Skip to content

Commit e7271da

Browse files
committed
Improve align_offset at opt-level <= 1
At opt-level <= 1, the methods such as `wrapping_mul` are not being inlined, causing significant bloating and slowdowns of the implementation at these optimisation levels. With use of these intrinsics, the codegen of this function at -Copt_level=1 is the same as it is at -Copt_level=3.
1 parent 97ba0c7 commit e7271da

File tree

1 file changed

+38
-17
lines changed

1 file changed

+38
-17
lines changed

library/core/src/ptr/mod.rs

+38-17
Original file line numberDiff line numberDiff line change
@@ -1166,6 +1166,10 @@ pub unsafe fn write_volatile<T>(dst: *mut T, src: T) {
11661166
/// Any questions go to @nagisa.
11671167
#[lang = "align_offset"]
11681168
pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
1169+
// FIXME(#75598): Direct use of these intrinsics improves codegen significantly at opt-level <=
1170+
// 1, where the method versions of these operations are not inlined.
1171+
use intrinsics::{unchecked_shl, unchecked_shr, unchecked_sub, wrapping_mul, wrapping_sub};
1172+
11691173
/// Calculate multiplicative modular inverse of `x` modulo `m`.
11701174
///
11711175
/// This implementation is tailored for align_offset and has following preconditions:
@@ -1175,7 +1179,7 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
11751179
///
11761180
/// Implementation of this function shall not panic. Ever.
11771181
#[inline]
1178-
fn mod_inv(x: usize, m: usize) -> usize {
1182+
unsafe fn mod_inv(x: usize, m: usize) -> usize {
11791183
/// Multiplicative modular inverse table modulo 2⁴ = 16.
11801184
///
11811185
/// Note, that this table does not contain values where inverse does not exist (i.e., for
@@ -1187,8 +1191,10 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
11871191
const INV_TABLE_MOD_SQUARED: usize = INV_TABLE_MOD * INV_TABLE_MOD;
11881192

11891193
let table_inverse = INV_TABLE_MOD_16[(x & (INV_TABLE_MOD - 1)) >> 1] as usize;
1194+
// SAFETY: `m` is required to be a power-of-two, hence non-zero.
1195+
let m_minus_one = unsafe { unchecked_sub(m, 1) };
11901196
if m <= INV_TABLE_MOD {
1191-
table_inverse & (m - 1)
1197+
table_inverse & m_minus_one
11921198
} else {
11931199
// We iterate "up" using the following formula:
11941200
//
@@ -1204,17 +1210,18 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
12041210
// uses e.g., subtraction `mod n`. It is entirely fine to do them `mod
12051211
// usize::MAX` instead, because we take the result `mod n` at the end
12061212
// anyway.
1207-
inverse = inverse.wrapping_mul(2usize.wrapping_sub(x.wrapping_mul(inverse)));
1213+
inverse = wrapping_mul(inverse, wrapping_sub(2usize, wrapping_mul(x, inverse)));
12081214
if going_mod >= m {
1209-
return inverse & (m - 1);
1215+
return inverse & m_minus_one;
12101216
}
1211-
going_mod = going_mod.wrapping_mul(going_mod);
1217+
going_mod = wrapping_mul(going_mod, going_mod);
12121218
}
12131219
}
12141220
}
12151221

12161222
let stride = mem::size_of::<T>();
1217-
let a_minus_one = a.wrapping_sub(1);
1223+
// SAFETY: `a` is a power-of-two, hence non-zero.
1224+
let a_minus_one = unsafe { unchecked_sub(a, 1) };
12181225
let pmoda = p as usize & a_minus_one;
12191226

12201227
if pmoda == 0 {
@@ -1228,25 +1235,27 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
12281235
// elements will ever align the pointer.
12291236
!0
12301237
} else {
1231-
a.wrapping_sub(pmoda)
1238+
wrapping_sub(a, pmoda)
12321239
};
12331240
}
12341241

12351242
let smoda = stride & a_minus_one;
1236-
// SAFETY: a is power-of-two so cannot be 0. stride = 0 is handled above.
1243+
// SAFETY: a is power-of-two hence non-zero. stride == 0 case is handled above.
12371244
let gcdpow = unsafe { intrinsics::cttz_nonzero(stride).min(intrinsics::cttz_nonzero(a)) };
1238-
let gcd = 1usize << gcdpow;
1245+
// SAFETY: gcdpow has an upper-bound that’s at most the number of bits in an usize.
1246+
let gcd = unsafe { unchecked_shl(1usize, gcdpow) };
12391247

1240-
if p as usize & (gcd.wrapping_sub(1)) == 0 {
1248+
// SAFETY: gcd is always greater or equal to 1.
1249+
if p as usize & unsafe { unchecked_sub(gcd, 1) } == 0 {
12411250
// This branch solves for the following linear congruence equation:
12421251
//
12431252
// ` p + so = 0 mod a `
12441253
//
12451254
// `p` here is the pointer value, `s` - stride of `T`, `o` offset in `T`s, and `a` - the
12461255
// requested alignment.
12471256
//
1248-
// With `g = gcd(a, s)`, and the above asserting that `p` is also divisible by `g`, we can
1249-
// denote `a' = a/g`, `s' = s/g`, `p' = p/g`, then this becomes equivalent to:
1257+
// With `g = gcd(a, s)`, and the above condition asserting that `p` is also divisible by
1258+
// `g`, we can denote `a' = a/g`, `s' = s/g`, `p' = p/g`, then this becomes equivalent to:
12501259
//
12511260
// ` p' + s'o = 0 mod a' `
12521261
// ` o = (a' - (p' mod a')) * (s'^-1 mod a') `
@@ -1259,11 +1268,23 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
12591268
//
12601269
// Furthermore, the result produced by this solution is not "minimal", so it is necessary
12611270
// to take the result `o mod lcm(s, a)`. We can replace `lcm(s, a)` with just a `a'`.
1262-
let a2 = a >> gcdpow;
1263-
let a2minus1 = a2.wrapping_sub(1);
1264-
let s2 = smoda >> gcdpow;
1265-
let minusp2 = a2.wrapping_sub(pmoda >> gcdpow);
1266-
return (minusp2.wrapping_mul(mod_inv(s2, a2))) & a2minus1;
1271+
1272+
// SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
1273+
// `a`.
1274+
let a2 = unsafe { unchecked_shr(a, gcdpow) };
1275+
// SAFETY: `a2` is non-zero. Shifting `a` by `gcdpow` cannot shift out any of the set bits
1276+
// in `a` (of which it has exactly one).
1277+
let a2minus1 = unsafe { unchecked_sub(a2, 1) };
1278+
// SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
1279+
// `a`.
1280+
let s2 = unsafe { unchecked_shr(smoda, gcdpow) };
1281+
// SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
1282+
// `a`. Furthermore, the subtraction cannot overflow, because `a2 = a >> gcdpow` will
1283+
// always be strictly greater than `(p % a) >> gcdpow`.
1284+
let minusp2 = unsafe { unchecked_sub(a2, unchecked_shr(pmoda, gcdpow)) };
1285+
// SAFETY: `a2` is a power-of-two, as proven above. `s2` is strictly less than `a2`
1286+
// because `(s % a) >> gcdpow` is strictly less than `a >> gcdpow`.
1287+
return wrapping_mul(minusp2, unsafe { mod_inv(s2, a2) }) & a2minus1;
12671288
}
12681289

12691290
// Cannot be aligned at all.

0 commit comments

Comments
 (0)