-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
88 lines (67 loc) · 2.44 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from imageImplementation import CacheObj
from imageImplementation import CommonApp
from imageImplementation import ImageApp as App
from imageImplementation import PsiCache
import logging
import multiprocessing
import sys
def loadDataFile(trainFile, params):
tFile = open(trainFile,'r')
params.numExamples= int(tFile.readline())
params.examples = []
params.cache= PsiCache.PsiCache()
for line in tFile:
params.examples.append(App.ImageExample(line, params, len(params.examples)))
logging.debug("total number of examples (including duplicates) = " + repr(params.numExamples))
assert(params.numExamples == len(params.examples))
def synthesizeExamples(params):
params.cache = PsiCache.PsiCache()
params.examples = []
for i in range(params.numExamples):
params.examples.append(App.ImageExample(None, params, i))
def printStrongAndWeakTrainError(params, wBest):
numStronglyCorrect = 0.0
numWeaklyCorrect = 0.0
for i in range(params.numExamples):
scores = params.examples[i].findScoreAllClasses(wBest)
bestLabel = -1
maxScore = -1e100
for l in range(params.numYLabels):
if scores[l] >= maxScore:
maxScore = scores[l]
bestLabel = l
assert(bestLabel >= 0)
stronglyCorrect = 0.0
weaklyCorrect = 0.0
if bestLabel == params.examples[i].trueY:
weaklyCorrect = 1.0
stronglyCorrect = 1.0
if bestLabel in params.examples[i].whiteList:
weaklyCorrect = 1.0
numStronglyCorrect += stronglyCorrect
numWeaklyCorrect += weaklyCorrect
logging.debug("Weak training error: %f"%(1.0 - numWeaklyCorrect / float(params.numExamples)))
logging.debug("Strong training error: %f"%(1.0 - numStronglyCorrect / float(params.numExamples)))
def writePerformance(params, w, resultFile):
fh= open(resultFile, 'w')
UUIDs = set()
for example in params.examples:
if example.fileUUID in UUIDs:
continue
else:
UUIDs.add(example.fileUUID)
exampleScores= example.findScoreAllClasses(w)
fh.write("%s " %example.fileUUID)
for key in exampleScores:
fh.write("%d %f " %(key, exampleScores[key]))
fh.write("\n")
fh.close()
def grabLatentVariables(emptyBlob, example):
return example.fileUUID, example.hlabels[example.h]
def dumpCurrentLatentVariables(params, lvFile):
idLVpairs = CommonApp.accessExamples(params, None, grabLatentVariables, None)
fh = open(lvFile,'w')
idLVpairs.sort( lambda x,y: int(x[0])-int(y[0]))
for id,LV in idLVpairs:
fh.write("%s %d %d %d %d\n" % (id, LV.x_min, LV.x_max, LV.y_min, LV.y_max))
fh.close()