forked from NVlabs/stylegan2-ada
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset_tool.py
executable file
·995 lines (854 loc) · 45.5 KB
/
dataset_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Tool for creating multi-resolution TFRecords datasets."""
import os
import sys
import glob
import argparse
import threading
import six.moves.queue as Queue
import traceback
import numpy as np
import tensorflow as tf
import PIL.Image
import dnnlib.tflib as tflib
import scipy
import scipy.ndimage
import scipy.misc
import datetime
from tqdm import tqdm
from training import dataset
#----------------------------------------------------------------------------
def error(msg):
print('Error: ' + msg)
exit(1)
#----------------------------------------------------------------------------
class TFRecordExporter:
def __init__(self, tfrecord_dir, expected_images, print_progress=True, progress_interval=10, tfr_prefix=None):
self.tfrecord_dir = tfrecord_dir
if tfr_prefix is None:
self.tfr_prefix = os.path.join(self.tfrecord_dir, os.path.basename(self.tfrecord_dir))
else:
self.tfr_prefix = os.path.join(self.tfrecord_dir, tfr_prefix)
self.expected_images = expected_images
self.cur_images = 0
self.shape = None
self.resolution_log2 = None
self.tfr_writers = []
self.print_progress = print_progress
self.progress_interval = progress_interval
if self.print_progress:
name = '' if tfr_prefix is None else f' ({tfr_prefix})'
print(f'Creating dataset "{tfrecord_dir}"{name}')
if not os.path.isdir(self.tfrecord_dir):
os.makedirs(self.tfrecord_dir)
assert os.path.isdir(self.tfrecord_dir)
def close(self):
if self.print_progress:
print('%-40s\r' % 'Flushing data...', end='', flush=True)
for tfr_writer in self.tfr_writers:
tfr_writer.close()
self.tfr_writers = []
if self.print_progress:
print('%-40s\r' % '', end='', flush=True)
print('Added %d images.' % self.cur_images)
def choose_shuffled_order(self): # Note: Images and labels must be added in shuffled order.
order = np.arange(self.expected_images)
np.random.RandomState(123).shuffle(order)
return order
def add_image(self, img):
if self.print_progress and self.cur_images % self.progress_interval == 0:
print('%d / %d\r' % (self.cur_images, self.expected_images), end='', flush=True)
if self.shape is None:
self.shape = img.shape
self.resolution_log2 = int(np.log2(self.shape[1]))
assert self.shape[0] in [1, 3]
assert self.shape[1] == self.shape[2]
assert self.shape[1] == 2**self.resolution_log2
tfr_opt = tf.io.TFRecordOptions(tf.compat.v1.io.TFRecordCompressionType.NONE)
for lod in range(self.resolution_log2 - 1):
tfr_file = self.tfr_prefix + '-r%02d.tfrecords' % (self.resolution_log2 - lod)
self.tfr_writers.append(tf.io.TFRecordWriter(tfr_file, tfr_opt))
assert img.shape == self.shape
for lod, tfr_writer in enumerate(self.tfr_writers):
if lod:
img = img.astype(np.float32)
img = (img[:, 0::2, 0::2] + img[:, 0::2, 1::2] + img[:, 1::2, 0::2] + img[:, 1::2, 1::2]) * 0.25
quant = np.rint(img).clip(0, 255).astype(np.uint8)
ex = tf.train.Example(features=tf.train.Features(feature={
'shape': tf.train.Feature(int64_list=tf.train.Int64List(value=quant.shape)),
'data': tf.train.Feature(bytes_list=tf.train.BytesList(value=[quant.tostring()]))}))
tfr_writer.write(ex.SerializeToString())
self.cur_images += 1
def add_labels(self, labels):
if self.print_progress:
print('%-40s\r' % 'Saving labels...', end='', flush=True)
assert labels.shape[0] == self.cur_images
with open(self.tfr_prefix + '-rxx.labels', 'wb') as f:
np.save(f, labels.astype(np.float32))
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
# ----------------------------------------------------------------------------
class HDF5Exporter:
def __init__(self, h5_filename, resolution, channels, compress=False, expected_images=0, print_progress=True, progress_interval=10):
rlog2 = int(np.floor(np.log2(resolution)))
assert resolution == 2 ** rlog2
self.h5_filename = h5_filename
self.resolution = resolution
self.channels = channels
self.expected_images = expected_images
self.cur_images = 0
self.h5_file = None
self.h5_lods = []
self.buffers = []
self.buffer_sizes = []
self.print_progress = print_progress
self.progress_interval = progress_interval
if self.print_progress:
print('Creating dataset "%s"' % h5_filename)
import h5py # conda install h5py
self.h5_file = h5py.File(h5_filename, 'w')
for lod in range(rlog2, -1, -1):
r = 2 ** lod
c = channels
bytes_per_item = c * (r ** 2)
chunk_size = int(np.ceil(128.0 / bytes_per_item))
buffer_size = int(np.ceil(512.0 * np.exp2(20) / bytes_per_item))
compression = 'gzip' if compress else None
compression_opts = 4 if compress else None
lod = self.h5_file.create_dataset(
'data%dx%d' % (r, r), shape=(0, c, r, r), dtype=np.uint8,
maxshape=(None, c, r, r), chunks=(chunk_size, c, r, r),
compression=compression, compression_opts=compression_opts)
self.h5_lods.append(lod)
self.buffers.append(np.zeros((buffer_size, c, r, r), dtype=np.uint8))
self.buffer_sizes.append(0)
def close(self):
if self.print_progress:
print('%-40s\r' % 'Flushing data...', end='', flush=True)
for lod in range(len(self.h5_lods)):
self._flush_lod(lod)
self.h5_file.close()
self.h5_file = None
self.h5_lods = None
if self.print_progress:
print('%-40s\r' % '', end='', flush=True)
print('Added %d images.' % self.cur_images)
def add_image(self, img):
self.add_images(np.stack([img]))
def add_images(self, img):
assert img.ndim == 4 and img.shape[1] == self.channels and img.shape[2] == img.shape[3]
assert img.shape[2] >= self.resolution and img.shape[2] == 2 ** int(np.floor(np.log2(img.shape[2])))
if self.print_progress and (self.cur_images - 1) % self.progress_interval >= self.progress_interval - img.shape[0]:
print('%d / %d\r' % (self.cur_images, self.expected_images), end='', flush=True)
for lod in range(len(self.h5_lods)):
while img.shape[2] > self.resolution // (2 ** lod):
img = img.astype(np.float32)
img = (img[:, :, 0::2, 0::2] + img[:, :, 0::2, 1::2] + img[:, :, 1::2, 0::2] + img[:, :, 1::2, 1::2]) * 0.25
quant = np.uint8(np.clip(np.round(img), 0, 255))
ofs = 0
while ofs < quant.shape[0]:
num = min(quant.shape[0] - ofs, self.buffers[lod].shape[0] - self.buffer_sizes[lod])
self.buffers[lod][self.buffer_sizes[lod]: self.buffer_sizes[lod] + num] = quant[ofs: ofs + num]
self.buffer_sizes[lod] += num
if self.buffer_sizes[lod] == self.buffers[lod].shape[0]:
self._flush_lod(lod)
ofs += num
self.cur_images += img.shape[0]
def add_labels(self, labels):
if self.print_progress:
print('%-40s\r' % 'Saving labels...', end='', flush=True)
assert labels.shape[0] == self.cur_images
with open(os.path.splitext(self.h5_filename)[0] + '-labels.npy', 'wb') as f:
np.save(f, labels.astype(np.float32))
def _flush_lod(self, lod):
num = self.buffer_sizes[lod]
if num > 0:
self.h5_lods[lod].resize(self.h5_lods[lod].shape[0] + num, axis=0)
self.h5_lods[lod][-num:] = self.buffers[lod][:num]
self.buffer_sizes[lod] = 0
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
#----------------------------------------------------------------------------
class ExceptionInfo(object):
def __init__(self):
self.value = sys.exc_info()[1]
self.traceback = traceback.format_exc()
#----------------------------------------------------------------------------
class WorkerThread(threading.Thread):
def __init__(self, task_queue):
threading.Thread.__init__(self)
self.task_queue = task_queue
def run(self):
while True:
func, args, result_queue = self.task_queue.get()
if func is None:
break
try:
result = func(*args)
except:
result = ExceptionInfo()
result_queue.put((result, args))
#----------------------------------------------------------------------------
class ThreadPool(object):
def __init__(self, num_threads):
assert num_threads >= 1
self.task_queue = Queue.Queue()
self.result_queues = dict()
self.num_threads = num_threads
for _idx in range(self.num_threads):
thread = WorkerThread(self.task_queue)
thread.daemon = True
thread.start()
def add_task(self, func, args=()):
assert hasattr(func, '__call__') # must be a function
if func not in self.result_queues:
self.result_queues[func] = Queue.Queue()
self.task_queue.put((func, args, self.result_queues[func]))
def get_result(self, func): # returns (result, args)
result, args = self.result_queues[func].get()
if isinstance(result, ExceptionInfo):
print('\n\nWorker thread caught an exception:\n' + result.traceback)
raise result.value
return result, args
def finish(self):
for _idx in range(self.num_threads):
self.task_queue.put((None, (), None))
def __enter__(self): # for 'with' statement
return self
def __exit__(self, *excinfo):
self.finish()
def process_items_concurrently(self, item_iterator, process_func=lambda x: x, pre_func=lambda x: x, post_func=lambda x: x, max_items_in_flight=None):
if max_items_in_flight is None: max_items_in_flight = self.num_threads * 4
assert max_items_in_flight >= 1
results = []
retire_idx = [0]
def task_func(prepared, _idx):
return process_func(prepared)
def retire_result():
processed, (_prepared, idx) = self.get_result(task_func)
results[idx] = processed
while retire_idx[0] < len(results) and results[retire_idx[0]] is not None:
yield post_func(results[retire_idx[0]])
results[retire_idx[0]] = None
retire_idx[0] += 1
for idx, item in enumerate(item_iterator):
prepared = pre_func(item)
results.append(None)
self.add_task(func=task_func, args=(prepared, idx))
while retire_idx[0] < idx - max_items_in_flight + 2:
for res in retire_result(): yield res
while retire_idx[0] < len(results):
for res in retire_result(): yield res
#----------------------------------------------------------------------------
def info(tfrecord_dir):
print()
print('%-20s%s' % ('Dataset name:', os.path.basename(tfrecord_dir)))
bytes_total = 0
bytes_max = 0
num_files = 0
for f in sorted(glob.glob(os.path.join(tfrecord_dir, '*'))):
if os.path.isfile(f):
fs = os.stat(f).st_size
bytes_total += fs
bytes_max = max(bytes_max, fs)
num_files += 1
print('%-20s%.2f' % ('Total size GB:', bytes_total / (1 << 30)))
print('%-20s%.2f' % ('Largest file GB:', bytes_max / (1 << 30)))
print('%-20s%d' % ('Num files:', num_files))
tflib.init_tf()
dset = dataset.TFRecordDataset(tfrecord_dir, max_label_size='full', repeat=False, shuffle=False)
tflib.init_uninitialized_vars()
print('%-20s%d' % ('Image width:', dset.shape[2]))
print('%-20s%d' % ('Image height:', dset.shape[1]))
print('%-20s%d' % ('Image channels:', dset.shape[0]))
print('%-20s%s' % ('Image datatype:', dset.dtype))
print('%-20s%d' % ('Label size:', dset.label_size))
print('%-20s%s' % ('Label datatype:', dset.label_dtype))
num_images = 0
label_min = np.finfo(np.float64).max
label_max = np.finfo(np.float64).min
label_norm = 0
lod = max(dset.resolution_log2 - 2, 0)
while True:
print('\r%-20s%d' % ('Num images:', num_images), end='', flush=True)
_images, labels = dset.get_minibatch_np(10000, lod=lod) # not accurate
if labels is None:
break
num_images += labels.shape[0]
if dset.label_size:
label_min = min(label_min, np.min(labels))
label_max = max(label_max, np.max(labels))
label_norm += np.sum(np.sqrt(np.sum(np.square(labels), axis=1)))
print('\r%-20s%d' % ('Num images:', num_images))
print('%-20s%s' % ('Label range:', '%g -- %g' % (label_min, label_max) if num_images and dset.label_size else 'n/a'))
print('%-20s%s' % ('Label L2 norm:', '%g' % (label_norm / num_images) if num_images and dset.label_size else 'n/a'))
print()
#----------------------------------------------------------------------------
def display(tfrecord_dir):
print('Loading dataset "%s"' % tfrecord_dir)
tflib.init_tf()
dset = dataset.TFRecordDataset(tfrecord_dir, max_label_size='full', repeat=False, shuffle=False)
tflib.init_uninitialized_vars()
import cv2 # pip install opencv-python
idx = 0
while True:
images, labels = dset.get_minibatch_np(1)
if images is None:
break
if idx == 0:
print('Displaying images')
cv2.namedWindow('dataset_tool')
print('Press SPACE or ENTER to advance, ESC to exit')
print('\nidx = %-8d\nlabel = %s' % (idx, labels[0].tolist()))
cv2.imshow('dataset_tool', images[0].transpose(1, 2, 0)[:, :, ::-1]) # CHW => HWC, RGB => BGR
idx += 1
if cv2.waitKey() == 27:
break
print('\nDisplayed %d images.' % idx)
#----------------------------------------------------------------------------
def extract(tfrecord_dir, output_dir):
print('Loading dataset "%s"' % tfrecord_dir)
tflib.init_tf()
dset = dataset.TFRecordDataset(tfrecord_dir, max_label_size=0, repeat=False, shuffle=False)
tflib.init_uninitialized_vars()
print('Extracting images to "%s"' % output_dir)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
idx = 0
while True:
if idx % 10 == 0:
print('%d\r' % idx, end='', flush=True)
images, _labels = dset.get_minibatch_np(1)
if images is None:
break
if images.shape[1] == 1:
img = PIL.Image.fromarray(images[0][0], 'L')
else:
img = PIL.Image.fromarray(images[0].transpose(1, 2, 0), 'RGB')
img.save(os.path.join(output_dir, 'img%08d.png' % idx))
idx += 1
print('Extracted %d images.' % idx)
#----------------------------------------------------------------------------
def compare(tfrecord_dir_a, tfrecord_dir_b, ignore_labels):
max_label_size = 0 if ignore_labels else 'full'
print('Loading dataset "%s"' % tfrecord_dir_a)
tflib.init_tf()
dset_a = dataset.TFRecordDataset(tfrecord_dir_a, max_label_size=max_label_size, repeat=False, shuffle=False)
print('Loading dataset "%s"' % tfrecord_dir_b)
dset_b = dataset.TFRecordDataset(tfrecord_dir_b, max_label_size=max_label_size, repeat=False, shuffle=False)
tflib.init_uninitialized_vars()
print('Comparing datasets')
idx = 0
identical_images = 0
identical_labels = 0
while True:
if idx % 100 == 0:
print('%d\r' % idx, end='', flush=True)
images_a, labels_a = dset_a.get_minibatch_np(1)
images_b, labels_b = dset_b.get_minibatch_np(1)
if images_a is None or images_b is None:
if images_a is not None or images_b is not None:
print('Datasets contain different number of images')
break
if images_a.shape == images_b.shape and np.all(images_a == images_b):
identical_images += 1
else:
print('Image %d is different' % idx)
if labels_a.shape == labels_b.shape and np.all(labels_a == labels_b):
identical_labels += 1
else:
print('Label %d is different' % idx)
idx += 1
print('Identical images: %d / %d' % (identical_images, idx))
if not ignore_labels:
print('Identical labels: %d / %d' % (identical_labels, idx))
#----------------------------------------------------------------------------
def create_mnist(tfrecord_dir, mnist_dir):
print('Loading MNIST from "%s"' % mnist_dir)
import gzip
with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
images = np.frombuffer(file.read(), np.uint8, offset=16)
with gzip.open(os.path.join(mnist_dir, 'train-labels-idx1-ubyte.gz'), 'rb') as file:
labels = np.frombuffer(file.read(), np.uint8, offset=8)
images = images.reshape(-1, 1, 28, 28)
images = np.pad(images, [(0,0), (0,0), (2,2), (2,2)], 'constant', constant_values=0)
assert images.shape == (60000, 1, 32, 32) and images.dtype == np.uint8
assert labels.shape == (60000,) and labels.dtype == np.uint8
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 9
onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
onehot[np.arange(labels.size), labels] = 1.0
with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
order = tfr.choose_shuffled_order()
for idx in range(order.size):
tfr.add_image(images[order[idx]])
tfr.add_labels(onehot[order])
#----------------------------------------------------------------------------
def create_mnistrgb(tfrecord_dir, mnist_dir, num_images=1000000, random_seed=123):
print('Loading MNIST from "%s"' % mnist_dir)
import gzip
with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
images = np.frombuffer(file.read(), np.uint8, offset=16)
images = images.reshape(-1, 28, 28)
images = np.pad(images, [(0,0), (2,2), (2,2)], 'constant', constant_values=0)
assert images.shape == (60000, 32, 32) and images.dtype == np.uint8
assert np.min(images) == 0 and np.max(images) == 255
with TFRecordExporter(tfrecord_dir, num_images) as tfr:
rnd = np.random.RandomState(random_seed)
for _idx in range(num_images):
tfr.add_image(images[rnd.randint(images.shape[0], size=3)])
#----------------------------------------------------------------------------
def create_cifar10(tfrecord_dir, cifar10_dir, ignore_labels):
print('Loading CIFAR-10 from "%s"' % cifar10_dir)
import pickle
images = []
labels = []
for batch in range(1, 6):
with open(os.path.join(cifar10_dir, 'data_batch_%d' % batch), 'rb') as file:
data = pickle.load(file, encoding='latin1')
images.append(data['data'].reshape(-1, 3, 32, 32))
labels.append(data['labels'])
images = np.concatenate(images)
labels = np.concatenate(labels)
assert ignore_labels in [0, 1]
assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
assert labels.shape == (50000,) and labels.dtype in [np.int32, np.int64]
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 9
onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
onehot[np.arange(labels.size), labels] = 1.0
with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
order = tfr.choose_shuffled_order()
for idx in range(order.size):
tfr.add_image(images[order[idx]])
if not ignore_labels:
tfr.add_labels(onehot[order])
#----------------------------------------------------------------------------
def create_cifar100(tfrecord_dir, cifar100_dir):
print('Loading CIFAR-100 from "%s"' % cifar100_dir)
import pickle
with open(os.path.join(cifar100_dir, 'train'), 'rb') as file:
data = pickle.load(file, encoding='latin1')
images = data['data'].reshape(-1, 3, 32, 32)
labels = np.array(data['fine_labels'])
assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
assert labels.shape == (50000,) and labels.dtype == np.int32
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 99
onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
onehot[np.arange(labels.size), labels] = 1.0
with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
order = tfr.choose_shuffled_order()
for idx in range(order.size):
tfr.add_image(images[order[idx]])
tfr.add_labels(onehot[order])
#----------------------------------------------------------------------------
def create_svhn(tfrecord_dir, svhn_dir):
print('Loading SVHN from "%s"' % svhn_dir)
import pickle
images = []
labels = []
for batch in range(1, 4):
with open(os.path.join(svhn_dir, 'train_%d.pkl' % batch), 'rb') as file:
data = pickle.load(file, encoding='latin1')
images.append(data[0])
labels.append(data[1])
images = np.concatenate(images)
labels = np.concatenate(labels)
assert images.shape == (73257, 3, 32, 32) and images.dtype == np.uint8
assert labels.shape == (73257,) and labels.dtype == np.uint8
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 9
onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
onehot[np.arange(labels.size), labels] = 1.0
with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
order = tfr.choose_shuffled_order()
for idx in range(order.size):
tfr.add_image(images[order[idx]])
tfr.add_labels(onehot[order])
#----------------------------------------------------------------------------
def create_lsun(tfrecord_dir, lmdb_dir, resolution=256, max_images=None):
print('Loading LSUN dataset from "%s"' % lmdb_dir)
import lmdb # pip install lmdb # pylint: disable=import-error
import cv2 # pip install opencv-python
import io
with lmdb.open(lmdb_dir, readonly=True, lock=False).begin(write=False) as txn:
total_images = txn.stat()['entries']
if max_images is None:
max_images = total_images
with TFRecordExporter(tfrecord_dir, max_images) as tfr:
for _idx, (_key, value) in enumerate(txn.cursor()):
try:
try:
img = cv2.imdecode(np.fromstring(value, dtype=np.uint8), 1)
if img is None:
raise IOError('cv2.imdecode failed')
img = img[:, :, ::-1] # BGR => RGB
except IOError:
img = np.asarray(PIL.Image.open(io.BytesIO(value)))
crop = np.min(img.shape[:2])
img = img[(img.shape[0] - crop) // 2 : (img.shape[0] + crop) // 2, (img.shape[1] - crop) // 2 : (img.shape[1] + crop) // 2]
img = PIL.Image.fromarray(img, 'RGB')
img = img.resize((resolution, resolution), PIL.Image.ANTIALIAS)
img = np.asarray(img)
img = img.transpose([2, 0, 1]) # HWC => CHW
tfr.add_image(img)
except:
print(sys.exc_info()[1])
if tfr.cur_images == max_images:
break
#----------------------------------------------------------------------------
def create_lsun_wide(tfrecord_dir, lmdb_dir, width=512, height=384, max_images=None):
assert width == 2 ** int(np.round(np.log2(width)))
assert height <= width
print('Loading LSUN dataset from "%s"' % lmdb_dir)
import lmdb # pip install lmdb # pylint: disable=import-error
import cv2 # pip install opencv-python
import io
with lmdb.open(lmdb_dir, readonly=True).begin(write=False) as txn:
total_images = txn.stat()['entries']
if max_images is None:
max_images = total_images
with TFRecordExporter(tfrecord_dir, max_images, print_progress=False) as tfr:
for idx, (_key, value) in enumerate(txn.cursor()):
try:
try:
img = cv2.imdecode(np.fromstring(value, dtype=np.uint8), 1)
if img is None:
raise IOError('cv2.imdecode failed')
img = img[:, :, ::-1] # BGR => RGB
except IOError:
img = np.asarray(PIL.Image.open(io.BytesIO(value)))
ch = int(np.round(width * img.shape[0] / img.shape[1]))
if img.shape[1] < width or ch < height:
continue
img = img[(img.shape[0] - ch) // 2 : (img.shape[0] + ch) // 2]
img = PIL.Image.fromarray(img, 'RGB')
img = img.resize((width, height), PIL.Image.ANTIALIAS)
img = np.asarray(img)
img = img.transpose([2, 0, 1]) # HWC => CHW
canvas = np.zeros([3, width, width], dtype=np.uint8)
canvas[:, (width - height) // 2 : (width + height) // 2] = img
tfr.add_image(canvas)
print('\r%d / %d => %d ' % (idx + 1, total_images, tfr.cur_images), end='')
except:
print(sys.exc_info()[1])
if tfr.cur_images == max_images:
break
print()
#----------------------------------------------------------------------------
def create_celeba(tfrecord_dir, celeba_dir, cx=89, cy=121):
print('Loading CelebA from "%s"' % celeba_dir)
glob_pattern = os.path.join(celeba_dir, 'img_align_celeba_png', '*.png')
image_filenames = sorted(glob.glob(glob_pattern))
expected_images = 202599
if len(image_filenames) != expected_images:
error('Expected to find %d images' % expected_images)
with TFRecordExporter(tfrecord_dir, len(image_filenames)) as tfr:
order = tfr.choose_shuffled_order()
for idx in range(order.size):
img = np.asarray(PIL.Image.open(image_filenames[order[idx]]))
assert img.shape == (218, 178, 3)
img = img[cy - 64 : cy + 64, cx - 64 : cx + 64]
img = img.transpose(2, 0, 1) # HWC => CHW
tfr.add_image(img)
#----------------------------------------------------------------------------
def create_from_images(tfrecord_dir, image_dir, shuffle):
print('Loading images from "%s"' % image_dir)
image_filenames = sorted(glob.glob(os.path.join(image_dir, '*')))
if len(image_filenames) == 0:
error('No input images found')
img = np.asarray(PIL.Image.open(image_filenames[0]))
resolution = img.shape[0]
channels = img.shape[2] if img.ndim == 3 else 1
if img.shape[1] != resolution:
error('Input images must have the same width and height')
if resolution != 2 ** int(np.floor(np.log2(resolution))):
error('Input image resolution must be a power-of-two')
if channels not in [1, 3]:
error('Input images must be stored as RGB or grayscale')
with TFRecordExporter(tfrecord_dir, len(image_filenames)) as tfr:
order = tfr.choose_shuffled_order() if shuffle else np.arange(len(image_filenames))
for idx in range(order.size):
img = np.asarray(PIL.Image.open(image_filenames[order[idx]]))
if channels == 1:
img = img[np.newaxis, :, :] # HW => CHW
else:
img = img.transpose([2, 0, 1]) # HWC => CHW
tfr.add_image(img)
#----------------------------------------------------------------------------
def create_from_hdf5(tfrecord_dir, hdf5_filename, shuffle):
print('Loading HDF5 archive from "%s"' % hdf5_filename)
import h5py # conda install h5py
with h5py.File(hdf5_filename, 'r') as hdf5_file:
hdf5_data = max([value for key, value in hdf5_file.items() if key.startswith('data')], key=lambda lod: lod.shape[3])
with TFRecordExporter(tfrecord_dir, hdf5_data.shape[0]) as tfr:
order = tfr.choose_shuffled_order() if shuffle else np.arange(hdf5_data.shape[0])
for idx in range(order.size):
tfr.add_image(hdf5_data[order[idx]])
npy_filename = os.path.splitext(hdf5_filename)[0] + '-labels.npy'
if os.path.isfile(npy_filename):
tfr.add_labels(np.load(npy_filename)[order])
#----------------------------------------------------------------------------
def convert_to_hdf5(hdf5_filename, tfrecord_dir, compress):
print('Loading dataset "%s"' % tfrecord_dir)
tflib.init_tf()
dset = dataset.TFRecordDataset(tfrecord_dir, max_label_size='full', repeat=False, shuffle=False)
tflib.init_uninitialized_vars()
with HDF5Exporter(hdf5_filename, resolution=dset.shape[1], channels=dset.shape[0], compress=compress) as h5:
all_labels = []
while True:
images, labels = dset.get_minibatch_np(1)
if images is None:
break
h5.add_images(images)
all_labels.append(labels)
all_labels = np.concatenate(all_labels)
if all_labels.size:
h5.add_labels(all_labels)
#----------------------------------------------------------------------------
def hdf5_from_images(hdf5_filename, image_dir, compress):
print('Loading images from "%s"' % image_dir)
image_filenames = sorted(glob.glob(os.path.join(image_dir, '*')))
if len(image_filenames) == 0:
error('No input images found')
img = np.asarray(PIL.Image.open(image_filenames[0]))
resolution = img.shape[0]
channels = img.shape[2] if img.ndim == 3 else 1
if img.shape[1] != resolution:
error('Input images must have the same width and height')
if resolution != 2 ** int(np.floor(np.log2(resolution))):
error('Input image resolution must be a power-of-two')
if channels not in [1, 3]:
error('Input images must be stored as RGB or grayscale')
with HDF5Exporter(hdf5_filename, resolution=resolution, channels=channels, compress=compress, expected_images=len(image_filenames)) as h5:
for image_filename in image_filenames:
img = np.asarray(PIL.Image.open(image_filename))
if channels == 1:
img = img[np.newaxis, :, :] # HW => CHW
else:
img = img.transpose([2, 0, 1]) # HWC => CHW
h5.add_image(img)
#----------------------------------------------------------------------------
def make_png_path(outdir, idx):
idx_str = f'{idx:08d}'
return f'{os.path.join(outdir, idx_str[:5])}/img{idx_str}.png'
def unpack(tfrecord_dir, output_dir, resolution=None):
print('Loading dataset "%s"' % tfrecord_dir)
tflib.init_tf()
dset = dataset.TFRecordDataset(tfrecord_dir, max_label_size='full', repeat=False, shuffle=False)
tflib.init_uninitialized_vars()
print('Extracting images to "%s"' % output_dir)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
idx = 0
labels = []
while True:
if idx % 10 == 0:
print('%d\r' % idx, end='', flush=True)
images, lbls = dset.get_minibatch_np(1)
if images is None:
break
if images.shape[1] == 1:
img = PIL.Image.fromarray(images[0][0], 'L')
else:
img = PIL.Image.fromarray(images[0].transpose(1, 2, 0), 'RGB')
if resolution is not None:
img = img.resize((resolution, resolution), PIL.Image.ANTIALIAS)
assert lbls.shape[0] == 1
labels.append(lbls[0])
png_fname = make_png_path(output_dir, idx)
os.makedirs(os.path.dirname(png_fname), exist_ok=True)
img.save(png_fname)
idx += 1
np.savez(f'{output_dir}/pack_extras.npz', labels=np.array(labels, dtype=np.uint8), num_images=idx)
print('Extracted %d images.' % idx)
#----------------------------------------------------------------------------
def pack(unpacked_dir, tfrecord_dir, num_train=None, num_validation=None, mirror=0, seed=None):
def export_samples(source_idx, tfr_prefix):
if source_idx.shape[0] == 0: return
if source_idx.shape != (source_idx.shape[0], 2):
assert len(source_idx.shape) == 1
source_idx = np.stack([np.zeros(source_idx.shape[0], dtype=np.uint8), source_idx], axis=-1)
with TFRecordExporter(tfrecord_dir, len(source_idx), tfr_prefix=tfr_prefix) as tfr:
for mirror, idx in source_idx:
img = np.asarray(PIL.Image.open(make_png_path(unpacked_dir, idx)))
img = img.transpose([2, 0, 1]) # HWC => CHW
if mirror != 0:
img = img[:, :, ::-1]
tfr.add_image(img)
tfr.add_labels(labels_onehot[source_idx[:,1]])
print(f'Loading an unpacked dataset from "{unpacked_dir}"')
meta = np.load(f'{unpacked_dir}/pack_extras.npz')
num_images = int(meta['num_images'])
labels_onehot = meta['labels']
assert (labels_onehot.shape[0] == num_images) and (len(labels_onehot.shape) == 2)
order = np.arange(num_images)
if seed is not None:
np.random.RandomState(seed).shuffle(order)
# Size the training and validation sets based on command line args.
#
# If the training set size is not specified on the command line, use all
# except what's set aside for the validation set.
n_train = num_train if num_train is not None else num_images
n_valid = num_validation
if num_train is None:
n_train -= n_valid
assert n_train > 0
assert (n_train + n_valid) <= num_images
train_idx = order[0:n_train]
valid_idx = order[n_train:n_train+n_valid]
if mirror != 0:
n = train_idx.shape[0]
train_idx = np.concatenate([
np.stack([np.zeros(n, dtype=np.uint8), train_idx], axis=-1),
np.stack([np.ones(n, dtype=np.uint8), train_idx], axis=-1)
])
if seed is not None:
np.random.RandomState(seed).shuffle(train_idx)
tfr = os.path.basename(tfrecord_dir)
export_samples(train_idx, tfr_prefix=tfr)
export_samples(valid_idx, tfr_prefix=f'validation-{tfr}')
#----------------------------------------------------------------------------
def extract_brecahad_crops(brecahad_dir, output_dir, cropsize=256):
params = {
256: { 'overlap': 0.0 },
512: { 'overlap': 0.5 }
}
if cropsize not in params:
print('--cropsize must be one of:', ', '.join(str(x) for x in params.keys()))
sys.exit(1)
os.makedirs(output_dir, exist_ok=True)
incr = int(cropsize*(1-params[cropsize]['overlap']))
out_idx = 0
for fname in tqdm(sorted(glob.glob(os.path.join(brecahad_dir, '*.tif')))):
src = PIL.Image.open(fname)
w, h = src.size
for x in range(0, w-cropsize+1, incr):
for y in range(0, h-cropsize+1, incr):
cropimg = src.crop((x, y, x+cropsize, y+cropsize))
cropimg.save(os.path.join(output_dir, f'{out_idx:04d}.png'))
out_idx += 1
print(f'Extracted {out_idx} image crops.')
#----------------------------------------------------------------------------
def execute_cmdline(argv):
prog = argv[0]
parser = argparse.ArgumentParser(
prog = prog,
description = 'Tool for creating multi-resolution TFRecords datasets for StyleGAN and ProGAN.',
epilog = 'Type "%s <command> -h" for more information.' % prog)
subparsers = parser.add_subparsers(dest='command')
subparsers.required = True
def add_command(cmd, desc, example=None):
epilog = 'Example: %s %s' % (prog, example) if example is not None else None
return subparsers.add_parser(cmd, description=desc, help=desc, epilog=epilog)
p = add_command( 'info', 'Display general info about dataset.',
'info datasets/mnist')
p.add_argument( 'tfrecord_dir', help='Directory containing dataset')
p = add_command( 'display', 'Display images in dataset.',
'display datasets/mnist')
p.add_argument( 'tfrecord_dir', help='Directory containing dataset')
p = add_command( 'extract', 'Extract images from dataset.',
'extract datasets/mnist mnist-images')
p.add_argument( 'tfrecord_dir', help='Directory containing dataset')
p.add_argument( 'output_dir', help='Directory to extract the images into')
p = add_command( 'compare', 'Compare two datasets.',
'compare datasets/mydataset datasets/mnist')
p.add_argument( 'tfrecord_dir_a', help='Directory containing first dataset')
p.add_argument( 'tfrecord_dir_b', help='Directory containing second dataset')
p.add_argument( '--ignore_labels', help='Ignore labels (default: 0)', type=int, default=0)
p = add_command( 'create_mnist', 'Create dataset for MNIST.',
'create_mnist datasets/mnist ~/downloads/mnist')
p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
p.add_argument( 'mnist_dir', help='Directory containing MNIST')
p = add_command( 'create_mnistrgb', 'Create dataset for MNIST-RGB.',
'create_mnistrgb datasets/mnistrgb ~/downloads/mnist')
p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
p.add_argument( 'mnist_dir', help='Directory containing MNIST')
p.add_argument( '--num_images', help='Number of composite images to create (default: 1000000)', type=int, default=1000000)
p.add_argument( '--random_seed', help='Random seed (default: 123)', type=int, default=123)
p = add_command( 'create_cifar10', 'Create dataset for CIFAR-10.',
'create_cifar10 datasets/cifar10 ~/downloads/cifar10')
p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
p.add_argument( 'cifar10_dir', help='Directory containing CIFAR-10')
p.add_argument( '--ignore_labels', help='Ignore labels (default: 0)', type=int, default=0)
p = add_command( 'create_cifar100', 'Create dataset for CIFAR-100.',
'create_cifar100 datasets/cifar100 ~/downloads/cifar100')
p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
p.add_argument( 'cifar100_dir', help='Directory containing CIFAR-100')
p = add_command( 'create_svhn', 'Create dataset for SVHN.',
'create_svhn datasets/svhn ~/downloads/svhn')
p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
p.add_argument( 'svhn_dir', help='Directory containing SVHN')
p = add_command( 'create_lsun', 'Create dataset for single LSUN category.',
'create_lsun datasets/lsun-car-100k ~/downloads/lsun/car_lmdb --resolution 256 --max_images 100000')
p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
p.add_argument( 'lmdb_dir', help='Directory containing LMDB database')
p.add_argument( '--resolution', help='Output resolution (default: 256)', type=int, default=256)
p.add_argument( '--max_images', help='Maximum number of images (default: none)', type=int, default=None)
p = add_command( 'create_lsun_wide', 'Create LSUN dataset with non-square aspect ratio.',
'create_lsun_wide datasets/lsun-car-512x384 ~/downloads/lsun/car_lmdb --width 512 --height 384')
p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
p.add_argument( 'lmdb_dir', help='Directory containing LMDB database')
p.add_argument( '--width', help='Output width (default: 512)', type=int, default=512)
p.add_argument( '--height', help='Output height (default: 384)', type=int, default=384)
p.add_argument( '--max_images', help='Maximum number of images (default: none)', type=int, default=None)
p = add_command( 'create_celeba', 'Create dataset for CelebA.',
'create_celeba datasets/celeba ~/downloads/celeba')
p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
p.add_argument( 'celeba_dir', help='Directory containing CelebA')
p.add_argument( '--cx', help='Center X coordinate (default: 89)', type=int, default=89)
p.add_argument( '--cy', help='Center Y coordinate (default: 121)', type=int, default=121)
p = add_command( 'create_from_images', 'Create dataset from a directory full of images.',
'create_from_images datasets/mydataset myimagedir')
p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
p.add_argument( 'image_dir', help='Directory containing the images')
p.add_argument( '--shuffle', help='Randomize image order (default: 1)', type=int, default=1)
p = add_command( 'create_from_hdf5', 'Create dataset from legacy HDF5 archive.',
'create_from_hdf5 datasets/celebahq ~/downloads/celeba-hq-1024x1024.h5')
p.add_argument( 'tfrecord_dir', help='New dataset directory to be created')
p.add_argument( 'hdf5_filename', help='HDF5 archive containing the images')
p.add_argument( '--shuffle', help='Randomize image order (default: 1)', type=int, default=1)
p = add_command( 'convert_to_hdf5', 'Convert dataset to legacy HDF5 archive.',
'convert_to_hdf5 datasets/celebahq.h5 datasets/celebahq')
p.add_argument( 'hdf5_filename', help='HDF5 archive to be created')
p.add_argument( 'tfrecord_dir', help='Dataset directory to load the images from')
p.add_argument( '--compress', help='Compress the data (default: 0)', type=int, default=0)
p = add_command( 'hdf5_from_images', 'Create HDF5 archive from a directory of images.',
'hdf5_from_images datasets/mydataset.h5 myimagedir')
p.add_argument( 'hdf5_filename', help='HDF5 archive to be created')
p.add_argument( 'image_dir', help='Directory containing the images')
p.add_argument( '--compress', help='Compress the data (default: 0)', type=int, default=0)
p = add_command( 'unpack', 'Unpack a TFRecords dataset to labels and images for later repackaging with `pack`.')
p.add_argument( '--tfrecord_dir', help='Directory containing the source dataset in TFRecords format', required=True)
p.add_argument( '--output_dir', help='Output directory where to extract the dataset as PNG files', required=True)
p.add_argument( '--resolution', help='Resize images to (resolution,resolution) (default: None = no resizing)', type=int, default=None)
p = add_command( 'pack', 'Repackage an unpacked dataset into TFRecords.')
p.add_argument( '--unpacked_dir', help='Source directory containing an unpacked tfrecords dataset')
p.add_argument( '--tfrecord_dir', help='New dataset directory to be created')
p.add_argument( '--num_train', help='Number of images to pick for the training set (default: None = all)', type=int, default=None)
p.add_argument( '--num_validation', help='Number of images to pick for the validation set (default: 0 = no images)', type=int, default=0)
p.add_argument( '--mirror', help='Number of images to pick for the training set (default: 0 = no mirroring)', type=int, default=0)
p.add_argument( '--seed', help='Shuffle random seed. (default: None = do not shuffle)', type=int, default=None)
p = add_command( 'extract_brecahad_crops', 'Extract crops from the original BreCaHAD images')
p.add_argument( '--brecahad_dir', help='Source directory for BreCaHAD images. Should contain .tif files.', required=True)
p.add_argument( '--output_dir', help='Output directory for image crops. Will contain .png files', required=True)
p.add_argument( '--cropsize', help='Crop size (resolution,resolution)', type=int, default=256)
args = parser.parse_args(argv[1:] if len(argv) > 1 else ['-h'])
func = globals()[args.command]
del args.command
func(**vars(args))
#----------------------------------------------------------------------------
if __name__ == "__main__":
execute_cmdline(sys.argv)
#----------------------------------------------------------------------------