-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfmc.py
190 lines (145 loc) · 9.27 KB
/
fmc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
from tables import *
class FMC:
def __init__(self,device='cuda'):
self.device=device
self.mc_table=torch.tensor(mc_table,dtype=torch.long,device=device,requires_grad=False)
self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)
def construct_voxel_grid(self, res):
base_cube_f=torch.arange(8).to(self.device)
if isinstance(res,int):
res=(res,res,res)
voxel_grid_template=torch.ones(res,device=self.device) #(res, res, res)
res=torch.tensor([res],dtype=torch.float,device=self.device) #(1,3)
coords=torch.nonzero(voxel_grid_template).float()/res
verts=(self.cube_corners.unsqueeze(0)/res+coords.unsqueeze(1)).reshape(-1,3)
cubes = (base_cube_f.unsqueeze(0) +
torch.arange(coords.shape[0], device=self.device).unsqueeze(1) * 8).reshape(-1)
verts_rounded = torch.round(verts * 10**5) / (10**5)
verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True)
cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8)
return verts_unique - 0.5, cubes
def _identify_surf_cubes(self,s_n,cube_fx8):
occ_n=s_n < 0
occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1,8)
_occ_sum = torch.sum(occ_fx8, -1) #(N**3,)
surf_cubes = (_occ_sum > 0) & (_occ_sum < 8) #(N**3,)
return surf_cubes, occ_fx8 #(N**3,) (N**3, 8)
@torch.no_grad()
def _get_case_id(self,occ_fx8,surf_cubes,res):
case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1) #(N',)
return case_ids
@torch.no_grad()
def _indentify_surf_edges(self,s_n,cube_fx8,surf_cubes):
occ_n=s_n<0
all_edges=cube_fx8[surf_cubes][:,self.cube_edges].reshape(-1,2)
unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
unique_edges = unique_edges.long()
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 #whether the edge has a vertex , (n_unique_edges,)
surf_edges_mask = mask_edges[_idx_map] #whether the edge has a vertex, (all_edge,)
counts = counts[_idx_map] #how many cubes the edge shared, (all_edge,)
#b=mask_edges.sum()
#a=torch.arange(mask_edges.sum(), device=cube_fx8.device)
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_fx8.device) * -1
mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_fx8.device)
#c=mapping[mask_edges]
# Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index
# for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1.
idx_map = mapping[_idx_map] #(all_edge,) -1 means the edge has no vertex, >=0 means i-th appear in the all edges
surf_edges = unique_edges[mask_edges] #index of the edge with a vertex, (unique_edge,)
return surf_edges, idx_map, counts, surf_edges_mask
def _linear_interp(self,edges_weight, edges_x):
edge_dim = edges_weight.dim() - 2
assert edges_weight.shape[edge_dim] == 2
edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)], edge_dim)
denominator = edges_weight.sum(edge_dim)
ue = (edges_x * edges_weight).sum(edge_dim) / denominator
return ue
def _compute_vd(self,x_nx3,surf_cubes_fx8,surf_edges,s_n,case_ids,idx_map):
surf_edges_x = torch.index_select(input=x_nx3, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
surf_edges_s = torch.index_select(input=s_n, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x) #(n_edges,3)
idx_map = idx_map.reshape(-1, 12)
def __call__(self, x_nx3, s_n, cube_fx8, res):
surf_cubes, occ_fx8 = self._identify_surf_cubes(s_n, cube_fx8)
if surf_cubes.sum() == 0:
return torch.zeros((0, 3), dtype=torch.long, device=self.device), \
torch.zeros((0), device=self.device)
case_ids=self._get_case_id(occ_fx8,surf_cubes,res)
#base_cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6, 2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, requires_grad=False)
#base_cube_edges = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0, 4, 5, 5, 7, 7, 6, 6, 4, 0, 4, 1, 5, 3, 7, 2, 6], dtype=torch.long, requires_grad=False)
base_cube_edges = torch.tensor([0,1,1,2,3,2,0,3,4,5,5,6,7,6,4,7,0,4,1,5,2,6,3,7], dtype=torch.long, requires_grad=False)
triangle_table=torch.tensor(mc_table,dtype=torch.long)
def _sort_edges(edges):
"""sort last dimension of edges of shape (E, 2)"""
with torch.no_grad():
order = (edges[:, 0] > edges[:, 1]).long()
order = order.unsqueeze(dim=1)
a = torch.gather(input=edges, index=order, dim=1)
b = torch.gather(input=edges, index=1 - order, dim=1)
return torch.stack([a, b], -1)
v_id = torch.pow(2, torch.arange(8, dtype=torch.long))
def dynamic_marching_cubes(vertices, cubes, sdf):
# vertices: N, 3
# cubes: M, 8
# sdf: N,
device=vertices.device
with torch.no_grad():
occ_n=sdf>0
occ_fx8=occ_n[cubes.reshape(-1)].reshape(-1,8)
occ_sum=torch.sum(occ_fx8,-1) # (M)
valid_cubes= (occ_sum>0) & (occ_sum<8) # select cubes with occ=1,2,3,4,5,6,7
occ_sum=occ_sum[valid_cubes]
all_edges=cubes[valid_cubes][:,base_cube_edges.to(device)].reshape(-1, 2) # (n_valid_cubes*12,2)
all_edges = _sort_edges(all_edges)
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) # (n_valid_cubes*12,2)
unique_edges = unique_edges.long()
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=device) * -1
mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=device)
idx_map = mapping[idx_map]
interp_v = unique_edges[mask_edges]
edges_to_interp = vertices[interp_v.reshape(-1)].reshape(-1, 2, 3)
edges_to_interp_sdf = sdf[interp_v.reshape(-1)].reshape(-1, 2, 1)
edges_to_interp_sdf[:, -1] *= -1
denominator = edges_to_interp_sdf.sum(1, keepdim=True)
edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
verts = (edges_to_interp * edges_to_interp_sdf).sum(1)
idx_map = idx_map.reshape(-1, 12)
cubeindex = (occ_fx8[valid_cubes] * v_id.to(device).unsqueeze(0)).sum(-1) #(M', )
num_triangles = torch.from_numpy(num_triangles_table).to(device)[cubeindex] #(M', )
triangle_table_device = triangle_table.to(device)
faces = torch.cat((
torch.gather(input=idx_map[num_triangles == 1], dim=1,
index=triangle_table_device[cubeindex[num_triangles == 1]][:, :3]).reshape(-1, 3),
torch.gather(input=idx_map[num_triangles == 2], dim=1,
index=triangle_table_device[cubeindex[num_triangles == 2]][:, :6]).reshape(-1, 3),
torch.gather(input=idx_map[num_triangles == 3], dim=1,
index=triangle_table_device[cubeindex[num_triangles == 3]][:, :9]).reshape(-1, 3),
torch.gather(input=idx_map[num_triangles == 4], dim=1,
index=triangle_table_device[cubeindex[num_triangles == 4]][:, :12]).reshape(-1, 3),
torch.gather(input=idx_map[num_triangles == 5], dim=1,
index=triangle_table_device[cubeindex[num_triangles == 5]][:, :15]).reshape(-1, 3),
), dim=0)
return verts, faces
def construct_voxel_grid(res,device):
if 1:
cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [1,0,1], [0,0,1], [0,1,0], [1,1,0], [1,1,1], [0,1,1]], dtype=torch.float, device=device)
base_cube_f=torch.arange(8).to(device)
if isinstance(res,int):
res=(res,res,res)
voxel_grid_template=torch.ones(res,device=device) #(res, res, res)
res=torch.tensor([res],dtype=torch.float,device=device)
coords=torch.nonzero(voxel_grid_template).float()/res
verts=(cube_corners.unsqueeze(0)/res+coords.unsqueeze(1)).reshape(-1,3)
cubes = (base_cube_f.unsqueeze(0) +
torch.arange(coords.shape[0], device=device).unsqueeze(1) * 8).reshape(-1)
verts_rounded = torch.round(verts * 10**5) / (10**5)
verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True)
cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8)
return verts_unique - 0.5, cubes