-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy path3.html
44 lines (41 loc) · 7.55 KB
/
3.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>独立集(Independent set)</title>
<style>
</style>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-yFRtMMDnQtDRO8rLpMIKrtPCD5jdktao2TV19YiZYWMDkUR5GQZR/NOVTdquEx1j" crossorigin="anonymous">
<link href="https://cdn.jsdelivr.net/npm/katex-copytex@latest/dist/katex-copytex.min.css" rel="stylesheet" type="text/css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/Microsoft/vscode/extensions/markdown-language-features/media/markdown.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/Microsoft/vscode/extensions/markdown-language-features/media/highlight.css">
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe WPC', 'Segoe UI', system-ui, 'Ubuntu', 'Droid Sans', sans-serif;
font-size: 14px;
line-height: 1.6;
}
</style>
<style>
.task-list-item { list-style-type: none; } .task-list-item-checkbox { margin-left: -20px; vertical-align: middle; }
</style>
<script src="https://cdn.jsdelivr.net/npm/katex-copytex@latest/dist/katex-copytex.min.js"></script>
</head>
<body class="vscode-body vscode-light">
<h1 id="独立集independent-set">独立集(Independent set)</h1>
<p>一个独立集(也称为稳定集)是一个图中<strong>一些两两不相邻的顶点</strong>所形成的集合,如果两个点没有公共边,那么这两个点可以被放到一个独立集中。换句话说,独立集 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span> 由图中若干顶点组成,且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span> 中任两个顶点之间没有边。等价地,图中的每条边至多有一个端点属于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span> 。一个独立集的基数是它包含顶点的数目。</p>
<p>如下图中,所有灰色的点可以构成一个独立集,因为他们互相之间没有任何公共边。</p>
<p><img src="fig/2.png" alt=""></p>
<blockquote>
<p>对于三个点组成的完全图而言,每个点自身是一个独立集(且是最大独立集);对四个点构成的四边形图而言,对角的两个点组成一个独立集(且是最大独立集)。</p>
</blockquote>
<h2 id="最大独立集">最大独立集</h2>
<p>如果往图 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span> 的独立集 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span> 中添加任一个顶点都会使独立性丧失(亦即造成某两点间有边),那么称 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span> 是<strong>极大独立集</strong>。</p>
<p>如果 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span> 是图中所有独立集之中<strong>基数最大</strong>的,那么称 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span> 是最大独立集,且将该基数称为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">G</span></span></span></span> 的独立数,记为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">α(G)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mopen">(</span><span class="mord mathdefault">G</span><span class="mclose">)</span></span></span></span> 。一般来讲,图 G 中可能存在多个极大独立集和最大独立集。</p>
<blockquote>
<p>根据定义,最大独立集一定是极大独立集,但反之未必。</p>
</blockquote>
<h2 id="问题难度">问题难度</h2>
<p>给定一张图,寻找其中一个最大独立集的问题被称为最大独立集问题。该问题已知是 NP 困难的最优化问题,且即便试图以常数倍近似也是 NP 困难的。因此,计算机科学家普遍相信不存在解决该问题的高效算法,无论是精确求解还是以常数倍近似求解。</p>
</body>
</html>