forked from learningequality/ka-lite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory_profiler.py
executable file
·617 lines (518 loc) · 19.5 KB
/
memory_profiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
"""Profile the memory usage of a Python program"""
__version__ = '0.26'
_CMD_USAGE = "python -m memory_profiler script_file.py"
import time, sys, os, pdb
import warnings
import linecache
import inspect
import subprocess
from copy import copy
# TODO: provide alternative when multprocessing is not available
try:
from multiprocessing import Process, Pipe
except ImportError:
from multiprocessing.dummy import Process, Pipe
try:
import psutil
def _get_memory(pid):
process = psutil.Process(pid)
try:
mem = float(process.get_memory_info()[0]) / (1024 ** 2)
except psutil.AccessDenied:
mem = -1
return mem
except ImportError:
warnings.warn("psutil module not found. memory_profiler will be slow")
if os.name == 'posix':
def _get_memory(pid):
# ..
# .. memory usage in MB ..
# .. this should work on both Mac and Linux ..
# .. subprocess.check_output appeared in 2.7, using Popen ..
# .. for backwards compatibility ..
out = subprocess.Popen(['ps', 'v', '-p', str(pid)],
stdout=subprocess.PIPE).communicate()[0].split(b'\n')
try:
vsz_index = out[0].split().index(b'RSS')
return float(out[1].split()[vsz_index]) / 1024
except:
return -1
else:
raise NotImplementedError('The psutil module is required for non-unix '
'platforms')
class Timer(Process):
"""
Fetch memory consumption from over a time interval
"""
def __init__(self, monitor_pid, interval, pipe, *args, **kw):
self.monitor_pid = monitor_pid
self.interval = interval
self.pipe = pipe
self.cont = True
super(Timer, self).__init__(*args, **kw)
def run(self):
m = _get_memory(self.monitor_pid)
timings = [m]
self.pipe.send(0) # we're ready
while not self.pipe.poll(self.interval):
m = _get_memory(self.monitor_pid)
timings.append(m)
self.pipe.send(timings)
def memory_usage(proc=-1, interval=.1, timeout=None):
"""
Return the memory usage of a process or piece of code
Parameters
----------
proc : {int, string, tuple, subprocess.Popen}, optional
The process to monitor. Can be given by an integer/string
representing a PID, by a Popen object or by a tuple
representing a Python function. The tuple contains three
values (f, args, kw) and specifies to run the function
f(*args, **kw).
Set to -1 (default) for current process.
interval : float, optional
Interval at which measurements are collected.
timeout : float, optional
Maximum amount of time (in seconds) to wait before returning.
Returns
-------
mem_usage : list of floating-poing values
memory usage, in MB. It's length is always < timeout / interval
"""
ret = []
if timeout is not None:
max_iter = int(timeout / interval)
elif isinstance(proc, int):
# external process and no timeout
max_iter = 1
else:
# for a Python function wait until it finishes
max_iter = float('inf')
if hasattr(proc, '__call__'):
proc = (proc, (), {})
if isinstance(proc, (list, tuple)):
if len(proc) == 1:
f, args, kw = (proc[0], (), {})
elif len(proc) == 2:
f, args, kw = (proc[0], proc[1], {})
elif len(proc) == 3:
f, args, kw = (proc[0], proc[1], proc[2])
else:
raise ValueError
aspec = inspect.getargspec(f)
n_args = len(aspec.args)
if aspec.defaults is not None:
n_args -= len(aspec.defaults)
if n_args != len(args):
raise ValueError(
'Function expects %s value(s) but %s where given'
% (n_args, len(args)))
child_conn, parent_conn = Pipe() # this will store Timer's results
p = Timer(os.getpid(), interval, child_conn)
p.start()
parent_conn.recv() # wait until we start getting memory
f(*args, **kw)
parent_conn.send(0) # finish timing
ret = parent_conn.recv()
p.join(5 * interval)
elif isinstance(proc, subprocess.Popen):
# external process, launched from Python
while True:
ret.append(_get_memory(proc.pid))
time.sleep(interval)
if timeout is not None:
max_iter -= 1
if max_iter == 0:
break
if proc.poll() is not None:
break
else:
# external process
if proc == -1:
proc = os.getpid()
if max_iter == -1:
max_iter = 1
counter = 0
while counter < max_iter:
counter += 1
ret.append(_get_memory(proc))
time.sleep(interval)
return ret
# ..
# .. utility functions for line-by-line ..
def _find_script(script_name):
""" Find the script.
If the input is not a file, then $PATH will be searched.
"""
if os.path.isfile(script_name):
return script_name
path = os.getenv('PATH', os.defpath).split(os.pathsep)
for folder in path:
if folder == '':
continue
fn = os.path.join(folder, script_name)
if os.path.isfile(fn):
return fn
sys.stderr.write('Could not find script {0}\n'.format(script_name))
raise SystemExit(1)
class LineProfiler:
""" A profiler that records the amount of memory for each line """
def __init__(self, **kw):
self.functions = list()
self.code_map = {}
self.enable_count = 0
self.max_mem = kw.get('max_mem', None)
def __call__(self, func):
self.add_function(func)
f = self.wrap_function(func)
f.__module__ = func.__module__
f.__name__ = func.__name__
f.__doc__ = func.__doc__
f.__dict__.update(getattr(func, '__dict__', {}))
return f
def add_function(self, func):
""" Record line profiling information for the given Python function.
"""
try:
# func_code does not exist in Python3
code = func.__code__
except AttributeError:
import warnings
warnings.warn("Could not extract a code object for the object %r"
% (func,))
return
if code not in self.code_map:
self.code_map[code] = {}
self.functions.append(func)
def wrap_function(self, func):
""" Wrap a function to profile it.
"""
def f(*args, **kwds):
self.enable_by_count()
try:
result = func(*args, **kwds)
finally:
self.disable_by_count()
return result
return f
def run(self, cmd):
""" Profile a single executable statment in the main namespace.
"""
import __main__
main_dict = __main__.__dict__
return self.runctx(cmd, main_dict, main_dict)
def runctx(self, cmd, globals, locals):
""" Profile a single executable statement in the given namespaces.
"""
self.enable_by_count()
try:
exec(cmd, globals, locals)
finally:
self.disable_by_count()
return self
def runcall(self, func, *args, **kw):
""" Profile a single function call.
"""
# XXX where is this used ? can be removed ?
self.enable_by_count()
try:
return func(*args, **kw)
finally:
self.disable_by_count()
def enable_by_count(self):
""" Enable the profiler if it hasn't been enabled before.
"""
if self.enable_count == 0:
self.enable()
self.enable_count += 1
def disable_by_count(self):
""" Disable the profiler if the number of disable requests matches the
number of enable requests.
"""
if self.enable_count > 0:
self.enable_count -= 1
if self.enable_count == 0:
self.disable()
def trace_memory_usage(self, frame, event, arg):
"""Callback for sys.settrace"""
if event in ('line', 'return') and frame.f_code in self.code_map:
lineno = frame.f_lineno
if event == 'return':
lineno += 1
entry = self.code_map[frame.f_code].setdefault(lineno, [])
entry.append(_get_memory(os.getpid()))
return self.trace_memory_usage
def trace_max_mem(self, frame, event, arg):
# run into PDB as soon as memory is higher than MAX_MEM
if event in ('line', 'return') and frame.f_code in self.code_map:
c = _get_memory(os.getpid())
if c >= self.max_mem:
t = 'Current memory {0:.2f} MB exceeded the maximum '.format(c) + \
'of {0:.2f} MB\n'.format(self.max_mem)
sys.stdout.write(t)
sys.stdout.write('Stepping into the debugger \n')
frame.f_lineno -= 2
p = pdb.Pdb()
p.quitting = False
p.stopframe = frame
p.returnframe = None
p.stoplineno = frame.f_lineno - 3
p.botframe = None
return p.trace_dispatch
return self.trace_max_mem
def __enter__(self):
self.enable_by_count()
def __exit__(self, exc_type, exc_val, exc_tb):
self.disable_by_count()
def enable(self):
if self.max_mem is not None:
sys.settrace(self.trace_max_mem)
else:
sys.settrace(self.trace_memory_usage)
def disable(self):
self.last_time = {}
sys.settrace(None)
def show_results(prof, stream=None, precision=3):
if stream is None:
stream = sys.stdout
template = '{0:>6} {1:>12} {2:>12} {3:<}'
for code in prof.code_map:
lines = prof.code_map[code]
if not lines:
# .. measurements are empty ..
continue
filename = code.co_filename
if filename.endswith((".pyc", ".pyo")):
filename = filename[:-1]
stream.write('Filename: ' + filename + '\n\n')
if not os.path.exists(filename):
stream.write('ERROR: Could not find file ' + filename + '\n')
if filename.startswith("ipython-input") or filename.startswith("<ipython-input"):
print("NOTE: %mprun can only be used on functions defined in "
"physical files, and not in the IPython environment.")
continue
all_lines = linecache.getlines(filename)
sub_lines = inspect.getblock(all_lines[code.co_firstlineno - 1:])
linenos = range(code.co_firstlineno, code.co_firstlineno +
len(sub_lines))
lines_normalized = {}
header = template.format('Line #', 'Mem usage', 'Increment',
'Line Contents')
stream.write(header + '\n')
stream.write('=' * len(header) + '\n')
# move everything one frame up
keys = sorted(lines.keys())
k_old = keys[0] - 1
lines_normalized[keys[0] - 1] = lines[keys[0]]
for i in range(1, len(lines_normalized[keys[0] - 1])):
lines_normalized[keys[0] - 1][i] = -1.
k = keys.pop(0)
while keys:
lines_normalized[k] = lines[keys[0]]
for i in range(len(lines_normalized[k_old]),
len(lines_normalized[k])):
lines_normalized[k][i] = -1.
k_old = k
k = keys.pop(0)
first_line = sorted(lines_normalized.keys())[0]
mem_old = max(lines_normalized[first_line])
precision = int(precision)
template_mem = '{{0:{0}.{1}'.format(precision + 6, precision) + 'f} MB'
for i, l in enumerate(linenos):
mem = ''
inc = ''
if l in lines_normalized:
mem = max(lines_normalized[l])
inc = mem - mem_old
mem_old = mem
mem = template_mem.format(mem)
inc = template_mem.format(inc)
stream.write(template.format(l, mem, inc, sub_lines[i]))
stream.write('\n\n')
# A lprun-style %mprun magic for IPython.
def magic_mprun(self, parameter_s=''):
""" Execute a statement under the line-by-line memory profiler from the
memory_profilser module.
Usage:
%mprun -f func1 -f func2 <statement>
The given statement (which doesn't require quote marks) is run via the
LineProfiler. Profiling is enabled for the functions specified by the -f
options. The statistics will be shown side-by-side with the code through
the pager once the statement has completed.
Options:
-f <function>: LineProfiler only profiles functions and methods it is told
to profile. This option tells the profiler about these functions. Multiple
-f options may be used. The argument may be any expression that gives
a Python function or method object. However, one must be careful to avoid
spaces that may confuse the option parser. Additionally, functions defined
in the interpreter at the In[] prompt or via %run currently cannot be
displayed. Write these functions out to a separate file and import them.
One or more -f options are required to get any useful results.
-T <filename>: dump the text-formatted statistics with the code
side-by-side out to a text file.
-r: return the LineProfiler object after it has completed profiling.
"""
try:
from StringIO import StringIO
except ImportError: # Python 3.x
from io import StringIO
# Local imports to avoid hard dependency.
from distutils.version import LooseVersion
import IPython
ipython_version = LooseVersion(IPython.__version__)
if ipython_version < '0.11':
from IPython.genutils import page
from IPython.ipstruct import Struct
from IPython.ipapi import UsageError
else:
from IPython.core.page import page
from IPython.utils.ipstruct import Struct
from IPython.core.error import UsageError
# Escape quote markers.
opts_def = Struct(T=[''], f=[])
parameter_s = parameter_s.replace('"', r'\"').replace("'", r"\'")
opts, arg_str = self.parse_options(parameter_s, 'rf:T:', list_all=True)
opts.merge(opts_def)
global_ns = self.shell.user_global_ns
local_ns = self.shell.user_ns
# Get the requested functions.
funcs = []
for name in opts.f:
try:
funcs.append(eval(name, global_ns, local_ns))
except Exception as e:
raise UsageError('Could not find function %r.\n%s: %s' % (name,
e.__class__.__name__, e))
profile = LineProfiler()
for func in funcs:
profile(func)
# Add the profiler to the builtins for @profile.
try:
import builtins
except ImportError: # Python 3x
import __builtin__ as builtins
if 'profile' in builtins.__dict__:
had_profile = True
old_profile = builtins.__dict__['profile']
else:
had_profile = False
old_profile = None
builtins.__dict__['profile'] = profile
try:
try:
profile.runctx(arg_str, global_ns, local_ns)
message = ''
except SystemExit:
message = "*** SystemExit exception caught in code being profiled."
except KeyboardInterrupt:
message = ("*** KeyboardInterrupt exception caught in code being "
"profiled.")
finally:
if had_profile:
builtins.__dict__['profile'] = old_profile
# Trap text output.
stdout_trap = StringIO()
show_results(profile, stdout_trap)
output = stdout_trap.getvalue()
output = output.rstrip()
if ipython_version < '0.11':
page(output, screen_lines=self.shell.rc.screen_length)
else:
page(output)
print(message,)
text_file = opts.T[0]
if text_file:
with open(text_file, 'w') as pfile:
pfile.write(output)
print('\n*** Profile printout saved to text file %s. %s' % (text_file,
message))
return_value = None
if 'r' in opts:
return_value = profile
return return_value
def _func_exec(stmt, ns):
# helper for magic_memit, just a function proxy for the exec
# statement
exec(stmt, ns)
# a timeit-style %memit magic for IPython
def magic_memit(self, line=''):
"""Measure memory usage of a Python statement
Usage, in line mode:
%memit [-r<R>t<T>] statement
Options:
-r<R>: repeat the loop iteration <R> times and take the best result.
Default: 1
-t<T>: timeout after <T> seconds. Default: None
Examples
--------
::
In [1]: import numpy as np
In [2]: %memit np.zeros(1e7)
maximum of 1: 76.402344 MB per loop
In [3]: %memit np.ones(1e6)
maximum of 1: 7.820312 MB per loop
In [4]: %memit -r 10 np.empty(1e8)
maximum of 10: 0.101562 MB per loop
"""
opts, stmt = self.parse_options(line, 'r:t', posix=False, strict=False)
repeat = int(getattr(opts, 'r', 1))
if repeat < 1:
repeat == 1
timeout = int(getattr(opts, 't', 0))
if timeout <= 0:
timeout = None
mem_usage = []
for _ in range(repeat):
tmp = memory_usage((_func_exec, (stmt, self.shell.user_ns)), timeout=timeout)
mem_usage.extend(tmp)
if mem_usage:
print('maximum of %d: %f MB per loop' % (repeat, max(mem_usage)))
else:
print('ERROR: could not read memory usage, try with a lower interval or more iterations')
def load_ipython_extension(ip):
"""This is called to load the module as an IPython extension."""
ip.define_magic('mprun', magic_mprun)
ip.define_magic('memit', magic_memit)
def profile(func, stream=None):
"""
Decorator that will run the function and print a line-by-line profile
"""
def wrapper(*args, **kwargs):
prof = LineProfiler()
val = prof(func)(*args, **kwargs)
show_results(prof, stream=stream)
return val
return wrapper
if __name__ == '__main__':
from optparse import OptionParser
parser = OptionParser(usage=_CMD_USAGE, version=__version__)
parser.disable_interspersed_args()
parser.add_option("--pdb-mmem", dest="max_mem", metavar="MAXMEM",
type="float", action="store",
help="step into the debugger when memory exceeds MAXMEM")
parser.add_option('--precision', dest="precision", type="int",
action="store", default=3,
help="precision of memory output in number of significant digits")
if not sys.argv[1:]:
parser.print_help()
sys.exit(2)
(options, args) = parser.parse_args()
del sys.argv[0] # Hide "memory_profiler.py" from argument list
prof = LineProfiler(max_mem=options.max_mem)
__file__ = _find_script(args[0])
try:
if sys.version_info[0] < 3:
import __builtin__
__builtin__.__dict__['profile'] = prof
ns = copy(locals())
ns['profile'] = prof # shadow the profile decorator defined above
execfile(__file__, ns, ns)
else:
import builtins
builtins.__dict__['profile'] = prof
ns = copy(locals())
ns['profile'] = prof # shadow the profile decorator defined above
exec(compile(open(__file__).read(), __file__, 'exec'),
ns, copy(globals()))
finally:
show_results(prof, precision=options.precision)