-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathseqQscorer.py
316 lines (187 loc) · 10.3 KB
/
seqQscorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""Machine Learning Quality Assessment of NGS Data
Main script for seqQscorer. "python seqQscorer.py --help" will display
a formatted help text on the console. A comprehensive description is provided
in the GitHub README that includes examples as well. In short, seqQscorer
uses dedicated machine learning algorithms to train classification models
to perform automatic NGS quality control.
date: 2020-11-26
author: Steffen Albrecht
"""
from sys import *
import os
import pickle
import pandas as pd
import numpy as np
import json
import random
import argparse
import warnings
warnings.filterwarnings("ignore")
# import project utils
import utils.Exceptions as myExceptions
import utils.utils as utils
import utils.parser as parser
# parse command line arguments
script_dir = './'
if argv[0].find('/') >= 0:
script_dir = argv[0][: - argv[0][::-1].find('/')]
utils_dir = '%sutils/'%(script_dir)
argsParser = argparse.ArgumentParser(description='seqQscorer - A machine learning application for quality assessment of NGS data')
argsParser.add_argument('--indir', '-i', type=str, required=True, help='Input directory containing the feature set files. The feature set files are perfectly fomated by the script "deriveFeatures.py": the file names (until the ".") define the sample ID while the file endings define the corresponding feature set RAW, MAP, LOC, and TSS. By default seqQscorer applies the machine learning model to all samples from the given directory within milliseconds. However, it can be restricted to one sample using --sampleID.')
argsParser.add_argument('--species', '-s', type=str, default='generic',
choices=['generic','human', 'mouse'], help='Species specifying the model used.')
argsParser.add_argument('--assay', '-a', type=str, default='generic',
choices=['generic','ChIP-seq','DNase-seq','RNA-seq'], help='Assay specifying the model used.')
argsParser.add_argument('--runtype', '-r', type=str, default='generic',
choices=['generic','single-end','paired-end'], help='Run-Type specifying the model used.')
argsParser.add_argument('--model', '-m', type=str, default=None, help='Path to a serialized model, trained on own data. If used, the parameters --species, --assay, and --runtype have no impact on the classification model.')
argsParser.add_argument('--noRAW', action='store_true', help='Ignore all RAW features.')
argsParser.add_argument('--noMAP', action='store_true', help='Ignore all MAP features.')
argsParser.add_argument('--noLOC', action='store_true', help='Ignore all LOC features.')
argsParser.add_argument('--noTSS', action='store_true', help='Ignore all TSS features.')
argsParser.add_argument('--noFS', action='store_true', help='Switch off feature selection. (has only an impact if the best performance was achieved with chi2 or RFE)')
argsParser.add_argument('--bestCalib', action='store_true', help='Classifier setting is used that achieved the lowest brier score, hence the best calibration of the probabilities.')
argsParser.add_argument('--peaktype', '-pt', type=str, default=None, choices=['narrow','broad'], help='Optionally specify the peak-type for ChIP-seq data.')
argsParser.add_argument('--probOut', '-po', type=str, default=None,
help='To specify an output file for the probabilities. Output will be tab-separated.')
argsParser.add_argument('--compOut', '-co', type=str, default=None,
help='To specify an out file for the comprehensive output. Output will be kind of tab-separated.')
argsParser.add_argument('--inputOut', '-io', type=str, default=None,
help='To specify an out file that will contain the parsed input. Output will be tab-separated.')
argsParser.add_argument('--noVerbose', '-nv', action='store_true', help='Turn off verboseness, without being quiet.')
argsParser.add_argument('--seed', '-rs', type=int, default=1, help='Some classifiers apply randomization. Use --seed to make results reproducible. By default the seed 1 is used, set it to -1 if using a seed is not desired. For K-nearest neighbor and Naive Bayes the seed has no impact.')
argsParser.add_argument('--sampleID', '-id', type=str, default=None,
help='Restrict application of seqQscorer to only one sample defined by the ID.')
args = argsParser.parse_args()
if not os.path.isdir(args.indir):
raise myExceptions.WrongFeatureInputException(
'"%s" is not a directory'%(args.indir))
feature_sets = ['RAW','MAP','LOC','TSS']
# restrict feature sets used according to given optional parameters
if args.noRAW:
feature_sets.remove('RAW')
if args.noMAP:
feature_sets.remove('MAP')
if args.noLOC:
feature_sets.remove('LOC')
if args.noTSS:
feature_sets.remove('TSS')
model_sel_metric = 'brier' if args.bestCalib else 'auROC'
fs_suffix = '_noFS' if args.noFS else ''
# initiate the classification model and other data needed
species, assay, run_type = args.species, args.assay, args.runtype
if args.peaktype != None:
if args.assay != 'ChIP-seq' or args.runtype != 'single-end':
raise myExceptions.WrongSettingException(
'Peak-type specification can only be used for single-ended ChIP-seq.')
assay = args.peaktype + assay
best_clf, feature_selection, selection, parameters, auROC, brier = utils.get_best_classifier(utils_dir, species, assay,
run_type, feature_sets, fs_suffix, model_sel_metric)
if best_clf == None and args.model == None:
message = '''\nPlease check the given setting:
assay:\t\t%s\n\tspecies:\t%s\n\trun-type:\t%s\n'''%(assay, species, run_type)
message += '\tfeature sets:\t%s\n'%('-'.join(feature_sets))
message += 'A specialized model for this setting is not available,\n'
message += 'the generic model is used to proceed.\n'
print(message)
species, assay, run_type = 'generic', 'generic', 'generic'
application_case = '%s_%s_%s_%s'%(species, assay, run_type, '-'.join(feature_sets))
application_case += '_%s%s'%(model_sel_metric, fs_suffix)
model_file_path = '%smodels/%s_%d.model'%(script_dir, application_case, args.seed)
if args.model != None:
print('An external model is provided.')
model_file_path = args.model
try:
pickle.load(open(model_file_path, 'rb'))
except:
raise myExceptions.IncorrectModelException(
'The provided model from file "%s" could not be loaded.'%(model_file_path))
# load median values organized by subset, needed to impute missing values
medians = pickle.load(open('%sutils/medians.dict'%(script_dir), 'rb'))
medians = medians[species][assay][run_type]
# parse given input files
input_data, feature_columns = parser.generate_input_data(args.indir, feature_sets, run_type, medians, args.noVerbose, args.sampleID)
# if the particula model is used for the very first time, it is trained and serialized
best_clf, feature_selection, selection, parameters, auROC, brier = utils.get_best_classifier(utils_dir,
species, assay, run_type, feature_sets,
fs_suffix, model_sel_metric)
if not os.path.exists(model_file_path) and args.model == None:
print('\nThe required model was not used so far.')
print('It needs to be trained and serialized...')
clf = utils.get_clf_algos()[best_clf]
if not best_clf in ['GNB','KNN']:
if args.seed != -1:
parameters['random_state'] = args.seed
clf_setup = clf.set_params(**parameters)
data_file_path = '%sutils/datasets/%s_%s_%s.tsv'%(script_dir, assay, species, run_type)
train_data = pd.read_csv(data_file_path, sep='\t')
y = np.array(train_data['status'])
train_data = train_data[feature_columns]
if selection != None:
train_data = train_data.loc[:,selection]
X = np.array(train_data)
model = clf_setup.fit(X,y)
if args.seed != -1:
pickle.dump(model, open(model_file_path, 'wb'))
print('... training and serialization is done!')
print('The model is instantly available from now!')
else:
print('... training is done, but only reproducible models are serialized.')
print('Because no seed was used the model was not serialized.')
# load the model
model = pickle.load(open(model_file_path, 'rb'))
# prepare input data format
input_values = input_data[feature_columns]
if selection != None:
input_values = input_values.loc[:,selection]
# apply model on given samples to get the probabilities
probabilities = model.predict_proba(np.array(input_values))
fileIDs = list(input_data['sampleID'])
fileID_score = list(zip(fileIDs, [prob[1] for prob in probabilities]))
if args.model == None:
print('\nThe best predictive performance was achived by %s'%(utils.clf_full_names(best_clf)))
print('%s feature selection is applied (using %s%s of the features)'%(
tuple(feature_selection.split('-') + ['%'])))
print('Within the cross-validated gird search this model achived:')
print('\tauROC: %s'%(auROC))
print('\tBrier: %s'%(brier))
print('\nThe model used, achieved these measures for different decision thresholds applied\non the probabilities within the grid-search (ten-fold cross-validation):')
table = utils.read_in_measure_table(utils_dir, species, assay, run_type,
feature_sets, fs_suffix, model_sel_metric)
utils.print_nice_table(table)
print('')
# print the scores to the console
probas_str = ''
for fileID, score in sorted(fileID_score, key=lambda x: x[1]):
probas_str += '%s\t%f\n'%(fileID, score)
print(fileID, '%.3f '%(score), '(probability for being of low quality)', sep='\t')
# write probabilities to file if a file-path is given
if args.probOut != None:
try:
open(args.probOut, 'w').write(probas_str)
except:
raise myExceptions.WrongOutputFileException(
'Unable to write the probabilities to file!')
# write comprehensive output to file if a file-path is given
if args.compOut != None:
comp_out = 'Model trained by: %s\n'%(utils.clf_full_names(best_clf))
comp_out += '%s feature selection applied\n'%(feature_selection.split('-')[0])
comp_out += '%s %s of the features are used\n'%(feature_selection.split('-')[1], '%')
comp_out += 'auROC: %s\n'%(auROC)
comp_out += 'Brier: %s\n\n'%(brier)
comp_out += 'Metric table:\n'
for row in table:
comp_out += '\t'.join(row) + '\n'
comp_out += '\n' + probas_str
try:
open(args.compOut, 'w').write(comp_out)
except:
raise myExceptions.WrongOutputFileException(
'Unable to write the comprehensive output to file!')
# write the parsed input into a file, if a pth is given
if args.inputOut != None:
try:
input_data.to_csv(args.inputOut, sep='\t', index=False)
except:
raise myExceptions.WrongOutputFileException(
'Unable to write the parsed input to file')