-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.py
45 lines (23 loc) · 932 Bytes
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
mnist = tf.keras.datasets.mnist
(x_train , y_train),(x_test, y_test) = mnist.load_data()
x_train = tf.keras.utils.normalize(x_train,axis=1)
x_test = tf.keras.utils.normalize(x_test,axis=1)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128,activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(128,activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(10,activation=tf.nn.softmax))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train,y_train, epochs=1)
val_loss, val_acc = model.evaluate(x_test, y_test)
print("==============After train================")
print(val_loss,val_acc)
predictions = model.predict([x_test])
print(np.argmax(predictions[15]))
plt.imshow(x_test[15])
plt.show()