-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearcher.py
322 lines (288 loc) · 12 KB
/
searcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import math
from configuration import ConfigClass
from indexer import Indexer
from parser_module import Parse
from ranker import Ranker
import utils
from gensim.models import LsiModel
from gensim.models import LdaModel
from gensim.corpora import Dictionary
from gensim import similarities
import time
from nltk.corpus import wordnet
import numpy as np
from scipy import spatial
from stemmer import Stemmer
class Searcher:
def __init__(self, inverted_index,Docment_info=None,persondic={},stemmer=False):
"""
:param inverted_index: dictionary of inverted index
"""
self.parser = Parse(persondic)
self.ranker = Ranker()
config = ConfigClass()
self.indexer = Indexer(config)
self.inverted_index = inverted_index
self.Docment_info=Docment_info
posting_name = utils.load_obj("postingNames")
self.posting_name = sorted(posting_name)
self.stemmerbool=stemmer
self.stemmer = Stemmer()
#self.termPlacement = {}
def relevant_docs_from_posting(self, query):
"""
This function loads the posting list and count the amount of relevant documents per term.
:param query: query
:return: dictionary of relevant documents.
"""
queryexsp = []
for word in query:
if (self.stemmerbool):
wname = self.stemmer.stem_term(word)
else:
wname = word
queryexsp += [(wname, 1)]
for syn in wordnet.synsets(word):
w = wordnet.synsets(word)[0]
for l in syn.lemmas():
if(self.stemmerbool):
lname=self.stemmer.stem_term(l.name())
else:
lname=l.name()
if l.name()==word or l.name().lower()==word or wname==lname:
queryexsp+=[(lname,1)]
else:
w2 = wordnet.synsets(l.name())[0]
score=w.wup_similarity(w2)
if(score!=None and score>0.5):
if(len(l.name().replace("_"," ").replace("-"," ").split())==1):
queryexsp.append((lname, score*0.9))
#queryexsp = [t for t in queryexsp if t[1] != None]
queryexsp = set(queryexsp)
queryexsp = sorted(queryexsp, reverse=True, key=lambda item: item[0])
print(queryexsp)
posting_name = self.posting_name
#sort_query = sorted(query)
relevant_docs = {}
tfidfdic={}
i, t = 0, 0
# listForName = list(tempdict.keys())
while t < len(queryexsp):
i = self.binarySearch(queryexsp[t][0],posting_name,i)
tempdic = self.indexer.getJson(posting_name[i])
if(tempdic.get(queryexsp[t][0])):
for tweet in tempdic[queryexsp[t][0]].items():
if (tfidfdic.get(tweet[0])):
tfidfdic[tweet[0]][t] = ((tweet[1]) * math.log2(len(self.Docment_info) / self.inverted_index[queryexsp[t][0]][0]))*queryexsp[t][1]
else:
tfidfdic[tweet[0]] = [0] * len(queryexsp)
tfidfdic[tweet[0]][t] = ((tweet[1]) * math.log2(len(self.Docment_info) / self.inverted_index[queryexsp[t][0]][0]))*queryexsp[t][1]
t+=1
dq=[1]*len(queryexsp)
dq=np.array(dq)
dq=np.transpose(dq)
A=np.array(list(tfidfdic.values()))
tweets=list(tfidfdic.keys())
cos_sim = np.dot(A, dq) / (np.linalg.norm(dq) * np.linalg.norm(A))
#cos_sim=1 - spatial.distance.cosine(A, dq)
tweetcos=zip(tweets,cos_sim)
tweetcos=set(tweetcos)
relevant_docs=sorted(tweetcos, reverse=True,key=lambda item:item[1])
return relevant_docs
'''for i in range(30):
print(tweetcos[i])
print(tweetcos[len(tweetcos)-i-1])'''
def buildLsiModleimp(self):
posting_name = self.posting_name
posting_name += ["number.json"] +["persona.json"]
i, t = 0, 0
for term in self.inverted_index.keys():
if(self.inverted_index[term][0]>7):
self.termPlacement[term] = i
i += 1
tfidfdic = {}
# listForName = list(tempdict.keys())
while t < len(posting_name):
# i = self.binarySearch(listiInvInx[t], posting_name, 0)
tempdic = self.indexer.getJson(posting_name[t])
for term in tempdic.keys():
if(self.termPlacement.get(term)):
for tweet in tempdic[term].items():
if (tfidfdic.get(tweet[0])):
tfidfdic[tweet[0]][t] = (tweet[1] / self.Docment_info[tweet[0]][0]) * math.log2(1000 / self.inverted_index[term][0])
else:
tfidfdic[tweet[0]] = [0] * len(self.termPlacement)
tfidfdic[tweet[0]][t] = (tweet[1] / self.Docment_info[tweet[0]][0]) * math.log2(1000 / self.inverted_index[term][0])
print(t)
t += 1
A = list(tfidfdic.values())
print(len(A), ",", len(A[0]))
print(len(self.termPlacement))
return self.ranker.rank_relevant_doc(A)
def buildLsiModle(self):
posting_name=self.posting_name
posting_name+=["number.json"]
i, t = 0, 0
# tempdict = {k: v for k, v in sorted(self.Docment_info.items(), key=lambda item: item[0])}
tfidfdic = {}
# listForName = list(tempdict.keys())
while t < len(posting_name):
#i = self.binarySearch(listiInvInx[t], posting_name, 0)
tempdic = self.indexer.getJson(posting_name[t])
for term in tempdic.keys():
self.termPlacement[term]=i
i += 1
for tweet in tempdic[term].items():
if (tfidfdic.get(tweet[0])):
tfidfdic[tweet[0]][t] = (tweet[1] / self.Docment_info[tweet[0]][0]) * math.log2(1000 / self.inverted_index[term][0])
else:
tfidfdic[tweet[0]] = [0] * len(self.inverted_index)
tfidfdic[tweet[0]][t] = (tweet[1] / self.Docment_info[tweet[0]][0]) * math.log2(1000 / self.inverted_index[term][0])
print(t)
t+=1
'''ip=0
print(i)
for term in self.inverted_index.keys():
if not self.termPlacement.get(term):
ip+=1
print (term," ",ip)'''
A = list(tfidfdic.values())
print(len(A),",",len(A[0]))
print(len(self.termPlacement))
return self.ranker.rank_relevant_doc(A)
#print(U)
#print(S)
#print(V)
def binarySearch(self, term, posting_name, i):
j = len(posting_name) - 1
while j >= i:
k = (j + i) // 2
text = posting_name[k].replace(".json", "").split('-')
if (term >= text[0] and term <= text[1]):
return k
else:
if (term < text[0] and term < text[1]):
j = k - 1
if (term > text[1]):
i = k + 1
return False
'''posting = utils.load_obj("posting")
relevant_docs = {}
for term in query:
try: # an example of checks that you have to do
posting_doc = posting[term]
for doc_tuple in posting_doc:
doc = doc_tuple[0]
if doc not in relevant_docs.keys():
relevant_docs[doc] = 1
else:
relevant_docs[doc] += 1
except:
print('term {} not found in posting'.format(term))
return relevant_docs'''
'''start_time = time.time()
dictionary= Dictionary.load('dictionary'+str(100000))
listforcorp=utils.load_obj('tweetlist'+str(100000))
tweet2doc = utils.load_obj("tweet2doc")
for i in range(200000,10000000,100000):
dictionary.merge_with(Dictionary.load('dictionary'+str(i)))
listforcorp+=utils.load_obj('tweetlist'+str(i))
corp=[]
count=0
for row in listforcorp:
# print(row," ",tweet2doc[count])
count+=1
corp+=[dictionary.doc2bow(row)]
print("--- %s seconds ---" % (time.time() - start_time))
lsi=LsiModel(corp,id2word=dictionary)
lsi.save("LSIon10milon")
print("--- %s seconds ---" % (time.time() - start_time))
tweet2doc=utils.load_obj("tweet2doc")
vec_bow = dictionary.doc2bow(query)
vec_lsi = lsi[vec_bow]
index = similarities.MatrixSimilarity(lsi[corp])
index.save("LSIsimon10milon")
sims = index[vec_lsi]
#print(list(enumerate(sims)))
sims = sorted(enumerate(sims), key=lambda item: -item[1])
count=0
for doc_position, doc_score in sims:
print(doc_score, tweet2doc[doc_position])
if(count==20):
break
count+=1
print("--- %s seconds ---" % (time.time() - start_time))'''
'''Ut, St, Vt=self.buildLsiModleimp()
i, t = 0, 0
s=[]
qvec=np.array([0]*len(self.termPlacement))
while t < len(query):
if(self.termPlacement.get(query[t])):
qvec[self.termPlacement[query[t]]]=1
print(self.termPlacement[query[t]],", ",qvec[self.termPlacement[query[t]]])
s+=[self.termPlacement[query[t]]]
t+=1
#qvec=np.transpose(qvec)
print(qvec.shape)
print(Ut.shape)
St = np.linalg.inv(St)
print(St.shape)
print(St)
dq=np.matmul(qvec,Ut)
num=qvec[s[0]]*Ut[s[0],0]+qvec[s[1]]*Ut[s[1],0]
print(num,"=",qvec[s[0]],"*",Ut[s[0],0],"+",qvec[s[1]],"*",Ut[s[1],0])
print(dq)
dq=np.matmul(dq,St)
print(dq)
print(Vt.shape)
cos_sim = np.dot(Vt, dq) / (np.linalg.norm(dq) * np.linalg.norm(Vt))
print(cos_sim)
print(cos_sim.shape)'''
"""
This function loads the posting list and count the amount of relevant documents per term.
:param query: query
:return: dictionary of relevant documents.
"""
'''posting = utils.load_obj("posting")
relevant_docs = {}
for term in query:
try: # an example of checks that you have to do
posting_doc = posting[term]
for doc_tuple in posting_doc:
doc = doc_tuple[0]
if doc not in relevant_docs.keys():
relevant_docs[doc] = 1
else:
relevant_docs[doc] += 1
except:
print('term {} not found in posting'.format(term))
return relevant_docs'''
'''posting_name = utils.load_obj("postingNames")
posting_name=sorted(posting_name)
sort_query = sorted(query)
i,t=0,0
#tempdict = {k: v for k, v in sorted(self.Docment_info.items(), key=lambda item: item[0])}
tfidfdic={}
#listForName = list(tempdict.keys())
while t<len(query):
i = self.binarySearch(sort_query[t],posting_name,i)
if(i!=False):
tempdic=self.indexer.getJson(posting_name[i])
tempdic2=tempdic[sort_query[t]]
templist=list(tempdic2.items())
for tweet in templist:
if(tfidfdic.get(tweet)):
tfidfdic[tweet[0]][t]=(tweet[1]/self.Docment_info[tweet[0]][0])*math.log2(60000/self.inverted_index[sort_query[t]][0])
else:
tfidfdic[tweet[0]]=[0]*len(query)
tfidfdic[tweet[0]][t] = (tweet[1] / self.Docment_info[tweet[0]][0]) * math.log2(60000 / self.inverted_index[sort_query[t]][0])
t+=1
print(tfidfdic)
A=[]
for val in tfidfdic.values():
A.append(val)
print(A)
U,S,V=self.ranker.rank_relevant_doc(A)
print(U)
print(S)
print(V)'''