-
Notifications
You must be signed in to change notification settings - Fork 92
/
NPtarget.go
163 lines (126 loc) · 4.18 KB
/
NPtarget.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
package CloudForest
import (
"math"
)
/*
NPTarget wraps a categorical feature for use in experimental approximate Neyman-Pearson (NP)
classification...constraints and optimization are done on percision false
positive/negative rate.
It uses an impurity measure with a soft constraint from the seccond family presented in
"Comparison and Design of Neyman-Pearson Classifiers"
Clayton Scott, October 2005
http://www.stat.rice.edu/~cscott/pubs/npdesign.pdf
N(f) = κ max((R0(f) − α), 0) + R1(f)
Where f is the classifer, R0 is the flase positive rate R1 is the false negative rate,
α is the false positive constraint and k controls the cost of violating
this constraint and β is a constant we can ignore as it subtracts out in diffrences.
The vote assigned to each leaf node is a corrected mode where the count of the
positive/constrained label is corrected by 1/α. Without this modification constraints
> .5 won't work since nodes with that many negatives false positives won't vote positive.
*/
type NPTarget struct {
CatFeature
Posi int
Alpha float64
Kappa float64
}
//NewNPTarget wraps a Categorical Feature for NP Classification. It accepts
//a string representing the contstrained label and floats Alpha and Kappa
//representing the constraint and constraint weight.
func NewNPTarget(f CatFeature, Pos string, Alpha, Kappa float64) *NPTarget {
return &NPTarget{f, f.CatToNum(Pos), Alpha, Kappa}
}
/*
SplitImpurity is a version of Split Impurity that calls NPTarget.Impurity
*/
func (target *NPTarget) SplitImpurity(l *[]int, r *[]int, m *[]int, allocs *BestSplitAllocs) (impurityDecrease float64) {
nl := float64(len(*l))
nr := float64(len(*r))
nm := 0.0
impurityDecrease = nl * target.Impurity(l, allocs.LCounter)
impurityDecrease += nr * target.Impurity(r, allocs.RCounter)
if m != nil && len(*m) > 0 {
nm = float64(len(*m))
impurityDecrease += nm * target.Impurity(m, allocs.Counter)
}
impurityDecrease /= nl + nr + nm
return
}
//UpdateSImpFromAllocs willl be called when splits are being built by moving cases from r to l
//to avoid recalulatign the entire split impurity.
func (target *NPTarget) UpdateSImpFromAllocs(l *[]int, r *[]int, m *[]int, allocs *BestSplitAllocs, movedRtoL *[]int) (impurityDecrease float64) {
var cat, i int
lcounter := *allocs.LCounter
rcounter := *allocs.RCounter
for _, i = range *movedRtoL {
//most expensive statement:
cat = target.Geti(i)
lcounter[cat]++
rcounter[cat]--
//counter[target.Geti(i)]++
}
nl := float64(len(*l))
nr := float64(len(*r))
nm := 0.0
impurityDecrease = nl * target.ImpFromCounts(len(*l), allocs.LCounter)
impurityDecrease += nr * target.ImpFromCounts(len(*r), allocs.RCounter)
if m != nil && len(*m) > 0 {
nm = float64(len(*m))
impurityDecrease += nm * target.ImpFromCounts(len(*m), allocs.Counter)
}
impurityDecrease /= nl + nr + nm
return
}
//FindPredicted does a mode calulation with the count of the positive/constrained
//class corrected.
func (target *NPTarget) FindPredicted(cases []int) (pred string) {
mi := 0
mc := 0.0
counts := make([]int, target.NCats())
target.CountPerCat(&cases, &counts)
for cat, count := range counts {
cc := float64(count)
if cat == target.Posi {
cc /= target.Alpha
}
if cc > mc {
mi = cat
mc = cc
}
}
return target.NumToCat(mi)
}
//ImpFromCounts recalculates gini impurity from class counts for us in intertive updates.
func (target *NPTarget) ImpFromCounts(t int, counter *[]int) (e float64) {
var totalpos, totalneg, mi int
mc := 0.0
for cat, count := range *counter {
cc := float64(count)
if cat == target.Posi {
totalpos += count
cc /= target.Alpha
} else {
totalneg += count
}
if cc > mc {
mi = cat
mc = cc
}
}
if target.Posi == mi {
//False positive constraint
e = target.Kappa * math.Max(float64(totalneg)/float64(t)-target.Alpha, 0)
} else {
//False negative rate
e = float64(totalpos) / float64(t)
}
return
}
//NPTarget.Impurity implements an impurity that minimizes false negatives subject
//to a soft constrain on fale positives.
func (target *NPTarget) Impurity(cases *[]int, counter *[]int) (e float64) {
target.CountPerCat(cases, counter)
t := len(*cases)
e = target.ImpFromCounts(t, counter)
return
}