-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathranker.py
50 lines (42 loc) · 1.49 KB
/
ranker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from numpy import array
from numpy import diag
from numpy import dot
import numpy as np
from scipy.linalg import svd
class Ranker:
def __init__(self):
pass
@staticmethod
def rank_relevant_doc(relevant_doc):
"""
This function provides rank for each relevant document and sorts them by their scores.
The current score considers solely the number of terms shared by the tweet (full_text) and query.
:param relevant_doc: dictionary of documents that contains at least one term from the query.
:return: sorted list of documents by score
"""
'''A=np.transpose(array(relevant_doc))
U,S,V= svd(A,full_matrices=False)
print(V.shape)
X=(S >30).sum()
print("ss:",X)
Ut=U[0:,0:X]
print("ut:_____\n",Ut,"\n")
St = S[0:X]
St=diag(St)
print("st:_____\n", St, "\n")
Vt=(V[0:X,0:])
print(Vt.shape)
Vt=np.transpose(Vt)
print(Vt.shape)
print("vt:_____\n", Vt, "\n")
return Ut, St, Vt'''
return sorted(relevant_doc, key=lambda item: item[1], reverse=True)
@staticmethod
def retrieve_top_k(sorted_relevant_doc, k=1):
"""
return a list of top K tweets based on their ranking from highest to lowest
:param sorted_relevant_doc: list of all candidates docs.
:param k: Number of top document to return
:return: list of relevant document
"""
return sorted_relevant_doc[:k]