forked from SteinOBrienLab/AD_PART_Tau_23
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCoGAPS_final.R
326 lines (277 loc) · 12.5 KB
/
CoGAPS_final.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
##-- 1/14/2023 Ryan Palaganas
library(NanoStringNCTools)
library(GeomxTools)
library(GeoMxWorkflows)
library(CoGAPS)
library(SingleCellExperiment)
library(ggplot2)
library(gridExtra)
#read in preprocessed, batch (collection) corrected data----
target_myDataTMM<-readRDS("/Users/ryanpalaganas/Desktop/Directory/NanostringTauProject/cache/target_myDataTMM_collection_adjusted.rds")
#Applying batch correction for slide (slide and collection)----
slide_adjusted <- sva::ComBat(dat = exprs(target_myDataTMM),
batch =target_myDataTMM$slide_name, par.prior = TRUE)
#load batch corrected data into nanostring object
exprs(target_myDataTMM) <- slide_adjusted
saveRDS(target_myDataTMM,"(~/Directory/NanostringTauProject/cache/target_myDataTMM_collection_slide_adjusted.rds")
#extract experiment data----
data <- exprs(target_myDataTMM)
range(data)
#shifting data by minimum value plus 1
data <- data + abs(min(data)) + 1
range(data)
#learn patterns and create CoGAPS object----
params <- new("CogapsParams")
params <- setParam(params, "nPatterns", 5)
params <- setParam(params, "seed",834)
params <- setParam(params,"geneNames", rownames(data))
#create single cell experiment object
sce<-SingleCellExperiment(list(counts=data))
#create CoGAPS object
result <-CoGAPS(sce, params, outputFrequency=500)
saveRDS(result,"~/Directory/NanostringTauProject/cache/CoGAPSnp5.rds")
result <- readRDS("/Users/ryanpalaganas/Desktop/Directory/NanostringTauProject/cache/CoGAPSnp5.rds")
cogapsRes<-list("np5"=result)
str(cogapsRes)
#pattern visualization----
for(i in 1:length(cogapsRes)) {
# extract pattern matrix
tempDf <- as.data.frame(cogapsRes[[i]]@sampleFactors)
# make metadata table
colDataDf <- cbind(tempDf, pData(target_myDataTMM))
pdf(paste0("/Users/ryanpalaganas/Desktop/Directory/NanostringTauProject/plots/",names(cogapsRes[i]), "_boxplotst.pdf"))
names(cogapsRes[i])
for(k in colnames(tempDf)){
boxplot_list <- list()
# extract the categorical variables
categoricalVariables <- c("tau","collection","class","slide_name","group")
variableTitles <- c("tau","collection","class","slide_name","group")
for(l in 1:length(categoricalVariables)){
boxplot_list[[categoricalVariables[l]]] <- ggplot(colDataDf, aes_string(color = paste(categoricalVariables[l]), x = paste(categoricalVariables[l]), y = paste(k))) +
geom_boxplot() +
geom_jitter(shape=16, position=position_jitter(0.2)) +
theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8))+
labs(color = paste(variableTitles[l]), x = paste(variableTitles[l])) +
facet_grid()
}
print(do.call(grid.arrange, boxplot_list))
}
dev.off()
}
#visualize patterns by disease and tau
for(i in 1:length(cogapsRes)) {
# extract pattern matrix
tempDf <- as.data.frame(cogapsRes[[i]]@sampleFactors)
# make metadata table
colDataDf <- cbind(tempDf, pData(target_myDataTMM))
pdf(paste0("/Users/ryanpalaganas/Desktop/Directory/NanostringTauProject/plots/",names(cogapsRes[i]), "_boxplotst.pdf"))
names(cogapsRes[i])
for(k in colnames(tempDf)){
boxplot_list <- list()
# extract the categorical variables
categoricalVariables <- c("tau")
variableTitles <- c("tau")
for(l in 1:length(categoricalVariables)){
boxplot_list[[categoricalVariables[l]]] <- ggplot(colDataDf, aes_string(fill = paste(categoricalVariables[l]), x = 'class', y = paste(k))) +
geom_boxplot(alpha = 0.80, outlier.shape = NA) +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8))+
labs(color = paste(variableTitles[l]), x = paste(variableTitles[l])) +
scale_fill_manual(values = c('negative' = 'royalblue3', 'positive' = 'red3')) +
scale_x_discrete(limits = c("control", "PART", "AD"))
}
print(do.call(grid.arrange, boxplot_list))
}
dev.off()
}
#students t test pattern 4 positive vs negative----
tempDf <- as.data.frame(cogapsRes[[1]]@sampleFactors)
t_colDataDf <- cbind(tempDf, pData(target_myDataTMM))
t_colDataDf <- as.factor(t_colDataDf$class)
#create a data obect consisting of only tau positive and average by slide name
positive <- filter(t_colDataDf,tau == "positive") %>% as.data.table()
p <- positive[, mean(Pattern_4), by = slide_name]
#create a data object consisting of only tau negative and average by slide name
negative <- filter(t_colDataDf,tau == "negative") %>% as.data.table()
n <- negative[, mean(Pattern_4), by = slide_name]
#perform students t-test
t.test(p$V1, n$V1, var.equal = TRUE)
#create a data obect consisting of only tau positive and average by slide name
positive <- filter(t_colDataDf,tau == "positive") %>% as.data.table()
p <- positive[, mean(Pattern_5), by = slide_name]
#create a data object consisting of only tau negative and average by slide name
negative <- filter(t_colDataDf,tau == "negative") %>% as.data.table()
n <- negative[, mean(Pattern_5), by = slide_name]
#perform students t-test
t.test(p$V1, n$V1, var.equal = TRUE)
#anova
mway <- aov(Pattern_4 ~ tau + sex + class, data = t_colDataDf)
summary(mway)
mway <- aov(Pattern_5 ~ tau + sex + class, data = t_colDataDf)
summary(mway)
#disease vs control anova: i am aggregating both PART and AD into 'disease'
t_colDataDf <- t_colDataDf %>%
mutate(disease = case_when(
class == "control" ~ "control",
class == "AD" ~ "disease",
class == "PART" ~ "disease"
))
t_colDataDf$disease <- as.factor(t_colDataDf$disease)
t_colDataDf$tau <- as.factor(t_colDataDf$tau)
t_colDataDf <- t_colDataDf %>%
mutate(control = case_when(
class == "control" ~ 1,
class == "AD" ~ 0,
class == "PART" ~ 0
))
t_colDataDf <- t_colDataDf %>%
mutate(AD = case_when(
class == "control" ~ 0,
class == "AD" ~ 1,
class == "PART" ~ 0
))
t_colDataDf <- t_colDataDf %>%
mutate(PART = case_when(
class == "control" ~ 0,
class == "AD" ~ 0,
class == "PART" ~ 1
))
anvtst <- t_colDataDf %>% anova_test(Pattern_4 ~ tau*AD*PART + sex)
#4 t-tests: [tau+/AD vs tau+/PART], [tau-/AD vs tau-/PART], [tau+/AD vs tau-/AD], [tau+/PART vs tau-/PART]
taupos.AD <- filter(t_colDataDf, tau == "positive" & class=="AD") %>% as.data.table() #tau+/AD
taupos.PART <- filter(t_colDataDf, tau == "positive" & class=="PART") %>% as.data.table() #tau+/PART
tauneg.AD <- filter(t_colDataDf, tau == "negative" & class=="AD") %>% as.data.table() #tau-/AD
tauneg.PART <- filter(t_colDataDf, tau == "negative" & class=="PART") %>% as.data.table() #tau-/PART
statdf <- data.frame()
#t.test [tau+/AD vs tau+/PART]
#pattern4
t.test(taupos.AD$Pattern_4, taupos.PART$Pattern_4, var.equal = TRUE)
#pattern5
t.test(taupos.AD$Pattern_5, taupos.PART$Pattern_5, var.equal = TRUE)
#t.test [tau-/AD vs tau-/PART]
#pattern 4
t.test(tauneg.AD$Pattern_4, tauneg.PART$Pattern_4, var.equal = TRUE)
#pattern 5
t.test(tauneg.AD$Pattern_5, tauneg.PART$Pattern_5, var.equal = TRUE)
#t.test [tau+/AD vs tau-/AD]
t.test(tposAD$V1, tnegAD$V1, var.equal = TRUE)
#pattern 4
t.test(taupos.AD$Pattern_4, tauneg.AD$Pattern_4, var.equal = TRUE)
#pattern 5
t.test(taupos.AD$Pattern_5, tauneg.AD$Pattern_5, var.equal = TRUE)
#t.test [tau+/PART vs tau-/PART]
x <- t.test(tposPART$V1, tnegPART$V1, var.equal = TRUE)
#pattern 4
t.test(taupos.PART$Pattern_4, tauneg.PART$Pattern_4, var.equal = TRUE)
#pattern 5
t.test(taupos.PART$Pattern_5, tauneg.PART$Pattern_5, var.equal = TRUE)
mway <- aov(Pattern_4 ~ tau*disease + sex, data = t_colDataDf)
summary(mway)
library(knitr)
library(rstatix)
summary(mway)
res.aov <- t_colDataDf %>% anova_test(Pattern_4 ~ tau + slide_name + sex + class)
kable(summary(res.aov))
#learning 10 patterns----
params10 <- new("CogapsParams")
params10 <- setParam(params10, "nPatterns", 10)
params10 <- setParam(params10,"geneNames", rownames(data))
sce10<-SingleCellExperiment(list(counts=data))
exprs(sce10)
result10 <-CoGAPS(sce10, params10, outputFrequency=500) #, geneNames = )
saveRDS(result10,"~/Directory/NanostringTauProject/cache/CoGAPSnp10.rds")
cogapsRes10<-list("np10"=result10)
str(cogapsRes10)
#visualize 10 patterns----
for(i in 1:length(cogapsRes10)) {
# extract pattern matrix
tempDf <- as.data.frame(cogapsRes10[[i]]@sampleFactors)
# make metadata table
colDataDf <- cbind(tempDf, pData(target_myDataTMM))
pdf(paste0("~/Directory/NanostringTauProject/plots/",names(cogapsRes10[i]), "_boxplots.pdf"))
names(cogapsRes10[i])
for(k in colnames(tempDf)){
boxplot_list10 <- list()
# extract the categorical variables
categoricalVariables <- c("tau", "sex","collection","class","slide_name","group")
variableTitles <- c("tau", "sex","collection","class","slide_name","group")
for(l in 1:length(categoricalVariables)){
boxplot_list10[[categoricalVariables[l]]] <- ggplot(colDataDf, aes_string(color = paste(categoricalVariables[l]), x = paste(categoricalVariables[l]), y = paste(k))) +
geom_boxplot() +
geom_jitter(shape=16, position=position_jitter(0.2)) +
theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8))+
labs(color = paste(variableTitles[l]), x = paste(variableTitles[l]))
}
print(do.call(grid.arrange, boxplot_list10))
}
dev.off()
}
##heatmaps----
#read in CoGAPSnp5 object
result <- readRDS("~/Directory/NanostringTauProject/cache/CoGAPSnp5.rds")
cogapsRes<-list("np5"=result)
#extract patternMarkers----
pm <- patternMarkers(cogapsRes$np5, threshold = "all")
saveRDS(pm,"~/Directory/NanostringTauProject/cache/patternmarkers.rds")
#export patternmarkers, patternmarker ranks and patternmarkerscores as csv
library(stringi)
patternmarker <- list(patternmarkers = data.frame(stri_list2matrix(pm$PatternMarkers, byrow=FALSE)),
patternmarkerranks = data.frame(pm$PatternMarkerRanks, 'genes' = rownames(pm[["PatternMarkerRanks"]])),
patternmarkerscores = data.frame(pm$PatternMarkerScores, 'genes' = rownames(pm[["PatternMarkerRanks"]])))
colnames(patternmarker$patternmarkers) = c("Pattern1","Pattern2","Pattern3","Pattern4","Pattern5")
write_xlsx(patternmarker,"~/Directory/NanostringTauProject/cache/patternmarkers.xlsx")
library('ComplexHeatmap')
library(circlize)
#extract metadata and drop control group
colDataDf <- pData(target_myDataTMM)%>% subset(class!='control')
names <- rownames(colDataDf)
#extract top 20 pattern marker genes from patterns 4 and 5 (pattern 4 is tau up, pattern 5 is tau down)
GOI4 <- pm$PatternMarkers$Pattern_4[1:21]
#extract top 21 genes for pattern 5 because RUFY3 will be excluded as an outlier
GOI5 <- pm$PatternMarkers$Pattern_5[1:22]
#subset expression data by top 20 pattern 4 and 5 marker genes, restrict to experimental groups
p4hm <- subset(exprs(target_myDataTMM), rownames(exprs(target_myDataTMM)) %in% GOI4, colnames(exprs(target_myDataTMM)) %in% names)
p5hm <- subset(exprs(target_myDataTMM), rownames(exprs(target_myDataTMM)) %in% GOI5, colnames(exprs(target_myDataTMM)) %in% names)
#row mean normalization function----
rowmeannormalize <- function(x){
(x-mean(x))/(max(x)-mean(x))
}
#create normalized data object using normalization function for tau up and tau down patterns
data_norm4 <- t(apply(p4hm, 1, rowmeannormalize))
data_norm5 <- t(apply(p5hm, 1, rowmeannormalize))
#setting up complex heatmap variables----
Tau = sample(paste0("Tau", 1:21), nrow(data_norm4), replace = TRUE)
Tau_level = intersect(paste0("Tau", 1:21), Tau)
column_ha = HeatmapAnnotation(Tau = colDataDf$tau,
Class = colDataDf$class,
col = list(Tau = c("negative" = "royalblue3", "positive" = "red3"),
Class = c("AD" = "red3", "PART" = "yellow2")),
annotation_legend_param = list(Tau = list()))
#color spectrum for heatmap
col_fun = colorRamp2(c(-1.5, 0, 1.5), c("purple", "white", "orange"))
col_fun(seq(-3, 3))
#create and export heatmaps----
#pattern tau up
pdf("~/Directory/NanostringTauProject/plots/pattern4t20.pdf")
Heatmap(data_norm4,
top_annotation = column_ha,
show_row_names = TRUE,
show_column_names = FALSE,
col = col_fun)
dev.off()
#tau down, RUFY3 was excluded as an outlier
data_norm5 <- data_norm5[!row.names(data_norm5) %in% 'RUFY3',]
#reordering top annotation dendrogram for pattern5 heatmap
library(dendsort)
library(dendextend)
#column dendrogram re-ordering for tau
col_dend5 = as.dendrogram(hclust(dist(t(data_norm5)))) %>% sort()
pdf("~/Directory/NanostringTauProject/plots/pattern5t20.pdf")
Heatmap(data_norm5,
name = 'mat',
top_annotation = column_ha,
show_row_names = TRUE,
show_column_names = FALSE,
col = col_fun,
cluster_columns = col_dend5)
dev.off()