-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgridnet.py
169 lines (114 loc) · 3.51 KB
/
gridnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import torch.nn as nn
class lateral_block(nn.Module):
def __init__(self, inChannels, outChannels, res_conn = True):
super(lateral_block, self).__init__()
self.block = nn.Sequential(
nn.PReLU(),
nn.Conv2d(inChannels,outChannels,3,1,1),
nn.PReLU(),
nn.Conv2d(outChannels,outChannels,3,1,1)
)
self.res_conn = res_conn
def forward(self, x):
x1 = self.block(x)
if (self.res_conn):
x1 = x+x1
return x1
class down_block(nn.Module):
def __init__(self, inChannels, outChannels):
super(down_block, self).__init__()
self.block = nn.Sequential(
nn.PReLU(),
nn.Conv2d(inChannels,outChannels,3,2,1),
nn.PReLU(),
nn.Conv2d(outChannels,outChannels,3,1,1)
)
def forward(self, x):
x1 = self.block(x)
return x1
class up_block(nn.Module):
def __init__(self, inChannels, outChannels):
super(up_block, self).__init__()
self.block = nn.Sequential(
nn.Upsample(scale_factor=2, mode= 'bilinear'),
nn.PReLU(),
nn.Conv2d(inChannels,outChannels,3,1,1),
nn.PReLU(),
nn.Conv2d(outChannels,outChannels,3,1,1)
)
def forward(self, x):
x1 = self.block(x)
return x1
class GridNet(nn.Module):
def __init__(self, inChannels, outChannels, channel_list=[32,64,96]):
super(GridNet, self).__init__()
c1,c2,c3 = channel_list
self.Lin = lateral_block(inChannels,c1 ,False)
#row0
self.L00 = lateral_block(c1 ,c1 )
self.L01 = lateral_block(c1 ,c1 )
self.L02 = lateral_block(c1 ,c1 )
self.L03 = lateral_block(c1 ,c1 )
self.L04 = lateral_block(c1 ,c1 )
#row1
self.L10 = lateral_block(c2,c2)
self.L11 = lateral_block(c2,c2)
self.L12 = lateral_block(c2,c2)
self.L13 = lateral_block(c2,c2)
self.L14 = lateral_block(c2,c2)
#row2
self.L20 = lateral_block(c3,c3)
self.L21 = lateral_block(c3,c3)
self.L22 = lateral_block(c3,c3)
self.L23 = lateral_block(c3,c3)
self.L24 = lateral_block(c3,c3)
self.Lout = lateral_block(c1 ,outChannels,False)
self.d00 = down_block(c1 ,c2)
self.d01 = down_block(c1 ,c2)
self.d02 = down_block(c1 ,c2)
self.d10 = down_block(c2,c3)
self.d11 = down_block(c2,c3)
self.d12 = down_block(c2,c3)
self.u00 = up_block(c2,c1 )
self.u01 = up_block(c2,c1 )
self.u02 = up_block(c2,c1 )
self.u10 = up_block(c3,c2)
self.u11 = up_block(c3,c2)
self.u12 = up_block(c3,c2)
def forward(self,x):
out_Lin = self.Lin(x)
out_L00 = self.L00(out_Lin)
out_L01 = self.L01(out_L00)
out_L02 = self.L02(out_L01)
out_d00 = self.d00(out_Lin)
out_d01 = self.d01(out_L00)
out_d02 = self.d02(out_L01)
out_L10 = self.L10(out_d00)
out_L11 = self.L11(out_d01 + out_L10)
out_L12 = self.L12(out_d02 + out_L11)
out_d10 = self.d10(out_d00)
out_d11 = self.d11(out_L10 + out_d01)
out_d12 = self.d12(out_L11 + out_d02)
out_L20 = self.L20(out_d10)
out_L21 = self.L21(out_d11 + out_L20)
out_L22 = self.L22(out_d12 + out_L21)
out_u10 = self.u10(out_L22)
out_L23 = self.L23(out_L22)
out_u11 = self.u11(out_L23)
out_L24 = self.L24(out_L23)
out_u12 = self.u12(out_L24)
out_L13 = self.L13(out_u10 + out_L12)
out_L14 = self.L14(out_u11 + out_L13)
out_u00 = self.u00(out_u10 + out_L12)
out_u01 = self.u01(out_u11 + out_L13)
out_u02 = self.u02(out_u12 + out_L14)
out_L03 = self.L03(out_u00 + out_L02)
out_L04 = self.L04(out_u01 + out_L03)
out_final = self.Lout(out_L04 + out_u02)
return out_final, out_L04+out_u02
# synNet = frameSyn(16,3).to('cuda:0')
# print (torch.cuda.memory_allocated(0)/1024/1024)
# x = torch.randn(1,16,256,256).cuda(0)
# y = synNet(x)
# print (y.shape)