cfef4e67c4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d9446c16d6f34aaaad76bfb3f4962ab9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e52589d9e494d44bee8c786e0afd82d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e1542bf49744457e9545a7ab6987fe12": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4689f476e5e84850926077781bfe28b7", + "IPY_MODEL_684ab4d8414841eba6ec24034c7be858", + "IPY_MODEL_85ef1513c69247f497bccf7720105bd4" + ], + "layout": "IPY_MODEL_a7f85893789549d3879873ea147126cf" + } + }, + "4689f476e5e84850926077781bfe28b7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5f25798757cc4378b2f9730a6e422305", + "placeholder": "​", + "style": "IPY_MODEL_c2729c53f0d646deb3078b2eede27631", + "value": "Downloading (…)l-00002-of-00014.bin: 100%" + } + }, + "684ab4d8414841eba6ec24034c7be858": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9372c52ca1f24ed0b1ffb79c0e238e8c", + "max": 966845457, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f26e19dfda644b49027f5ccf7fc7592", + "value": 966845457 + } + }, + "85ef1513c69247f497bccf7720105bd4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_11c4931f37124e53bd177aea6e7600d0", + "placeholder": "​", + "style": "IPY_MODEL_accccc8214cd4c519168a69a0fc43ad2", + "value": " 967M/967M [00:10<00:00, 157MB/s]" + } + }, + "a7f85893789549d3879873ea147126cf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f25798757cc4378b2f9730a6e422305": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c2729c53f0d646deb3078b2eede27631": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9372c52ca1f24ed0b1ffb79c0e238e8c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f26e19dfda644b49027f5ccf7fc7592": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "11c4931f37124e53bd177aea6e7600d0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "accccc8214cd4c519168a69a0fc43ad2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "07e1cee633fc4fdf9c5d044fe638c17e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4e36f9f622f5453da0e2baff8684b147", + "IPY_MODEL_06c490a7b0d841868ea0ec5fe1adeb47", + "IPY_MODEL_21175ed38dbe4ed388f33a3fc43eda4b" + ], + "layout": "IPY_MODEL_b018cec84267405d9676badc260e566e" + } + }, + "4e36f9f622f5453da0e2baff8684b147": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_05a0697cfde14d578529013f55d6911d", + "placeholder": "​", + "style": "IPY_MODEL_e5bb1eed742f4a00bdb678a422be806c", + "value": "Downloading (…)l-00003-of-00014.bin: 100%" + } + }, + "06c490a7b0d841868ea0ec5fe1adeb47": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0d70d4a2897a4b0b89e892356af2f604", + "max": 966828991, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ec31c296eeac4794a6056bb0c941dbdc", + "value": 966828991 + } + }, + "21175ed38dbe4ed388f33a3fc43eda4b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_98d0c0344e754dd4ba13203ff23a9caf", + "placeholder": "​", + "style": "IPY_MODEL_9363060587df4a928005c91f41fdf389", + "value": " 967M/967M [00:05<00:00, 235MB/s]" + } + }, + "b018cec84267405d9676badc260e566e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05a0697cfde14d578529013f55d6911d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e5bb1eed742f4a00bdb678a422be806c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0d70d4a2897a4b0b89e892356af2f604": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec31c296eeac4794a6056bb0c941dbdc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "98d0c0344e754dd4ba13203ff23a9caf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9363060587df4a928005c91f41fdf389": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d43dd7b71b8f40d1950294fb251e6b88": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2405c114b1924e878362c07489f60541", + "IPY_MODEL_665f1f618e6842bfb9cf04e8ea6ef8f7", + "IPY_MODEL_13b46cd5dd0342a48cff6e47975649cb" + ], + "layout": "IPY_MODEL_0f6fd71b290540469996d5c5934fed9b" + } + }, + "2405c114b1924e878362c07489f60541": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6f06e9d8d18a40999f6369f719ebc60b", + "placeholder": "​", + "style": "IPY_MODEL_5d4a7805570d4244840a131deab53d81", + "value": "Downloading (…)l-00004-of-00014.bin: 100%" + } + }, + "665f1f618e6842bfb9cf04e8ea6ef8f7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dcc74879638042758dfd975b34757cfb", + "max": 989913791, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_165442d5731c4fdb8ce6ed1a4f04c945", + "value": 989913791 + } + }, + "13b46cd5dd0342a48cff6e47975649cb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b2eb988428f845fbb24f70e612f2edac", + "placeholder": "​", + "style": "IPY_MODEL_72cc6561fa4d41f6926acfcf967e43f7", + "value": " 990M/990M [00:06<00:00, 134MB/s]" + } + }, + "0f6fd71b290540469996d5c5934fed9b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f06e9d8d18a40999f6369f719ebc60b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5d4a7805570d4244840a131deab53d81": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dcc74879638042758dfd975b34757cfb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "165442d5731c4fdb8ce6ed1a4f04c945": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b2eb988428f845fbb24f70e612f2edac": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "72cc6561fa4d41f6926acfcf967e43f7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7bf00b2d0d4e43448e5c2ad5df8f0479": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3ade76d3a19b40cd90e92d9f17870f32", + "IPY_MODEL_a920f261f7ad4891998dbdd49aab5d7d", + "IPY_MODEL_05c95b1fcc674381bb458d226ded5cbb" + ], + "layout": "IPY_MODEL_1180092ad5ac4355801a91fe954e459a" + } + }, + "3ade76d3a19b40cd90e92d9f17870f32": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f70f777828c04621a4bdedd6619d28ee", + "placeholder": "​", + "style": "IPY_MODEL_f46863b8cfd2470f9f3baf0bf88d745a", + "value": "Downloading (…)l-00005-of-00014.bin: 100%" + } + }, + "a920f261f7ad4891998dbdd49aab5d7d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8017266fbcd475a8ff9bf26ad2ec084", + "max": 943760657, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7694f93c83b64cfba0239682e58cb4f8", + "value": 943760657 + } + }, + "05c95b1fcc674381bb458d226ded5cbb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f370524950df4b9b9dee8185efc2d3f9", + "placeholder": "​", + "style": "IPY_MODEL_b9e0c145a3464d8e966e7aa30010596c", + "value": " 944M/944M [00:07<00:00, 160MB/s]" + } + }, + "1180092ad5ac4355801a91fe954e459a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f70f777828c04621a4bdedd6619d28ee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f46863b8cfd2470f9f3baf0bf88d745a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f8017266fbcd475a8ff9bf26ad2ec084": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7694f93c83b64cfba0239682e58cb4f8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f370524950df4b9b9dee8185efc2d3f9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9e0c145a3464d8e966e7aa30010596c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cd9fd3f1d25841a48bdc4bc215c607f3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2366bc8109654b78a66b5f067b9bcb68", + "IPY_MODEL_a50f415bbdaa49f7b0a5f15bf2e2e70a", + "IPY_MODEL_6bf30d0f072c47bd96869683fb773f36" + ], + "layout": "IPY_MODEL_8c9bc520fe7b42b9b24a121f1cbfe266" + } + }, + "2366bc8109654b78a66b5f067b9bcb68": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_863632d14bbd49658629c7fba27ed59e", + "placeholder": "​", + "style": "IPY_MODEL_ea56c169c17e46a095fa9c38fb6e6083", + "value": "Downloading (…)l-00006-of-00014.bin: 100%" + } + }, + "a50f415bbdaa49f7b0a5f15bf2e2e70a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d6cc1e4577304ace9f291a23aad954ad", + "max": 989896795, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_92f082b11e184e85985fa96620576c5a", + "value": 989896795 + } + }, + "6bf30d0f072c47bd96869683fb773f36": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ddb86475b65b4f30b97ff8189107d398", + "placeholder": "​", + "style": "IPY_MODEL_5685a450afbb4bf1ae402979a5ff113c", + "value": " 990M/990M [00:05<00:00, 229MB/s]" + } + }, + "8c9bc520fe7b42b9b24a121f1cbfe266": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "863632d14bbd49658629c7fba27ed59e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ea56c169c17e46a095fa9c38fb6e6083": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d6cc1e4577304ace9f291a23aad954ad": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "92f082b11e184e85985fa96620576c5a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ddb86475b65b4f30b97ff8189107d398": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5685a450afbb4bf1ae402979a5ff113c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1a27acb80f4840a8bf078005394680e5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7713931709b34ab1adfa6a9c3a933394", + "IPY_MODEL_6bdeff9151664bad8d6195b2699eaa86", + "IPY_MODEL_1efde1c1dfe848e0aaec524fca36c93a" + ], + "layout": "IPY_MODEL_0749408711f54acc8e9314b43526009b" + } + }, + "7713931709b34ab1adfa6a9c3a933394": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2cf52693a0544c00992c4791938e094d", + "placeholder": "​", + "style": "IPY_MODEL_9dc21a20a18f4fd391d5c62a05353ead", + "value": "Downloading (…)l-00007-of-00014.bin: 100%" + } + }, + "6bdeff9151664bad8d6195b2699eaa86": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_649bac9ab18347b086d0538f72876ea3", + "max": 966845457, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3da849acb17948aab4507763be6e9ef2", + "value": 966845457 + } + }, + "1efde1c1dfe848e0aaec524fca36c93a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54bdabc7076c4a1396d9f36f2bb01806", + "placeholder": "​", + "style": "IPY_MODEL_5ab0b26a21ea497cb1f5a11e05d350a0", + "value": " 967M/967M [00:12<00:00, 98.6MB/s]" + } + }, + "0749408711f54acc8e9314b43526009b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2cf52693a0544c00992c4791938e094d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9dc21a20a18f4fd391d5c62a05353ead": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "649bac9ab18347b086d0538f72876ea3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3da849acb17948aab4507763be6e9ef2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "54bdabc7076c4a1396d9f36f2bb01806": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ab0b26a21ea497cb1f5a11e05d350a0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "116083be58214c3697defd7bde45a9fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a4a171666204461ae00d3fdba6eab3c", + "IPY_MODEL_5f22aa6033244c8bb49f34ff5da21d09", + "IPY_MODEL_34a4c98a6de1425393c8f6cc20fd4184" + ], + "layout": "IPY_MODEL_ca001c40d32b4d7d8e1e55d13f169f3a" + } + }, + "8a4a171666204461ae00d3fdba6eab3c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_984188eeafb84aa4b0cd532a55fd2c36", + "placeholder": "​", + "style": "IPY_MODEL_368a71de0f294427a5e19a39fadafb89", + "value": "Downloading (…)l-00008-of-00014.bin: 100%" + } + }, + "5f22aa6033244c8bb49f34ff5da21d09": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c168ec905545458ca64a2479822c8a31", + "max": 966829055, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c4dae4d09cdd4772b1a74ea1c999f8f2", + "value": 966829055 + } + }, + "34a4c98a6de1425393c8f6cc20fd4184": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3536d6c5461f49bb98baea2664e65ffc", + "placeholder": "​", + "style": "IPY_MODEL_767d1d428473459ba6ae37c9203f82c2", + "value": " 967M/967M [00:05<00:00, 236MB/s]" + } + }, + "ca001c40d32b4d7d8e1e55d13f169f3a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "984188eeafb84aa4b0cd532a55fd2c36": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "368a71de0f294427a5e19a39fadafb89": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c168ec905545458ca64a2479822c8a31": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c4dae4d09cdd4772b1a74ea1c999f8f2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3536d6c5461f49bb98baea2664e65ffc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "767d1d428473459ba6ae37c9203f82c2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "75602dd425834c69a0c4d7f74ceefdc7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dac11481926e492ca828e82923e5f422", + "IPY_MODEL_4fb39852532f4ba1917dbf2257052beb", + "IPY_MODEL_6126b1233fcd44489266e112ac3c829d" + ], + "layout": "IPY_MODEL_4d9f17d508724d0e84d8fbf6a328351e" + } + }, + "dac11481926e492ca828e82923e5f422": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f68f302eaf7e4b8a99674a557f957fe8", + "placeholder": "​", + "style": "IPY_MODEL_d37208bde58b464ba01ff75689288731", + "value": "Downloading (…)l-00009-of-00014.bin: 100%" + } + }, + "4fb39852532f4ba1917dbf2257052beb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dbfb82d1c2de44b2a7ae5c5ea96c4f16", + "max": 989913791, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b42b58f4e7484e138d955fb1ad0d36dd", + "value": 989913791 + } + }, + "6126b1233fcd44489266e112ac3c829d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_95a353e2269a4ac3a9dc579e89b1f554", + "placeholder": "​", + "style": "IPY_MODEL_4a203b3ece6b4fce82f359f5f7d9d3b1", + "value": " 990M/990M [00:04<00:00, 220MB/s]" + } + }, + "4d9f17d508724d0e84d8fbf6a328351e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f68f302eaf7e4b8a99674a557f957fe8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d37208bde58b464ba01ff75689288731": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dbfb82d1c2de44b2a7ae5c5ea96c4f16": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b42b58f4e7484e138d955fb1ad0d36dd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "95a353e2269a4ac3a9dc579e89b1f554": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a203b3ece6b4fce82f359f5f7d9d3b1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b6ae05a3c0394108ac03c5408df77c25": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ac18d2044ea8425da5d1ecbb55b51f2d", + "IPY_MODEL_567a11c88c304f47bcfedf0a11ec0f7e", + "IPY_MODEL_3b3699b303e04c0682ff022da289125b" + ], + "layout": "IPY_MODEL_791f7037d96a4384a112a5a18b3b6e26" + } + }, + "ac18d2044ea8425da5d1ecbb55b51f2d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6005d476fbd04076b0a2602117053995", + "placeholder": "​", + "style": "IPY_MODEL_7641844727934b7f8d7d1be1fbde14d0", + "value": "Downloading (…)l-00010-of-00014.bin: 100%" + } + }, + "567a11c88c304f47bcfedf0a11ec0f7e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_821344eb5a8447cabc79b55748c365a2", + "max": 943760657, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_16f83acf057b423695bea7fae8ac5a5e", + "value": 943760657 + } + }, + "3b3699b303e04c0682ff022da289125b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1236e04b94a74ff0b7c25aaa2ffe29d4", + "placeholder": "​", + "style": "IPY_MODEL_ae7219f980ae409c8c86c29eb6c5fc7f", + "value": " 944M/944M [00:09<00:00, 303MB/s]" + } + }, + "791f7037d96a4384a112a5a18b3b6e26": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6005d476fbd04076b0a2602117053995": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7641844727934b7f8d7d1be1fbde14d0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "821344eb5a8447cabc79b55748c365a2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "16f83acf057b423695bea7fae8ac5a5e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1236e04b94a74ff0b7c25aaa2ffe29d4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae7219f980ae409c8c86c29eb6c5fc7f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e803d4089bbe41439589a787ff546377": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f4b4ab230bc4d768b2e3db930d05ef3", + "IPY_MODEL_7b5a63ded1f2419796a28efe0b46cdd4", + "IPY_MODEL_25488dce95b9476f907fde4f1e8e4bc3" + ], + "layout": "IPY_MODEL_b915967bab5b406a8d265fd784b5ccb2" + } + }, + "4f4b4ab230bc4d768b2e3db930d05ef3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f4df3f3d931d4b0d93cd75e62bb175bb", + "placeholder": "​", + "style": "IPY_MODEL_c8f2fa253fc94b1495cb28f1de54a199", + "value": "Downloading (…)l-00011-of-00014.bin: 100%" + } + }, + "7b5a63ded1f2419796a28efe0b46cdd4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_364ae4dfee6a4150905f4883be536379", + "max": 989896795, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c4511ce13ffa4a67818c1caf3144433c", + "value": 989896795 + } + }, + "25488dce95b9476f907fde4f1e8e4bc3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a951c50db5be4adb8e0e15eb3630ae19", + "placeholder": "​", + "style": "IPY_MODEL_11750cf87c5c4e2c90d2fe1114afad42", + "value": " 990M/990M [00:03<00:00, 260MB/s]" + } + }, + "b915967bab5b406a8d265fd784b5ccb2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f4df3f3d931d4b0d93cd75e62bb175bb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c8f2fa253fc94b1495cb28f1de54a199": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "364ae4dfee6a4150905f4883be536379": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c4511ce13ffa4a67818c1caf3144433c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a951c50db5be4adb8e0e15eb3630ae19": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "11750cf87c5c4e2c90d2fe1114afad42": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f96ed086860d4865916c8fc9af5b80fd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ad3302adafe44cc9aaeeb2cb28a680c8", + "IPY_MODEL_9d068cdbf6bf4f63bd2570256a360040", + "IPY_MODEL_e5b55acbb75f4b29be0c39bb5ba2e1c8" + ], + "layout": "IPY_MODEL_23a1fc0acb67406a85a7e0da1d8da0a9" + } + }, + "ad3302adafe44cc9aaeeb2cb28a680c8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ebddfe959f704af6b01a178d1e901884", + "placeholder": "​", + "style": "IPY_MODEL_494cefbf65a0476ab56794a41ce12c7b", + "value": "Downloading (…)l-00012-of-00014.bin: 100%" + } + }, + "9d068cdbf6bf4f63bd2570256a360040": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a6c8a43044f4e318bde4d5847f2258f", + "max": 966845457, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_40dd157d0ed0456d9e8c4866e17b2413", + "value": 966845457 + } + }, + "e5b55acbb75f4b29be0c39bb5ba2e1c8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3be3eb5f927c4c8494813b6432a6f2a9", + "placeholder": "​", + "style": "IPY_MODEL_b8e3fe64f8d14c8aa69dba70e1b21fdc", + "value": " 967M/967M [00:03<00:00, 257MB/s]" + } + }, + "23a1fc0acb67406a85a7e0da1d8da0a9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ebddfe959f704af6b01a178d1e901884": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "494cefbf65a0476ab56794a41ce12c7b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4a6c8a43044f4e318bde4d5847f2258f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40dd157d0ed0456d9e8c4866e17b2413": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3be3eb5f927c4c8494813b6432a6f2a9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b8e3fe64f8d14c8aa69dba70e1b21fdc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e930379bf2864e8f875c7d15e1d3b99d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_634e3b7ad74c4402a8f95b8f100137e9", + "IPY_MODEL_a24174025cde4259ac21ffe6c8064b6c", + "IPY_MODEL_80f8d0b992a0484382393a7190051ff6" + ], + "layout": "IPY_MODEL_4f55ff200502463aa58acc2e4d8fc138" + } + }, + "634e3b7ad74c4402a8f95b8f100137e9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e3f269df8c4417eb6cd97c85db981d7", + "placeholder": "​", + "style": "IPY_MODEL_2fe50dbf853c4247ab4890b6eedaeddd", + "value": "Downloading (…)l-00013-of-00014.bin: 100%" + } + }, + "a24174025cde4259ac21ffe6c8064b6c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_49424ab9b9644130926283af6c041045", + "max": 966829055, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d22958233724f37a8c3e3a26b6413f4", + "value": 966829055 + } + }, + "80f8d0b992a0484382393a7190051ff6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_891c6bff6dd440498bb2619e838962b7", + "placeholder": "​", + "style": "IPY_MODEL_064d297944834bf69251a3625891265c", + "value": " 967M/967M [00:03<00:00, 271MB/s]" + } + }, + "4f55ff200502463aa58acc2e4d8fc138": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5e3f269df8c4417eb6cd97c85db981d7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fe50dbf853c4247ab4890b6eedaeddd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "49424ab9b9644130926283af6c041045": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d22958233724f37a8c3e3a26b6413f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "891c6bff6dd440498bb2619e838962b7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "064d297944834bf69251a3625891265c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4b380e3aba5347a3ab29baddca0515f8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_64682971f4704c15a83d437636e6b8d6", + "IPY_MODEL_bb4580499a014f48830288b583633d31", + "IPY_MODEL_23157af907734d45b709ddf960ebb881" + ], + "layout": "IPY_MODEL_b2ad15fcc29f4ae1b30abb2969f464cf" + } + }, + "64682971f4704c15a83d437636e6b8d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5dbf98d992874573a434a729a5f3ec99", + "placeholder": "​", + "style": "IPY_MODEL_88b01c22454b4d58a1d8268e64d4958e", + "value": "Downloading (…)l-00014-of-00014.bin: 100%" + } + }, + "bb4580499a014f48830288b583633d31": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_850abdb1d66e4a1fb28e25d1810c3ef8", + "max": 847296367, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a9875b8c0cc740ed95f419048208a3f6", + "value": 847296367 + } + }, + "23157af907734d45b709ddf960ebb881": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_592bc4eb115245929143dc3663a026cf", + "placeholder": "​", + "style": "IPY_MODEL_e00562fd1b2b44c4a2a0afc6dd3fecdd", + "value": " 847M/847M [00:03<00:00, 264MB/s]" + } + }, + "b2ad15fcc29f4ae1b30abb2969f464cf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5dbf98d992874573a434a729a5f3ec99": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "88b01c22454b4d58a1d8268e64d4958e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "850abdb1d66e4a1fb28e25d1810c3ef8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a9875b8c0cc740ed95f419048208a3f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "592bc4eb115245929143dc3663a026cf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e00562fd1b2b44c4a2a0afc6dd3fecdd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2bb168ca1694409db684e836b5045669": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_800e19dab2a5478db0d3a9cefcb6b6c3", + "IPY_MODEL_34b4de233e38436f93ecf7a250fea4a8", + "IPY_MODEL_9aa69a27b9a8419b89b6f80f96c13181" + ], + "layout": "IPY_MODEL_c9706c31d2b745b38cc16049d2b4cb83" + } + }, + "800e19dab2a5478db0d3a9cefcb6b6c3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fd6b621fe3b3452fb0b62c1a1f697d15", + "placeholder": "​", + "style": "IPY_MODEL_c48c00b2f7ae4c7aba61c73170f26f34", + "value": "Loading checkpoint shards: 100%" + } + }, + "34b4de233e38436f93ecf7a250fea4a8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_587213a5fa1c4b4bacdaffde907c7dea", + "max": 14, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0f11cdb17b954a9cb8ae0906a6655b07", + "value": 14 + } + }, + "9aa69a27b9a8419b89b6f80f96c13181": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cfe1743c0361495892a2e65c1e18ddc8", + "placeholder": "​", + "style": "IPY_MODEL_4b9b9e212155437cb15c1ac3031942b6", + "value": " 14/14 [01:26<00:00, 5.70s/it]" + } + }, + "c9706c31d2b745b38cc16049d2b4cb83": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fd6b621fe3b3452fb0b62c1a1f697d15": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c48c00b2f7ae4c7aba61c73170f26f34": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "587213a5fa1c4b4bacdaffde907c7dea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f11cdb17b954a9cb8ae0906a6655b07": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cfe1743c0361495892a2e65c1e18ddc8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b9b9e212155437cb15c1ac3031942b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "05bb3ec0cc9a418194eb0cfbaadcd0fa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28bc33d45e7b41e0a0b2a670356a501a", + "IPY_MODEL_23ffe6901e7f40c3b33cf981ecc04ae7", + "IPY_MODEL_eff5d63df9414d3e9a6476bcef3dd146" + ], + "layout": "IPY_MODEL_75628f824f3b48c59427073c86fbedf2" + } + }, + "28bc33d45e7b41e0a0b2a670356a501a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f9ca05a99f794a088c441f081245265e", + "placeholder": "​", + "style": "IPY_MODEL_c4bbf59536074447bd97c7e9f0ea547e", + "value": "Downloading (…)neration_config.json: 100%" + } + }, + "23ffe6901e7f40c3b33cf981ecc04ae7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f3b2e08428c647cba78e43644270f754", + "max": 132, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d08163a11978497eb1b8fb7c96dd78a8", + "value": 132 + } + }, + "eff5d63df9414d3e9a6476bcef3dd146": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2562cc91dcf94d24a0d3e9bee16841d8", + "placeholder": "​", + "style": "IPY_MODEL_27f34cc8e5a2416788290729cdc3c273", + "value": " 132/132 [00:00<00:00, 1.44kB/s]" + } + }, + "75628f824f3b48c59427073c86fbedf2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f9ca05a99f794a088c441f081245265e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c4bbf59536074447bd97c7e9f0ea547e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f3b2e08428c647cba78e43644270f754": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d08163a11978497eb1b8fb7c96dd78a8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2562cc91dcf94d24a0d3e9bee16841d8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "27f34cc8e5a2416788290729cdc3c273": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c71d45c724fa43adb78591e3f373d1ad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb6800090b5a473586050b639c078c53", + "IPY_MODEL_1d518039255041f28ee0b3ff35700f8d", + "IPY_MODEL_4ed8d90381404786ad43f394cd01e15b" + ], + "layout": "IPY_MODEL_a98c6458cbd44579a053385f9d29a6c6" + } + }, + "cb6800090b5a473586050b639c078c53": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b76642b795de44a1be5d629b04fe73df", + "placeholder": "​", + "style": "IPY_MODEL_3773f9b4fe1b4288a0e0b75c26625846", + "value": "Downloading (…)okenizer_config.json: 100%" + } + }, + "1d518039255041f28ee0b3ff35700f8d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f05be062fadf4fa0ab4b389cb6c640dd", + "max": 676, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_766c77aedcf14129a5c127d99325127d", + "value": 676 + } + }, + "4ed8d90381404786ad43f394cd01e15b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_93656a26c71c4de7b1e0963d7cc9f7c2", + "placeholder": "​", + "style": "IPY_MODEL_9d54a270dea841d49c18a3fa69421049", + "value": " 676/676 [00:00<00:00, 6.31kB/s]" + } + }, + "a98c6458cbd44579a053385f9d29a6c6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b76642b795de44a1be5d629b04fe73df": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3773f9b4fe1b4288a0e0b75c26625846": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f05be062fadf4fa0ab4b389cb6c640dd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "766c77aedcf14129a5c127d99325127d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "93656a26c71c4de7b1e0963d7cc9f7c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9d54a270dea841d49c18a3fa69421049": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7c1b040ccc1d4d94bca16fa7419b6e1a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b0cfc45f117a46b89fa8ca3e8f7ee054", + "IPY_MODEL_ecd385ebeb23492eb89a9254b973e79d", + "IPY_MODEL_9c56af337c304aba8fa3cb3d0e741c52" + ], + "layout": "IPY_MODEL_df96202d3bc14857967715b59778215a" + } + }, + "b0cfc45f117a46b89fa8ca3e8f7ee054": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_64df10ef86754dce966ae1f9c8ad7122", + "placeholder": "​", + "style": "IPY_MODEL_903d5f5dbb7648438305b3036b6854cc", + "value": "Downloading tokenizer.model: 100%" + } + }, + "ecd385ebeb23492eb89a9254b973e79d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e54df468b2374fc1838f2f9ca5499a2d", + "max": 499723, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7663362425cd43a5bd4b9a174152eeac", + "value": 499723 + } + }, + "9c56af337c304aba8fa3cb3d0e741c52": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c299359829d54542ae7cbb8912911c8b", + "placeholder": "​", + "style": "IPY_MODEL_01715df2c6b24ea09b3ced5b88bdc76e", + "value": " 500k/500k [00:00<00:00, 7.70MB/s]" + } + }, + "df96202d3bc14857967715b59778215a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "64df10ef86754dce966ae1f9c8ad7122": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "903d5f5dbb7648438305b3036b6854cc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e54df468b2374fc1838f2f9ca5499a2d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7663362425cd43a5bd4b9a174152eeac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c299359829d54542ae7cbb8912911c8b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "01715df2c6b24ea09b3ced5b88bdc76e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d47825cd64454f968a689926156b4e54": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e20b63a5af6d4b6bb47e7e8bd7c12c6f", + "IPY_MODEL_08318b540907497b8be3ba99fc98d19b", + "IPY_MODEL_e07ef6baa65f4e5e8a1c5710744cd547" + ], + "layout": "IPY_MODEL_ecbd9a3c580548919d653483b9907b03" + } + }, + "e20b63a5af6d4b6bb47e7e8bd7c12c6f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_509f6424687e44d3b9fa0b2ab96fa828", + "placeholder": "​", + "style": "IPY_MODEL_d8cc791322df44deb6dbf1af3557c14f", + "value": "Downloading (…)/main/tokenizer.json: 100%" + } + }, + "08318b540907497b8be3ba99fc98d19b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8696642a92e2497e81004925be21989f", + "max": 1842764, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_59912b02db6d4bd78f42e39dd1934e29", + "value": 1842764 + } + }, + "e07ef6baa65f4e5e8a1c5710744cd547": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c40ab0a4c8c648a1b1869a38f8d9272a", + "placeholder": "​", + "style": "IPY_MODEL_274c734ac6254d7b9d4cc563b79222ec", + "value": " 1.84M/1.84M [00:00<00:00, 2.88MB/s]" + } + }, + "ecbd9a3c580548919d653483b9907b03": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "509f6424687e44d3b9fa0b2ab96fa828": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d8cc791322df44deb6dbf1af3557c14f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8696642a92e2497e81004925be21989f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59912b02db6d4bd78f42e39dd1934e29": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c40ab0a4c8c648a1b1869a38f8d9272a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "274c734ac6254d7b9d4cc563b79222ec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "498175243773491aaf6be90c557dd8c7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8c650c9ea43c496ea68cf5e6ad78a2ca", + "IPY_MODEL_e29c18e4aa734cdc973aeaaa949e50e1", + "IPY_MODEL_de102e564d1c49a3a20108ff73e666ce" + ], + "layout": "IPY_MODEL_50428a8f255641cfb5196bac0ad138b9" + } + }, + "8c650c9ea43c496ea68cf5e6ad78a2ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc6535627b034b45b89f53b3bbe9364e", + "placeholder": "​", + "style": "IPY_MODEL_1f3de23e1f9c49ebb5d8afa206255650", + "value": "Downloading (…)cial_tokens_map.json: 100%" + } + }, + "e29c18e4aa734cdc973aeaaa949e50e1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3b7915cb2c1d453d8636cf4f5c31039b", + "max": 411, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8b04e43b30fa4c44b07582ada5ba32e5", + "value": 411 + } + }, + "de102e564d1c49a3a20108ff73e666ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6fe03879d13341c5b1441320f8cd071c", + "placeholder": "​", + "style": "IPY_MODEL_848900148c4446c8866630059195bf61", + "value": " 411/411 [00:00<00:00, 3.42kB/s]" + } + }, + "50428a8f255641cfb5196bac0ad138b9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dc6535627b034b45b89f53b3bbe9364e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f3de23e1f9c49ebb5d8afa206255650": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3b7915cb2c1d453d8636cf4f5c31039b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8b04e43b30fa4c44b07582ada5ba32e5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6fe03879d13341c5b1441320f8cd071c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "848900148c4446c8866630059195bf61": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "17dec344af074c258472c079d75badd4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "VBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7969ab011163417d886060e5ab0a82c6", + "IPY_MODEL_0370b063010740f4865a097d87e83730", + "IPY_MODEL_417a3e9df6ec4c9b928af78487e49b59", + "IPY_MODEL_a96182b8a08e46a59d65e267aad76140" + ], + "layout": "IPY_MODEL_58a8c69034444a43bb3dfe29c60cf54e" + } + }, + "05c0875d6bc94d0f9da1afba9a57f84c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cdc2234337164968a5115bc40d240250", + "placeholder": "​", + "style": "IPY_MODEL_7102ad5ecb974accbfdd502750c66adc", + "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" + } + }, + "cea00cb303454c76abc44c2355db4968": { + "model_module": "@jupyter-widgets/controls", + "model_name": "PasswordModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PasswordModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PasswordView", + "continuous_update": true, + "description": "Token:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_36299fac4277436dbeb67e58a04b4b15", + "placeholder": "​", + "style": "IPY_MODEL_5e7080a1e2fb4b30a3878c4750a326eb", + "value": "" + } + }, + "93beba7f546648f896211bbe77ae5983": { + "model_module": "@jupyter-widgets/controls", + "model_name": "CheckboxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "CheckboxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "CheckboxView", + "description": "Add token as git credential?", + "description_tooltip": null, + "disabled": false, + "indent": true, + "layout": "IPY_MODEL_00d06b402d154645a5a79cd05b786010", + "style": "IPY_MODEL_6ec7ab97f38c4d309e6e7c651e6ccd39", + "value": true + } + }, + "652376188e9446ba89aaa28ae9ab17bc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Login", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_3c4189003e5948c096013124d97e6961", + "style": "IPY_MODEL_cbc07dce089243c9998ab4f8aa74dac3", + "tooltip": "" + } + }, + "195e71d434ef416892768c93b04327f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6f4cc82d77514e9781ec04714ffffda9", + "placeholder": "​", + "style": "IPY_MODEL_2938784c205b4fcfbcba13fb34aa9288", + "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks.
" + } + }, + "58a8c69034444a43bb3dfe29c60cf54e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": "center", + "align_self": null, + "border": null, + "bottom": null, + "display": "flex", + "flex": null, + "flex_flow": "column", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "50%" + } + }, + "cdc2234337164968a5115bc40d240250": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7102ad5ecb974accbfdd502750c66adc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "36299fac4277436dbeb67e58a04b4b15": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5e7080a1e2fb4b30a3878c4750a326eb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "00d06b402d154645a5a79cd05b786010": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6ec7ab97f38c4d309e6e7c651e6ccd39": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3c4189003e5948c096013124d97e6961": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cbc07dce089243c9998ab4f8aa74dac3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "6f4cc82d77514e9781ec04714ffffda9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2938784c205b4fcfbcba13fb34aa9288": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6aefd2158bbe4f11a40672b201b8a48c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f942694a54de46fd8de1a5e97269e31c", + "placeholder": "​", + "style": "IPY_MODEL_7ef4c538df094f12be83532b8214e23e", + "value": "Connecting..." + } + }, + "f942694a54de46fd8de1a5e97269e31c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7ef4c538df094f12be83532b8214e23e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7969ab011163417d886060e5ab0a82c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_871d45a28e7845e1a765275417b27f4e", + "placeholder": "​", + "style": "IPY_MODEL_f300223c3f2e467bb49d4a101a5d86e6", + "value": "Token is valid (permission: write)." + } + }, + "0370b063010740f4865a097d87e83730": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_721614a0486e4bbd82e1b85c0623bffc", + "placeholder": "​", + "style": "IPY_MODEL_ca1747a28ca34234b2d491517e0bfc49", + "value": "Your token has been saved in your configured git credential helpers (store)." + } + }, + "417a3e9df6ec4c9b928af78487e49b59": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4dd189dff2794e44966682f11780766a", + "placeholder": "​", + "style": "IPY_MODEL_9ade4991af57408389962234873e8c26", + "value": "Your token has been saved to /root/.cache/huggingface/token" + } + }, + "a96182b8a08e46a59d65e267aad76140": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_76380783b82d4a4496e5fe6ae1a4f459", + "placeholder": "​", + "style": "IPY_MODEL_2ad8bf0c411f4f85bb2a7e544530d18e", + "value": "Login successful" + } + }, + "871d45a28e7845e1a765275417b27f4e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f300223c3f2e467bb49d4a101a5d86e6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "721614a0486e4bbd82e1b85c0623bffc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ca1747a28ca34234b2d491517e0bfc49": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4dd189dff2794e44966682f11780766a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9ade4991af57408389962234873e8c26": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "76380783b82d4a4496e5fe6ae1a4f459": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ad8bf0c411f4f85bb2a7e544530d18e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file