template: titleslide
template: titleslide
std::vector<double> data = GetData(n);
// C style iteration - fully explicit
for (auto i=0; i != n; ++i) {
data[i] *= 2;
}
// Old C++ style - hides some details
for (auto iter = data.begin(); iter != data.end(); ++iter) {
*iter *= 2;
}
// New range-based for
for (auto& item : data) {
item *= 2;
}
Recall from the first C++ lecture
template<class T>
T sum(T a, T b) {
return a+b;
}
We then used this without specifying, explicitly, what type T
was - e.g.:
int x = 1, y = 2;
auto z = sum(x, y);
The compiler is doing template argument deduction.
This means it examines the types of the expressions given as arguments
to the function and then tries to choose a T
such that the type of
the argument and the expected type match.
Important to note that the template parameter T
and the type of
function arguments might be different (but related)
template<class T>
void f(T x);
template<class T>
void g(T& x);
template<class T>
void h(const T& x);
Full rules are quite complex
See Meyer's Effective Modern C++ chapter 1 - free online https://www.safaribooksonline.com/library/view/effective-modern-c/9781491908419/ch01.html

The auto
keyword follows very nearly the same rules as template
argument deduction but can trip you up more easily. :(
Even more important to express your intent:
-
Use
auto x
when you want to copy -
Use
auto &x
when you want a reference to original item and may modify it -
Use
auto const &x
when you want a reference to original item and will not modify it

template: titleslide
The library includes many (around 100) function templates that implement algorithms, like "count the elements that match a criteria", or "divide the elements based on a condition".
These all use iterators to specify the data they will work on, e.g.,
count
might use a vector's begin()
and end()
iterators.
#include <algorithm>
std::vector<int> data = Read();
int nzeros = std::count(data.begin(), data.end(),
0);
bool is_prime(int x);
int nprimes = std::count_if(data.begin(), data.end(),
is_prime);
Possible implementation:
template<class InputIt, class UnaryPredicate>
intptr_t count_if(InputIt first, InputIt last,
UnaryPredicate p) {
intptr_t ans = 0;
for (; first != last; ++first) {
if (p(*first)) {
ans++;
}
}
return ans;
}
(Unary \(\implies\)
one argument, a predicate is a Boolean-valued
function.)
Algorithm | Description |
---|---|
for_each |
Apply function to each element in the range. |
count /count_if |
Return number of elements matching. |
find /find_if |
Return iterator to first element matching or end if no match. |
copy /copy_if |
Copy input range (if predicate true) to destination |
transform |
Apply the function to input elements storing in destination (has overload work on two inputs at once) |
swap |
Swap two values - used widely! You may wish to provide a way to make your types swappable (see cpprefence.com) |
sort |
Sort elements in ascending order using either operator< or the binary predicate provided |
lower_bound / upper_bound |
Given a sorted range, do a binary search for value. |
One of the simplest algorithms: apply a function to every element in a range.
template< class InputIt, class UnaryFunction >
UnaryFunction for_each(InputIt first,
InputIt last,
UnaryFunction f);
Why bother?
-
Clearly states your intent
-
Cannot get an off-by-one errors / skip elements
-
Works well with other range-based algorithms
-
Concise if your operation is already in a function
However often a range-based for loop is better!
// C style iteration - fully explicit
for (auto i=0; i != n; ++i) {
data[i] *= 2;
}
// Old C++ style - hides some details
for (auto iter = data.begin(); iter != data.end(); ++iter) {
*iter *= 2;
}
// New range-based for
for (auto& item : data) {
item *= 2;
}
// Algorithms library
std::for_each(data.begin(), data.end(),
double_in_place);
A very powerful function with two variants: one takes a single range, applies a function to each element, and stores the result in an output iterator.
template<class InputIt, class OutputIt,
class UnaryOperation >
OutputIt transform(InputIt first1, InputIt last1,
OutputIt d_first,
UnaryOperation unary_op );
This is basically the equivalent of map
from functional programming.
std::vector<float> data = GetData();
std::transform(data.begin(), data.end(),
data.begin(), double_in_place);
You can use your input as the output.
Implementations have been written and tested by your compiler authors.
The library may be able to do platform-specific optimizations that you probably don't want to maintain.
They form a language to communicate with other programmers what your code is really doing.
for (auto it = images.begin();
it != images.end(); ++it) {
if (ContainsCat(*it)) {
catpics.push_back(*it);
}
}
vs
std::copy_if(images.begin(), images.end(),
ContainsCat, std::back_inserter(catpics));
template:titleslide
Very many of the algorithms just discussed need you to provide a function-like object as an argument for them to use.
If you have to declare a new function for a one-off use in an algorithm call that is inconvenient and moves the code away from its use site.
Worse would be to have to create a custom functor each time.
struct SquareAndAddConstF {
const float c;
SquareAndAddConstF(float c_) : c(c_) {}
float operator()(float x) {
return x*x + c;
}
};
std::vector<float> SquareAndAddConst(const std::vector<float>& x, float c) {
std::vector<float> ans;
ans.resize(x.size());
std::transform(x.begin(), x.end(), ans.begin(),
SquareAndAddConst(c));
return ans;
}
-
A lambda function a.k.a. a closure is a function object that does not have a name like the functions you have seen so far.
-
You can define one inside a function body
-
You can bind them to a variable, call them and pass them to other functions.
-
They can capture local variables (either by value or reference).
-
They have a unique, unknown type so you may have to use
auto
or pass them straight to a template argument.
std::vector<float> SquareAndAddConst(const std::vector<float>& x, float c) {
std::vector<float> ans;
ans.resize(x.size());
auto func = [c](double z) { return z*z + c; };
std::transform(x.begin(), x.end(), ans.begin(),
func);
return ans;
}
std::vector<float> SquareAndAddConst(const std::vector<float>& x, float c) {
std::vector<float> ans;
ans.resize(x.size());
std::transform(x.begin(), x.end(), ans.begin(),
[c](double z) { return z*z + c; });
return ans;
}
[captures](arg-list) -> ret-type {function-body}
[ ... ] |
new syntax that indicates this is a lambda expression |
arg-list |
exactly as normal |
function-body |
zero or more statements as normal |
-> ret-type |
new C++11 syntax to specify the return type of a function - can be skipped if return type is void or function body is only a single return statement. |
captures |
zero or more comma separated captures |
You can capture a value by copy (just put its name: local
) or by reference
(put an ampersand before its name: &local
).
[captures](arg-list) -> ret-type {function-body}
This creates a function object of a unique unnamed type (hence you
must use auto
to store it in a local variable.
You can call this like any object that overloads operator()
:
std::cout << "3^2 +c = " << func(3) << std::endl;
Note that because it does not have a name, it cannot take part in overload resolution.
What does the following do?
[](){}();
--
Nothing
- STL algorithms library (or similar) - pass small one-off pieces of code in freely
std::sort(molecules.begin(), molecules.end(),
[](const Mol& a, const Mol& b) {
return a.charge < b.charge;
});
- To do complex initialisation on something, especially if it should
be
const
.
const auto rands =[&size] -> std::vector<float> {
std::vector<float> ans(size);
for (auto& el: ans) {
el = GetRandomNumber();
}
return ans;
}(); // Note parens to call!
Be careful with what you capture!



template: titleslide
-
Important C++ generic programming technique, used across the standard library
-
The "if-then-else" of types
-
Provide a template class that has typedefs/member functions that specify the configurable parts
-
Your generic algorithm then uses this class, specialised on the type it is working on, to select behaviour
-
You do not have to change the source of either the algorithm or the working type
Several headers contain these:
-
The header
<type_traits>
has lots of information for handling types. E.g.std::is_pointer<int>::value
would be false. -
std::numeric_limits<T>
gives lots of parameters for the built in number types, such as largest and smallest values, whether they are integer or floating types, etc.
Other traits are used everywhere behind the scenes for efficiency.
Suppose you are writing a wrapper around MPI to allow use without
having to always say MPI_FLOAT
- since the compiler knows the types
already!
class Comm {
public:
template <class T>
void send(const std::vector<T>& data,
int dest, int tag);
};
auto& world = Mpi::CommWorld();
std::vector<int> data = {2, 4, 6, 8};
world.send(data, other_rank, tag);
Simplified implementation:
template <class T>
void Comm::send(const std::vector<T>& data, int dest, int tag) {
MPI_Send(reinterpret_cast<void*>(data.data()), data.size(),
DATATYPE,
dest, tag, m_comm);
}
-- How to fill in the right type?
For the types in the standard, we could provide a specialisation for each one:
template <>
void Comm::send<int>(const std::vector<int>& data, int dest, int tag) {
MPI_Send(reinterpret_cast<void*>(data.data()), data.size(),
MPI_INT,
dest, tag, m_comm);
}
But there are lots of types (say M
) and lots of MPI calls (say N
)
to be wrapped, so we have to write M * N
specialisations...
Also how to add any custom types? User would have to mess around with our library.
Create a traits class that tells our functions how to handle different types:
template <class T>
struct DataTypeTraits {
// Don't provide a default definition!
static MPI_Datatype Get();
};
template <class T>
void Comm::send(const std::vector<T>& data, int dest, int tag) {
MPI_Send(reinterpret_cast<void*>(data.data()), data.size(),
DataTypeTraits<T>::Get(),
dest, tag, m_comm);
}
Then we can then provide a specialised defintion for all the types we can handle:
template<>
MPI_Datatype DataTypeTraits<int>::Get() {
return MPI_INT;
}
template<>
MPI_Datatype DataTypeTraits<float>::Get() {
return MPI_FLOAT;
}
// etc
If we try to communicate a data type we haven't specialised for, we will get a compile time error!