-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathcreate_lmdb_mfqev2.py
127 lines (114 loc) · 4.38 KB
/
create_lmdb_mfqev2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""Create LMDB only for training set of MFQEv2.
GT: non-overlapping 7-frame sequences extracted from 108 videos.
LQ: HM16.5-compressed sequences.
key: assigned from 0000 to 9999.
NOTICE: MAX NFS OF LQ IS 300!!!
Sym-link MFQEv2 dataset root to ./data folder."""
import argparse
import os
import glob
import yaml
import os.path as op
from utils import make_y_lmdb_from_yuv
parser = argparse.ArgumentParser()
parser.add_argument(
'--opt_path', type=str, default='option_R3_mfqev2_4G.yml',
help='Path to option YAML file.'
)
args = parser.parse_args()
yml_path = args.opt_path
radius = 3 # must be 3!!! otherwise, you should change dataset.py
def create_lmdb_for_mfqev2():
# video info
with open(yml_path, 'r') as fp:
fp = yaml.load(fp, Loader=yaml.FullLoader)
root_dir = fp['dataset']['train']['root']
gt_folder = fp['dataset']['train']['gt_folder']
lq_folder = fp['dataset']['train']['lq_folder']
gt_path = fp['dataset']['train']['gt_path']
lq_path = fp['dataset']['train']['lq_path']
gt_dir = op.join(root_dir, gt_folder)
lq_dir = op.join(root_dir, lq_folder)
lmdb_gt_path = op.join(root_dir, gt_path)
lmdb_lq_path = op.join(root_dir, lq_path)
# scan all videos
print('Scaning videos...')
gt_video_list = sorted(glob.glob(op.join(gt_dir, '*.yuv')))
#lq_video_list = sorted(glob.glob(op.join(lq_dir, '*.yuv')))
lq_video_list = [op.join(
lq_dir,
gt_video_path.split('/')[-1]
) for gt_video_path in gt_video_list]
msg = f'> {len(gt_video_list)} videos found.'
print(msg)
# generate LMDB for GT
print("Scaning GT frames (only center frames of each sequence)...")
frm_list = []
for gt_video_path in gt_video_list:
nfs = int(gt_video_path.split('.')[-2].split('/')[-1].split('_')[-1])
nfs = nfs if nfs <= 300 else 300 # !!!!!!
num_seq = nfs // (2 * radius + 1)
frm_list.append([radius + iter_seq * (2 * radius + 1) for iter_seq in range(num_seq)])
num_frm_total = sum([len(frms) for frms in frm_list])
msg = f'> {num_frm_total} frames found.'
print(msg)
key_list = []
video_path_list = []
index_frame_list = []
for iter_vid in range(len(gt_video_list)):
frms = frm_list[iter_vid]
for iter_frm in range(len(frms)):
key_list.append('{:03d}/{:03d}/im4.png'.format(iter_vid+1, iter_frm+1))
video_path_list.append(gt_video_list[iter_vid])
index_frame_list.append(frms[iter_frm])
print("Writing LMDB for GT data...")
make_y_lmdb_from_yuv(
video_path_list=video_path_list,
index_frame_list=index_frame_list,
key_list=key_list,
lmdb_path=lmdb_gt_path,
multiprocessing_read=True,
)
print("> Finish.")
# generate LMDB for LQ
print("Scaning LQ frames...")
len_input = 2 * radius + 1
frm_list = []
for lq_video_path in lq_video_list:
nfs = int(lq_video_path.split('.')[-2].split('/')[-1].split('_')[-1])
nfs = nfs if nfs <= 300 else 300 # !!!!!!
num_seq = nfs // len_input
frm_list.append([list(range(iter_seq * len_input, (iter_seq + 1) \
* len_input)) for iter_seq in range(num_seq)])
num_frm_total = sum([len(frms) * len_input for frms in frm_list])
msg = f'> {num_frm_total} frames found.'
print(msg)
key_list = []
video_path_list = []
index_frame_list = []
for iter_vid in range(len(lq_video_list)):
frm_seq = frm_list[iter_vid]
for iter_seq in range(len(frm_seq)):
key_list.extend(['{:03d}/{:03d}/im{:d}.png'.format(iter_vid+1, \
iter_seq+1, i) for i in range(1, len_input+1)])
video_path_list.extend([lq_video_list[iter_vid]] * len_input)
index_frame_list.extend(frm_seq[iter_seq])
print("Writing LMDB for LQ data...")
make_y_lmdb_from_yuv(
video_path_list=video_path_list,
index_frame_list=index_frame_list,
key_list=key_list,
lmdb_path=lmdb_lq_path,
multiprocessing_read=True,
)
print("> Finish.")
# sym-link
if not op.exists('data/MFQEv2'):
if not op.exists('data/'):
os.system("mkdir data/")
os.system(f"ln -s {root_dir} ./data/MFQEv2")
print("Sym-linking done.")
else:
print("data/MFQEv2 already exists.")
if __name__ == '__main__':
create_lmdb_for_mfqev2()