-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests_reshape.py
160 lines (127 loc) · 5.81 KB
/
tests_reshape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""
The following test cases test the functinality of all the operations employed in the reshape section of the module i.efunctionalities which deal with the reshaping of arrays
Aim: All the test cases more or less aim for checking whether the reshaping function is working as expected (asserted aginst known values) and derivatives are flowing adequately
and all derivatives are hand calculated just like in Einsum.
No Anomalies have been reported
WARNING:
Running these tests , all tests will pass but the following warning is shown.
This update in syntax of python unfortunately came after implementation of the functionalities, and this won't actually come into force until the future versions of python.
FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
hence avoid it.
"""
#Import required packages
import pytest
import numpy as np
from autodiff.core.reshape import *
from autodiff.core.node import *
from autodiff.core.grad import grad
def test_concat_two_scalars():
x = Variable(np.array([1]))
y = Variable(np.array([1]))
z = Concat(x,y)
#z1 = Concat(x,y,1)
dzdx,dzdy = grad(z,[x,y])
print(dzdx())
print(dzdy())
assert isinstance(z,Concat) and np.array_equal(z(),np.array([1,1])) and dzdx()==dzdy()==np.ones_like(x())
def test_concat_two_scalars1():
x = Variable(np.array([[1]]))
y = Variable(np.array([[1]]))
z = Concat(x,y,0)
#print(z())
dzdx,dzdy = grad(z,[x,y])
print(dzdx())
print(dzdy())
#z1 = Concat(x,y,1)
assert isinstance(z,Concat) and np.array_equal(z(),np.array([[1],[1]])) and dzdx()==dzdy()==np.ones_like(x())
def test_concat_two_scalars2():
x = Variable(np.array([[1]]))
y = Variable(np.array([[1]]))
z = Concat(x,y,1)
print(z())
dzdx,dzdy = grad(z,[x,y])
#z1 = Concat(x,y,1)
assert isinstance(z,Concat) and np.array_equal(z(),np.array([[1,1]])) and dzdx()==dzdy()==np.ones_like(x())
def test_concat_two_1DArray():
x = Variable(np.array([0,1,2,3,4]))
y = Variable(np.array([5,6,7,8]))
z = Concat(x,y)
dzdx,dzdy = grad(z,[x,y])
print(dzdx())
print(dzdy())
#z1 = Concat(x,y,1)
assert isinstance(z,Concat) and np.array_equal(z(),np.linspace(0,8,9)) and np.array_equal(dzdx(),np.ones_like(x())) and np.array_equal(dzdy(),np.ones_like(y()))
def test_concat_two_1DArray1():
x = Variable(np.array([[0,1,2,3,4]]))
y = Variable(np.array([[5,6,7,8,9]]))
z = Concat(x,y)
dzdx,dzdy = grad(z,[x,y])
print(dzdx())
print(dzdy())
#z1 = Concat(x,y,1)
assert isinstance(z,Concat) and np.array_equal(z(),np.array([[0,1,2,3,4],[5,6,7,8,9]])) and np.array_equal(dzdx(),np.ones_like(x())) and np.array_equal(dzdy(),np.ones_like(y()))
def test_concat_highD_arrays():
x = Variable(np.random.rand(3,3,3))
y = Variable(np.random.rand(3,3,3))
z = Concat(x,y,0)
z1= Concat(x,y,1)
z2 = Concat(x,y,2)
dzdx,dzdy = grad(z,[x,y])
assert isinstance(z,Concat) and isinstance(z1,Concat) and isinstance(z2,Concat) \
and np.array_equal(z(),np.concatenate((x(),y()),0)) and np.array_equal(z1(),np.concatenate((x(),y()),1)) and np.array_equal(z2(),np.concatenate((x(),y()),2)) \
and np.array_equal(dzdx(),np.ones_like(x())) and np.array_equal(dzdy(),np.ones_like(y()))
def test_reshape_array():
x = Variable(np.array([1,2,3,4,5,6]))
y = Reshape(x,(2,3))
dy = grad(y,[x])[0]
assert isinstance(y,Reshape) and np.array_equal(y(),np.array([[1,2,3],[4,5,6]])) and np.array_equal(dy(),np.ones_like(x()))
def test_reshape_array_1():
x = Variable(np.random.randn(3,3,4))
y = Reshape(x,(4,3,3))
y1 = Reshape(x,(36,))
y2 = Reshape(x,(1,36))
y3 = Reshape(x,(1,1,36))
dydx = grad(y,[x])[0]
dy1dx = grad(y1,[x])[0]
dy2dx = grad(y2,[x])[0]
print(dydx().shape)
assert isinstance(y,Reshape) and np.array_equal(y(),np.reshape(x(),(4,3,3))) and np.array_equal(y1(),np.reshape(x(),(36,))) and np.array_equal(y2(),np.reshape(x(),(1,36))) \
and np.array_equal(y3(),np.reshape(x(),(1,1,36))) and np.array_equal(dydx(),np.ones((3,3,4))) and np.array_equal(dy1dx(),np.ones((3,3,4))) and np.array_equal(dy2dx(),np.ones((3,3,4)))
def test_slice_array():
x = np.linspace(0,10,11)
X = Variable(x,"X")
y = X[0]
y1 = X[0:3]
print(y1())
dydx = grad(y,[X])[0]
dy1dx = grad(y1,[X])[0]
print(dydx())
assert isinstance(y,Slice) and y()==0 and np.array_equal(y1(),np.array([0,1,2])) and np.array_equal(dydx(),[1,0,0,0,0,0,0,0,0,0,0]) and np.array_equal(dy1dx(),[1,1,1,0,0,0,0,0,0,0,0])
def test_slice_array_highD():
x = np.random.rand(3,3,3)
X = Variable(x,"X")
y = X[0:2,1:2]
y1 = X[:-2,1:2,0:1]
#print(y1())
dydx = grad(y,[X])[0]
dy1dx = grad(y1,[X])[0]
print(dydx())
print(dy1dx())
temp = np.zeros((3,3,3))
temp[0:2,1:2] = np.ones_like(y())
temp1 = np.zeros((3,3,3))
temp1[:-2,1:2,0:1] = np.ones_like(y1())
assert isinstance(y,Slice) and np.array_equal(y(),x[0:2,1:2]) and np.array_equal(y1(),x[:-2,1:2,0:1]) and np.array_equal(dydx(),temp) and np.array_equal(dy1dx(),temp1)
def test_pad_array():
x = np.array([1,1,1,1])
X = Variable(x,"X")
y = Pad(X,5,4)
assert isinstance(y,Pad) and np.array_equal(y(),np.array([4,4,4,4,4,1,1,1,1,4,4,4,4,4]))
def test_pad_array_high():
x = np.random.rand(2,3)
X = Variable(x,"X")
y = Pad(X,[[1,0],[0,2]],[0,0])
print(y())
temp = np.zeros((3,5))
temp[1:,0:3] = x
assert isinstance(y,Pad) and np.array_equal(y(),temp)